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Cluster Analysis
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Input: a finite set of observations:

Task:

partition the data points into a collection of relevant subsets called clusters

- point cloud with coordinates

- distance / (dis-)similarity matrix



transition: of course the notion of relevance for a cluster is ill-defined, and since cluster analysis is such a fundamental topic in computer science, it is no surprise that the literature on the subject is rich and abundant. Here I give a glimpse at it.

This algorithm by Zhang, Zhang, Zhang and Li uses Normalized Density Derivatives (LDDs) to build a neighborhood graph within which valleys are then detected.

A variant of [KNF’76] where points climb down hills in the direction opposite to the estimated gradient. The thus obtained valley points act as separators between clusters.

A Wealth of Approaches

3

Variational

- k-means / k-medoid
- EM

Mode seeking

- Mean/Medoid/Quick Shift

- graph-based hill climbing

Spectral

Density thresholding

- DBSCAN
- OPTICS

- BIRCH

Hierarchical divisive/agglomerative

- single-linkage

- Normalized Cut

- CLARA

- Multiway Cut

Valley seeking

- [JBD’79]

- NDDs [ZZZL’07]

spectral k-means
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Mode-Seeking Paradigm

• Assume the data points are sampled from some unknown probability distribution

• Partition the data according to the basins of attraction of the peaks of the density
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[Koontz, Narendra, Fukunaga’76] in a Nutshell
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typically, one uses a Gaussian kernel estimator in practice
estimate density

at the data points

[Koontz, Narendra, Fukunaga’76] in a Nutshell
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typically, one builds a Rips or k-NN graph in practice, since these only require to use distance computations

typically, one uses a Gaussian kernel estimator in practice
estimate density

at the data points

[Koontz, Narendra, Fukunaga’76] in a Nutshell

build neighborhood graph
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typically, one connects each vertex to its graph neighbor with highest density value. This neighbor is called the parent of the current vertex. If no neighbor is higher than the current vertex, then the latter is declared a peak. Note that [KNF’76] normalizes the difference in height by the edge length.

the set of pseudo-gradient edges forms a spanning forest of the graph, where each tree represents a cluster and its root is a (estimated) density peak within the graph and acts as cluster center

typically, one builds a Rips or k-NN graph in practice, since these only require to use distance computations

typically, one uses a Gaussian kernel estimator in practice
estimate density

at the data points

approximate gradient

by a graph edge

[Koontz, Narendra, Fukunaga’76] in a Nutshell

at each data point

build neighborhood graph

4



The main reason why we got a wrong result here is that our estimator is very noisy, with many local peaks in the plane that create local peaks within the graph. Generally speaking, differential quantities like peaks and gradients are very unstable under C0 perturbations of the function, which is what happens when a density estimator is used.

transition: the result obtained depends on your choice of estimator, neighborhood graph and gradient approximation strategy.Why things are likely to go ill

estimated
density

• Noisy estimator
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But it is not the only reason. Even with a perfect estimator (i.e. the original density function, as shown below), the fact that we work in some neighborhood graph instead of the ambient space may create artificial peaks, such as for instance the saddle point on the edge of the crater which turns into a peak in the graph, or the actual peak of the crater which is duplicated into 3 peaks.
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in fact, it may even worsen the neighborhood graph issue, since smoothing the estimator tends to enlarge the areas where the norm of the gradient is small, which are typically the areas where the neighborhood graph may have spurious peaks.

1. Be proactive: act on approximate gradient flow (Mean-Shift [CM’02])

→ use kernel density estimator, with smoothing window parameter

→ work in ambient space to circumvent neighborhood graph issue



The main reason why we got a wrong result here is that our estimator is very noisy, with many local peaks in the plane that create local peaks within the graph. Generally speaking, differential quantities like peaks and gradients are very unstable under C0 perturbations of the function, which is what happens when a density estimator is used.

But it is not the only reason. Even with a perfect estimator (i.e. the original density function, as shown below), the fact that we work in some neighborhood graph instead of the ambient space may create artificial peaks, such as for instance the saddle point on the edge of the crater which turns into a peak in the graph, or the actual peak of the crater which is duplicated into 3 peaks.

transition: the result obtained depends on your choice of estimator, neighborhood graph and gradient approximation strategy.Why things are likely to go ill

• Noisy estimator

• Neighborhood graph

Solutions:

2. Be reactive: merge clusters after clustering (ToMATo [CGOS’13])

→ use topological persistence to guide a single-pass merging step
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→ work in neighborhood graph to minimize prior knowledge

in fact, it may even worsen the neighborhood graph issue, since smoothing the estimator tends to enlarge the areas where the norm of the gradient is small, which are typically the areas where the neighborhood graph may have spurious peaks.

1. Be proactive: act on approximate gradient flow (Mean-Shift [CM’02])

→ use kernel density estimator, with smoothing window parameter

→ work in ambient space to circumvent neighborhood graph issue



1. Mean-Shift



Kernel-based estimators have been designed to adapt naturally to the shape of the support of the density, as the corresponding ”tessellation” (so to speak) is defined from the dataKernel density estimators

Principle: take a mixture of copies of an ‘elementary’ density (kernel),

anchored at each observation

(d
en

si
ty
)
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Kernel-based estimators have been designed to adapt naturally to the shape of the support of the density, as the corresponding ”tessellation” (so to speak) is defined from the dataKernel density estimators

Principle: take a mixture of copies of an ‘elementary’ density (kernel),

anchored at each observation

(image source: http://www.wikiwand.com/en/Multivariate_kernel_density_estimation) 6



The covariance matrix associated with K is proportional to the identity matrix.

For instance, in the previous illustration, K is am isotropic d-variate Gaussian function, and H stretches one coordinate and rotates the frame

This is a convolution of the empirical measure by the density KH

Kernel-based estimators have been designed to adapt naturally to the shape of the support of the density, as the corresponding ”tessellation” (so to speak) is defined from the dataKernel density estimators

General formula: (convolution)

f̂KH (x) :=
1

n

n∑
i=1

KH(x− pi), where KH(u) := (detH)−1/2 K(H−1/2u)

• H: inner-product (positive-definite) d× d matrix (adds scaling / anisotropy)

• K : Rd → R+: d-variate kernel:∫
Rd

K(u) du = 1

lim
∥u∥→∞

K(u) = 0

∫
Rd

uK(u) du = 0∫
Rd

uuT K(u) du = cK Id

(normalized)

(vanishes at infinity)

(centered at origin)

(isotropic)

Input: P = {p1, · · · , pn} ⊂ Rd (data points), x ∈ Rd (query point)
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Kernel-based estimators have been designed to adapt naturally to the shape of the support of the density, as the corresponding ”tessellation” (so to speak) is defined from the dataKernel density estimators

Specialization 1: take H = σ2 Id (isotropic kernel)

bandwidth / window
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This is for the normalization of the kernel:
∫
Rd K(u) du =

∫
Rd ck,d k(∥u∥2) du = 1

Kernel-based estimators have been designed to adapt naturally to the shape of the support of the density, as the corresponding ”tessellation” (so to speak) is defined from the dataKernel density estimators

Specialization 1: take H = σ2 Id (isotropic kernel)

bandwidth / window

Specialization 2: take K(u) ∝ k(∥u∥22) for some k : R+ → R+

(radially-symmetric kernel)
kernel profile

normalizing factor: ck,d :=

(∫
Rd

k(∥u∥22) du
)−1
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This is for the normalization of the kernel:
∫
Rd K(u) du =

∫
Rd ck,d k(∥u∥2) du = 1

Kernel-based estimators have been designed to adapt naturally to the shape of the support of the density, as the corresponding ”tessellation” (so to speak) is defined from the dataKernel density estimators

Specialization 1: take H = σ2 Id (isotropic kernel)

bandwidth / window

Specialization 2: take K(u) ∝ k(∥u∥22) for some k : R+ → R+

(radially-symmetric kernel)
kernel profile

f̂σ,k(x) :=
ck,d
nσd

n∑
i=1

k

(
∥x− pi∥22

σ2

)
normalizing factor: ck,d :=

(∫
Rd

k(∥u∥22) du
)−1

⇝
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Note that the volume of the unit ball in 1-d is 2

Common kernels

Flat / Uniform: kU (t) :=

{
1 if t ≤ 1

0 if t > 1
⇝ ck,d = 1/VolBd(0, 1)

=
Γ(d/2 + 1)

πd/2

10

1

kU KU
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1

kU KU

Epanechnikov: kE(t) :=

{
1− t if t ≤ 1

0 if t > 1
⇝ ck,d =

d+ 2

2VolBd(0, 1)

10

1

kE KE
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Common kernels

Epanechnikov: kE(t) :=

{
1− t if t ≤ 1

0 if t > 1
⇝ ck,d =

d+ 2

2VolBd(0, 1)

10

1

kE KE

Gaussian: kN (t) := exp (−t/2) ⇝ ck,d = (2π)−d/2

10

1

kN KN
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Common kernels

40 50 60 70 80 90 100

Old faithful geyser dataset (available in R):

- 1st coordinate: waiting time (sec.) between eruptions

- 2nd coordinate (unused): eruptions duration (sec.)

(n
u
m
b
er

o
f
o
cc
u
rr
en

ce
s)

Gaussian kernel Uniform kernel Epanechnikov

kernel
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Influence of the bandwidth

σ = 1
σ = 3
σ = 10

40 50 60 70 80 90 100

Old geyser dataset

• large σ (oversmoothing): large bias (insensitivity), small variance (stability)

• small σ (undersmoothing): small bias (sensitivity), large variance (instability)
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the estimator of the gradient of the density is defined to be the gradient of the density estimator

Differentiation

f̂σ,k(x) :=
ck,d
nσd

n∑
i=1

k

(
∥x− pi∥22

σ2

)

∇̂f (x) := ∇f̂σ,k
(x) =

2 ck,d
nσd+2

n∑
i=1

(x− pi) k
′
(
∥x− pi∥22

σ2

)

9



motivation: kernel profiles are usually decreasing non-negative functions, as in the examples shown previously

- one develops the previous expression for the gradient, and factors x out of the sum - then, on normalizes the coefficient in front of x and uses g = −k′ for the new profile as motivated above (all coefficients become non-negative)

the estimator of the gradient of the density is defined to be the gradient of the density estimator

Differentiation

f̂σ,k(x) :=
ck,d
nσd

n∑
i=1

k

(
∥x− pi∥22

σ2

)

∇̂f (x) := ∇f̂σ,k
(x) =

2 ck,d
nσd+2

n∑
i=1

(x− pi) k
′
(
∥x− pi∥22

σ2

)

Letting g := −k′ (assumed to be ≥ 0):

∇f̂σ,k
(x) =

2 ck,d
nσd+2

(
n∑

i=1

g

(
∥x− pi∥22

σ2

)) ∑n
i=1 pi g

(
∥x−pi∥22

σ2

)
∑n

i=1 g
(

∥x−pi∥22
σ2

) − x
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(un-normalized) kernel density

estimator with profile g
barycenter w.r.t. g

mean-shift mσ,g(x)
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(un-normalized) kernel density

estimator with profile g
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⇒ gradient of density is collinear with mean-shift and oriented in the same direction
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Mean-Shift

10

query
shift

mean

σ

x0 := x

Repeat:

xj+1 := xj +mσ,g(xj)

until convergence

Parameters: k : R+ → R+ (profile), σ > 0 (bandwidth)

Input: P = {p1, · · · , pn} ⊂ Rd (data points), x ∈ Rd (query point to be labeled)

Output: the label associated with the convergence point

hill-climbing

(Epanechnikov kernel)



the main argument is that the mean0-shift in this case moves the point x to the isobarycenter of its σ-neighbors. Given P finite, there are only finitely many possible subsets of σ-neighbors, therefore only finitely many isobarycenters. Since the density keeps increasing strictly, the hill-clibing process must stop eventually.

Mean-Shift

10

• Apply Mean-Shift hill-climbing to each input point pi ∈ P

• Epanechnikov kernel ⇒ convergence in finite time

→ may converge outside the set of critical points of the estimator

→ use variant to guarantee cvgence to maximum [Huang et al. 2017]
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Mean-Shift
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• Apply Mean-Shift hill-climbing to each input point pi ∈ P

• Gaussian kernel ⇒ convergence at the limit (infinite time)

→ stopping criterion (convergence radius)

→ identification of modes (mode radius)

→ speed-up: hill-climbing gathers neighboring points (gathering radius)

⇝ heuristic: make these radii proportional to the estimator’s bandwidth σ

• Epanechnikov kernel ⇒ convergence in finite time

→ may converge outside the set of critical points of the estimator

→ use variant to guarantee cvgence to maximum [Huang et al. 2017]



Examples [Comaniciu, Meer 2002]
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2. ToMATo



[Koontz, Narendra, Fukunaga’76] in a Nutshell
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typically, one connects each vertex to its graph neighbor with highest density value. This neighbor is called the parent of the current vertex. If no neighbor is higher than the current vertex, then the latter is declared a peak. Note that [KNF’76] normalizes the difference in height by the edge length.
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at each data point

build neighborhood graph
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for i = 1 to n do
Let N be the set of neighbors of i in G that have indices lower than i;
if N = ∅ // vertex i is a peak of f̂ within G

Create a new entry e in U and attach vertex i to it;
r(e)← i // r(e) stores the root vertex associated with the entry e

else // vertex i is not a peak of f̂ within G

g(i)← argmaxj∈N f̂(j) // g(i) stores the approximate gradient at vertex i

ei ← U .find(g(i));
Attach vertex i to the entry ei;

Sort the vertex indices {1, 2, · · · , n} so that f̂(1) ≥ f̂(2) ≥ · · · ≥ f̂(n);
Initialize a union-find data structure (disjoint-set forest) U and two vectors g, r of size n;

Pseudo-code:
Input: neighborhood graph G with n vertices, n-dimensional vector f̂ (density estimator)

Output: the collection of entries e in U
13

graph-based

hill-climbing

(1976)



Enter Topological Persistence...
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Topological Persistence (in a nutshell)

f : X → R

persistence

Dg f

X topological space

∞

X

R

f

signature: persistence diagram

encodes the topological structure of the pair (X, f)
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Topological Persistence (in a nutshell)

X

R

Inside the black box:
• Nested family (filtration) of sublevel-sets f−1((−∞, t]) for t ranging from −∞ to +∞
• Track the evolution of the topology throughout the family

f
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Topological Persistence (in a nutshell)

X

R

Inside the black box:
• Nested family (filtration) of sublevel-sets f−1((−∞, t]) for t ranging from −∞ to +∞
• Track the evolution of the topology throughout the family

• Finite set of intervals (barcode) encodes births/deaths of topological features

f



15

Topological Persistence (in a nutshell)

α

β

X

R

Inside the black box:

α

β

∞

• Nested family (filtration) of sublevel-sets f−1((−∞, t]) for t ranging from −∞ to +∞
• Track the evolution of the topology throughout the family

• Finite set of intervals (barcode) encodes births/deaths of topological features

f

• Alternate representation as a multiset
of points in the plane (diagram).
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Topological Persistence (in a nutshell)

α

β

X

R

α

β

∞

f

Algorithm:

• input: graph G = (V,E) + map f : V ⊔ E → R

• procedure: scan graph by increasing f -values, update CCs by union-find



16X

R

∞

What if f is slightly perturbed?

g

Inside the black box:
• Nested family (filtration) of sublevel-sets f−1((−∞, t]) for t ranging from −∞ to +∞
• Track the evolution of the topology throughout the family

• Finite set of intervals (barcode) encodes births/deaths of topological features

• Alternate representation as a multiset
of points in the plane (diagram).

f

Topological Persistence (in a nutshell)
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∞

Theorem (Stability): [Cohen-Steiner et al. 2005, Chazal, O. et al. 2009]
For any tame functions f, g : X → R, d∞B (Dg f,Dg g) ≤ ∥f − g∥∞.

cost of a matched pair (p, q) ∈M : ∥p− q∥∞

cost of an unmatched point s ∈ Dg f ⊔Dg g: ∥s− s̄∥∞

cost of a matching:

max

{
sup

(p, q) matched

∥p− q∥∞, sup
s unmatched

∥s− s̄∥∞

}

bottleneck distance:

d∞B (Dg f,Dg g) = inf
M :Dg f↔Dg g

cost(M)

partial matching M : Dg f ↔ Dg g

p

q
s

s̄

Topological Persistence (in a nutshell)
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2 4 6 8 10 12 14 160

Example: Distance Function

fP : R2 → R
x 7→ minp∈P ∥x− p∥2
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(single-linkage)

Example: Distance Function

fP : R2 → R
x 7→ minp∈P ∥x− p∥2

barcode → merge tree → dendrogram



Back to Mode Seeking

(use density estimator instead of distance function)
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Persistence for Mode Seeking

Given a probability density f :
• Nested family (filtration) of superlevel-sets f−1([t,+∞)) for t from +∞ to −∞.

• Track evolution of topology throughout the family.
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Given a probability density f :
• Nested family (filtration) of superlevel-sets f−1([t,+∞)) for t from +∞ to −∞.

• Track evolution of topology throughout the family.

• Finite set of intervals (barcode) encodes births/deaths of topological features.
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Persistence for Mode Seeking

α

β

Given a probability density f :

α

β

−∞

• Nested family (filtration) of superlevel-sets f−1([t,+∞)) for t from +∞ to −∞.

• Track evolution of topology throughout the family.

• Finite set of intervals (barcode) encodes births/deaths of topological features.

+∞

+∞
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Persistence for Mode Seeking

Rd

R

−∞ +∞

+∞

Stability Theorem ⇒ d∞B (Dg f,Dg f̂) ≤ ∥f − f̂∥∞.

Given an estimator f̂ :



Transition: here is how we apply persistence in our context.

More precisely...

• Density estimator f̂ defines an order on the point cloud

(sort data points by decreasing estimated density values)
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Transition: here is how we apply persistence in our context.

More precisely...

• Density estimator f̂ defines an order on the point cloud

(sort data points by decreasing estimated density values)

• Extend order to the graph edges → upper-star filtration

(f̂([u, v]) = min{f̂(u), f̂(v)})

• Compute the 0-dimensional persistence diagram of this filtration

(apply 0-dimensional persistence algorithm → union-find data structure)
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each point in the diagram represents a peak of the density in the neighborhood graph, and the vertical distance of thie point to the diagonal gives the prominence of the peak.

0

-∞
0
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Estimating the Correct Number of Clusters



These peaks are born from the noise in the estimator plus the use of a neighborhood graph. Their prominences are small and so they are identified as topological noise in the PD.
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Estimating the Correct Number of Clusters



These peaks are born from the disconnectness of the neighborhood graph in low-density areas. They have small heights (hence appear lately in the diagram) and their clusters last forever as independent connected components. They are identified as background noise in the diagram.

0

-∞
0 background noise
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Estimating the Correct Number of Clusters



These peaks correspond to the peaks of the underlying density function, even though they may not lie at the same locations in space.
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Estimating the Correct Number of Clusters



Any prominence threshold τ within the range of the prominence gap will separate the relevant peaks from the topological and background noise.
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Estimating the Correct Number of Clusters

Hypotheses:

• f : Rd → R a c-Lipschitz probability density function,

• P ⊂ Rd a finite set of n points sampled i.i.d. according to f ,

Note: Π is the prominence of the least prominent peak of f

• f̂ : P → R a density estimator such that η := maxp∈P |f̂(p)− f(p)| < Π/5,

• G = (P,E) the δ-neighborhood graph for some positive δ < Π−5η
5c

.
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the sectional curvature of X arise when the Bishop-Gunther inequality is invoked to lower-bound the volumes of geodesic balls

Estimating the Correct Number of Clusters

For any choice of τ such that 2(cδ + η) < τ < Π− 3(cδ + η),
the number of clusters computed by the algorithm is equal to the num-
ber of peaks of f with probability at least 1− e−Ω(n).

Hypotheses:

• f : Rd → R a c-Lipschitz probability density function,

• P ⊂ Rd a finite set of n points sampled i.i.d. according to f ,

Note: Π is the prominence of the least prominent peak of f

• f̂ : P → R a density estimator such that η := maxp∈P |f̂(p)− f(p)| < Π/5,

• G = (P,E) the δ-neighborhood graph for some positive δ < Π−5η
5c

.

Conclusion:

(the Ω notation hides factors depending on c, δ)

21



In pictures: - the leftmost diagram is the one of the underlying density f in X, - the
rightmost diagram is the one of the estimator f̃ in the δ-Rips graph - the peaks of f
have prominence at least Π and so their corresponding points in Dg f lie in the dark
grey region - the stability of persistence diagrams enables us to control the way the
points in the diagram are moved when going from f to f̃ : their images lie in the union
of the dark grey region and of the lower pink region - the upper pink region represents
topological noise and background noise that may appear when we go from f to f̃ -
their exist suitable values of the prominence threshod τ when the two pink regions are
disjoint, i.e. when 2(cδ + η) < Π − 3(cδ + η) - note that there is a twist here: the
diagonals are not merely shifted vertically by the change from f to f̃ , as is classically
the case. This is because the regions of low density may not be well-sampled by the
input point cloud P , therefore the interleavings between the various filtrations involved
in the analysis may not go all the way down to 0. Thus, the weird shapes of the pink
regions. Moreover, the probabilistic nature of the conclusion comes from the fact that
the superlevel-set F cδ+η is densely sampled by P with a certain probability only.

the sectional curvature of X arise when the Bishop-Gunther inequality is invoked to lower-bound the volumes of geodesic balls

Estimating the Correct Number of Clusters

For any choice of τ such that 2(cδ + η) < τ < Π− 3(cδ + η),
the number of clusters computed by the algorithm is equal to the num-
ber of peaks of f with probability at least 1− e−Ω(n).

Conclusion:

(the Ω notation hides factors depending on c, δ)
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In pictures: - the leftmost diagram is the one of the underlying density f in X, - the
rightmost diagram is the one of the estimator f̃ in the δ-Rips graph - the peaks of f
have prominence at least Π and so their corresponding points in Dg f lie in the dark
grey region - the stability of persistence diagrams enables us to control the way the
points in the diagram are moved when going from f to f̃ : their images lie in the union
of the dark grey region and of the lower pink region - the upper pink region represents
topological noise and background noise that may appear when we go from f to f̃ -
their exist suitable values of the prominence threshod τ when the two pink regions are
disjoint, i.e. when 2(cδ + η) < Π − 3(cδ + η) - note that there is a twist here: the
diagonals are not merely shifted vertically by the change from f to f̃ , as is classically
the case. This is because the regions of low density may not be well-sampled by the
input point cloud P , therefore the interleavings between the various filtrations involved
in the analysis may not go all the way down to 0. Thus, the weird shapes of the pink
regions. Moreover, the probabilistic nature of the conclusion comes from the fact that
the superlevel-set F cδ+η is densely sampled by P with a certain probability only.

Estimating the Correct Number of Clusters

cδ + η

2(cδ + η)
-∞0

0 Π

Π

Dg f Dg f̂

Π− 3(cδ + η)

2(cδ + η)

Π− 3(cδ + η)

21

-∞0

Proof’s main ingredient: stability theorem for persistence diagrams



Merging Clusters
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• degree-0 persistence algo. builds a hierarchy of the peaks of f̂ (merge tree)

• merge clusters according to the hierarchy (merge each cluster into its parent)
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• degree-0 persistence algo. builds a hierarchy of the peaks of f̂ (merge tree)

• given a fixed threshold τ ≥ 0, only merge those clusters of prominence < τ

γ − δ < τ ≤ +∞

p
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• merge clusters according to the hierarchy (merge each cluster into its parent)



Note: the upper-star filtration is used, so that the edges are treated on the fly with the vertices

for i = 1 to n do
Let N be the set of neighbors of i in G that have indices lower than i;
if N = ∅ // vertex i is a peak of f̂ within G

Create a new entry e in U and attach vertex i to it;
r(e)← i // r(e) stores the root vertex associated with the entry e

else // vertex i is not a peak of f̂ within G

g(i)← argmaxj∈N f̂(j) // g(i) stores the approximate gradient at vertex i

ei ← U .find(g(i));
Attach vertex i to the entry ei;
for j ∈ N do

e← U .find(j);
if e ̸= ei and min{f̂(r(e)), f̂(r(ei))} < f̂(i) + τ
U .union(e, ei);

r(e ∪ ei)← argmax{r(e), r(ei)}f̂ ;
ei ← e ∪ ei;

Sort the vertex indices {1, 2, · · · , n} so that f̂(1) ≥ f̂(2) ≥ · · · ≥ f̂(n);
Initialize a union-find data structure U and two vectors g, r of size n;

Pseudo-code:
Input: simple graph G with n vertices, n-dimensional vector f̂ , real parameter τ ≥ 0.

Output: the collection of entries e of U such that f̂(r(e)) ≥ τ .
23

graph-based

hill-climbing

(1976)

with persistence

cluster merges

(2013)



We purposefully omit the density estimation and neighborhood graph computation from our complexity analysis, to stress how fast the clustering per se is. In practice, density estimation and neighborhood graph computation are clearly the pacing steps.

This is mainly interesting for sparse graphs, e.g. k-NNs graphs

Nevertheless, even for dense graphs, it is interesting to note that only a linear amount of main memory is used, since only the graph neighborhood of the current vertex is inspected at each iteration. The size of this neighborhood is at most linear in n, and in many cases it remains in fact constant.

The first term corresponds to sorting the data points according to their density values. Assigning values to edges and sorting them then takes linear time. The second term corresponds to the 0-dimensional persistence algorithm, which performs one find per data point and per graph edge to determine the cluster memberships, then possibly one union per edge to perform the merges.

Complexity of the Algorithm

24

→ Running time: O(n log n+ (n+m)α(n))

Given a neighborhood graph with n vertices (with density values) and m edges:

→ Space complexity: O(n+m)

→ Main memory usage: O(n)

1. the algorithm sorts the vertices by decreasing density values,

2. the algorithm makes a single pass through the vertex set, creating the span-
ning forest and merging clusters on the fly using a union-find data structure.



By contrast, the spectrum of the graph Laplacian does not show any significant gap, and in fact the result of spectral clustering is ruined due to the presence of background noise, which dooms the k-means step in eigenspace.

Experimental Results
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Synthetic Data
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Spectral clustering

(k-means in eigenspace)



We first run the algorithm with an arbitrary value for τ = 0, and we look at the output PD.

Experimental Results

25

Synthetic Data

−∞

τ = 0

ToMATo



Then we re-run the algorithm with this choice of parameter τ , to obtain 2 clusters

Experimental Results
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Synthetic Data

τ
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The trend of having two prominent peaks and topological noise is amplified when the number of data increases from 20k to 100k. We used the Delaunay graph as neighborhood graph, to reduce the size and speed up the computation.

Experimental Results
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Synthetic Data
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It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.

Note: the PD is plotted on a log/log scale, to avoid scaling effects. So actual differences in prominence are orders of magnitude, as the next view shows.

Experimental Results
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Common belief: 6 metastable states

PD shows anywhere between 4 and 7 clusters
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Biological Data

Alanine-Dipeptide conformations (R21)

RMSD distance (non-Euclidean)

Common belief: 6 metastable states

PD shows anywhere between 4 and 7 clusters
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MetastabilityRank Prominence

1 +∞ 0.99982
2 3827 1.91865
3 1334 2.8813
4 557 3.76217
5 85 4.73838
6 32 5.65553
7 26 6.50757
8 7.2 6.8193
9 3.0 -
10 2.2 -

Measures of metastability confirm this insight



For reference on the data set and spectral approach, please refer to the following paper

It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.

Experimental Results
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Biological Data

Alanine-Dipeptide conformations (R21)

RMSD distance (non-Euclidean)

• Y. Yao, J. Sun, X. Huang, G. Bowman, G. Singh, M. Lesnick, L. Guibas, V. Pande,
G. Carlsson, Topological methods for exploring low-density states in biomolecular
folding pathways, The Journal of Chemical Physics, 2009.

Note: Spectral Clustering takes a week of tweaking,
while ToMATo runs out-of-the-box in a few minutes



The segments are shown in fake colors, for a clearer visualization. Note the presence of black points: these are not a cluster per se, but were discarded from the point cloud as outliers during the density estimation step: this improved the result quite a bit. → advice: for image segmentation, perform a preliminary outliers detection and removal for better results down the road.

This operation is very fast. The output clusters are sensitive to the location in the image, thus the different colors on the two eyes and two cheeks.

This observation suggests that the correct number of segments in the image is usually not readily available, which follows the general idea that image segmentation is an ill-posed problem.

Experimental Results
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Image Segmentation
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Density is estimated in 3D color space (Luv)

Neighborhood graph is built in image domain

Distribution of prominences does not usually
show a clear unique gap

Still, relationship between choice of τ and
number of obtained clusters remains explicit



Recap’

28

ToMATo:

1. graph-based mode-seeking algorithm of [KNF’76]

2. single-pass cluster merging phase guided by persistence

Competitors:

1. Mean-Shift and its variants (smoothing a priori)

2. ...



Recap’
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• Highly generic

- applicable in arbitrary metric spaces

- agnostic to the choice of neighborhood graph and density estimator

• Easy to tune

- mostly two parameters: neighborhood size, persistence threshold τ

- PD provides insight into the correct number of clusters

• Comes with theoretical guarantees

- number of obtained clusters versus number of prominent peaks

- partial approximation of the basins of attraction of the peaks

• Efficient and practical

- near linear runtime, linear main memory usage

- can handle data sets with hundreds of thousands of points in practice


