Sophia-Antipolis, January 2017

Covers and nerves: union of balls, geometric inference and Mapper

Frédéric Chazal INRIA Saclay - Ile-de-France frederic.chazal@inria.fr

Idea:

Idea:

• Group data points in "local clusters"

Idea:

- Group data points in "local clusters"
- Summarize the data through the combinatorial/topological structure of intersection patterns of "clusters"

Idea:

- Group data points in "local clusters"
- Summarize the data through the combinatorial/topological structure of intersection patterns of "clusters"

Goal: Do it in a way that preserves (some of) the topological features of the data.

Background mathematical notions

Topological space

A topology on a set X is a family \mathcal{O} of subsets of X that satisfies the three following conditions:

i) the empty set \emptyset and X are elements of \mathcal{O} ,

ii) any union of elements of \mathcal{O} is an element of \mathcal{O} ,

iii) any finite intersection of elements of \mathcal{O} is an element of \mathcal{O} .

The set X together with the family \mathcal{O} , whose elements are called open sets, is a topological space. A subset C of X is closed if its complement is an open set.

A map $f: X \to X'$ between two topological spaces X and X' is continuous if and only if the pre-image $f^{-1}(O') = \{x \in X : f(x) \in O'\}$ of any open set $O' \subset X'$ is an open set of X. Equivalently, f is continuous if and only if the pre-image of any closed set in X' is a closed set in X (exercise).

A topological space X is a compact space if any open cover of X admits a finite subcover, i.e. for any family $\{U_i\}_{i\in I}$ of open sets such that $X = \bigcup_{i\in I} U_i$ there exists a finite subset $J \subseteq I$ of the index set I such that $X = \bigcup_{j\in J} U_j$.

Background mathematical notions

Metric space

A metric (or distance) on X is a map $d: X \times X \rightarrow [0, +\infty)$ such that: *i*) for any $x, y \in X$, d(x, y) = d(y, x), *ii*) for any $x, y \in X$, d(x, y) = 0 if and only if x = y, *iii*) for any $x, y, z \in X$, $d(x, z) \leq d(x, y) + d(y, z)$. The set X together with d is a metric space.

The smallest topology containing all the open balls $B(x,r) = \{y \in X : d(x,y) < r\}$ is called the metric topology on X induced by d.

Example: the standard topology in an Euclidean space is the one induced by the metric defined by the norm: d(x, y) = ||x - y||.

Compacity: a metric space X is compact if and only if any sequence in X has a convergent subsequence. In the Euclidean case, a subset $K \subset \mathbb{R}^d$ (endowed with the topology induced from the Euclidean one) is compact if and only if it is closed and bounded (Heine-Borel theorem).

Comparing topological spaces

Homeomorphy and isotopy

- X and Y are homeomorphic if there exists a bijection $h: X \to Y$ s. t. h and h^{-1} are continuous.
- $X, Y \subset \mathbb{R}^d$ are ambient isotopic if there exists a continuous map $F : \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$ s. t. $F(.,0) = Id_{\mathbb{R}^d}$, F(X,1) = Y and $\forall t \in [0,1]$, F(.,t) is an homeomorphim of \mathbb{R}^d .

Comparing topological spaces

Homotopy, homotopy type

- Two maps $f_0: X \to Y$ and $f_1: X \to Y$ are homotopic if there exists a continuous map $H: [0,1] \times X \to Y$ s. t. $\forall x \in X$, $H(0,x) = f_0(x)$ and $H_1(1,x) = f_1(x)$.
- X and Y have the same homotopy type (or are homotopy equivalent) if there exists continuous maps f : X → Y and g : Y → X s. t. g ∘ f is homotopic to Id_X and f ∘ g is homotopic to Id_Y.

Comparing topological spaces

Homotopy, homotopy type

If $X \subset Y$ and if there exists a continuous map $H : [0,1] \times X \to X$ s.t.: *i*) $\forall x \in X, H(0,x) = x,$ *ii*) $\forall x \in X, H(1,x) \in Y$ *iii*) $\forall y \in Y, \forall t \in [0,1], H(t,y) \in Y,$ then X and Y are homotopy equivalent. If one replaces condition *iii*) by $\forall y \in Y,$ $\forall t \in [0,1], H(t,y) = y$ then H is a deformation retract of X onto Y.

Simplicial complexes

Given a set $P = \{p_0, \ldots, p_k\} \subset \mathbb{R}^d$ of k + 1 affinely independent points, the *k*-dimensional simplex σ , or *k*-simplex for short, spanned by P is the set of convex combinations

$$\sum_{i=0}^{k} \lambda_i p_i, \quad \text{with} \quad \sum_{i=0}^{k} \lambda_i = 1 \quad \text{and} \quad \lambda_i \ge 0.$$

The points p_0, \ldots, p_k are called the vertices of σ .

Simplicial complexes

A (finite) simplicial complex K in \mathbb{R}^d is a (finite) collection of simplices such that:

- 1. any face of a simplex of K is a simplex of K,
- 2. the intersection of any two simplices of K is either empty or a common face of both.

The underlying space of K, denoted by $|K| \subset \mathbb{R}^d$ is the union of the simplices of K.

Abstract simplicial complexes

Let $P = \{p_1, \dots, p_n\}$ be a (finite) set. An abstract simplicial complex K with vertex set P is a set of subsets of P satisfying the two conditions :

- 1. The elements of P belong to K.
- 2. If $\tau \in K$ and $\sigma \subseteq \tau$, then $\sigma \in K$.

The elements of K are the simplices.

Let $\{e_1, \dots e_n\}$ a basis of \mathbb{R}^n . "The" geometric realization of K is the (geometric) subcomplex |K| of the simplex spanned by $e_1, \dots e_n$ such that:

$$[e_{i_0}\cdots e_{i_k}]\in |K| \text{ iff } \{p_{i_0},\cdots,p_{i_k}\}\in K$$

|K| is a topological space (subspace of an Euclidean space)!

Abstract simplicial complexes

Let $P = \{p_1, \dots, p_n\}$ be a (finite) set. An abstract simplicial complex K with vertex set P is a set of subsets of P satisfying the two conditions :

- 1. The elements of P belong to K.
- 2. If $\tau \in K$ and $\sigma \subseteq \tau$, then $\sigma \in K$.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces (good for top./geom. inference) and as combinatorial objects (abstract simplicial complexes, good for computations).

Covers and nerves

An open cover of a topological space X is a collection $\mathcal{U} = (U_i)_{i \in I}$ of open subsets $U_i \subseteq X$, $i \in I$ where I is a set, such that $X = \bigcup_{i \in I} U_i$.

Given a cover of a topological space X, $\mathcal{U} = (U_i)_{i \in I}$, its nerve is the abstract simplicial complex $C(\mathcal{U})$ whose vertex set is \mathcal{U} and such that

 $\sigma = [U_{i_0}, U_{i_1}, \cdots, U_{i_k}] \in C(\mathcal{U}) \text{ if and only if } \cap_{j=0}^k U_{i_j} \neq \emptyset.$

The nerve theorem

The Nerve Theorem:

Let $\mathcal{U} = (U_i)_{i \in I}$ be a finite open cover of a subset X of \mathbb{R}^d such that any intersection of the U_i 's is either empty or contractible. Then X and $C(\mathcal{U})$ are homotopy equivalent.

For non-experts, you can replace:

- "contractible" by "convex",
- "are homotopy equivalent" by "have many topological invariants in common".

Building interesting covers and nerves

Two directions:

1. Covering data by balls:
→ distance functions frameworks,
persistence-based signatures,...
→ geometric inference, provide a
framework to establish various theoretical results in TDA.

2. Using a function defined on the data: \rightarrow the Mapper algorithm \rightarrow exploratory data analysis and visualization

Covers and nerves for exploratory data analysis.

Pull back of a cover

Let $f: X \to \mathbb{R}$ (or \mathbb{R}^d) a continuous function where X is a topological space and let $\mathcal{U} = (U_i)_{i \in I}$ be a cover of \mathbb{R} (or \mathbb{R}^d).

The collection of open sets $(f^{-1}(U_i))_{i \in I}$ is the pull back cover of X induced by (f, \mathcal{U}) .

Pull back of a cover

The Mapper algorithm

Input:

- a data set \boldsymbol{X} with a metric or a dissimilarity measure,
- a function $f: X \to \mathbb{R}$ or \mathbb{R}^d ,
- a cover ${\mathcal U}$ of f(X).

- 1. for each $U \in \mathcal{U}$, decompose $f^{-1}(U)$ into clusters $C_{U,1}, \cdots, C_{U,k_U}$.
- 2. Compute the nerve of the cover of X defined by the $C_{U,1}, \cdots, C_{U,k_U}$, $U \in \mathcal{U}$

Output: a simplicial complex, the nerve (often a graph for well-chosen covers \rightarrow easy to visualize):

- a vertex $v_{U,i}$ for each cluster $C_{U,i}$,
- an edge between $v_{U,i}$ and $v_{U',j}$ iff $C_{U,i}capC_{U',j}\neq \emptyset$

The Mapper algorithm

Input:

Output: a simplicial complex, the nerve (often a graph for well-chosen covers \rightarrow easy to visualize):

- a vertex $v_{U,i}$ for each cluster $C_{U,i}$,
- an edge between $v_{U,i}$ and $v_{U',j}$ iff $C_{U,i}capC_{U',j} \neq \emptyset$

Choice of lens/filter

 $f: X \to \mathbb{R}$ is often called a lens or a filter.

Classical choices:

- density estimates
- centrality $f(x) = \sum_{y \in X} d(x, y)$
- excentricity $f(x) = \max_{y \in X} d(x, y)$
- PCA coordinates, NLDR coordinates,...
- Eigenfunctions of graph laplacians.
- Functions detecting anomalous behavior or outliers.
- Distance to a root point (filamentary structures reconstruction).
- Etc ...

Choice of lens/filter

 $f: X \to \mathbb{R}$ is often called a lens or a filter.

Classical choices:

- density estimates
- centrality $f(x) = \sum_{y \in X} d(x, y)$
- excentricity $f(x) = \max_{y \in X} d(x, y)$
- PCA coordinates, NLDR coordinates,...
- Eigenfunctions of graph laplacians.
- Functions detecting anomalous behavior or outliers.
- Distance to a root point (filamentary structures reconstruction).

• Etc ...

Choice of lens/filter

 $f: X \to \mathbb{R}$ is often called a lens or a filter.

May reveal some ambiguity in the use of non linear dimensionality reduction (NLDR) methods.

Classical choices:

- density estimates
- centrality $f(x) = \sum_{y \in X} d(x, y)$
- excentricity $f(x) = \max_{y \in X} d(x, y)$
- PCA coordinates, NLDR coordinates,...
- Eigenfunctions of graph laplacians.
- Functions detecting anomalous behavior or outliers.
- Distance to a root point (filamentary structures reconstruction).
- Etc ...

Choice of covers (case of \mathbb{R})

The resolution r is the maximum diameter of an interval in \mathcal{U} . The resolution may also be replaced by a number N of intervals in the cover. The gain g is the percentage of overlap between intervals (when they overlap).

Intuition:

- small r (large N) \rightarrow finer resolution, more nodes.
- large r (small N) \rightarrow rougher resolution, less nodes.
- small $g \rightarrow$ less connectivity.

- large $g \rightarrow$ more connectivity (the dimensionality of the nerve increases).

g = 0.25

r

Choice of covers (case of \mathbb{R})

The resolution r is the maximum diameter of an interval in \mathcal{U} . The resolution may also be replaced by a number N of intervals in the cover. The gain g is the percentage of overlap between intervals (when they overlap).

Intuition:

- small r (large N) \rightarrow finer resolution, more nodes.
- large r (small N) \rightarrow rougher resolution, less nodes.
- small $g \rightarrow$ less connectivity.

- large $g \rightarrow$ more connectivity (the dimensionality of the nerve increases).

Major warning: the output of Mapper is very sensitive to the choice of the parameters (see practical classes).

Not a well-understood phenomenon

g = 0.25

r

Choice of clusters

2 strategies:

Choice of clusters

In general, need to select a global parameter, such as number of neighbors for kNN, radius for Rips, to build the graph: not adaptative.

Take the connected components of the subgraph spanned by the vertices in the bin $f^{-1}(U)$.

Two "classical" applications of Mapper: clustering and feature selection

Clustering:

- 1. Build a Mapper graph/complex from the data,
- 2. Find interesting structures (loops, flares),
- 3. Use these structures to exhibit interesting clusters.

Clustering:

Some difficulties:

Two "classical" applications of Mapper: clustering and feature selection

Clustering:

Example:

Data: conformations of molecules Goal: detect different folding pathways

f : distance to folded/unfolded states

 ${\cal N}=8$, g=0.25

Idea: 1 loop = 2 different pathways

Two "classical" applications of Mapper: clustering and feature selection

Feature selection:

- 1. Build a Mapper graph/complex from the data,
- 2. Find interesting structures (loops, flares),
- 3. Select the features/variables that best discriminate the data in these structures.

Two "classical" applications of Mapper: clustering and feature selection

Feature selection:

Some difficulties:

3. Select the features/variables that best discriminate the data in these structures.

Two "classical" applications of Mapper: clustering and feature selection

Feature selection:

Example:

Data: breast cancer patients that went through specific therapy.

Extracting insights from the shape of complex data using topology, Lum et al., Nature, 2013

f: eccentricity, N = 30, g = 0.33

Goal: detect variables that influence survival after therapy in breast cancer patients

Reeb graph and Mapper

The output of the Mapper algorithm can be seen as a discretized version of the Reeb graph.

Equivalence relation: $x \sim x'$ iff x and x' are in the same connected comp. of $f^{-1}(f(x))$.

Reeb "graph":

$$G_f := X/\sim$$

Warning:

- G_f is not always a graph (very specific conditions on X and f),

- No clear connection or convergence result relating the Mapper graph and the Reeb graph.

Reeb graph and Mapper

Exercise: What is the Mapper/Reeb graph of the height function on the trefoil knot?

Take-home messages

The Mapper algorithm:

- 1. local clustering guided by a function,
- 2. global connectivity relationships between clusters (covers and nerves).
- \rightarrow other ways to combine local clustering, covers and nerves can be imagined!

The Mapper methods is an **exploratory** data analysis tool:

- + it has been shown to be very powerfull in various applications,
- but it usually does not come with theoretical guarantees.

Covers and nerves:

- + very interesting, simple and fruitfull ideas for topological data analysis,
- + many ideas and open questions to explore (in a statistical and data analysis perspective) from the theoretical point of view.

A few basic ideas about geometric inference: union of balls and distance functions

Data set : a point cloud P embedded in \mathbb{R}^d , sampled around a compact set M.

General idea:

- 1. Cover the data with union of balls of fixed radius centered on the data points.
- 2. Infer topological information about M from (the nerve of) the union of balls centered on P.

Data set : a point cloud P embedded in \mathbb{R}^d , sampled around a compact set M.

General idea:

- 1. Cover the data with union of balls of fixed radius centered on the data points.
- 2. Infer topological information about M from (the nerve of) the union of balls centered on P.

Nerve theorem

Bridge the gap between continuous approximations of K and combinatorial descriptions required by algorithms.

Data set : a point cloud P embedded in \mathbb{R}^d , sampled around a compact set M.

General idea:

- 1. Cover the data with union of balls of fixed radius centered on the data points.
- 2. Infer topological information about M from (the nerve of) the union of balls centered on P.

Sublevel set of the distance function $d_P : \mathbb{R}^d \to \mathbb{R}_+$ is defined by

$$d_P(x) = \inf_{p \in P} \|x - p\|$$

 \rightarrow Compare the topology/geometry of the of the offsets

$$M^{r} = d_{M}^{-1}([0, r])$$
 and $P^{r} = d_{P}^{-1}([0, r])$

Data set : a point cloud P embedded in \mathbb{R}^d , sampled around a compact set M.

General idea:

- 1. Cover the data with union of balls of fixed radius centered on the data points.
- 2. Infer topological information about M from (the nerve of) the union of balls centered on P.

Sublevel set of the distance function $d_P : \mathbb{R}^d \to \mathbb{R}_+$ is defined by

$$d_P(x) = \inf_{p \in P} ||x - p||$$
 Regularity conditions?
Sampling conditions?

 \rightarrow Compare the topology/geometry of the of the offsets

 $M^{r} = d_{M}^{-1}([0, r])$ and $P^{r} = d_{P}^{-1}([0, r])$

The Hausdorff distance

The distance function to a compact $M \subset \mathbb{R}^d$, $d_M : \mathbb{R}^d \to \mathbb{R}_+$ is defined by

$$d_M(x) = \inf_{p \in M} \|x - p\|$$

The Hausdorf distance between two compact sets $M, M' \subset \mathbb{R}^d$:

$$d_H(M, M') = \sup_{x \in \mathbb{R}^d} |d_M(x) - d_{M'}(x)|$$

Medial axis and critical points

 $\Gamma_M(x)$

M

 \mathcal{X}

$$\Gamma_M(x) = \{ y \in M : d_M(x) = ||x - y|| \}$$

The Medial axis of M:

$$\mathcal{M}(M) = \{ x \in \mathbb{R}^d : |\Gamma_M(x)| \ge 2 \}$$

 $x \in \mathbb{R}^d$ is a critical point of d_M iff x is contained in the convex hull of $\Gamma_M(x)$.

Theorem: [Grove, Cheeger,...] Let $M \subset \mathbb{R}^d$ be a compact set.

- if r is a regular value of d_M , then $d_M^{-1}(r)$ is a topological submanifold of \mathbb{R}^d of codim 1.
- Let $0 < r_1 < r_2$ be such that $[r_1, r_2]$ does not contain any critical value of d_M . Then all the level sets $d_M^{-1}(r)$, $r \in [r_1, r_2]$ are isotopic and

$$M^{r_2} \setminus M^{r_1} = \{ x \in \mathbb{R}^d : r_1 < d_M(x) \le r_2 \}$$

is homeomorphic to $d_M^{-1}(r_1) \times (r_1, r_2]$.

Reach and weak feature size

The reach of M, $\tau(M)$ is the smallest distance from $\mathcal{M}(M)$ to M:

$$\tau(M) = \inf_{y \in \mathcal{M}(M)} d_M(y)$$

The weak feature size of M, wfs(M), is the smallest distance from the set of critical points of d_M to M:

wfs(M) = inf{ $d_M(y) : y \in \mathbb{R}^d \setminus M$ and y crit. point of d_M }

Reach, μ -reach and geometric inference (Not developed in this course - just an example of result)

"Theorem:" Let $M \subset \mathbb{R}^d$ be such that $\tau = \tau(M) > 0$ and let $P \subset \mathbb{R}^d$ be such that $d_H(M, P) < c\tau$ for some (explicit) constant c. Then, for well-chosen (and explicit) r, P^r , and thus its nerve, is homotopy equivalent to M.

More generally, for compact sets with positive μ -reach (wfs $(M) \leq r_{\mu}(M) \leq \tau(M)$):

Topological/geometric properties of the offsets of K are stable with respect to Hausdorff approximation:

- 1. Topological stability of the offsets (CCSL'06, NSW'06).
- 2. Approximate normal cones (CCSL'08).

3. Boundary measures (CCSM'07), curvature measures (CCSLT'09), Voronoi covariance measures (GMO'09).

The probabilistic setting

Let $M \subset \mathbb{R}^d$ be a k-dim compact submanifold with positive reach $r_1(M) \ge \tau > 0$. Let μ be a probability measure such that $\text{Supp}(\mu) = M$ which is (a, k)-standard: there exists $r_0 \ge \tau/8 > 0$ such that for any $x \in M$, $\mu(B(x, r)) \ge ar^k$.

Let $X = \{x_1, \dots, x_n\} \subset \mathbb{R}^d$ be *n* points i.i.d. sampled according to μ .

Goal: Upper bound $P(X^r \not\cong M)$ where \cong denotes the homotopy equivalence.

- Connection to support estimation problems: it is enough to bound $P(d_H(X, M) > \varepsilon)$.

Minimax risk

Let $Q = Q(d, k, \tau, a)$ be the family of probability measures on \mathbb{R}^d such that for any $\mu \in Q$:

- Supp(μ) is a compact k-dimensional manifold with positive reach larger than τ ; - μ is (a, k)-standard.

Given $\mu \in Q$, $Supp(\mu) = M$, denote by \hat{M} any homotopy type estimator of M that takes as input *n*-uples of points from M and outputs a set whose homotopy type "estimates" the homotopy type of M (e.g. a union of balls).

 $R_n = \inf_{\hat{M}} \sup_{Q \in \mathcal{Q}} Q^n (\hat{M} \not\cong M)$

Theorem: There exist constants $C_a, C'_a, C''_a > 0$ such that

$$\frac{1}{8}\exp(-nC_a\tau^k) \le R_n \le C_a'\frac{1}{\tau^k}\exp(-nC_a''\tau^k)$$

Minimax risk

Let $Q = Q(d, k, \tau, a)$ be the family of probability measures on \mathbb{R}^d such that for any $\mu \in Q$:

- Supp(μ) is a compact k-dimensional manifold with positive reach larger than τ ; - μ is (a, k)-standard.

Given $\mu \in Q$, $Supp(\mu) = M$, denote by \hat{M} any homotopy type estimator of M that takes as input *n*-uples of points from M and outputs a set whose homotopy type "estimates" the homotopy type of M (e.g. a union of balls).

 $R_n = \inf_{\hat{M}} \sup_{Q \in \mathcal{Q}} Q^n (\hat{M} \not\cong M)$

Theorem: There exist constants $C_a, C'_a, C''_a > 0$ such that

$$\frac{1}{8}\exp(-nC_a\tau^k) \le R_n \le C_a'\frac{1}{\tau^k}\exp(-nC_a''\tau^k)$$