(e

MPRI — Computation Geometry and Topology

Clustering

Steve Oudot

(steve.oudot@inria.fr)

U —

@ ECOLE
l POLYTECHNIQUE

Cluster Analysis

- point cloud with coordinates

a finite set of observations:

Input

)similarity matrix

- distance / (dis-

Task:

partition the data points into a collection of relevant subsets called clusters

A Wealth of Approaches

Variational
- k-means / k-medoid
- EM
- CLARA
spectral |k-means
Spectral

- Normalized Cut
- Multiway Cut

Hierarchical divisive /agglomerative

- single-linkage
- BIRCH

Density thresholding

- DBSCAN
- OPTICS

Mode seeking
- Mean/Medoid/Quick Shift
- graph-based hill climbing

Valley seeking
- [JBD'79]
- NDDs [ZZZL'07]

A Wealth of Approaches

Variational
- k-means / k-medoid
- EM
- CLARA
spectral |k-means
Spectral

- Normalized Cut
- Multiway Cut

Hierarchical divisive /agglomerative

- single-linkage
- BIRCH

Density thresholding

- DBSCAN
- OPTICS

Mode seeking
- Mean/Medoid/Quick Shift
- graph-based hill climbing

Valley seeking
- [JBD'79]
- NDDs [ZZZL'07]

Mode-Seeking Paradigm

e Assume the data points are sampled from some unknown probability distribution

e Partition the data according to the basins of attraction of the peaks of the density

Mode-Seeking Paradigm

e Assume the data points are sampled from some unknown probability distribution

e Partition the data according to the basins of attraction of the peaks of the density

Mode-Seeking Paradigm

e Assume the data points are sampled from some unknown probability distribution

e Partition the data according to the basins of attraction of the peaks of the density

Mode-Seeking Paradigm

e Assume the data points are sampled from some unknown probability distribution

e Partition the data according to the basins of attraction of the peaks of the density

Mode-Seeking Paradigm

e Assume the data points are sampled from some |unknown |probability distribution

e Partition the data according to the basins of attraction of the peaks of the density

|[Koontz, Narendra, Fukunaga'76] in a Nutshell

[Koontz, Narendra, Fukunaga'76] in a Nutshell

estimate density

>
at the data points

[Koontz, Narendra, Fukunaga'76] in a Nutshell

estimate density

>
at the data points

[Koontz, Narendra, Fukunaga'76] in a Nutshell

estimate density

>
at the data points

approximate gradient
-

by a graph edge
at each data point

Why things are likely to go ill

e Noisy estimator estimated

density

Why things are likely to go ill

e Noisy estimator

e Neighborhood graph

Why things are likely to go ill

e Noisy estimator

e Neighborhood graph

Solutions:
1. Be proactive: act on approximate gradient flow (Mean-Shift [CM'02])

— use kernel density estimator, with smoothing window parameter

— work In ambient space to circumvent neighborhood graph issue

Why things are likely to go ill

e Noisy estimator

e Neighborhood graph

Solutions:

1. Be proactive: act on approximate gradient flow (Mean-Shift [CM'02])

— use kernel density estimator, with smoothing window parameter

— work In ambient space to circumvent neighborhood graph issue

2. Be reactive: merge clusters after clustering (ToMATo [CGOS'13])

— use topological persistence to guide a single-pass merging step

— work in neighborhood graph to minimize prior knowledge

1. Mean-Shift

Kernel density estimators

Principle: take a mixture of copies of an ‘elementary’ density (kernel),

anchored at each observation

1.5

1.0

(density)

0.5

0.0

Kernel density estimators

Principle: take a mixture of copies of an ‘elementary’ density (kernel),

anchored at each observation

Tl 0 _
S S _)
0 U
o o
S S]°
o o
Yol Tol
< Q7
< Q_
- 1 _
I | | | I I | I | | | I I I
-1 10 -05 00 05 10 1.5 -1 10 -05 00 05 10 1.5

(image source: http://www.wikiwand.com/en/Multivariate_kernel_density_estimation) 6

Kernel density estimators

Input: P = {p1,--- ,pn}+ C R% (data points), = € R* (query point)

General formula: (convolution)

Frc, (z) = % f: Ku(z — ps), where K (u) := (det H) ™2 K(H ™ *?u)

i=1
e H: inner-product (positive-definite) d X d matrix (adds scaling / anisotropy)

o K : R 5 RT: d-variate kernel:

K(u)du =1 (normalized) / u K (u)du = 0 (centered at origin)
Rd Rd
” lﬁm K(u) =0 (vanishes at infinity) / uu’ K(u)du = ck 14 (isotropic)
Ul — o0 Rd

6

Kernel density estimators

Specialization 1: take H = o° I (isotropic kernel)

bandwidth / window

Kernel density estimators

Specialization 1: take H = o° I (isotropic kernel)

bandwidth / window

Specialization 2: take K (u) o< k(||u||3) for some k : RT — R™

(radially-symmetric kernel)
kernel profile

—1
normalizing factor: cj 4 := (/ k(||u||%)du>
Rd

Kernel density estimators

Specialization 1: take H = o° I (isotropic kernel)

bandwidth / window

Specialization 2: take K (u) o< k(||u||3) for some k : RT — R™

(radially-symmetric kernel)
kernel profile

—1
normalizing factor: cj 4 := (/ k(||u||%)du>
Rd

o Frale) = 2ty k(1)
1=1

nod < o2

Common kernels

Flat / Uniform: ki (t) := <

(1ift<1

L 0ift>1

A

1

~r Ck,d = 1/V01 Bd(O, 1)

_ I'(d/2+1)
— T d/2

Common kernels

(1ift<1
Flat / Uniform: ku(t) = < ~ Cl,d =— 1/V01 Bd((), 1)
| 0ift>1
R N ~ T(d/2+1)
o rd/2
1
ku Ky
0
[1—tift<1 d 4+ 2
E hnikov: kg(t) := s —
panechnikov: ke (1) <\ 0if t > 1 4 2Vol Ba(0, 1)
A
1 °
k‘g Kg

-
~

Common kernels

Gaussian: kar(t) := exp (—t/2) s cpa = (2m) Y3
A 2
.
ks SA
> = >~
O i s 2 0 123
(1—tift<1 449
Epanechnikov: kg(t) := —
panechnilov: kz (1) Oif ¢t > 1 T 2Vol B4(0,1)
A \
1 2
ké’ Kge

-
0.0
\l

0.05

0.04

Densi
0.02 9.(03

0.01

0.00

| |

|

(number of occurrences)

Common kernels

40

50

60

70

80

90

Gaussian kernel

0.01 0.02

0.00

Old faithful geyser dataset (available in R):

- 1st coordinate: waiting time (sec.) between eruptions

- 2nd coordinate (unused): eruptions duration (sec.)

Uniform kernel

Density
0.02 0.03 0.04

0.01

0.00

Epanechnikov

kernel

40 50 60 70 80 a0

100'7

Influence of the bandwidth

e small o (undersmoothing): small bias (sensitivity), large variance (instability)

e large o (oversmoothing): large bias (insensitivity), small variance (stability)

Q Q9

= QO =

40

50

60

70

80

90

100

Old geyser dataset

Differentiation

n

P . 2
frao) 1= 2o 5~ (1222l)

nod < o2
1=1

2 2¢Ck,d 1T — Di
91(@) 1=y, (@) = oot Y= po k(TR

Differentiation

for(z) = Ch,d k(”x pz||2)
1=1

n o?

S _ 2cha % /(1 = pill3
Vi) = V) = oy S pok (1
Letting g := —k’ (assumed to be > 0):

n " . ||33—P7;||§)
Vi (0)=—d (S | — pill3 S pig(»
fo,k nad—|—2 1 o2 n g(Hm_gZ”%)
- D it -

Differentiation

frao) 1= 2o 5~ (1222l)
=1

2 2Chd O (e = pil)3
V1) 1=V, () = oty S @ —p i (12

Letting g := —k’ (assumed to be > 0):

n " . ||33—p7;||g)
Vi (0)=—d (S | — pill3 S pig(»
fo,k nad—|—2 1 o2 n g(Hm_gZ”%)
- D it -

l I l I
(un-normalized) kernel density barycenter w.r.t. g

estimator with profile g

mean-shift mq ()

Differentiation

frao) 1= 2o 5~ (1222l)
=1

n o?

2 2Chd O (e = pil)3
Vila) =V, @) = St S (@ - po k(1P

Letting g := —k’ (assumed to be > 0):

n " . ||33—p7;||g)
Vi (0)=—d (S | — pill3 S pig(»
fo,k nad—|—2 1 o2 n g(Hm_gZ”%)
- D it -

l I l I
(un-normalized) kernel density barycenter w.r.t. g

estimator with profile g

mean-shift mq ()

= gradient of density is collinear with mean-shift and oriented in the same direction

Mean-Shift

hill-climbing
Input: P = {p1,---,pn} C R? (data points), x € R? (query point to be labeled)
Parameters: k: RT™ — RT (profile), o > 0 (bandwidth) d
---------- .. o
(Epanechnikov kernel) "~ o
To =T < . ® -
| SO e . o & o
®
Repeat: o ce ‘e ® o° ¢ ¢
: . shift ‘e
Titl = T; + Mo, g(T; : o= PO o 90 o
until convergence o ® Lo o
\ 4 °
Padi) °
e ©
°.
- °

~
R e

Output: the label associated with the convergence point

10

Mean-Shift

e Apply Mean-Shift hill-climbing to each input point p; € P

e Epanechnikov kernel = convergence in finite time
— may converge outside the set of critical points of the estimator

— use variant to guarantee cvgence to maximum [Huang et al. 2017]

10

Mean-Shift

e Apply Mean-Shift hill-climbing to each input point p; € P

e Epanechnikov kernel = convergence in finite time
— may converge outside the set of critical points of the estimator

— use variant to guarantee cvgence to maximum [Huang et al. 2017]
e Gaussian kernel = convergence at the limit (infinite time)
— stopping criterion (convergence radius)
— identification of modes (mode radius)
— speed-up: hill-climbing gathers neighboring points (gathering radius)

~+ heuristic: make these radii proportional to the estimator's bandwidth o

10

11

(=
(=]
g

100

A
© T o o83

o o o

» ALISNId A3ZI'TYINHON

L i d i A A A

Exa m p|eS [Comaniciu, Meer 2002]

100
5

Exa m pleS [Comaniciu,

(e,) = (32,4)

Meer 2002]

(

Py

=i

32,

8)

(s) = (16,16)

(Ros, hr) = (32, 16)

11

2. ToMATo

|[Koontz, Narendra, Fukunaga'76] in a Nutshell

12

[Koontz, Narendra, Fukunaga'76] in a Nutshell

estimate density

at the data points

>

12

[Koontz, Narendra, Fukunaga'76] in a Nutshell

estimate density

at the data points

>

..'.‘? ."-'.'..".’ .
SEAN ks

TRV

12

[Koontz, Narendra, Fukunaga'76] in a Nutshell

estimate density

>
at the data points

approximate gradient
-

by a graph edge
at each data point

12

Pseudo-code:

Input: neighborhood graph G with n vertices, n-dimensional vector f (density estimator)

Sort the vertex indices {1,2,--- ,n} so that f(l) > f(2) > . > f(n)

Initialize a union-find data structure (disjoint-set forest) U and two vectors g, r of size n;

for : =1 ton do)

Let N be the set of neighbors of 7 in G that have indices lower than i;
if N' =0 // vertex i is a peak of f within G

Create a new entry e in U and attach vertex 7 to it;

r(e) — 1 // r(e) stores the root vertex associated with the entry e
else // vertex i is not a peak of f within G

g(z) <— argmaxj ENf(J) // g(1) stores the approximate gradient at vertex i

e; < U.find(g(7));

Attach vertex 1 to the entry e;; i

Output: the collection of entries e in U

graph-based
hill-climbing
(1976)

13

Enter Topological Persistence...

Topological Persistence (in a nutshell)

Ra
X topological space

f: X—-R

persistence

 /
Dg f

signature: persistence diagram

encodes the topological structure of the pair (X, f)

14

Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—o0,t]) for t ranging from —oco to 400

e Track the evolution of the topology throughout the family

R A

<Y

15

Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—o0,t]) for t ranging from —oco to 400

e Track the evolution of the topology throughout the family

R A

|
X 15

Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—o0,t]) for t ranging from —oco to 400

e Track the evolution of the topology throughout the family

R A

|
X 15

Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—o0,t]) for t ranging from —oco to 400

e Track the evolution of the topology throughout the family

R A

|
X 15

Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—o0,t]) for t ranging from —oco to 400

e Track the evolution of the topology throughout the family

R A

|
X 15

Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—o0,t]) for t ranging from —oco to 400

e Track the evolution of the topology throughout the family

R A

|
X 15

Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—o0,t]) for t ranging from —oco to 400

e Track the evolution of the topology throughout the family

R A

|
X 15

Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—o0,t]) for t ranging from —oco to 400

e Track the evolution of the topology throughout the family

15

Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—o0,t]) for t ranging from —oco to 400

e Track the evolution of the topology throughout the family
e Finite set of intervals (barcode) encodes births/deaths of topological features

15

Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—oo,t]) for t ranging from —oo to +o0o

e Track the evolution of the topology throughout the family
e Finite set of intervals (barcode) encodes births/deaths of topological features

e Alternate representation as a multiset
of points in the plane (diagram).

15

Topological Persistence (in a nutshell)

Algorithm:

e input: graph G=(V,E) + map f: VUFE — R

e procedure: scan graph by increasing f-values, update CCs by union-find

15

Topological Persistence (in a nutshell)

Inside the black box:
o Nested family (filtration) of sublevel-sets f~!((—oo,t]) for t ranging from —oo to +o0o

e Track the evolution of the topology throughout the family
e Finite set of intervals (barcode) encodes births/deaths of topological features

e Alternate representation as a multiset

Ra of points in the plane (diagram).
f What if f is slightly perturbed?
g oo

<V

16

Topological Persistence (in a nutshell)

partial matching M : Dg f <+ Dgg

cost of a matched pair (p,q) € M: ||p — q||co

cost of an unmatched point s € Dg f LI Dgg: ||s — 5|00

o

cost of a matching:

max{ sup ||p_Q||o<>7 Sup ||S_5||OO}

(p, q) matched s unmatched

bottleneck distance:

d%(Dg f.De g) = inf t(M
= (Dg f,Dgg) M;Dgl?HDggcos()

—e—

16

Example: Distance Function

fp X RQ — R
T — min,ep ||z — pl|2

fp:

Example

R? 5 R
T — minyep ||z — pl|2

.O...
®
e ®
®

®
09%¢®
®eoe ®ooe
® ®
% %
0%¢® 0%¢®

® o ®
.... LX) L)

® e o
®

L L
®
®

- Distance Function

Example

fp X RQ — R
T — minyep ||z — pl|2

3
L) o%e® Ul
LI &

.i...{ .;{ O;{ O‘.{

.~. .~. .~. .~.

X k&

.i...{ P

OLOEA

- Distance Function

Example: Distance Function

fp X Rz — R
T — min,ep ||z — pl|2

B

B B

BBBB
B B

B B

Example: Distance Function

fp X RQ — R
T — min,ep ||z — pl|2

Example: Distance Function

fp X RQ — R
T — mingep ||z — pl|2

Example: Distance Function

fp X RQ — R
T — mingep ||z — pl|2

Example: Distance Function

fp X Rz — R
T — mingep ||z — pl|2

Example: Distance Function

fp X RQ — R
T — min,ep ||z — pl|2

T |
T j

barcode — merge tree

Example: Distance Function

fp X RQ — R
T — min,ep ||z — pl|2

barcode — merge tree — dendrogram

(single-linkage)

Back to Mode Seeking

(use density estimator instead of distance function)

Persistence for Mode Seeking

Given a probability density f:
e Nested family (filtration) of superlevel-sets f—!([t, +00)) for ¢ from 400 to —oo.
e Track evolution of topology throughout the family.

18

Persistence for Mode Seeking

Given a probability density f:
e Nested family (filtration) of superlevel-sets f—!([t, +00)) for ¢ from 400 to —oo.
e Track evolution of topology throughout the family.

18

Persistence for Mode Seeking

Given a probability density f:
e Nested family (filtration) of superlevel-sets f—!([t, +00)) for ¢ from 400 to —oo.
e Track evolution of topology throughout the family.

18

Persistence for Mode Seeking

Given a probability density f:
e Nested family (filtration) of superlevel-sets f—!([t, +00)) for ¢ from 400 to —oo.
e Track evolution of topology throughout the family.

ﬂ >Rd

18

Persistence for Mode Seeking

Given a probability density f:
e Nested family (filtration) of superlevel-sets f—!([t, +00)) for ¢ from 400 to —oo.
e Track evolution of topology throughout the family.

18

Persistence for Mode Seeking

Given a probability density f:
e Nested family (filtration) of superlevel-sets f—!([t, +00)) for ¢ from 400 to —oo.
e Track evolution of topology throughout the family.

18

Persistence for Mode Seeking

Given a probability density f:
e Nested family (filtration) of superlevel-sets f—!([t, +00)) for ¢ from 400 to —oo.
e Track evolution of topology throughout the family.

18

Persistence for Mode Seeking

Given a probability density f:
e Nested family (filtration) of superlevel-sets f—!([t, +00)) for ¢ from 400 to —oo.

e Track evolution of topology throughout the family.
e Finite set of intervals (barcode) encodes births/deaths of topological features.

18

Persistence for Mode Seeking

Given a probability density f:
o Nested family (filtration) of superlevel-sets f—!([t, +00)) for t from 400 to —oo.

e Track evolution of topology throughout the family.
e Finite set of intervals (barcode) encodes births/deaths of topological features.

RA

Persistence for Mode Seeking

Given an estimator f:

Stability Theorem = d%(Dg £, Dg) < ||If — fllso-

R A

More precisely...

e Density estimator f defines an order on the point cloud

(sort data points by decreasing estimated density values)

19

More precisely..

e Density estimator f defines an order on the point cloud

ing estimated density values)

(sort data points by decreas

on

star filtrat

e Extend order to the graph edges — upper-

A

(f (fu,v]) = min{f(u), f(v)})

A

19

More precisely...

e Density estimator f defines an order on the point cloud

(sort data points by decreasing estimated density values)

e Extend order to the graph edges — upper-star filtration
(f([u,v]) = min{f(u), f(v)})

e Compute the O-dimensional persistence diagram of this filtration

(apply O-dimensional persistence algorithm — union-find data structure)

Estimating the Correct Number of Clusters

Estimating the Correct Number of Clusters

Estimating the Correct Number of Clusters

Estimating the Correct Number of Clusters

6 prominent
peaks

20

Estimating the Correct Number of Clusters

Estimating the Correct Number of Clusters

Hypotheses:

e f:R* — R a c-Lipschitz probability density function,

e P C R” a finite set of n points sampled i.i.d. according to f,

e f: P — R a density estimator such that n := max,e p \f(p) — f(p)| < 11/5,

II—-5n

e G = (P, E) the §-neighborhood graph for some positive § < ~—+

Note: II is the prominence of the least prominent peak of f

21

Estimating the Correct Number of Clusters

Hypotheses:

e f:R* — R a c-Lipschitz probability density function,

e P C R” a finite set of n points sampled i.i.d. according to f,

e f: P — R a density estimator such that n := max,e p \f(p) — f(p)| < 11/5,

o G = (P, F) the é-neighborhood graph for some positive § < Hgf”.

Note: II is the prominence of the least prominent peak of f

Conclusion:

For any choice of 7 such that 2(c¢d +1n) < 7 < II — 3(cd + 1),
the number of clusters computed by the algorithm is equal to the num-
ber of peaks of f with probability at least 1 — e~*}(").

(the Q2 notation hides factors depending on c, §)

21

Estimating the Correct Number of Clusters

P 2(65 + 77)

L —3(cd +n)

2(05:+ n) 11 - 3(cd + 1)
Conclusion:

For any choice of 7 such that 2(cd +7n) < 7 < II — 3(cd + 1),
the number of clusters computed by the algorithm is equal to the num-
ber of peaks of f with probability at least 1 — e~$}(").

(the Q2 notation hides factors depending on c, §)
21

Estimating the Correct Number of Clusters

L] 2(co +m)

L —3(cd +n)

2(05:+ n) 11 - 3(cd + 1)

Proof's main ingredient: stability theorem for persistence diagrams

21

Merging Clusters

e degree-0 persistence algo. builds a hierarchy of the peaks of f (merge tree)

e merge clusters according to the hierarchy (merge each cluster into its parent)

22

Merging Clusters

e degree-0 persistence algo. builds a hierarchy of the peaks of f (merge tree)
e merge clusters according to the hierarchy (merge each cluster into its parent)

e given a fixed threshold 7 > 0, only merge those clusters of prominence < 7

22

Merging Clusters

e degree-0 persistence algo. builds a hierarchy of the peaks of f (merge tree)
e merge clusters according to the hierarchy (merge each cluster into its parent)

e given a fixed threshold 7 > 0, only merge those clusters of prominence < 7

22

Merging Clusters

e degree-0 persistence algo. builds a hierarchy of the peaks of f (merge tree)
e merge clusters according to the hierarchy (merge each cluster into its parent)

e given a fixed threshold 7 > 0, only merge those clusters of prominence < 7

v —0 < T< +00

22

Pseudo-code:

Input: simple graph GG with n vertices, n-dimensional vector f real parameter 7 > 0.

Sort the vertex indices {1,2,--- ,n} so that f(l) > f(2) >0 > f(n)
Initialize a union-find data structure 4 and two vectors g, r of size n;

for: =1 ton do

Let A be the set of neighbors of i in G that have indices lower than i: |
if N =0 // vertex i is a peak of f within G
Create a new entry e in U and attach vertex 1 to it;
r (6) — 1 // r(e) stores the root vertex associated with the entry e ﬁ:ﬁ_‘jﬁ::d
else // vertex i is not a peak of f within G (1976) ¢
g(z) — argmax; ENf(]) // g(i) stores the approximate gradient at vertex 1
e; < U.find(g(2));
... Attach vertex i totheentry e;; i
for j €¢ N do)
e <~ U.find(j);)) uster meres
if e # e; and min{f(r(e)), f(r(e:))} < f(@) +7 with persistence
U.union(e, e;); (2013)
7“(6 U ei) — argmax{r(e)’ r(ei)}f;
e; < el e;; _

Output: the collection of entries e of U such that f(r(e)) > 7.
23

Complexity of the Algorithm

Given a neighborhood graph with n vertices (with density values) and m edges:

1. the algorithm sorts the vertices by decreasing density values,

2. the algorithm makes a single pass through the vertex set, creating the span-
ning forest and merging clusters on the fly using a union-find data structure.

— Running time: O(nlogn + (n +m)a(n))
— Space complexity: O(n + m)

— Main memory usage: O(n)

24

Experimental Results

Synthetic Data

T T T T T T T T T
1 1 1 1 1 1 1 1 1
- 0 o < S I =) B o'o) o T o 0
S o o o = B <) ® © o
o a9 9 Q@ o 9) B o
o o o o o o o o
~~
)
a0 ¢
Qv
C
= Q
n
(-
)
o —

pectral cluster
-mMeans 1IN €

S
(k

Re)
o'

r
by N ‘vg“ »

o

L
...O (X

10

25

Experimental Results

. ..
A i,:f:
Synthetic Data ..,.f 5

A% .o' 8&.0

.‘.

o0
>

A X ".,‘,.:3-’.-.:
[J

. °s .]
) ° ..-.. [° o] . .’b.z'
. N . KEN
° °s .k:. '... ... ° : ®
’ o o ° 2%, o 3
:,. ‘c:‘? t:o.o ”2,
o:t’:
K | | | |
o.\.%
‘o’.o
[
e o
o
(] ° o °
Y []
[
[
oo © °
([]
([
[J
..
®
. .
[
— OO L 1 1 1 ®

Experimental Results

Synthetic Data

ToMATo

r

v i s

°
e o |
°
® e
..
°
o0 [J 1
°
&
L4
*
K4
' -
4
4
4
. ®
® /
o
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘IIIIIIIIIIIIIIIIIIIIIIIIII
| |
' A
| | 1 .

25

Experimental Results

Synthetic Data

L4
R R R R RN

25

Experimental Results

Biological Data

Alanine-Dipeptide conformations (R?!)

RMSD distance (non-Euclidean)

Ay

Common belief: 6 metastable states

PD shows anywhere between 4 and 7 clusters

26

Experimental Results

Biological Data

Alanine-Dipeptide conformations (R?!)

RMSD distance (non-Euclidean)

Common belief: 6 metastable states
PD shows anywhere between 4 and 7 clusters

Measures of metastability confirm this insight

Metastability

Rank Prominence Metastability
1 +00 0.99982
2 3827 1.91865
3 1334 2.8813
4 557 3.76217
5 85 4.73838
6 32 5.65553
7 26 6.50757
8 7.2 6.8193
9 3.0 -

10 2.2 -

3 4
Number of clusters

5 6 I

Experimental Results

Biological Data

Alanine-Dipeptide conformations (R?!)

RMSD distance (non-Euclidean)

Note: Spectral Clustering takes a week of tweaking,
while ToMATo runs out-of-the-box in a few minutes

e Y. Yao, J. Sun, X. Huang, G. Bowman, G. Singh, M. Lesnick, L. Guibas, V. Pande,
G. Carlsson, Topological methods for exploring low-density states in biomolecular
folding pathways, The Journal of Chemical Physics, 20009.

26

xperimental Results

Image Segmentation
Density is estimated in 3D color space (Luv)

Neighborhood graph is built in image domain

Distribution of prominences does not usually
show a clear unique gap

Still, relationship between choice of 7 and
number of obtained clusters remains explicit

Recap’

ToMATo:

1. graph-based mode-seeking algorithm of [KNF'76]

2. single-pass cluster merging phase guided by persistence

Competitors:

1. Mean-Shift and its variants (smoothing a priori)

2. ...

28

Recap’

e Highly generic
- applicable in arbitrary metric spaces

- agnostic to the choice of neighborhood graph and density estimator

e Easy to tune
- mostly two parameters: neighborhood size, persistence threshold 7

- PD provides insight into the correct number of clusters

e Comes with theoretical guarantees
- number of obtained clusters versus number of prominent peaks

- partial approximation of the basins of attraction of the peaks

e Efficient and practical
- near linear runtime, linear main memory usage

- can handle data sets with hundreds of thousands of points in practice

28

