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Homology

Persistent homology



Filtrations of simplicial complexes

A filtration of a (finite) simplicial complex K is a sequence of subcomplexes
such that
i) ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,
ii) Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.



Example: filtration associated to a function

• f a real valued function defined on the vertices of K

• For σ = [v0, · · · , vk] ∈ K, f(σ) = maxi=0,··· ,k f(vi)

• The simplices of K are ordered according increasing f values (and di-
mension in case of equal values on different simplices).

⇒ The sublevel sets filtration.
Exercise: show that this is a
filtration.
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Example: The Cěch filtration

Let P = {p0, · · · pn} be a (finite) point cloud (in a metric space).

The Cěch complex Cα(P ): for p0, · · · pk ∈ P ,

σ = [p0p1 · · · pk] ∈ Cα(P ) iff ∩ki=0 B(pi, α) 6= ∅



Example: the Rips complex

σ = [p0p1 · · · pk] ∈ Rα(P ) iff ∀i, j ∈ {0, · · · k}, d(pi, pj) ≤ α

The Rips complex Rα(P ): for p0, · · · pk ∈ P ,

Rips vs Čech

• Easy to compute and fully determined by its 1-skeleton

• Rips-Čech interleaving: for any α > 0,

C α2 (P ) ⊆ Rα(P ) ⊆ Cα(P ) ⊆ R2α(P ) ⊆ · · ·

Let P = {p0, · · · pn} be a (finite) point cloud (in a metric space).



Homology of simplicial complexes

• 2 connected components

• Intuitively: 2 cycles

Topological invariants:
- Number of connected components
- Number of cycles: how to define a cycle?
- Number of voids: how to define a void?
- ...

(Simplicial) homology and
Betti numbers

In the following: homology with coefficient in Z/2
Refs: J.R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.
A. Hatcher, Algebraic Topology, Cambridge University Press 2002.



The space of k-chains

Let K be a d-dimensional simplicial complex. Let k ∈ {0, 1, · · · , d} and
{σ1, · · · , σp} be the set of k-simplices of K.

k-chain:

c =

p∑
i=1

εiσi with εi ∈ Z/2Z = {0, 1}

Sum of k-chains:

c+ c′ =

p∑
i=1

(εi + ε′i)σi and λ.c =

p∑
i=1

(λε′i)σi

where the sums εi + ε′i and the products λεi are modulo 2.
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k-chain = union of k-simplices

sum c+ c′ = symmetric difference
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The boundary operator

The boundary ∂σ of a k-simplex σ is the sum of its (k − 1)-faces. This is a
(k − 1)-chain.

Ifσ = [v0, · · · , vk] then ∂σ =
k∑
i=0

[v0 · · · v̂i · · · vk]

The boundary operator is the linear map defined by

∂ : Ck(K) → Ck−1(K)
c → ∂c =

∑
σ∈c ∂σ

∂ ∂

0

(−1)i if not with
coeff in Z/2!



Fundamental property of the boundary operator

∂∂ := ∂ ◦ ∂ = 0

Proof: by linearity it is just necessary to prove it for a simplex.

∂∂σ = ∂

(
k∑
i=0

[v0 · · · v̂i · · · vk]

)

=
k∑
i=0

∂[v0 · · · v̂i · · · vk]

=
∑
j<i

[v0 · · · v̂j · · · v̂i · · · vk] +
∑
j>i

[v0 · · · v̂i · · · v̂j · · · vk]

= 0



Cycles and boundaries

The chain complex associated to a complex K of dimension d

∅ → Cd(K)
∂→ Cd−1(K)

∂→ · · · Ck+1(K)
∂→ Ck(K)

∂→ · · · C1(K)
∂→ C0(K)

∂→ ∅

k-cycles:

Zk(K) := ker(∂ : Ck → Ck−1) = {c ∈ Ck : ∂c = ∅}

k-boundaries:

Bk(K) := im(∂ : Ck+1 → Ck) = {c ∈ Ck : ∃c′ ∈ Ck+1, c = ∂c′}

Bk(K) ⊂ Zk(K) ⊂ Ck(K)
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Non homologous 1-cycles
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Cycles and boundaries

Non homologous 1-cycles

Two homologous 1-cycles

A 1-boundary



Cycles and boundaries

Non homologous 1-cycles

Two homologous 1-cycles

A 1-boundary

Not a cycle



Homology groups and Betti numbers

Bk(K) ⊂ Zk(K) ⊂ Ck(K)

• The kth homology group of K: Hk(K) = Zk/Bk

• Tout each cycle c ∈ Zk(K) corresponds its homology class c+Bk(K) =
{c+ b : b ∈ Bk(K)}.

• Two cycles c, c′ are homologous if they are in the same homology class:
∃b ∈ Bk(K) s. t. b = c′ − c(= c′ + c).

• The kth Betti number of K: βk(K) = dim(Hk(K)).
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β3 = 0
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Topological invariance and singular homology

Theorem: If K and K ′ are two simplicial complexes such that |K| and |K ′|
are homeomorphic, then their homology groups are isomorphic and their Betti
numbers are equal.

β0 = 1, β1 = 2, β2 = 0

• This is a classical result in algebraic topology but the proof is not obvious.

• Rely on the notion of singular homology→ defined for any topological space.



Topological invariance and singular homology

Let ∆k be the standard simplex in Rk. A singular k-simplex in a topological
space X is a continuous map σ : ∆k → X.

(0, 0)

(0, 1)

(1, 0)

σ

X

The same construction as for simplicial homology can be done with singular
complexes → Singular homology

• Singular homology is defined for any topological space X.

• If X is homotopy equivalent to the support of a simplicial complex, then
the singular and simplicial homology coincide!

Important properties:



Topological invariance and singular homology

Let ∆k be the standard simplex in Rk. A singular k-simplex in a topological
space X is a continuous map σ : ∆k → X.

(0, 0)

(0, 1)

(1, 0)

σ

X

Homology and continuous maps:

• if f : X → Y is a continuous map and σ : ∆k → X a simplex in X,
then f ◦ σ : ∆k → Y is a simplex in Y ⇒ f induces a linear maps
between homology groups:

f] : Hk(X)→ Hk(Y )

• if f : X → Y is an homeomorphism or an homotopy equivalence then
f] is an isomorphism.



An algorithm for geometric inference

• X ⊂ Rd be a compact set such that wfs(X) > 0.

• L ⊂ Rd be a finite set such that dH(X,L) < ε for some ε > 0.
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An algorithm for geometric inference

• X ⊂ Rd be a compact set such that wfs(X) > 0.

• L ⊂ Rd be a finite set such that dH(X,L) < ε for some ε > 0.

Theorem: [CL’05 - CSEH’05]
Assume that wfs(X) > 4ε. For α > 0 s.t. α+ 4ε < wfs(X), let i : Lα+ε ↪→
Lα+3ε be the canonical inclusion.For any 0 < r < wfs(X),

Hk(Xr) ∼= im
(
i∗ : Hk(Lα+ε)→ Hk(Lα+3ε)

)

Goal: Compute the Betti numbers of Xr for 0 < r < wfs(X) from L.



An algorithm for geometric inference

Xα ⊆ Lα+ε ⊆ Xα+2ε ⊆ Lα+3ε ⊆ Xα+4ε ⊆ · · ·For any α > 0,

Proof:
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An algorithm for geometric inference

Xα ⊆ Lα+ε ⊆ Xα+2ε ⊆ Lα+3ε ⊆ Xα+4ε ⊆ · · ·For any α > 0,

isomorphism isomorphism

rank = dimHk(X
α)

At homology level:

Hk(Xα)→ Hk(Lα+ε)→ Hk(Xα+2ε)→ Hk(Lα+3ε)→ Hk(Xα+4ε)→ · · ·

Cannot be directly com-
puted !

Proof:



Using the Čech complex

for p0, · · · pk ∈ L, σ = [p0p1 · · · pk] ∈ Cα(L) iff
k⋂
i=0

B(pi, α) 6= ∅

The Čech complex Cα(L):
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The Čech complex Cα(L):

Nerve theorem: For any α > 0, Lα and Cα(L) are homotopy equivalent and
the homotopy equivalences can be chosen to commute with inclusions.



Using the Čech complex

for p0, · · · pk ∈ L, σ = [p0p1 · · · pk] ∈ Cα(L) iff
k⋂
i=0

B(pi, α) 6= ∅

The Čech complex Cα(L):

Nerve theorem: For any α > 0, Lα and Cα(L) are homotopy equivalent and
the homotopy equivalences can be chosen to commute with inclusions.

· · · → Hk(Lα+ε) → Hk(Lα+3ε) → · · ·
↓ ↓

· · · → Hk(Cα+ε(L)) → Hk(Cα+3ε(L)) → · · ·

Allow to work with simplicial complexes but... still too difficult to compute



Using the Rips complex

σ = [p0p1 · · · pk] ∈ Rα(L) iff ∀i, j ∈ {0, · · · k}, d(pi, pj) ≤ α
The Rips complex Rα(L): for p0, · · · pk ∈ L,

Rips vs Čech

• Easy to compute and fully determined by its 1-skeleton

• Rips-Čech interleaving: for any α > 0,

C α2 (L) ⊆ Rα(L) ⊆ Cα(L) ⊆ R2α(L) ⊆ · · ·



Using the Rips complex

σ = [p0p1 · · · pk] ∈ Rα(L) iff ∀i, j ∈ {0, · · · k}, d(pi, pj) ≤ α
The Rips complex Rα(L): for p0, · · · pk ∈ L,

Rips vs Čech

Theorem: [C-Oudot’08]
Let X ⊂ Rd be a compact set and L ⊂ Rd a finite set such that dH(X,L) < ε
for some ε < 1

9 wfs(X). Then for all α ∈ [2ε, 1
4 (wfs(X)− ε)] and all

λ ∈ (0,wfs(X))), one has: ∀k ∈ N

βk(Xλ) = dim(Hk(Xλ)) = rk(Rα(L)→ R4α(L))
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Easy to compute using per-
sistence algo.



Using the Rips complex

σ = [p0p1 · · · pk] ∈ Rα(L) iff ∀i, j ∈ {0, · · · k}, d(pi, pj) ≤ α
The Rips complex Rα(L): for p0, · · · pk ∈ L,

Rips vs Čech

Theorem: [C-Oudot’08]
Let X ⊂ Rd be a compact set and L ⊂ Rd a finite set such that dH(X,L) < ε
for some ε < 1

9 wfs(X). Then for all α ∈ [2ε, 1
4 (wfs(X)− ε)] and all

λ ∈ (0,wfs(X))), one has: ∀k ∈ N

βk(Xλ) = dim(Hk(Xλ)) = rk(Rα(L)→ R4α(L))

Choice of α when wfs(X) is unknown: see [C-Oudot 2008]



An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,
s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Output: The Betti numbers β0, β1, · · · , βd of K.

β0 = β1 = · · · = βd = 0;
for i = 1 to m
k = dimσi − 1;
if σi is contained in a (k + 1)-cycle in Ki

then βk+1 = βk+1 + 1;
else βk = βk − 1;

end if;
end for;
output (β0, β1, · · · , βd);
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An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,
s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Output: The Betti numbers β0, β1, · · · , βd of K.

β0 = β1 = · · · = βd = 0;
for i = 1 to m
k = dimσi − 1;
if σi is contained in a (k + 1)-cycle in Ki

then βk+1 = βk+1 + 1;
else βk = βk − 1;

end if;
end for;
output (β0, β1, · · · , βd);

Remark: At the ith step of the algorithm, the vector (β0, · · · , βd) stores the Betti
numbers of Ki.



Getting more information

Definition: A (k+1)-simplex σi is positive if it is contained in a (k+1)-cycle
in Ki. It is negative otherwise.

Create a new (k + 1)-cycle in Ki

Destroy a k-cycle in Ki

βk(K) = ](positive simplices) − ](negative simplices)

• How to keep track of the evolution of the homology
all along the filtration?

• What are the created/destroyed cycles?

• What is the lifetime of a cycle?

• How to compute rank(Hk(Ki)→ Hk(Kj))?
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Definition: A (k+1)-simplex σi is positive if it is contained in a (k+1)-cycle
in Ki. It is negative otherwise.

Create a new (k + 1)-cycle in Ki

Destroy a k-cycle in Ki

βk(K) = ](positive simplices) − ](negative simplices)

• How to keep track of the evolution of the homology
all along the filtration?

• What are the created/destroyed cycles?

• What is the lifetime of a cycle?

• How to compute rank(Hk(Ki)→ Hk(Kj))?

This is where topological persistence comes into
play!


