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Geometric Inference

Question: Given an approximation C of a geometric object K, is it
possible to reliably estimate the topological and geometric properties
of K, knowing only the approximation C?

Challenges:
- define a relevant class of objects to be considered (no hope to get a positive
answer in full generality);
- define a relevant notion of distance between the objects (approximation);
- topological and geometric properties cannot be directly infered from approx-
imations.



Distance functions for geometric inference

Considered objects: compact subsets K of Rd

Distance:
distance function to a compact K ⊂ Rd: dK : x→ infp∈K ‖x− p‖
Hausdorf distance between two compact sets:

dH(K,K ′) = supx∈Rd |dK(x)− dK′(x)|

• Replace K and C by dK and dC

• Compare the topology of the offsets
Kr = d−1K ([0, r]) and Cr = d−1C ([0, r])



Stability properties of the offsets

Topological/geometric properties of the offsets of K are stable with
respect to Hausdorff approximation:

1. Topological stability of the offsets of K (CCSL’06, NSW’06).

2. Approximate normal cones (CCSL’08).

3. Boundary measures (CCSM’07), curvature measures (CCSLT’09), Voronoi
covariance measures (GMO’09).



Distance functions: the three (indeed two) main
ingredients of stability

• the stability of the map K 7→ dK :
‖dK − dK′‖∞ = dH(K,K ′)
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Distance functions: the three (indeed two) main
ingredients of stability

• the stability of the map K 7→ dK :
‖dK − dK′‖∞ = dH(K,K ′)

• the 1-Lipschitz property for dK ;

• the 1-concavity of the function d2K :
x→ ‖x‖2 − d2K(x) is convex.

• the gradient vector field ∇dK is
well defined and integrable (al-
though not continuous).

• Isotopy lemma: the topology of
the sublevel sets can only change
at critical values.

• Stability results for critical
points.

Definition: A non negative proper function φ : Rd → R+ satisfying the above
second and third property is called a distance-like function.



Reconstruction for distance-like functions

• Distance-like functions φ have well defined gradient ∇φ and satisfy the
isotopy lemma.

Reconstruction theorem (example): Let φ, ψ be two distance-like functions
such that ‖φ− ψ‖∞ < ε, with

∀x ∈ φ−1((0, R]), ‖∇x(φ)‖ > α

for some positive ε, α and R. Then, for any r ∈ [4ε/α2, R − 3ε], and for
0 < η < R, the sublevel sets ψr = ψ−1([0, r]) and φη = φ−1([0, η]) are
homotopy equivalent, as soon as

ε ≤ R

5 + 4/α2
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• Distance-like functions φ have well defined gradient ∇φ and satisfy the
isotopy lemma.

Reconstruction theorem (example): Let φ, ψ be two distance-like functions
such that ‖φ− ψ‖∞ < ε, with

∀x ∈ φ−1((0, R]), ‖∇x(φ)‖ > α

for some positive ε, α and R. Then, for any r ∈ [4ε/α2, R − 3ε], and for
0 < η < R, the sublevel sets ψr = ψ−1([0, r]) and φη = φ−1([0, η]) are
homotopy equivalent, as soon as

ε ≤ R

5 + 4/α2

if more restrictive relationship between ε,R, α.

isotopic



The problem of “outliers”

If K ′ = K ∪ {x} where dK(x) > R, then ‖dK − dK′‖∞ > R: offset-based
inference methods fail!

Question: Can we generalize the previous approach by replacing the distance
function by a “distance-like” function having a better behavior with respect
to “’noise” and “outliers”?



Replacing compact sets by measures

A measure µ is a mass distribution on Rd:
mathematically, it is defined as a map µ that takes a (Borel) subset
B ⊂ Rd and outputs a nonnegative number µ(B). Moreover we ask
that if (Bi) are disjoint subsets, µ

(⋃
i∈NBi

)
=
∑
i∈N µ(Bi).

µ(B) corresponds to to the mass of µ contained in B



Replacing compact sets by measures

• a point cloud C = {p1, . . . , pn} defines a measure µC = 1
n

∑
i δpi

• the volume form on a k-dimensional submanifold M of Rd defines a
measure volk|M .

• etc...



Distance between measures

“The” Wasserstein distance W2(µ, ν) between two probability measures µ, ν
(with finite 2-moments) quantifies the optimal cost of pushing µ onto ν, the
cost of moving a small mass dx from x to y being ‖x− y‖2dx.

1. µ and ν are discrete measures:
µ =

∑
i ciδxi , ν =

∑
j djδyj with∑

j dj =
∑
i ci.

2. Transport plan: set of coeffi-
cients πij ≥ 0 with

∑
i πij =

dj and
∑
j πij = ci.

3. Cost of a transport plan

C(π) =
(∑

ij ‖xi − yj‖2πij
)1/2

4. dW (µ, ν) := infπ C(π)



Distance between measures

“The” Wasserstein distance W2(µ, ν) between two probability measures µ, ν
(with finite 2-moments) quantifies the optimal cost of pushing µ onto ν, the
cost of moving a small mass dx from x to y being ‖x− y‖2dx.

1. µ and ν are proba measures in Rd

2. Transport plan: π a proba measure on
Rd × Rd s.t. π(A × Rd) = µ(A) and
π(Rd ×B) = ν(B).

3. Cost of a transport plan

C(π) =
(∫

Rd×Rd ‖x− y‖
2dπ(x, y)

) 1
2

4. W2(µ, ν) := infπ C(π)



Wasserstein distance

Example:

• If C = {p1, . . . , pn} is a point cloud, and C ′ =
{p1, . . . , pn−k−1, o1, . . . , ok} with d(oi, C) = R, then

dH(C,C ′) ≥ R but W2(µC , µC′) ≤
√
k

n
(R+ diam(C))



The distance to a measure

Distance function to a measure, first attempt:
Let m ∈]0, 1[ be a positive mass, and µ a probability measure on Rd:
δµ,m(x) = inf {r > 0 : µ(B(x, r)) > m}.

supp(µ)

x

δµ,m(x)

• δµ,m is the smallest distance needed to cap-
ture a mass of at least m;

• Coincides with the distance to the k-th
neighbor when m = k/n and µ =
1
n

∑n
i=1 δpi :

δµ,k/n(µ) = ‖x− pkC(x)‖
m



Distance function to a measure, first attempt:
Let m ∈]0, 1[ be a positive mass, and µ a probability measure on Rd:
δµ,m(x) = inf {r > 0 : µ(B(x, r)) > m}.

Unstability under Wasserstein perturbations:

µε = (1/2− ε)δ0 + (1/2 + ε)δ1

for ε > 0 : ∀x < 0, δµε,1/2(x) = |x− 1|

for ε = 0 : ∀x < 0, δµ0,1/2(x) = |x− 0|

Consequence: the map µ 7→ δµ,m ∈ C0(Rd) is discontinuous whatever the
(reasonable) topology on C0(Rd).

0 1

1
2
+ ε

1
2
− ε

R

Unstability of µ 7→ δµ,m



The distance function to a measure

Definition: Given a probability measure µ on Rd and m0 > 0, one defines:

dµ,m0
: x ∈ Rd 7→

(
1

m0

∫ m0

0

δ2µ,m(x)dm

)1/2



The distance function to a measure

Definition: Given a probability measure µ on Rd and m0 > 0, one defines:

dµ,m0
: x ∈ Rd 7→

(
1

m0

∫ m0

0

δ2µ,m(x)dm

)1/2

Example. Let C = {p1, . . . , pn} and µ = 1
n

∑n
i=1 δpi . Let pkC(x) denote the

kth nearest neighbor to x in C, and set m0 = k0/n:

dµ,m0(x) =

(
1

k0

k0∑
k=1

‖x− pkC(x)‖2
)1/2

m

δµ,m

1
n

2
n

k
n· · ·

‖x−pkC(x)‖

‖x−p2C(x)‖

‖x−p1C(x)‖



Another expression for dµ,m0

dµ,m0
(x) = min

µ̃

{
W2

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}

“The projection submeasure”: µ̃x,m0
= the restriction of µ on the ball

B = B(x, δµ,m0
(x)), whose trace on the sphere ∂B has been rescaled so that

the total mass of µ̃x,m0 is m0.

d2µ,m0
(x) =

1

m0

∫
h∈Rd

‖h− x‖2 dµ̃x,m0
=W 2

2

(
δx,

1

m0
µ̃x,m0

)

Rd
space of proba
measures

{
1

m0
µ̃ : µ̃(Rd) = m0 and µ̃ ≤ µ}

x

Dirac measures

µ̃x,m0

δx



Another expression for dµ,m0

dµ,m0
(x) = min

µ̃

{
W2

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}
Proof:



Another expression for dµ,m0

dµ,m0
(x) = min

µ̃

{
W2

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}
Proof: Only one transport plan : y ∈ Rd → x∫
Rd
‖h− x‖2dµ̃(h)



Another expression for dµ,m0

dµ,m0
(x) = min

µ̃

{
W2

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}
Proof:

pushforward of µ̃ by the dis-
tance function to x.

Fµ̃x (t) = µ̃x([0, t)) is the cumulative function of µ̃x and

F−1
µ̃x

(m) = inf{t ∈ R : Fµ̃x (t) > m} is its generalized
inverse

∫
Rd
‖h−x‖2dµ̃(h) =

∫
R+

t2dµ̃x(t) =

∫ m0

0

F−1µ̃x
(m)2dm



Another expression for dµ,m0

dµ,m0
(x) = min

µ̃

{
W2

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}
Proof:

pushforward of µ̃ by the dis-
tance function to x.

Fµ̃x (t) = µ̃x([0, t)) is the cumulative function of µ̃x and

F−1
µ̃x

(m) = inf{t ∈ R : Fµ̃x (t) > m} is its generalized
inverse

∫
Rd
‖h−x‖2dµ̃(h) =

∫
R+

t2dµ̃x(t) =

∫ m0

0

F−1µ̃x
(m)2dm

• µ̃ ≤ µ⇒ Fµ̃x(t) ≤ Fµx(t)⇒ F−1µ̃x
(m) ≥ F−1µx (m)

• Fµ̃x(t) = µ(B(x, t)) and F−1µ̃x
(m) = δµ̃,m(x)

∫
Rd
‖h− x‖2dµ̃(h) ≥

∫ m0

0

F−1µx (m)2dm =

∫ m0

0

δµ,m(x)2dm



Another expression for dµ,m0

dµ,m0
(x) = min

µ̃

{
W2

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}
Proof:

pushforward of µ̃ by the dis-
tance function to x.

Fµ̃x (t) = µ̃x([0, t)) is the cumulative function of µ̃x and

F−1
µ̃x

(m) = inf{t ∈ R : Fµ̃x (t) > m} is its generalized
inverse

∫
Rd
‖h−x‖2dµ̃(h) =

∫
R+

t2dµ̃x(t) =

∫ m0

0

F−1µ̃x
(m)2dm

∫
Rd
‖h− x‖2dµ̃(h) ≥

∫ m0

0

F−1µx (m)2dm =

∫ m0

0

δµ,m(x)2dm

Equality iff F−1
µ̃x

(m) = F−1
µx (m) for almost every m

⇒ equality if µ̃ = µ̃x,m0



Semiconcavity of d2µ,m0

Theorem: Let µ be a probability measure in Rd and let m0 ∈ (0, 1).

1. d2µ,m0
is 1-semiconcave, i.e. x ∈ Rd 7→ ‖x‖2 − d2µ,m0

is convex.

2. d2µ,m0
is differentiable almost everywhere in Rd, with gradient defined

by

∇xd2µ,m0
=

2

m0

∫
h∈Rd

(x− h) dµ̃x,m0
(h)

3. the function x ∈ Rd 7→ dµ,m0(x) is 1-Lipschitz.

Example. Let C = {p1, . . . , pn} and µ = 1
n

∑n
i=1 δpi . Let pkC(x) denote the

kth nearest neighbor to x in C, and set m0 = k0/n:

∇d2µ,m0
(x) = 2dµ,m0

∇dµ,m0
=

2

k0

k0∑
k=1

(x− pkC(x))



Semiconcavity of d2µ,m0

Proof:

d2µ,m0
(y) =

1

m0

∫
h∈Rd

‖y − h‖2 dµ̃y,m0(h)

≤ 1

m0

∫
h∈Rd

‖y − h‖2 dµ̃x,m0
(h)

dµ,m0 (x) = min
µ̃

{
W2

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}

supp(µ)

x

δµ,m(x)

m

y

m



Semiconcavity of d2µ,m0

Proof:

d2µ,m0
(y) =

1

m0

∫
h∈Rd

‖y − h‖2 dµ̃y,m0
(h)

≤ 1

m0

∫
h∈Rd

‖y − h‖2 dµ̃x,m0
(h)

=
1

m0

∫
h∈Rd

(
‖x− h‖2 + 2 〈x− h, y − x〉+ ‖y − x‖2

)
dµ̃x,m0(h)

= d2µ,m0
(x) + ‖y − x‖2 + 〈V, y − x〉

with V = 2
m0

∫
h∈Rd [x− h] dµ̃x,m0

(h).



Semiconcavity of d2µ,m0

Proof:

d2µ,m0
(y) =

1

m0

∫
h∈Rd

‖y − h‖2 dµ̃y,m0
(h)

≤ 1

m0

∫
h∈Rd

‖y − h‖2 dµ̃x,m0(h)

=
1

m0

∫
h∈Rd

(
‖x− h‖2 + 2 〈x− h, y − x〉+ ‖y − x‖2

)
dµ̃x,m0

(h)

= d2µ,m0
(x) + ‖y − x‖2 + 〈V, y − x〉

with V = 2
m0

∫
h∈Rd [x− h] dµ̃x,m0(h).

⇒ (‖y‖2 − d2µ,m0
(y))− (‖x‖2 − d2µ,m0

(x)) ≥ 〈2x− V, x− y〉

This is the gradient!



Stability of of µ→ dµ,m0

Theorem: If µ and ν are two probability measures on Rd and m0 > 0, then
‖dµ,m0 − dν,m0‖∞ ≤ 1√

m0
W2(µ, ν).



Stability of of µ→ dµ,m0

Theorem: If µ and ν are two probability measures on Rd and m0 > 0, then
‖dµ,m0 − dν,m0‖∞ ≤ 1√

m0
W2(µ, ν).

Proof:

Proposition: dH(Subm0
(µ),Subm0

(ν)) ≤W2(µ, ν)

dµ,m0
(x) =

1
√
m0

W2(m0δx,Subm0
(µ))

≤ 1
√
m0

(dH(Subm0
(µ),Subm0

(ν)) +W2(m0δx,Subm0
(ν)))

≤ 1
√
m0

W2(µ, ν) + dν,m0(x)

Set of submeasures of µ of mass m0.



Stability of of µ→ dµ,m0

Theorem: If µ and ν are two probability measures on Rd and m0 > 0, then
‖dµ,m0 − dν,m0‖∞ ≤ 1√

m0
W2(µ, ν).

Proof:

Proposition: dH(Subm0
(µ),Subm0

(ν)) ≤W2(µ, ν)

dµ,m0
(x) =

1
√
m0

W2(m0δx,Subm0
(µ))

≤ 1
√
m0

(dH(Subm0
(µ),Subm0

(ν)) +W2(m0δx,Subm0
(ν)))

≤ 1
√
m0

W2(µ, ν) + dν,m0(x)

Set of submeasures of µ of mass m0.

Rmk: Stability also holds with Wp and in any metric space (applications to topo-
logical data analysis).



To summarize

Theorem

1. the function x 7→ dµ,m0(x) is 1-Lipschitz;

2. the function x 7→ ‖x‖2 − d2µ,m0
(x) is convex;

3. the map µ 7→ dµ,m0
from probability measures to continuous functions

is 1√
m0

–Lipschitz, ie

‖dµ,m0 − dµ′,m0‖∞ ≤
1
√
m0

W2(µ, µ
′)

In practice: dµ,m0
and ∇dµ,m0

are very easy to compute for µ = 1
n

∑n
i=1 δpi ,

C = {p1, · · · pn} ⊂ Rd, even for pretty large d !

Consequences: Most of the topological and geometric inference results for
distance functions transpose to distance to a measure functions!

Ref: F. Chazal, D. Cohen-Steiner, Q. Mérigot, Geometric Inference for Probability Measures,
in Journal on Foundations of computational Mathematics, vol.11, 6, 733-751 2011.



A 3D example

Reconstruction of an offset of a mechanical part from a noisy approximation
with 10% outliers



Applications in stats: density estimation

Data: 1200 points p1, · · · , p1200

Density is estimated using

1. x 7→ m0

ωd−1(δµ̂,m0
(x)) , m0 = 150/1200 (k = 150) (Devroye-Wagner’77).

2. m0

2πdµ̂,m0
(x)2 , m0 = 150/1200 (k = 150).

µ̂ =
1

1200

1200∑
i=1

δpi

(joint work with G. Biau, D. Cohen-Steiner, L. Devroye, C. rodr̀ıguez) [EJS 2011]



Applications in stats: density estimation

Density is estimated using

1. x 7→ m0

ωd−1(δµ̂,m0
(x)) , m0 = 150/1200 (k = 150) (Devroye-Wagner’77).

2. m0

2πdµ̂,m0
(x)2 , m0 = 150/1200 (k = 150).

(joint work with G. Biau, D. Cohen-Steiner, L. Devroye, C. rodr̀ıguez) [EJS 2011]

1. 2.



Applications in stats: density estimation

1. 2.

(joint work with G. Biau, D. Cohen-Steiner, L. Devroye, C. rodr̀ıguez) [EJS 2011]

dµ,m0
can be turned into a density estimator whose level sets foliation is the

same as the one of dµ,m0 .



Applications in stats: deconvolution
(joint work with C. Caillerie, J. Dedecker, B. Michel) [EJS 2011]

When the data are corrupted by an important amount of noise, geometric
structures still can be infered when the nature of noise is known.



Using the gradient of dµ,m0

• Mean-Shift like algorithm (Fukunaga-Hostetler’75, Comaniciu-Meer ’02)

• Theoretical guarantees on the convergence of the algorithm and
“smoothness” of trajectories.

• “Fast concentration of mass” around underlying geometric structures?



Pushing data along the gradient of dµ,m0

Distance-based mean-shift followed by k-Means clustering on the point cloud
made of LUV colors of the pixels of the picture on the right (10 clusters).



Using the gradient of dµ,m0
: filaments detection

(on-going work)

Galaxies data set



Using the gradient of dµ,m0
: filaments detection

(on-going work)



Using the gradient of dµ,m0
: trajectory smoothing

(joint work with D. Chen, L. Guibas, X. Jiang, C. Sommer) [ACM SIGSPATIAL
2011]

- large collections of GPS traces sampled along road networks can be embedded
as a point cloud C in a higher dimensional space Rd (d = 10→ 150)
- Distance to the empirical measure µC used to smooth the trajectories in
the original space (can be seen as a generalization of moving average in time
series analysis)


