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Cluster Analysis

- point cloud with coordinates

a finite set of observations:

Input

)similarity matrix

- distance / (dis-

Task:

partition the data points into a collection of relevant subsets called clusters



A Wealth of Approaches

Variational
- k-means / k-medoid
- EM
- CLARA
spectral |k-means
Spectral

- Normalized Cut
- Multiway Cut

Hierarchical divisive /agglomerative

- single-linkage
- BIRCH

Density thresholding

- DBSCAN
- OPTICS

Mode seeking
- Mean/Medoid/Quick Shift
- graph-based hill climbing

Valley seeking
- [JBD'79]
- NDDs [ZZZL'07]
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Mode-Seeking Paradigm

e Assume the data points are sampled from some unknown probability distribution

e Partition the data according to the basins of attraction of the peaks of the density
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[Koontz, Narendra, Fukunaga'76] in a Nutshell

estimate density

>
at the data points

approximate gradient
-

by a graph edge
at each data point
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— work In ambient space to circumvent neighborhood graph issue



Why things are likely to go ill

e Noisy estimator

e Neighborhood graph

Solutions:

1. Be proactive: act on approximate gradient flow (Mean-Shift [CM'02])

— use kernel density estimator, with smoothing window parameter

— work In ambient space to circumvent neighborhood graph issue

2. Be reactive: merge clusters after clustering (ToMATo [CGOS'13])

— use topological persistence to guide a single-pass merging step

— work in neighborhood graph to minimize prior knowledge



1. Mean-Shift



Kernel density estimators

Principle: take a mixture of copies of an ‘elementary’ density (kernel),

anchored at each observation
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Kernel density estimators

Principle: take a mixture of copies of an ‘elementary’ density (kernel),

anchored at each observation
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(image source: http://www.wikiwand.com/en/Multivariate_kernel_density_estimation) 6



Kernel density estimators

Input: P = {p1,--- ,pn}+ C R% (data points), = € R* (query point)

General formula: (convolution)

Frc, (z) = % f: Ku(z — ps), where K (u) := (det H) ™2 K(H ™ *?u)

i=1
e H: inner-product (positive-definite) d X d matrix (adds scaling / anisotropy)

o K : R 5 RT: d-variate kernel:

K(u)du =1 (normalized) / u K (u)du = 0 (centered at origin)
Rd Rd
” lﬁm K(u) =0 (vanishes at infinity) / uu’ K(u)du = ck 14 (isotropic)
Ul — o0 Rd

6



Kernel density estimators

Specialization 1: take H = o° I (isotropic kernel)

bandwidth / window
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normalizing factor: cj 4 := (/ k(||u||%)du>
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Kernel density estimators

Specialization 1: take H = o° I (isotropic kernel)

bandwidth / window

Specialization 2: take K (u) o< k(||u||3) for some k : RT — R™

(radially-symmetric kernel)
kernel profile

—1
normalizing factor: cj 4 := (/ k(||u||%)du>
Rd

o Frale) = 2ty k(1)
1=1

nod < o2



Common kernels

Flat / Uniform: ki (t) := <

(1ift<1

L 0ift>1

A

1

~r Ck,d = 1/V01 Bd(O, 1)

_ I'(d/2+1)
— T d/2




Common kernels

(1ift<1
Flat / Uniform: ku(t) = < ~ Cl,d =— 1/V01 Bd((), 1)
| 0ift>1
R N ~ T(d/2+1)
o rd/2
1
ku Ky
0
[ 1—tift<1 d 4+ 2
E hnikov: kg(t) := s —
panechnikov: ke (1) <\ 0if t > 1 4 2Vol Ba(0, 1)
A
1 °
k‘g Kg

-
~



Common kernels

Gaussian: kar(t) := exp (—t/2) s cpa = (2m) Y3
A 2
.
ks SA
> = >~
O i s 2 0 123
(1—tift<1 449
Epanechnikov: kg(t) := —
panechnilov: kz (1) Oif ¢t > 1 T 2Vol B4(0,1)
A \
1 2
ké’ Kge

-
0.0
\l
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Old faithful geyser dataset (available in R):
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Influence of the bandwidth

e small o (undersmoothing): small bias (sensitivity), large variance (instability)

e large o (oversmoothing): large bias (insensitivity), small variance (stability)
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Differentiation

n

P . 2
frao) 1= 2o 5~ (1222l )

nod < o2
1=1

2 2¢Ck,d 1T — Di
91(@) 1=y, (@) = oot Y= po k(TR



Differentiation

for(z) = Ch,d k(”x pz||2)
1=1

n o?

S _ 2cha % /(1 = pill3
Vi) = V) = oy S pok (1
Letting g := —k’ (assumed to be > 0):

n " . ||33—P7;||§)
Vi (0)=—d (S | — pill3 S pig( »
fo,k nad—|—2 1 o2 n g(Hm_gZ”%)
- D it -



Differentiation
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Differentiation

frao) 1= 2o 5~ (1222l )
=1

n o?

2 2Chd O (e = pil)3
Vila) =V, @) = St S (@ - po k(1P

Letting g := —k’ (assumed to be > 0):

n " . ||33—p7;||g)
Vi (0)=—d (S | — pill3 S pig( »
fo,k nad—|—2 1 o2 n g(Hm_gZ”%)
- D it -

l I l I
(un-normalized) kernel density barycenter w.r.t. g

estimator with profile g

mean-shift mq ()

= gradient of density is collinear with mean-shift and oriented in the same direction



Mean-Shift

hill-climbing
Input: P = {p1,---,pn} C R? (data points), x € R? (query point to be labeled)
Parameters: k: RT™ — RT (profile), o > 0 (bandwidth) d
---------- .. o
(Epanechnikov kernel) "~ o
To =T < . ® -
| SO e . o & o
®
Repeat: o ce ‘e ® o° ¢ ¢
: . shift ‘e
Titl = T; + Mo, g(T; : o= PO o 90 o
until convergence o ® Lo o
\ 4 °
Padi ) °
e ©
°.
- °

~
R e

Output: the label associated with the convergence point
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Mean-Shift

e Apply Mean-Shift hill-climbing to each input point p; € P

e Epanechnikov kernel = convergence in finite time
— may converge outside the set of critical points of the estimator

— use variant to guarantee cvgence to maximum [Huang et al. 2017]
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Mean-Shift

e Apply Mean-Shift hill-climbing to each input point p; € P

e Epanechnikov kernel = convergence in finite time
— may converge outside the set of critical points of the estimator

— use variant to guarantee cvgence to maximum [Huang et al. 2017]
e Gaussian kernel = convergence at the limit (infinite time)
— stopping criterion (convergence radius)
— identification of modes (mode radius)
— speed-up: hill-climbing gathers neighboring points (gathering radius)

~+ heuristic: make these radii proportional to the estimator's bandwidth o

10
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Exa m pleS [Comaniciu,

(e, ) = (32,4)

Meer 2002]
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(Ros, hr) = (32, 16)
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2. ToMATo



|[Koontz, Narendra, Fukunaga'76] in a Nutshell
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[Koontz, Narendra, Fukunaga'76] in a Nutshell

estimate density

>
at the data points

approximate gradient
-

by a graph edge
at each data point
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Pseudo-code:

Input: neighborhood graph G with n vertices, n-dimensional vector f (density estimator)

Sort the vertex indices {1,2,--- ,n} so that f(l) > f(2) > . > f(n)

Initialize a union-find data structure (disjoint-set forest) U and two vectors g, r of size n;

for : =1 ton do )

Let N be the set of neighbors of 7 in G that have indices lower than i;
if N' =0 // vertex i is a peak of f within G

Create a new entry e in U and attach vertex 7 to it;

r(e) — 1 // r(e) stores the root vertex associated with the entry e
else // vertex i is not a peak of f within G

g(z) <— argmaxj ENf(J) // g(1) stores the approximate gradient at vertex i

e; < U.find(g(7));

Attach vertex 1 to the entry e;; i

Output: the collection of entries e in U

graph-based
hill-climbing
(1976)

13



Enter Topological Persistence...



Topological Persistence (in a nutshell)

Ra
X topological space

f: X—-R

persistence

 /
Dg f

signature: persistence diagram

encodes the topological structure of the pair (X, f)

14



Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—o0,t]) for t ranging from —oco to 400

e Track the evolution of the topology throughout the family

R A

<Y
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Topological Persistence (in a nutshell)

Inside the black box:
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Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—oo,t]) for t ranging from —oo to +o0o

e Track the evolution of the topology throughout the family
e Finite set of intervals (barcode) encodes births/deaths of topological features

e Alternate representation as a multiset
of points in the plane (diagram).

15



Topological Persistence (in a nutshell)

Algorithm:

e input: graph G=(V,E) + map f: VUFE — R

e procedure: scan graph by increasing f-values, update CCs by union-find

15



Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—oo,t]) for t ranging from —oo to +o0o

e Track the evolution of the topology throughout the family
e Finite set of intervals (barcode) encodes births/deaths of topological features

e Alternate representation as a multiset

Ra of points in the plane (diagram).
f What if f is slightly perturbed?
g oo

<V

16



Topological Persistence (in a nutshell)

partial matching M : Dg f <+ Dgg

cost of a matched pair (p,q) € M: ||p — q||co

cost of an unmatched point s € Dg f LI Dgg: ||s — 5|00

o

cost of a matching:

max{ sup ||p_Q||o<>7 Sup ||S_5||OO}

(p, q) matched s unmatched

bottleneck distance:

d%(Dg f.De g) = inf t(M
= (Dg f,Dgg) M;Dgl?HDggcos( )

—e—

16



Example: Distance Function

fp X RQ — R
T — min,ep ||z — pl|2
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Example: Distance Function
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Example: Distance Function

fp X RQ — R
T — min,ep ||z — pl|2

barcode — merge tree — dendrogram

(single-linkage)




Back to Mode Seeking

(use density estimator instead of distance function)



Persistence for Mode Seeking

Given a probability density f:
e Nested family (filtration) of superlevel-sets f—!([t, +00)) for ¢ from 400 to —oo.
e Track evolution of topology throughout the family.
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ﬂ >Rd

18



Persistence for Mode Seeking

Given a probability density f:
e Nested family (filtration) of superlevel-sets f—!([t, +00)) for ¢ from 400 to —oo.
e Track evolution of topology throughout the family.

18



Persistence for Mode Seeking

Given a probability density f:
e Nested family (filtration) of superlevel-sets f—!([t, +00)) for ¢ from 400 to —oo.
e Track evolution of topology throughout the family.

18



Persistence for Mode Seeking

Given a probability density f:
e Nested family (filtration) of superlevel-sets f—!([t, +00)) for ¢ from 400 to —oo.
e Track evolution of topology throughout the family.

18



Persistence for Mode Seeking

Given a probability density f:
e Nested family (filtration) of superlevel-sets f—!([t, +00)) for ¢ from 400 to —oo.

e Track evolution of topology throughout the family.
e Finite set of intervals (barcode) encodes births/deaths of topological features.

18



Persistence for Mode Seeking

Given a probability density f:
o Nested family (filtration) of superlevel-sets f—!([t, +00)) for t from 400 to —oo.

e Track evolution of topology throughout the family.
e Finite set of intervals (barcode) encodes births/deaths of topological features.

RA




Persistence for Mode Seeking

Given an estimator f:

Stability Theorem = d%(Dg £, Dg ) < ||If — fllso-

R A




More precisely...

e Density estimator f defines an order on the point cloud

(sort data points by decreasing estimated density values)
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More precisely..

e Density estimator f defines an order on the point cloud

ing estimated density values)

(sort data points by decreas

on

star filtrat

e Extend order to the graph edges — upper-

A

(f (fu,v]) = min{f(u), f(v)})

A
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More precisely...

e Density estimator f defines an order on the point cloud

(sort data points by decreasing estimated density values)

e Extend order to the graph edges — upper-star filtration
(f([u,v]) = min{f(u), f(v)})

e Compute the O-dimensional persistence diagram of this filtration

(apply O-dimensional persistence algorithm — union-find data structure)




Estimating the Correct Number of Clusters
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Estimating the Correct Number of Clusters

6 prominent
peaks
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Estimating the Correct Number of Clusters




Estimating the Correct Number of Clusters

Hypotheses:

e f:R* — R a c-Lipschitz probability density function,

e P C R” a finite set of n points sampled i.i.d. according to f,

e f: P — R a density estimator such that n := max,e p \f(p) — f(p)| < 11/5,

II—-5n

e G = (P, E) the §-neighborhood graph for some positive § < ~—+

Note: II is the prominence of the least prominent peak of f
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Estimating the Correct Number of Clusters

Hypotheses:

e f:R* — R a c-Lipschitz probability density function,

e P C R” a finite set of n points sampled i.i.d. according to f,

e f: P — R a density estimator such that n := max,e p \f(p) — f(p)| < 11/5,

o G = (P, F) the é-neighborhood graph for some positive § < Hgf”.

Note: II is the prominence of the least prominent peak of f

Conclusion:

For any choice of 7 such that 2(c¢d +1n) < 7 < II — 3(cd + 1),
the number of clusters computed by the algorithm is equal to the num-
ber of peaks of f with probability at least 1 — e~*}(").

(the Q2 notation hides factors depending on c, §)
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Estimating the Correct Number of Clusters

P 2(65 + 77)

L —3(cd +n)

2(05:+ n) 11 - 3(cd + 1)
Conclusion:

For any choice of 7 such that 2(cd +7n) < 7 < II — 3(cd + 1),
the number of clusters computed by the algorithm is equal to the num-
ber of peaks of f with probability at least 1 — e~$}(").

(the Q2 notation hides factors depending on c, §)
21



Estimating the Correct Number of Clusters

L] 2(co +m)

L —3(cd +n)

2(05:+ n) 11 - 3(cd + 1)

Proof's main ingredient: stability theorem for persistence diagrams

21



Merging Clusters

e degree-0 persistence algo. builds a hierarchy of the peaks of f (merge tree)

e merge clusters according to the hierarchy (merge each cluster into its parent)
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Merging Clusters

e degree-0 persistence algo. builds a hierarchy of the peaks of f (merge tree)
e merge clusters according to the hierarchy (merge each cluster into its parent)

e given a fixed threshold 7 > 0, only merge those clusters of prominence < 7

v —0 < T< +00

22



Pseudo-code:

Input: simple graph GG with n vertices, n-dimensional vector f real parameter 7 > 0.

Sort the vertex indices {1,2,--- ,n} so that f(l) > f(2) >0 > f(n)
Initialize a union-find data structure 4 and two vectors g, r of size n;

for: =1 ton do

Let A be the set of neighbors of i in G that have indices lower than i: |
if N =0 // vertex i is a peak of f within G
Create a new entry e in U and attach vertex 1 to it;
r (6) — 1 // r(e) stores the root vertex associated with the entry e ﬁ:ﬁ_‘jﬁ::d
else // vertex i is not a peak of f within G (1976) ¢
g(z) — argmax; ENf(]) // g(i) stores the approximate gradient at vertex 1
e; < U.find(g(2));
... Attach vertex i totheentry e;; i
for j €¢ N do )
e <~ U.find(j); ) ) uster meres
if e # e; and min{f(r(e)), f(r(e:))} < f(@) +7 with persistence
U.union(e, e;); (2013)
7“(6 U ei) — argmax{r(e)’ r(ei)}f;
e; < el e;; _

Output: the collection of entries e of U such that f(r(e)) > 7.
23



Complexity of the Algorithm

Given a neighborhood graph with n vertices (with density values) and m edges:

1. the algorithm sorts the vertices by decreasing density values,

2. the algorithm makes a single pass through the vertex set, creating the span-
ning forest and merging clusters on the fly using a union-find data structure.

— Running time: O(nlogn + (n +m)a(n))
— Space complexity: O(n + m)

— Main memory usage: O(n)

24



Experimental Results

Synthetic Data
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Experimental Results
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Experimental Results

Synthetic Data
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Experimental Results

Biological Data

Alanine-Dipeptide conformations (R?!)

RMSD distance (non-Euclidean)

Ay

Common belief: 6 metastable states

PD shows anywhere between 4 and 7 clusters
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Experimental Results

Biological Data

Alanine-Dipeptide conformations (R?!)

RMSD distance (non-Euclidean)

Common belief: 6 metastable states
PD shows anywhere between 4 and 7 clusters

Measures of metastability confirm this insight

Metastability

Rank Prominence Metastability
1 +00 0.99982
2 3827 1.91865
3 1334 2.8813
4 557 3.76217
5 85 4.73838
6 32 5.65553
7 26 6.50757
8 7.2 6.8193
9 3.0 -

10 2.2 -

3 4
Number of clusters

5 6 I



Experimental Results

Biological Data

Alanine-Dipeptide conformations (R?!)

RMSD distance (non-Euclidean)

Note: Spectral Clustering takes a week of tweaking,
while ToMATo runs out-of-the-box in a few minutes

e Y. Yao, J. Sun, X. Huang, G. Bowman, G. Singh, M. Lesnick, L. Guibas, V. Pande,
G. Carlsson, Topological methods for exploring low-density states in biomolecular
folding pathways, The Journal of Chemical Physics, 20009.
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xperimental Results

Image Segmentation
Density is estimated in 3D color space (Luv)

Neighborhood graph is built in image domain

Distribution of prominences does not usually
show a clear unique gap

Still, relationship between choice of 7 and
number of obtained clusters remains explicit




Recap’

ToMATo:

1. graph-based mode-seeking algorithm of [KNF'76]

2. single-pass cluster merging phase guided by persistence

Competitors:

1. Mean-Shift and its variants (smoothing a priori)

2. ...
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Recap’

e Highly generic
- applicable in arbitrary metric spaces

- agnostic to the choice of neighborhood graph and density estimator

e Easy to tune
- mostly two parameters: neighborhood size, persistence threshold 7

- PD provides insight into the correct number of clusters

e Comes with theoretical guarantees
- number of obtained clusters versus number of prominent peaks

- partial approximation of the basins of attraction of the peaks

e Efficient and practical
- near linear runtime, linear main memory usage

- can handle data sets with hundreds of thousands of points in practice
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