Frédéric Chazal

Senior Researcher (Directeur de Recherche, INRIA Saclay -- Île-de-France) - DATASHAPE group

Address:


Inria Saclay - Ile-de-France
Alan Turing Bldg, Office 2043
1 rue Honoré d'Estienne d'Orves
91120 Palaiseau
GPS:+48° 42' 52.11", +2° 12' 20.78"
Phone:+33 (0)1 72 92 59 13
email:frederic.chazal[at]inria.fr

SHORT CV


Research interests

  • Topological and Geometric Data Analysis: statistical methods, inference and learning
  • Topological persistence
  • Geometric inference and geometric learning
  • Computational Geometry, Geometry processing, and Solid Modeling
  • Geometry and Topology

Course notes


Recent publications (full list available here)

F. Chazal, W. Crawley-Boevey, V. de Silva. The observable structure of persistence modules, to appear in Homology, Homotopy and Applications, 2016.
F. Chazal, V. de Silva, M. Glisse, S. Oudot. The Structure and Stability of Persistence Modules. To appear as a Monograph in SpringerBriefs, 2016.
F. Chazal, M. Glisse, C. Labruere, B. Michel. Convergence rates for persistence diagram estimation in Topological Data Analysis. In Journal of Machine Learning Research (JMLR), Vol. 16, p. 3603-3635, Dec. 2015 (extended version of a paper presented at ICML 2014).
F. Chazal, P. Massart, B. Michel. Rates of Convergence for Robust Geometric Inference arXiv:1505.07602   
F. Chazal, B.T. Fasy, F. Lecci, B. Michel, A. Rinaldo, L. Wasserman. Subsampling Methods for Persistent Homology. In proc. International Conference on Machine Learning (ICML 2015).   
F. Chazal, B. T. Fasy, F. Lecci, B. Michel, A. Rinaldo, L. Wasserman. Robust Topological Inference: Distance To a Measure and Kernel Distance arXiv:1412.7197   
M. Buchet and F. Chazal and T. Dey and F. Fan and S. Oudot and Y. Wang. Topological Analysis of Scalar Fields with Outliers. arXiv:1412.1680 [cs.CG]. To appear in 31st International Symposium on Computational Geometry (SOCG 2015).   
F. Chazal, R. Huang, J. Sun. Gromov-Hausdorff Approximation of Filament Structure Using Reeb-type Graph. To appear in Discrete and Computational Geometry (Extended version of the SoCG 2014 version with topological guarantees), 2015.   
O. Azencot, M. Ovsjanikov, F. Chazal, M. Ben-Chen. Discrete Derivatives of Vector Fields on Surfaces An Operator Approach. ACM Transactions on Graphics (TOG), Volume 34 Issue 3, April 2015, Article No. 29.   
F. Chazal, B.T. Fasy, F. Lecci, A. Rinaldo, L. Wasserman. Stochastic Convergence of Persistence Landscapes and Silhouettes. In proc. ACM Symposium of Computational Geometry 2014. - Full version to appear in Journal of Computational Geometry.   
F. Chazal, B. T. Fasy, F. Lecci, B. Michel, A. Rinaldo, L. Wasserman. Robust Topological Inference: Distance To a Measure and Kernel Distance arXiv:1412.7197   
M. Buchet and F. Chazal and S. Y. Oudot and D. R. Sheehy. Efficient and Robust Persistent Homology for Measures. To appear in ACM-SIAM Symposium on Discrete Algorithms 2015 (SODA 2015). Full version available in arXiv:1306.0039 [cs.CG].   
C. Li, M. Ovsjanikov, F. Chazal. Persistence-based Structural Recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014).
F. Chazal, R. Huang, J. Sun. Gromov-Hausdorff Approximation of Filament Structure Using Reeb-type Graph. Extended version of the SoCG 2014 version with topological guarantees (submitted).   
F. Chazal, J. Sun. Gromov-Hausdorff Approximation of Filament Structure Using Reeb-type Graph. In proc. ACM Symposium of Computational Geometry 2014.   
R. Rustamov, M. Ovsjanikov, O. Azencot, M. Ben-Chen, F. Chazal, L. Guibas Map-Based Exploration of Intrinsic Shape Differences and Variability. In SIGGRAPH 2013.
O. Azencot, M. Ben-Chen, F. Chazal, M. Ovsjanikov. An Operator Approach to Tangent Vector Field Processing. In Computer Graphics Forum (proc. SGP 2013).
F. Chazal, V. de Silva. S. Oudot. Persistence Stability for Geometric Complexes. To appear in Geometriae Dedicata (online First, December 2013), see arXiv:1207.3885v1 [math.AT].   
F. Chazal, L. J. Guibas, S. Y. Oudot, P. Skraba. Persistence-Based Clustering in Riemannian Manifolds. Proc. 27th Annual ACM Symposium on Computational Geometry, pages 97-106, 2011. Full version in Journal of the ACM, volume 60, issue 6, article 41.