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How to determine the number of “cycles’ of the underlying shape from the
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Motivation: getting topological information
without reconstructing

Homology

How to determine the(humber of "CYM the underlying shape from th@
(point cloud approximation?— i/

Persistent homology




Filtrations of simplicial complexes

A filtration of a (finite) simplicial complex K is a sequence of subcomplexes
such that

)l=K°cK'c---Cc K" =K,
i) K71 = K*U o' where 0™ is a simplex of K.



Example: filtration associated to a function

e f a real valued function defined on the vertices of K
o For o = [?}0, e ,?}k] c K, f(O') = MaX;—0Q.... k f(?]z)

e The simplices of K are ordered according increasing f values (and di-
mension in case of equal values on different simplices).

= The sublevel sets
Exercise: show that this is a

filtration.
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Example: The Céch filtration

Let P = {po,---pn} be a (finite) point cloud (in a metric space).
The Céch complex C*(P): for pg,---px € P,

o = [pop1 - pi] € C*(P) iff Ny Bpi, ) # 0



Example: the Rips complex

M Rips vs Cech M

Let P = {pg,---pn} be a (finite) point cloud (in a metric space).
The Rips complex R*(P): for pg,---px € P,

o = [pop1 - -pr] € R¥(P) iff Vi,j €{0,---k}, d(pi,p;) < a

e Easy to compute and fully determined by its 1-skeleton

e Rips-Cech interleaving: for any a > 0,

C%(P) C R¥(P) C C¥P) C R**(P)C---



Homology of simplicial complexes

“ e 2 connected components
Q e Intuitively: 2 cycles

Topological invariants: \
- Number of connected components

- Number of cycles: how to define a cycle?

- Number of voids: how to define a void? /

(Simplicial) homology and
Betti numbers

In the following: homology with coefficient in Z /2

Refs: J.R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.
A. Hatcher, Algebraic Topology, Cambridge University Press 2002.



The space of k-chains

Let K be a d-dimensional simplicial complex. Let & € {0,1,---,d} and
{o1,--+,0,} be the set of k-simplices of K.
k-chain:

p
c=)Y eio; with & €Z/2Z = {0,1}
i=1
Sum of k-chains:

p p

c+c = Z(‘S@ +e)o; and A.c= Z()\eg)ai

1=1 1=1

where the sums ¢; + €/ and the products \e; are modulo 2.
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The boundary operator

il

The boundary do of a k-simplex o is the sum of its (kK — 1)-faces. This is a
(k — 1)-chain.

k
Ifo=|vg, - ,vg| then 0o =Y [vg---0;- - vg]
i=0
The boundary operator is the linear map defined by (—1)* if not with
coeff in Z /2!
0 : Ck(K) — Ck_l(K)
c — Odc=) .00



Fundamental property of the boundary operator

00 =000 =10

Proof: by linearity it is just necessary to prove it for a simplex.

k
D0o = 8(2[1}0---@---%])

k
= Z Olvg -« U5+ ++ Vg
i=0
= Z[Uo Vi 05 Vg| + Z[vg V- Dj - Vg
1<<? J>1



Cycles and boundaries

The chain complex associated to a complex K of dimension d

0 = Cy(K) 2 Cu1(K) S Crs1(K) S Cu(K) S - CL(K) S o (K)
k-cycles:
Z(K):=ker(0:Cp = Cr_1) ={c€C:0c=10}

k-boundaries:

Bk(K) = Zm(a X Ck_|_1 — Ck) — {C ~ Ck . E|C/ - Ck_|_1, C — 80’}

Bip(K) C Zi(K) C Ci(K)



Cycles and boundaries

Non homologous 1-cycles

/
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Cycles and boundaries

Not a cycle

N
AN
N
/

Non homologous 1-cycles

/

A

“—~ A 1-boundary




Homology groups and Betti numbers

Br(K) C Zi(K) C Cp(K)

e The k'™ homology group of K: Hy(K) = Z;,/ B,

e Tout each cycle ¢ € Z;(K) corresponds its homology class ¢+ By (K) =
{C—|— b:bce Bk(K)}

e Two cycles ¢, ¢’ are homologous if they are in the same homology class:
dbe Bp(K)s. t. b= —c(=d +¢).

e The k' Betti number of K: 5k(K) = dlm(Hk(K))



Elementary examples

Remark: 5y = number of connected components of K
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Elementary examples

Remark: 5y = number of connected components of K

Bo =2

o g1 =0
By =0

Bo =

B1 =

Ba =0

. Bo =1
B1=0

Ba =1 if empty and J2 = 0 if filled
Bz =0
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Elementary examples

Bo =2
B1 =2
By =1 if empty and 85 = 0 if filled
B3 =0




Topological invariance and singular homology

Bo=1 01=2,62=0

Theorem: If K and K’ are two simplicial complexes such that |K| and |K’|
are homeomorphic, then their homology groups are isomorphic and their Betti
numbers are equal.

e This is a classical result in algebraic topology but the proof is not obvious.

e Rely on the notion of singular homology — defined for any topological space.



Topological invariance and singular homology

A
(O, 1) ( . /

/\

X

(0,0)" (1,0
Let Aj be the standard simplex in R*. A singular k-simplex in a topological

space X is a continuous map ¢ : A, — X.

The same construction as for simplicial homology can be done with singular

complexes — Singular homology

Important properties:
e Singular homology is defined for any topological space X.

e If X is homotopy equivalent to the support of a simplicial complex, then
the singular and simplicial homology coincide!



Topological invariance and singular homology

A
(O, 1) ( . /

/\

(0,0) (1.0) X

Let Aj be the standard simplex in R*. A singular k-simplex in a topological
space X is a continuous map ¢ : A, — X.

Homology and continuous maps:

o if f: X — Y is a continuous map and o : A, — X a simplex in X,
then foo : A — Y is a simplex in Y = f induces a linear maps
between homology groups:

fi+ Hp(X) = Hg(Y)

o if f: X — Y is an homeomorphism or an homotopy equivalence then
f4 1s an isomorphism.
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An algorithm for geometric inference

e X C RY be a compact set such that wfs(X) > 0.

o L C R? be a finite set such that dg (X, L) < & for some € > 0.

Goal: Compute the Betti numbers of X" for 0 < r < wfs(X) from L.

Theorem: [CL'05 - CSEH'05]
Assume that wfs(X) > 4e. For a > 0 s.t. a+4e < wfs(X), let ¢ : L€ —
L3¢ be the canonical inclusion.For any 0 < r < wis(X),

Hy(X") = im (ix : He(L*T®) — H (L))
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Proof:

For any o > O’ XOé g La‘l—e g Xa—|—2€ g L()é—|—38 g XO&‘|—4€ g L

At homology level:

Hk(Xa) N Hk(La+8) N Hk(on—I—Qs) N Hk(La+3€> N Hk<Xa+48) .



Proof:

For any o > O’ XOé g La‘l—e g XOH—2€ g L()é—|—38 g XO&‘|—4€ g L

At homology level:

rank = dim Hy (X <)

—

Hk(Xa) N Hk(La+8) N Hk(Xa—l—ZaH\[{:(La—I—Ss) N Hk(on—l—éls) .

Isomorphism Isomorphism




Proof:

For any o > O’ XOé g La‘|‘€ g XOH—QE? g L(X+3€ g XO&‘|—4€ g L

At homology level: Cannot be directly com-
puted !
ﬂ— dim Hp (X <)

Hip(X*) = Hp(LY®) = Hp(XT2°%) — Hp(LOT%°) — Hp(X*T) — -

Isomorphism Isomorphism
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The Cech complex C(L
for po,---px € L, 0:[]?0291' pr] € C*(L) iff ﬂBpZ, ) # ()

Nerve theorem: For any a > 0, L® and C*(L) are homotopy equivalent and
the homotopy equivalences can be chosen to commute with inclusions.



Using the Cech complex

@4/ @@

The Cech complex C(L
forp07”°pkEL7 O:[p0p1° ]EC(X iff ﬂBpfm #@

Nerve theorem: For any a > 0, L® and C*(L) are homotopy equivalent and
the homotopy equivalences can be chosen to commute with inclusions.

5 Hy(Lete) = Hy(Let3e) o

|
- @l:e(m) — Hy(CoFE (LD —

Allow to work with simplicial complexes but... still too difficult to compute




Using the Rips complex

M Rips vs Cech M

The Rips complex R*(L): for pg,---pr € L,
o = [pop1---pr] € R*(L) iff Vi,j€{0,---k}, d(pi,p;) <

e Easy to compute and fully determined by its 1-skeleton

e Rips-Cech interleaving: for any a > 0,

C% (L) CRY(L) CCYL) C R*(L)C ---
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M Rips vs Cech M

The Rips complex R*(L): for pg,---pr € L,
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Theorem: [C-Oudot'08]

Let X C R® be a compact set and L C R? a finite set such that d (X, L) < ¢
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M Rips vs Cech M

The Rips complex R*(L): for pg,---pr € L,
o = [pop1---pr] € R*(L) iff Vi,j€{0,---k}, d(pi,p;) <
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for some & < ¢ wfs(X). Then for all a € [2¢, 3 (wis(X) — ¢)] and all

A€ (0,wfs(X))), one has: Vk € N

Bie(X?) = dim(H (X)) =|rk(RY(L) — R**(L))

( Easy to compute using per-
sistence algo.



Using the Rips complex

M Rips vs Cech M

The Rips complex R*(L): for pg,---pr € L,
o = [pop1---pr] € R*(L) iff Vi,j€{0,---k}, d(pi,p;) <

Theorem: [C-Oudot'08]

Let X C R® be a compact set and L C R? a finite set such that d (X, L) < ¢
for some & < ¢ wfs(X). Then for all a € [2¢, 3 (wis(X) — ¢)] and all

A€ (0,wfs(X))), one has: Vk € N

Bie(X?) = dim(H (X)) = rk(RY(L) — R**(L))

Choice of a when wfs(X') is unknown: see [C-Oudot 2008]



An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex ) = K’ c K c .- Cc K™ = K,
s. t. K™ = K*U g where ¢! is a simplex of K.

Output: The Betti numbers 5y, 81, , 54 of K.

Bo=01=--=pPa=0;
fort =1tom
k =dimo* — 1:

if 0 is contained in a (k + 1)-cycle in K*
then Srpi1 = Bry1 + 1,
else O = B — 1;
end if;
end for;

output (5o, 81, , Ba);
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s. t. K™ = K*U g where ¢! is a simplex of K.
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fort =1tom
k =dimo* — 1:
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An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex ) = K’ c K c .- Cc K™ = K,
s. t. K™ = K*U g where ¢! is a simplex of K.

Output: The Betti numbers 5y, 81, , 54 of K.

Bo=01=--=pPa=0;
fort =1tom
k =dimo* — 1:

if 0 is contained in a (k + 1)-cycle in K*
then fr+1 = Br41 + 1;
else By = B — 1;

end if;
end for; & \ A)
output (5o, 81, , Ba);

Remark: At the it step of the algorithm, the vector (8o, - , 84) stores the Betti
numbers of K°.




Getting more information

Definition: A (k+1)-simplex o’ isif it is contained in a (k+1)-cycle
in K*. It |sotherW|se. c

Destroy a k-cycle in K*

reate a new (k + 1)-cycle in K*
Br(K) = f(positive simplices) — fi(negative simplices)

e How to keep track of the evolution of the homology
all along the filtration?

e What are the created/destroyed cycles?
e What is the lifetime of a cycle?

e How to compute rank(Hy(K*) — Hy(K7))?



Getting more information

Definition: A (k+1)-simplex o’ isif it is contained in a (k+1)-cycle
in K*. It |sotherW|se. c

Destroy a k-cycle in K*

reate a new (k + 1)-cycle in K*

Br(K) = f(positive simplices) — fi(negative simplices)

e How to keep track of the evolution of the homology
all along the filtration?

e What are the created/destroyed cycles?

e What is the lifetime of a cycle?

e How to compute rank(Hy(K*) — Hy(K7))?

L _» [ his Is where topological persistence comes into
play!



