MPRI – Computation Geometry and Topology

Clustering

Steve Oudot

(steve.oudot@inria.fr)

Cluster Analysis

Input: a finite set of observations: - point cloud with coordinates

- distance / (dis-)similarity matrix

Task:

partition the data points into a collection of *relevant* subsets called clusters

A Wealth of Approaches

Variational

- k-means / k-medoid
- EM
- CLARA spectral k-means
 - Normalized Cut
 - Multiway Cut

Hierarchical divisive/agglomerative

- single-linkage
- BIRCH

Density thresholding

- DBSCAN - OPTICS

Mode seeking

- Mean/Medoid/Quick Shift
- graph-based hill climbing

Valley seeking

- [JBD'79]
- NDDs [ZZZL'07]

A Wealth of Approaches

Variational

- k-means / k-medoid
- EM
- CLARA spectral k-means

- Normalized Cut

- Multiway Cut

Hierarchical divisive/agglomerative

- single-linkage
- BIRCH

Density thresholding

- DBSCAN - OPTICS

Mode seeking

- Mean/Medoid/Quick Shift
- graph-based hill climbing

Valley seeking

- [JBD'79]
- NDDs [ZZZL'07]

- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density

- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density

- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density

- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density

- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density

estimate density

at the data points

estimate density

at the data points

build neighborhood graph

estimate density

at the data points

build neighborhood graph

approximate gradient

by a graph edge at each data point

• Noisy estimator

- Noisy estimator
- Neighborhood graph

- Noisy estimator
- Neighborhood graph

Solutions:

Be proactive: act on approximate gradient flow (Mean-Shift [CM'02])
→ use kernel density estimator, with smoothing window parameter
→ work in ambient space to circumvent neighborhood graph issue

- Noisy estimator
- Neighborhood graph

Solutions:

- 1. Be proactive: act on approximate gradient flow (Mean-Shift [CM'02]) \rightarrow use kernel density estimator, with smoothing window parameter \rightarrow work in ambient space to circumvent neighborhood graph issue
- 2. Be reactive: merge clusters after clustering (ToMATo [CGOS'13])
 - \rightarrow use topological persistence to guide a single-pass merging step \rightarrow work in neighborhood graph to minimize prior knowledge

1. Mean-Shift

Principle: take a mixture of copies of an 'elementary' density (kernel), anchored at each observation

Principle: take a mixture of copies of an 'elementary' density (kernel), anchored at each observation

Input: $P = \{p_1, \dots, p_n\} \subset \mathbb{R}^d$ (data points), $x \in \mathbb{R}^d$ (query point)

General formula: (convolution)

$$\hat{f}_{K_H}(x) := \frac{1}{n} \sum_{i=1}^n K_H(x - p_i)$$
, where $K_H(u) := (\det H)^{-1/2} K(H^{-1/2}u)$

- *H*: inner-product (positive-definite) $d \times d$ matrix (adds scaling / anisotropy)
- $K : \mathbb{R}^d \to \mathbb{R}^+$: *d*-variate kernel:

$$\int_{\mathbb{R}^d} K(u) \, du = 1 \quad \text{(normalized)} \qquad \qquad \int_{\mathbb{R}^d} u \, K(u) \, du = 0 \quad \text{(centered at origin)}$$
$$\lim_{\|u\| \to \infty} K(u) = 0 \quad \text{(vanishes at infinity)} \qquad \qquad \int_{\mathbb{R}^d} u u^T \, K(u) \, du = c_K \, I_d \quad \text{(isotropic)}$$

0

Specialization 1: take $H = \sigma^2 I_d$ (isotropic kernel) bandwidth / window

Specialization 1: take $H = \sigma^2 I_d$ (isotropic kernel) bandwidth / window **Specialization 2:** take $K(u) \propto k(||u||_2^2)$ for some $k : \mathbb{R}^+ \to \mathbb{R}^+$ (radially-symmetric kernel) kernel profile normalizing factor: $c_{k,d} := \left(\int_{\mathbb{D}^d} k(\|u\|_2^2) \, du \right)^{-1}$

Specialization 1: take $H = \sigma^2 I_d$ (isotropic kernel) `bandwidth / window **Specialization 2:** take $K(u) \propto k(||u||_2^2)$ for some $k : \mathbb{R}^+ \to \mathbb{R}^+$ (radially-symmetric kernel) kernel profile normalizing factor: $c_{k,d} := \left(\int_{\mathbb{T}^d} k(\|u\|_2^2) du \right)^{-1}$ $n_{\rm cu}$

$$\rightsquigarrow \hat{f}_{\sigma,k}(x) := \frac{c_{k,d}}{n \, \sigma^d} \, \sum_{i=1}^n \, k\left(\frac{\|x - p_i\|_2^2}{\sigma^2}\right)$$

$$\rightsquigarrow c_{k,d} = 1/\operatorname{Vol} B_d(0,1)$$
$$= \frac{\Gamma(d/2+1)}{\pi^{d/2}}$$

 $\rightsquigarrow c_{k,d} = (2\pi)^{-d/2}$ Gaussian: $k_{\mathcal{N}}(t) := \exp\left(-t/2\right)$ 0.8 0.4 $'_{K_{\mathcal{N}}}$ 0.2 $k_{\mathcal{N}}$ 0 **Epanechnikov:** $k_{\mathcal{E}}(t) := \begin{cases} 1-t \text{ if } t \leq 1 \\ 0 \text{ if } t > 1 \end{cases} \qquad \rightsquigarrow c_{k,d} = \frac{d+2}{2 \operatorname{Vol} B_d(0,1)}$ 0.8 1. 0.4 $K_{\mathcal{E}}$ 0.2 $k_{\mathcal{E}}$ 0.0 $\left(\right)$ -3

7

Influence of the bandwidth

- small σ (undersmoothing): small bias (sensitivity), large variance (instability)
- large σ (*oversmoothing*): large bias (insensitivity), small variance (stability)

Old geyser dataset

$$\hat{f}_{\sigma,k}(x) := \frac{c_{k,d}}{n \, \sigma^d} \, \sum_{i=1}^n \, k \left(\frac{\|x - p_i\|_2^2}{\sigma^2} \right)$$
$$\hat{\nabla}_f(x) := \nabla_{\hat{f}_{\sigma,k}}(x) = \frac{2 \, c_{k,d}}{n \, \sigma^{d+2}} \, \sum_{i=1}^n \left(x - p_i \right) k' \left(\frac{\|x - p_i\|_2^2}{\sigma^2} \right)$$

$$\hat{f}_{\sigma,k}(x) := \frac{c_{k,d}}{n \, \sigma^d} \, \sum_{i=1}^n \, k\left(\frac{\|x - p_i\|_2^2}{\sigma^2}\right)$$

$$\hat{\nabla}_f(x) := \nabla_{\hat{f}_{\sigma,k}}(x) = \frac{2c_{k,d}}{n\sigma^{d+2}} \sum_{i=1}^n (x-p_i) \, k' \left(\frac{\|x-p_i\|_2^2}{\sigma^2}\right)$$

Letting g := -k' (assumed to be ≥ 0):

$$\nabla_{\hat{f}_{\sigma,k}}(x) = \frac{2c_{k,d}}{n\,\sigma^{d+2}} \left(\sum_{i=1}^{n} g\left(\frac{\|x-p_i\|_2^2}{\sigma^2}\right) \right) \left(\frac{\sum_{i=1}^{n} p_i g\left(\frac{\|x-p_i\|_2^2}{\sigma^2}\right)}{\sum_{i=1}^{n} g\left(\frac{\|x-p_i\|_2^2}{\sigma^2}\right)} - x \right)$$

$$\hat{f}_{\sigma,k}(x) := \frac{c_{k,d}}{n \, \sigma^d} \, \sum_{i=1}^n \, k\left(\frac{\|x - p_i\|_2^2}{\sigma^2}\right)$$

$$\hat{\nabla}_f(x) := \nabla_{\hat{f}_{\sigma,k}}(x) = \frac{2c_{k,d}}{n\sigma^{d+2}} \sum_{i=1}^n (x - p_i) \, k' \left(\frac{\|x - p_i\|_2^2}{\sigma^2}\right)$$

Letting g := -k' (assumed to be ≥ 0):

$$\nabla_{\hat{f}_{\sigma,k}}(x) = \frac{2c_{k,d}}{n\,\sigma^{d+2}} \left(\sum_{i=1}^{n} g\left(\frac{\|x - p_i\|_2^2}{\sigma^2} \right) \right)$$

(un-normalized) kernel density estimator with profile g

 $\left(\frac{\sum_{i=1}^{n} p_i g\left(\frac{\|x-p_i\|_2^2}{\sigma^2}\right)}{\sum_{i=1}^{n} g\left(\frac{\|x-p_i\|_2^2}{\sigma^2}\right)} - x\right)$

barycenter w.r.t. g

mean-shift $m_{\sigma,g}(x)$

$$\hat{f}_{\sigma,k}(x) := \frac{c_{k,d}}{n \, \sigma^d} \, \sum_{i=1}^n \, k\left(\frac{\|x - p_i\|_2^2}{\sigma^2}\right)$$

$$\hat{\nabla}_f(x) := \nabla_{\hat{f}_{\sigma,k}}(x) = \frac{2c_{k,d}}{n\sigma^{d+2}} \sum_{i=1}^n (x-p_i) \, k' \left(\frac{\|x-p_i\|_2^2}{\sigma^2}\right)$$

Letting
$$g := -k'$$
 (assumed to be ≥ 0):

$$\nabla_{\hat{f}_{\sigma,k}}(x) = \frac{2c_{k,d}}{n\,\sigma^{d+2}} \left(\sum_{i=1}^{n} g\left(\frac{\|x-p_i\|_2^2}{\sigma^2}\right)\right)$$

(un-normalized) kernel density estimator with profile g

$$\left(\frac{\sum_{i=1}^{n} p_i g\left(\frac{\|x-p_i\|_2^2}{\sigma^2}\right)}{\sum_{i=1}^{n} g\left(\frac{\|x-p_i\|_2^2}{\sigma^2}\right)} - x\right)$$

barycenter w.r.t. g

mean-shift $m_{\sigma,g}(x)$

 \Rightarrow gradient of density is collinear with mean-shift and oriented in the same direction

Mean-Shift

hill-climbing

Input: $P = \{p_1, \dots, p_n\} \subset \mathbb{R}^d$ (data points), $x \in \mathbb{R}^d$ (query point to be labeled)

Parameters: $k \colon \mathbb{R}^+ \to \mathbb{R}^+$ (profile), $\sigma > 0$ (bandwidth)

Output: the label associated with the convergence point

Mean-Shift

- Apply Mean-Shift hill-climbing to each input point $p_i \in P$
- Epanechnikov kernel \Rightarrow convergence in finite time

 \rightarrow may converge outside the set of critical points of the estimator

 \rightarrow use variant to guarantee cvgence to maximum [Huang et al. 2017]

Mean-Shift

- Apply Mean-Shift hill-climbing to each input point $p_i \in P$
- Epanechnikov kernel \Rightarrow convergence in finite time

 \rightarrow may converge outside the set of critical points of the estimator

- \rightarrow use variant to guarantee cvgence to maximum [Huang et al. 2017]
- Gaussian kernel \Rightarrow convergence at the limit (infinite time)
 - \rightarrow stopping criterion (convergence radius)
 - \rightarrow identification of modes (mode radius)
 - \rightarrow speed-up: hill-climbing gathers neighboring points (gathering radius)

 \rightsquigarrow heuristic: make these radii proportional to the estimator's bandwidth σ
Examples [Comaniciu, Meer 2002]

Examples [Comaniciu, Meer 2002]

Original

 $\left(h_{s},h_{r}
ight)=\left(8,8
ight)$

 $\left(h_{s},h_{r}\right)=\left(8,16\right)$

 $(h_s,h_r)=(16,4)$

 $(h_s,h_r)=(16,8)$

 $(h_s, h_r) = (16, 16)$

1:46:1:24

 $(h_s,h_r)=(32,4)$

 $(h_s, h_r) = (32, 8)$

 $(h_s, h_r) = (32, 16)$

2. ToMATo

estimate density

at the data points

estimate density

at the data points

build neighborhood graph

estimate density

at the data points

build neighborhood graph

approximate gradient

by a graph edge at each data point

Pseudo-code:

Input: neighborhood graph G with n vertices, n-dimensional vector \hat{f} (density estimator)

Sort the vertex indices $\{1, 2, \dots, n\}$ so that $\hat{f}(1) \ge \hat{f}(2) \ge \dots \ge \hat{f}(n)$; Initialize a union-find data structure (disjoint-set forest) \mathcal{U} and two vectors g, r of size n;

for i = 1 to n do Let \mathcal{N} be the set of neighbors of i in G that have indices lower than i; if $\mathcal{N} = \emptyset$ // vertex i is a peak of \hat{f} within GCreate a new entry e in \mathcal{U} and attach vertex i to it; $r(e) \leftarrow i$ // r(e) stores the root vertex associated with the entry eelse // vertex i is not a peak of \hat{f} within G $g(i) \leftarrow \operatorname{argmax}_{j \in \mathcal{N}} \hat{f}(j)$ // g(i) stores the approximate gradient at vertex i $e_i \leftarrow \mathcal{U}.find(g(i))$; Attach vertex i to the entry e_i ;

graph-based hill-climbing (1976)

Enter Topological Persistence...

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging from $-\infty$ to $+\infty$
- Track the evolution of the topology throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging from $-\infty$ to $+\infty$
- Track the evolution of the topology throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging from $-\infty$ to $+\infty$
- Track the evolution of the topology throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty,t])$ for t ranging from $-\infty$ to $+\infty$
- Track the evolution of the topology throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging from $-\infty$ to $+\infty$
- Track the evolution of the topology throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging from $-\infty$ to $+\infty$
- Track the evolution of the topology throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging from $-\infty$ to $+\infty$
- Track the evolution of the topology throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging from $-\infty$ to $+\infty$
- Track the evolution of the topology throughout the family

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging from $-\infty$ to $+\infty$
- Track the evolution of the topology throughout the family
- Finite set of intervals (barcode) encodes births/deaths of topological features

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging from $-\infty$ to $+\infty$
- Track the evolution of the topology throughout the family
- Finite set of intervals (barcode) encodes births/deaths of topological features

Algorithm:

- input: graph $G = (V, E) + map \ f : V \sqcup E \to \mathbb{R}$
- procedure: scan graph by increasing f-values, update CCs by union-find

Inside the black box:

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, t])$ for t ranging from $-\infty$ to $+\infty$
- Track the evolution of the topology throughout the family
- Finite set of intervals (barcode) encodes births/deaths of topological features

• Alternate representation as a multiset of points in the plane (*diagram*).

What if f is slightly perturbed?

Theorem (Stability): [Cohen-Steiner et al. 2005, Chazal, O. et al. 2009] For any *tame* functions $f, g : \mathbb{X} \to \mathbb{R}$, $d_B^{\infty}(\operatorname{Dg} f, \operatorname{Dg} g) \leq ||f - g||_{\infty}$.

partial matching $M : \operatorname{Dg} f \leftrightarrow \operatorname{Dg} g$

cost of a matched pair $(p,q) \in M$: $||p-q||_{\infty}$

cost of an unmatched point $s \in \operatorname{Dg} f \sqcup \operatorname{Dg} g$: $||s - \bar{s}||_{\infty}$

cost of a matching:

$$\max\left\{\sup_{(p, q) \text{ matched }} \|p - q\|_{\infty}, \sup_{s \text{ unmatched }} \|s - \bar{s}\|_{\infty}\right\}$$

bottleneck distance:

$$\mathrm{d}^{\infty}_{B}(\mathrm{Dg}\,f,\mathrm{Dg}\,g) = \inf_{M:\mathrm{Dg}\,f\leftrightarrow\mathrm{Dg}\,g}\mathsf{cost}(M)$$

 $f_P: \quad \mathbb{R}^2 \to \mathbb{R}$ $x \mapsto \min_{p \in P} \|x - p\|_2$

								_
								—
				-				
				-				
			<u> </u>					
			_					
				-				
				-				
				-				
			<u> </u>					
			<u> </u>					
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				_
				-				
								_
	2			-	10	12	 1 /l	16
0	2				10	12		-
0	2	4	6	-	10	12		

 $f_P: \quad \mathbb{R}^2 \to \mathbb{R} \\ x \mapsto \min_{p \in P} \|x - p\|_2$

 $f_P: \quad \mathbb{R}^2 \to \mathbb{R}$ $x \mapsto \min_{p \in P} \|x - p\|_2$

 $\mathsf{barcode} \to \mathsf{merge} \; \mathsf{tree}$

Back to Mode Seeking

(use density estimator instead of distance function)

Persistence for Mode Seeking

Given a probability density f:

- Nested family (filtration) of superlevel-sets $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

Persistence for Mode Seeking

Given a probability density f:

- Nested family (filtration) of superlevel-sets $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$.
- Track evolution of topology throughout the family.
- Finite set of intervals (barcode) encodes births/deaths of topological features.

- Nested family (filtration) of superlevel-sets $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$.
- Track evolution of topology throughout the family.
- Finite set of intervals (barcode) encodes births/deaths of topological features.

Given an estimator \hat{f} :

Stability Theorem $\Rightarrow d_B^{\infty}(\operatorname{Dg} f, \operatorname{Dg} \hat{f}) \leq ||f - \hat{f}||_{\infty}.$

More precisely...

• Density estimator \hat{f} defines an order on the point cloud (sort data points by **decreasing** estimated density values)

More precisely...

- Density estimator \hat{f} defines an order on the point cloud (sort data points by **decreasing** estimated density values)
- Extend order to the graph edges \rightarrow upper-star filtration $(\hat{f}([u,v]) = \min{\{\hat{f}(u), \hat{f}(v)\}})$

More precisely...

- Density estimator \hat{f} defines an order on the point cloud (sort data points by **decreasing** estimated density values)
- Extend order to the graph edges \rightarrow upper-star filtration $(\hat{f}([u,v]) = \min{\{\hat{f}(u), \hat{f}(v)\}})$
- Compute the 0-dimensional persistence diagram of this filtration (apply 0-dimensional persistence algorithm \rightarrow union-find data structure)

Hypotheses:

- $f : \mathbb{R}^d \to \mathbb{R}$ a *c*-Lipschitz probability density function,
- $P \subset \mathbb{R}^d$ a finite set of n points sampled i.i.d. according to f,
- $\hat{f}: P \to \mathbb{R}$ a density estimator such that $\eta := \max_{p \in P} |\hat{f}(p) f(p)| < \Pi/5$,
- G = (P, E) the δ -neighborhood graph for some positive $\delta < \frac{\Pi 5\eta}{5c}$.

Note: Π is the prominence of the least prominent peak of f

Hypotheses:

- $f : \mathbb{R}^d \to \mathbb{R}$ a *c*-Lipschitz probability density function,
- $P \subset \mathbb{R}^d$ a finite set of n points sampled i.i.d. according to f,
- $\hat{f}: P \to \mathbb{R}$ a density estimator such that $\eta := \max_{p \in P} |\hat{f}(p) f(p)| < \Pi/5$,
- G = (P, E) the δ -neighborhood graph for some positive $\delta < \frac{\Pi 5\eta}{5c}$.

Note: Π is the prominence of the least prominent peak of f

Conclusion:

For any choice of τ such that $2(c\delta + \eta) < \tau < \Pi - 3(c\delta + \eta)$, the number of clusters computed by the algorithm is equal to the number of peaks of f with probability at least $1 - e^{-\Omega(n)}$.

(the Ω notation hides factors depending on c, δ)

Conclusion:

For any choice of τ such that $2(c\delta + \eta) < \tau < \Pi - 3(c\delta + \eta)$, the number of clusters computed by the algorithm is equal to the number of peaks of f with probability at least $1 - e^{-\Omega(n)}$.

(the Ω notation hides factors depending on c, δ)

Proof's main ingredient: stability theorem for persistence diagrams

- degree-0 persistence algo. builds a hierarchy of the peaks of \hat{f} (merge tree)
- merge clusters according to the hierarchy (merge each cluster into its parent)

- degree-0 persistence algo. builds a hierarchy of the peaks of \hat{f} (merge tree)
- merge clusters according to the hierarchy (merge each cluster into its parent)
- given a fixed threshold $\tau \geq 0$, only merge those clusters of prominence $< \tau$

$$0 \leq \tau \leq \alpha - \beta$$

- degree-0 persistence algo. builds a hierarchy of the peaks of \hat{f} (merge tree)
- merge clusters according to the hierarchy (merge each cluster into its parent)
- given a fixed threshold $\tau \geq 0$, only merge those clusters of prominence $< \tau$

$$\alpha - \beta < \tau \le \gamma - \delta$$

- degree-0 persistence algo. builds a hierarchy of the peaks of \hat{f} (merge tree)
- merge clusters according to the hierarchy (merge each cluster into its parent)
- given a fixed threshold $\tau \geq 0$, only merge those clusters of prominence $< \tau$

$$\gamma-\delta<\tau\leq+\infty$$

Pseudo-code:

Input: simple graph G with n vertices, n-dimensional vector \hat{f} , real parameter $\tau \geq 0$.

Sort the vertex indices $\{1, 2, \dots, n\}$ so that $\hat{f}(1) \ge \hat{f}(2) \ge \dots \ge \hat{f}(n)$; Initialize a union-find data structure \mathcal{U} and two vectors g, r of size n;

for i = 1 to n do Let \mathcal{N} be the set of neighbors of i in G that have indices lower than i; **if** $\mathcal{N} = \emptyset$ // vertex *i* is a peak of \hat{f} within *G* Create a new entry e in \mathcal{U} and attach vertex i to it; graph-based $r(e) \leftarrow i$ // r(e) stores the root vertex associated with the entry ehill-climbing **else** // vertex i is not a peak of \hat{f} within G (1976) $g(i) \leftarrow rgmax_{j \in \mathcal{N}} f(j)$ // g(i) stores the approximate gradient at vertex i $e_i \leftarrow \mathcal{U}.\mathtt{find}(q(i));$ Attach vertex i to the entry e_i ; for $j \in \mathcal{N}$ do $e \leftarrow \mathcal{U}.\mathtt{find}(j);$ cluster merges if $e \neq e_i$ and $\min\{\hat{f}(r(e)), \hat{f}(r(e_i))\} < \hat{f}(i) + \tau$ with persistence $\mathcal{U}.union(e, e_i);$ (2013) $r(e \cup e_i) \leftarrow \operatorname{argmax}_{\{r(e), r(e_i)\}} \hat{f};$ $e_i \leftarrow e \cup e_i;$

Output: the collection of entries e of \mathcal{U} such that $\hat{f}(r(e)) \geq \tau$.

Complexity of the Algorithm

Given a neighborhood graph with n vertices (with density values) and m edges:

1. the algorithm sorts the vertices by decreasing density values,

2. the algorithm makes a single pass through the vertex set, creating the spanning forest and merging clusters on the fly using a union-find data structure.

- \rightarrow Running time: $O(n \log n + (n + m)\alpha(n))$
- \rightarrow Space complexity: O(n+m)
- \rightarrow Main memory usage: O(n)

Biological Data

Alanine-Dipeptide conformations (\mathbb{R}^{21})

RMSD distance (non-Euclidean)

Common belief: 6 metastable states PD shows anywhere between 4 and 7 clusters

Biological Data

Alanine-Dipeptide conformations (\mathbb{R}^{21})

RMSD distance (non-Euclidean)

Note: Spectral Clustering takes a week of tweaking, while ToMATo runs out-of-the-box in a few minutes

• Y. Yao, J. Sun, X. Huang, G. Bowman, G. Singh, M. Lesnick, L. Guibas, V. Pande, G. Carlsson, Topological methods for exploring low-density states in biomolecular folding pathways, *The Journal of Chemical Physics*, 2009.

Image Segmentation

Density is estimated in 3D color space (Luv) Neighborhood graph is built in image domain

Distribution of prominences does not usually show a clear unique gap

Still, relationship between choice of τ and number of obtained clusters remains explicit

Recap'

ToMATo:

- 1. graph-based mode-seeking algorithm of [KNF'76]
- 2. single-pass cluster merging phase guided by persistence

Competitors:

1. Mean-Shift and its variants (smoothing a priori)

2. ...

Recap'

- Highly generic
 - applicable in arbitrary metric spaces
 - agnostic to the choice of neighborhood graph and density estimator
- Easy to tune
 - mostly two parameters: neighborhood size, persistence threshold τ
 - PD provides insight into the correct number of clusters
- Comes with theoretical guarantees
 - number of obtained clusters versus number of prominent peaks
 - partial approximation of the basins of attraction of the peaks
- Efficient and practical
 - near linear runtime, linear main memory usage
 - can handle data sets with hundreds of thousands of points in practice