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Geometric Inference

Question: Given an approximation C of a geometric object K, is it
possible to reliably estimate the topological and geometric properties
of K, knowing only the approximation C'?

Challenges:
- define a relevant class of objects to be considered (no hope to get a positive

answer in full generality);
- define a relevant notion of distance between the objects (approximation);

- topological and geometric properties cannot be directly infered from approx-
Imations.



Distance functions for geometric inference

Considered objects: compact subsets K of R

Distance:

distance function to a compact K C R%: dg : & — inf ek ||z — p|
Hausdorf distance between two compact sets:

du (K, K') = sup,epa |dr (¢) — d ()

e Replace K and C by dx and d¢

e Compare the topology of the offsets
K" = d ' ([0,7]) and C" = d* ([0, 7])




Stability properties of the offsets

Topological /geometric properties of the offsets of K are stable with
respect to Hausdorff approximation:

1. Topological stability of the offsets of K (CCSL'06, NSW’06).
2. Approximate normal cones (CCSL'08).

3. Boundary measures (CCSM'07), curvature measures (CCSLT’'09), Voronoi
covariance measures (GMO’09).



Distance functions: the three (indeed two) main
ingredients of stability

e the stability of the map K — dg:
ldx — di'|lo = du (K, K')
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Distance functions: the three (indeed two) main
ingredients of stability

e the stability of the map K — dg:
ldx — di'|lo = du (K, K')

e the gradient vector field Vdg is
well defined and integrable (al-
though not continuous).

e the 1-Lipschitz property for dg;

e the 1-concavity of the function d%: e |sotopy lemma: the topology of
r — ||z||? — d% () is convex. ™ the sublevel sets can only change

at critical values.

e Stability results for critical
points.

Definition: A non negative proper function ¢ : R? — R satisfying the above
second and third property is called a distance-like function.



Reconstruction for distance-like functions

e Distance-like functions ¢ have well defined gradient V¢ and satisfy the
Isotopy lemma.

Reconstruction theorem (example): Let ¢, 1) be two distance-like functions
such that ||[¢p — 9¥||o0 < €, with

vz € ¢ ((0,R]), [[Va(9)] > o

for some positive €, & and R. Then, for any r € [4e/a?, R — 3¢], and for
0 < 1 < R, the sublevel sets " = ~1(]0,7]) and ¢7 = ¢~ 1([0,7]) are
homotopy equivalent, as soon as

e < i
~ 5+4+4/a?



Reconstruction for distance-like functions

e Distance-like functions ¢ have well defined gradient V¢ and satisfy the
Isotopy lemma.

Reconstruction theorem (example): Let ¢, 1) be two distance-like functions
such that ||[¢p — 9¥||o0 < €, with

vz € ¢ ((0,R]), [[Va(9)] > o

for some positive €, & and R. Then, for any r € [4e/a?, R — 3¢], and for
0 < n < R, the sublevel sets " = ~1([0,7]) and ¢"7 = ¢~ 1([0,n]) are

Rormotepy—egtivatent: as soon as

Isotopic

e < i
L ~ 5+4+4/a?

If more restrictive relationship between ¢, R, «.




The problem of “outliers”

If K/ = KU {x} where dix(x) > R, then ||dx — di/||cc > R: offset-based
inference methods fail!

Question: Can we generalize the previous approach by replacing the distance
function by a “distance-like” function having a better behavior with respect

to “"noise’” and “outliers” ?



Replacing compact sets by measures

A measure £ is a mass distribution on R?:

mathematically, it is defined as a map u that takes a (Borel) subset
B C R and outputs a nonnegative number 1(B). Moreover we ask
that if (B;) are disjoint subsets, p (U,oy Bi) = D ;en #(Bi).

u(B) corresponds to to the mass of 1 contained in B



Replacing compact sets by measures

e a point cloud C' = {p1,...,pn} defines a measure puc = %ZZ Op,

e the volume form on a k-dimensional submanifold M of R% defines a
measure volg as.

® ctcC...



Distance between measures

“The” Wasserstein distance W5 (1, ) between two probability measures i, v
(with finite 2-moments) quantifies the optimal cost of pushing 1 onto v, the
cost of moving a small mass dx from x to y being ||z — y||*dx.

cir/ \------""77 "Q 1. u and v are discrete measures:
dq — Zczéx, = )_;d;0y; with
‘A

Q ------- R — dj 2. Transport plan: set of coeffi-

'O | cients m;; > 0 with ) .m; =
-------- ’O dj and Zjﬂ-ijzci-

O - :O 3. Cost of a transport plan
' 1/2
C(m) = (i llzi — j>ms5)

- 4. dyw (p,v) :=inf, C(m)



Distance between measures

“The” Wasserstein distance W5 (1, ) between two probability measures i, v
(with finite 2-moments) quantifies the optimal cost of pushing 1 onto v, the
cost of moving a small mass dx from x to y being ||z — y||*dx.

() @
di 1. 1 and v are proba measures in R
N
ny O

N 2. Transport plan: 7 a proba measure on
@ ZEEEEEEEEY B ) . RY x R? s.t. (A x R?) = u(A) and
']

O (R x B) = u(B).
O ~O e

el 3. Cost of a transport plan
1
.- T ' §
O - C(W) — (fRded H:E o yHQdﬂ'(%,y))

1 - U 4. Wo(u,v) :=inf, C'(7)




Wasserstein distance
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Example:

o lf C = A{p1,...,pn} is a point cloud, and ('
{p1,...,Pn—k—-1,01,...,0k} with d(o;,C) = R, then

dH(C, O/) 2 R but WQ(MCM“C’) S \/%(R—I—dlam(C))



The distance to a measure

Distance function to a measure, first attempt:

Let m €]0,1] be a positive mass, and p a probability measure on RY:
Opm(x) =1nf{r > 0: u(B(x,7)) > m}.

® 0, Is the smallest distance needed to cap-
ture a mass of at least m;

e Coincides with the distance to the k-th
neighbor when m = k/n and pu =

/ % 2?:1 5197;:

Oyt /n () = [z = pc:(2)



Unstability of p— d,,

Distance function to a measure, first attempt:
Let m €]0,1] be a positive mass, and p a probability measure on RY:

inf{r >0:uB(z,7)) >m}.

5u,m(5’3)

Unstability under Wasserstein perturbations:

pe = (1/2 — €)oo + (1/2 + €)o1

fore>0: Vo <0, d,_1/2() =

fore =0: Vo <O, 5%,1/2(37) —

r— 1

x — 0

Consequence: the map u — 6,.,, € C°(R?) is discontinuous whatever the

(reasonable) topology on CY(R%).



The distance function to a measure

Definition: Given a probability measure 11 on R? and mg > 0, one defines:

. pmo 1/2
dymy T € R (— /o 5i,m(x)dm)

mo




The distance function to a measure

Definition: Given a probability measure 11 on R? and mg > 0, one defines:

1 [™o 1/2
dymy T € R (— /o 5i,m(x)dm>

mo
5u,m 4

o= () [ —

| —pZ (@)|] o e

|z —pg& ()|
l | - } >
l 2 o [ ) [ ) E m
mn mn mn

Example. Let C' = {p1,...,pn} and p = %2?21 0p,. Let p¥ (x) denote the
kth nearest neighbor to x in C, and set mg = ko /n:

ko 1/2
dppmo (T) = (ko >l - p‘é(ﬂfﬂ)
k=1



Another expression for d,, ,,,

1
Aoy () = min W (80, ) 2 (RY) = o and i <
mo

i

space of proba
measures

Dirac measures 1

— {—p: AR =mo and i < p}

mo

“The projection submeasure”: [, ,,, = the restriction of  on the ball
B =B(z,d,, m,(x)), whose trace on the sphere B has been rescaled so that
the total mass of fiy m, IS M.

1 1
d2 _ — h—$2d~a§m :W2 5337—~a:m
@) = o [ = ol ity = W3 (80, finmg)

mo



Another expression for d,, ,,,

1 .
dpi,m, () = min {Wz (5:1;, m—ﬁ> 3 ﬁ(Rd) = mg and [i < M}
0

i

Proof:



Another expression for d,, ,,,

. (R = mg and i < ,u}

Only one transport plan : y € R% — &



Another expression for d,, ,,,

i

1 N
dpi,m, () = min {Wz (5:15, m—ﬂ> 3 ﬁ(Rd) = mg and [i < M}
0
Proof:

mo
[ n=alPdp = [ dpao = [ F onam
. R A :
pushforward of i by the dis- F; (t) = [12([0,t)) is the cumulative function of fi, and
tance function to . Fﬁ_xl (m) = inf{t € R : F_(t) > m} is its generalized
Inverse



Another expression for d,, ,,,

1 .
dpi,m, () = min {Wz (5:1;7 m—ﬂ) 3 ﬁ(Rd) = mg and [i < M}
0

i

Proof:

[ n=aldnm) = [ Pdpa = [ E 2
. TR A :

pushforward of i by the dis- F; (t) = [12([0,t)) is the cumulative function of fi, and
tance function to . Fﬁ_xl (m) = inf{t € R : F_(t) > m} is its generalized
inverse

o i< = Fy(t) < F () = Fo(m) > Frl(m)

o Fi(t) = pu(B(x,1)) and Fy'(m) = 65 (x)

[ =l > [ F m)am = [ b (e
Rd 0 0



Another expression for d,, ,,,

i

1
dpi,m, () = min {W2 (5:1;7 m—'&) 3 ﬁ(Rd) = mg and [i < ﬂ}
0
Proof:

[ n=aldnm) = [ Pdpa = [ E 2
. A :

pushforward of i by the dis- F; (t) = [12([0,t)) is the cumulative function of fi, and
tance function to . Fﬁ_xl (m) = inf{t € R : F_(t) > m} is its generalized
inverse

Equality iff Fﬁ_m1 (m) = Fu_xl (m) for almost every m
= equality if ot = iz, m,

/ Ih — z||*di(h) / F@l(m)de:/ 8m(x)?dm
R4 0 0



. . 2
Semiconcavity of d; .

Theorem: Let 11 be a probability measure in R? and let mg € (0,1).
2 . . . d 2 2 .
1. d; ,,, is 1-semiconcave, i.e. x € R® — ||z||* — d7, ,, is convex.

2. di’mo is differentiable almost everywhere in R?, with gradient defined

by
2
Vol sy = - [ (@ B) ity (B
heRd

mo

3. the function z € R% — d,, ,,, (7) is 1-Lipschitz.

Example. Let C' = {p1,...,pn} and p = %2?21 0p,. Let p¥(x) denote the
kth nearest neighbor to z in C, and set mg = kg/n:

ko

2
vdi,fmo (x) — Qdﬂamovdﬂamo — k_O Z(f _plé’(x»
k=1



. . 2
Semiconcavity of d; .

Proof:
2. () = — / ly = R djig.mg (1)
W, mo mo LeRd Y,mo
1 5
<L / [y — AP dfiz.mg (1)
mo JheRrd

1
dp,mo () =(min {WQ (590, _/1> : ﬂ(Rd) = myg and [ < M}
i mo




Semiconcavity of d; .

Proof:
2o =— [y — bl iy (h)
110 mg heRd Y,1mo
1 N
< — ly — h||? diig,mq (h)
Mo JheRrd
1 ~
B _/ (lle = hl> +2(x — b,y —2) + |ly — 2 ) dfiz,m,(h)
mo JpeRrd

=d> () + |y —=||*+ (V,y — )

,mo

with V = mlo S epal® — h] dfiz mq (h).



. . 2
Semiconcavity of d; .

Proof:
2, (y) = — / ly — B2 dity.my (B)
K, mO hERd Y,mo
1 N
< ly — hl|? dfiz,me (R)
mo JheRrd
1 ~
:_—/‘ (lo = hlf? + 2 (@ — hyy — @) + |y — 2]1%) djizmo (h)
mo JheRrd

=d? . () + |y —z||* + (V,y — z)

M1 0

with @d [z — h] dﬁ@

= (I9l* = dymo @) — ([2]° = d}, 1o (2)) = (22 = V2 — )

This is the gradient!



Stability of of p1 — d}, 1,

Theorem: If 1 and v are two probability measures on R? and mg > 0, then
[dsimg — o lloo < A=Wl v).




Stability of of p1 — d}, 1,

Theorem: If 1 and v are two probability measures on R? and mg > 0, then

%k

Hd,u,’mo o dl/ m()Hoo ~ \/7

Proof: Set of submeasures of 1 of mass my.
Proposition: dpg , Sub,,, () < Wa(u,v)
1
dMamO (:E) — MWQ (m05$7 SmeO (,LL))
1
< Nin (i (Subpm, (1), Subm, (1)) + Wa(mode, Subm, ()))
1
< Ws (:ua V) T dl/,mo (Qj)

3



Stability of of p1 — d}, 1,

Theorem: If 1 and v are two probability measures on R? and mg > 0, then

%k

Hd,u,’mo o dl/ mQHOO ~ \/7

Proof: Set of submeasures of 1 of mass my.
Proposition: dpg , Sub,,, () < Wa(u,v)
1
d,u,mo (aj) — W (mO(Swv SUb’mo (:LL))

-3

<

Nin (A (Submg (1), Sub, (1)) + Wa(mode, Subm, (v)))
1
=~ \/7
Rmk: Stability also holds with W, and in any metric space (applications to topo-
logical data analysis).

(15 V) + dym (%)



To summarize

Theorem
1. the function x — d,, () is 1-Lipschitz;
2. the function x — ||z||* — dZ ,, () is convex;

3. the map p > d,, m, from probability measures to continuous functions

IS \/iTO—Lipschitz, e

dpme — Aurimo oo < — Wa(p, 1)

Consequences: Most of the topological and geometric inference results for
distance functions transpose to distance to a measure functions!

n

In practice: d,, ,,, and Vd,, ,,, are very easy to compute for 1 = % > i1 0p,,
C = {p1, - pn} C R even for pretty large d !

Ref: F. Chazal, D. Cohen-Steiner, Q. Mérigot, Geometric Inference for Probability Measures,
in Journal on Foundations of computational Mathematics, vol.11, 6, 733-751 2011.



A 3D example

Reconstruction of an offset of a mechanical part from a noisy approximation
with 10% outliers



Applications in stats: density estimation
(joint work with G. Biau, D. Cohen-Steiner, L. Devroye, C. rodriguez) [EJS 2011]

4

3F

2+

| 1200
" 1200 & 7
Data: 1200 points P1, " 4y P1200
Density Is estimated using
1. 0 mo = 150/1200 (k = 150) (Devroye-Wagner'77).

Wa—1(0p,mq (7))’

2. Mo mg =150/1200 (k = 150).

27Td,a,m0 (ac)z '




Applications in stats: density estimation
(joint work with G. Biau, D. Cohen-Steiner, L. Devroye, C. rodriguez) [EJS 2011]

100

200

300

300

400

400

500

600 -

700 -

800

800

1000

| | | | | | | | |
100 200 300 400 500 600 700 800 400 1000

1. 2.

Density Is estimated using

1. 0 mo = 150/1200 (k = 150) (Devroye-Wagner'77).

Wa—1(0p,mq (7))’

2. Mo mg =150/1200 (k = 150).

27Td,a,m0 (ac)z '




Applications in stats: density estimation
(joint work with G. Biau, D. Cohen-Steiner, L. Devroye, C. rodriguez) [EJS 2011]
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d,.m, €an be turned into a density estimator whose level sets foliation is the
same as the one of d,, .



Applications In stats: deconvolution
(joint work with C. Caillerie, J. Dedecker, B. Michel) [EJS 2011]

Distance to the estimator

When the data are corrupted by an important amount of noise, geometric
structures still can be infered when the nature of noise is known.



Using the gradient of d,, ,,

[IR= ¢ -

e Mean-Shift like algorithm (Fukunaga-Hostetler'75, Comaniciu-Meer '02)

e Theoretical guarantees on the convergence of the algorithm and
“smoothness” of trajectories.

e “Fast concentration of mass’ around underlying geometric structures?



Pushing data along the gradient of d,, ,,,

Distance-based mean-shift followed by k-Means clustering on the point cloud
made of LUV colors of the pixels of the picture on the right (10 clusters).



Using the gradient of d, ,,,,: filaments detection

(on-going work)

Galaxies data set




Using the gradient of d, ,,,,: filaments detection

(on-going work)

9.6807600e+000
21.8

0.00088¢




Using the gradient of d, ,,,: trajectory smoothing

(joint work with D. Chen, L. Guibas, X. Jiang, C. Sommer) [ACM SIGSPATIAL
2011]

\ k points

- large collections of GPS traces sampled along road networks can be embedded
as a point cloud C in a higher dimensional space R? (d = 10 — 150)

- Distance to the empirical measure pc used to smooth the trajectories in
the original space (can be seen as a generalization of moving average in time
series analysis)



