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Highlighting and inferring
the topological structure of data

Idea:

• Group data points in “local clusters”

• Summarize the data through the combinatorial/topological structure of inter-
section patterns of “clusters”

Goal: Do it in a way that preserves (some of) the topological features of the data.



Background mathematical notions

A topology on a set X is a family O of subsets of X that satisfies the three following
conditions:
i) the empty set ∅ and X are elements of O,
ii) any union of elements of O is an element of O,
iii) any finite intersection of elements of O is an element of O.
The set X together with the family O, whose elements are called open sets, is a
topological space. A subset C of X is closed if its complement is an open set.

A map f : X → X ′ between two topological spaces X and X ′ is continuous if and
only if the pre-image f−1(O′) = {x ∈ X : f(x) ∈ O′} of any open set O′ ⊂ X ′ is
an open set of X. Equivalently, f is continuous if and only if the pre-image of any
closed set in X ′ is a closed set in X (exercise).

Topological space

A topological space X is a compact space if any open cover of X admits a finite
subcover, i.e. for any family {Ui}i∈I of open sets such that X = ∪i∈IUi there
exists a finite subset J ⊆ I of the index set I such that X = ∪j∈JUj .



Background mathematical notions

Metric space

A metric (or distance) on X is a map d : X ×X → [0,+∞) such that:
i) for any x, y ∈ X, d(x, y) = d(y, x),
ii) for any x, y ∈ X, d(x, y) = 0 if and only if x = y,
iii) for any x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).
The set X together with d is a metric space.

The smallest topology containing all the open balls B(x, r) = {y ∈ X : d(x, y) < r}
is called the metric topology on X induced by d.

Example: the standard topology in an Euclidean space is the one induced by the
metric defined by the norm: d(x, y) = ‖x− y‖.

Compacity: a metric space X is compact if and only if any sequence in X has a
convergent subsequence. In the Euclidean case, a subset K ⊂ Rd (endowed with
the topology induced from the Euclidean one) is compact if and only if it is closed
and bounded (Heine-Borel theorem).



Comparing topological spaces

Homeomorphy and isotopy

• X and Y are homeomorphic if there exists a bijection h : X → Y s. t. h and
h−1 are continuous.

• X,Y ⊂ Rd are ambient isotopic if there exists a continuous map F : Rd ×
[0, 1] → Rd s. t. F (., 0) = IdRd , F (X, 1) = Y and ∀t ∈ [0, 1], F (., t) is an
homeomorphim of Rd.



Comparing topological spaces

Homotopy, homotopy type

• Two maps f0 : X → Y and f1 : X → Y are homotopic if there exists a
continuous map H : [0, 1] × X → Y s. t. ∀x ∈ X, H(0, x) = f0(x) and
H1(1, x) = f1(x).

• X and Y have the same homotopy type (or are homotopy equivalent) if there
exists continuous maps f : X → Y and g : Y → X s. t. g ◦ f is homotopic
to IdX and f ◦ g is homotopic to IdY .

f0(x) = x

ft(x) = (1− t)x

f1(x) = 0

homotopy equiv.

homotopy equiv.

not homotopy equiv.



Comparing topological spaces

Homotopy, homotopy type

f0(x) = x

ft(x) = (1− t)x

f1(x) = 0

homotopy equiv.

homotopy equiv.

not homotopy equiv.

If X ⊂ Y and if there exists a continuous map H : [0, 1]×X → X s.t.:
i) ∀x ∈ X, H(0, x) = x,
ii) ∀x ∈ X, H(1, x) ∈ Y
iii) ∀y ∈ Y , ∀t ∈ [0, 1], H(t, y) ∈ Y ,
then X and Y are homotopy equivalent. If one replaces condition iii) by ∀y ∈ Y ,
∀t ∈ [0, 1], H(t, y) = y then H is a deformation retract of X onto Y .



Simplicial complexes

Given a set P = {p0, . . . , pk} ⊂ Rd of k + 1 affinely independent points, the k-
dimensional simplex σ, or k-simplex for short, spanned by P is the set of convex
combinations

k∑
i=0

λi pi, with

k∑
i=0

λi = 1 and λi ≥ 0.

The points p0, . . . , pk are called the vertices of σ.

0-simplex:
vertex

1-simplex:
edge

2-simplex:
triangle

3-simplex:
tetrahedron

etc...



Simplicial complexes

A (finite) simplicial complex K in Rd is a (finite) collection of simplices such that:

1. any face of a simplex of K is a simplex of K,

2. the intersection of any two simplices of K is either empty or a common face
of both.

The underlying space of K, denoted by |K| ⊂ Rd is the union of the simplices of K.



Abstract simplicial complexes

Let P = {p1, · · · pn} be a (finite) set. An
abstract simplicial complex K with vertex set
P is a set of subsets of P satisfying the two
conditions :

1. The elements of P belong to K.

2. If τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

Let {e1, · · · en} a basis of Rn. “The” geometric realization of K is the (geometric)
subcomplex |K| of the simplex spanned by e1, · · · en such that:

[ei0 · · · eik ] ∈ |K| iff {pi0 , · · · , pik} ∈ K

|K| is a topological space (subspace of an Euclidean space)!



Abstract simplicial complexes

Let P = {p1, · · · pn} be a (finite) set. An
abstract simplicial complex K with vertex set
P is a set of subsets of P satisfying the two
conditions :

1. The elements of P belong to K.

2. If τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces
(good for top./geom. inference) and as combinatorial objects (abstract simplicial
complexes, good for computations).



Covers and nerves

An open cover of a topological space X is a collection U = (Ui)i∈I of open subsets
Ui ⊆ X, i ∈ I where I is a set, such that X = ∪i∈IUi.

Given a cover of a topological space X, U = (Ui)i∈I , its nerve is the abstract
simplicial complex C(U) whose vertex set is U and such that

σ = [Ui0 , Ui1 , · · · , Uik ] ∈ C(U) if and only if ∩kj=0 Uij 6= ∅.

X

U1

U2

U3 U4

U5

U1
U2

U5

U3
U4



The nerve theorem

X

U1

U2

U3 U4

U5

U1
U2

U5

U3
U4

The Nerve Theorem:
Let U = (Ui)i∈I be a finite open cover of a subset X of Rd such that any intersec-
tion of the Ui’s is either empty or contractible. Then X and C(U) are homotopy
equivalent.

For non-experts, you can replace:
- “contractible” by “convex”,
- “are homotopy equivalent” by ”have many topological invariants in common”.



Building interesting covers and nerves

1. Covering data by balls:
→ distance functions frameworks,
persistence-based signatures,...
→ geometric inference, provide a
framework to establish various the-
oretical results in TDA.

Two directions:

2. Using a function defined on the data:
→ the Mapper algorithm
→ exploratory data analysis and visual-
ization



Covers and nerves for exploratory data analysis.



Pull back of a cover

f

X

U

Let f : X → R (or Rd) a continuous function where X is a topological space and
let U = (Ui)i∈I be a cover of R (or Rd).

The collection of open sets (f−1(Ui))i∈I is the pull back cover of X induced by
(f,U).



Pull back of a cover

f

X

U

Take the connected components of the f−1(Ui), i ∈ I → the refined pull back
cover.

Take the nerve of the refined cover.
Warning: The nerve theorem does
not apply in general!



The Mapper algorithm

Input:
- a data set X with a metric or a
dissimilarity measure,
- a function f : X → R or Rd,
- a cover U of f(X).

1. for each U ∈ U , decompose f−1(U)
into clusters CU,1, · · · , CU,kU .

2. Compute the nerve of the cover of X
defined by the CU,1, · · · , CU,kU , U ∈
U

Output: a simplicial complex, the nerve (often a graph for well-chosen
covers → easy to visualize):
- a vertex vU,i for each cluster CU,i,
- an edge between vU,i and vU′,j iff CU,icapCU′,j 6= ∅

f



The Mapper algorithm

Input:
- a data set X with a metric or a
dissimilarity measure,
- a function f : X → R or Rd,
- a cover U of f(X).

1. for each U ∈ U , decompose f−1(U)
into clusters CU,1, · · · , CU,kU .

2. Compute the nerve of the cover of X
defined by the CU,1, · · · , CU,kU , U ∈
U

Output: a simplicial complex, the nerve (often a graph for well-chosen
covers → easy to visualize):
- a vertex vU,i for each cluster CU,i,
- an edge between vU,i and vU′,j iff CU,icapCU′,j 6= ∅

A very simple method but
many choices to make!

Many (still open) theoretical
questions!



Choice of lens/filter

f : X → R is often called a lens or a filter.

Classical choices:

• density estimates

• centrality f(x) =
∑
y∈X d(x, y)

• excentricity f(x) = maxy∈X d(x, y)

• PCA coordinates, NLDR coordinates,...

• Eigenfunctions of graph laplacians.

• Functions detecting anomalous behavior or
outliers.

• Distance to a root point (filamentary struc-
tures reconstruction).

• Etc ...
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Choice of lens/filter

f : X → R is often called a lens or a filter.

Classical choices:

• density estimates

• centrality f(x) =
∑
y∈X d(x, y)

• excentricity f(x) = maxy∈X d(x, y)

• PCA coordinates, NLDR coordinates,...

• Eigenfunctions of graph laplacians.

• Functions detecting anomalous behavior or
outliers.

• Distance to a root point (filamentary struc-
tures reconstruction).

• Etc ...

f

May reveal some ambiguity in the
use of non linear dimensionality
reduction (NLDR) methods.



Choice of covers (case of R)
The resolution r is the maximum diameter of an interval in U . The resolution may
also be replaced by a number N of intervals in the cover.
The gain g is the percentage of overlap between intervals (when they overlap).

r

g = 0.25

Intuition:
- small r (large N) → finer resolution, more nodes.
- large r (small N) → rougher resolution, less nodes.

- small g → less connectivity.
- large g → more connectivity (the dimensionality of the
nerve increases).



Choice of covers (case of R)
The resolution r is the maximum diameter of an interval in U . The resolution may
also be replaced by a number N of intervals in the cover.
The gain g is the percentage of overlap between intervals (when they overlap).

r

g = 0.25

Intuition:
- small r (large N) → finer resolution, more nodes.
- large r (small N) → rougher resolution, less nodes.

- small g → less connectivity.
- large g → more connectivity (the dimensionality of the
nerve increases).

Major warning: the output of Mapper is very sensitive to the choice
of the parameters (see practical classes).

Not a well-understood phenomenon



Choice of clusters

f

2 strategies:



Choice of clusters

f

2 strategies:

Take the connected components of the subgraph
spanned by the vertices in the bin f−1(U).

Build a neighboring graph (kNN, Rips,...)

In general, need to select a global
parameter, such as number of neigh-
bors for kNN, radius for Rips, to
build the graph: not adaptative.



Choice of clusters

f

2 strategies:

Clustering of each bin
f−1(U) (using your favorite
clustering algorithm)

More adaptative: the clustering parameters (or
even the clustering algorithm) can be adapted to
each bin.



Two “classical” applications of Mapper:
clustering and feature selection

1. Build a Mapper graph/complex from the data,

2. Find interesting structures (loops, flares),

3. Use these structures to exhibit interesting clusters.

Clustering:



Two “classical” applications of Mapper:
clustering and feature selection

1. Build a Mapper graph/complex from the data,

2. Find interesting structures (loops, flares),

3. Use these structures to exhibit interesting clusters.

Choice of the parameters?

Done by hand...

Statistical relevance?

Some difficulties:

Clustering:



Two “classical” applications of Mapper:
clustering and feature selection

Topological Methods for Exploring Low-density States in
Biomolecular Folding Pathways, Yao et al., J. Chemical
Physics, 2009

Example:

Data: conformations of molecules

Goal: detect different folding path-
ways

f : distance to folded/unfolded
states
N = 8, g = 0.25

Idea: 1 loop = 2 different pathways

Clustering:



Two “classical” applications of Mapper:
clustering and feature selection

Feature selection:

1. Build a Mapper graph/complex from the data,

2. Find interesting structures (loops, flares),

3. Select the features/variables that best discriminate the
data in these structures.
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Done by hand...
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Two “classical” applications of Mapper:
clustering and feature selection

Feature selection:

Example:

Data: breast cancer pa-
tients that went through
specific therapy.

f : eccentricity, N = 30, g = 0.33

Goal: detect variables that influence survival after therapy in breast cancer patients

Extracting insights from the shape of complex data using topology,
Lum et al., Nature, 2013



Reeb graph and Mapper

The output of the Mapper algorithm can be seen as a discretized version of the
Reeb graph.

f

X

Gf

Equivalence relation:
x ∼ x′ iff x and x′ are in the same
connected comp. of f−1(f(x)).

Reeb “graph”:

Gf := X/ ∼

Warning:
- Gf is not always a graph (very specific conditions on X and f),
- No clear connection or convergence result relating the Mapper graph and the
Reeb graph.



Reeb graph and Mapper

Exercise: What is the Mapper/Reeb
graph of the height function on the
trefoil knot?



Take-home messages

The Mapper algorithm:
1. local clustering guided by a function,
2. global connectivity relationships between clusters (covers and nerves).
→ other ways to combine local clustering, covers and nerves can be imagined!

The Mapper methods is an exploratory data analysis tool:
+ it has been shown to be very powerfull in various applications,
- but it usually does not come with theoretical guarantees.

Covers and nerves:
+ very interesting, simple and fruitfull ideas for topological data analysis,
+ many ideas and open questions to explore (in a statistical and data analysis
perspective) from the theoretical point of view.





A few basic ideas about geometric inference:
union of balls and distance functions



Union of balls and distance functions

Data set : a point cloud P embedded in Rd, sampled around a compact set M .

General idea:

1. Cover the data with union of balls of fixed radius
centered on the data points.

2. Infer topological information about M from (the
nerve of) the union of balls centered on P .



Union of balls and distance functions

Data set : a point cloud P embedded in Rd, sampled around a compact set M .

General idea:

1. Cover the data with union of balls of fixed radius
centered on the data points.

2. Infer topological information about M from (the
nerve of) the union of balls centered on P .

Nerve theorem

Bridge the gap between continuous approxi-
mations of K and combinatorial descriptions
required by algorithms.
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centered on the data points.

2. Infer topological information about M from (the
nerve of) the union of balls centered on P .

Sublevel set of the distance function dP : Rd → R+ is defined by

dP (x) = inf
p∈P
‖x− p‖

→ Compare the topology/geometry of the of the offsets

Mr = d−1
M ([0, r]) and P r = d−1

P ([0, r])



Union of balls and distance functions

Data set : a point cloud P embedded in Rd, sampled around a compact set M .

General idea:

1. Cover the data with union of balls of fixed radius
centered on the data points.

2. Infer topological information about M from (the
nerve of) the union of balls centered on P .

Sublevel set of the distance function dP : Rd → R+ is defined by

dP (x) = inf
p∈P
‖x− p‖

→ Compare the topology/geometry of the of the offsets

Mr = d−1
M ([0, r]) and P r = d−1

P ([0, r])

Regularity conditions?

Sampling conditions?



The Hausdorff distance

The distance function to a compact M ⊂ Rd, dM : Rd → R+ is defined by

dM (x) = inf
p∈M
‖x− p‖

The Hausdorf distance between two compact sets M,M ′ ⊂ Rd:

dH(M,M ′) = sup
x∈Rd

|dM (x)− dM ′(x)|

dH(M,M ′)

M

M ′



Medial axis and critical points

M
x

ΓM (x)

ΓM (x) = {y ∈M : dM (x) = ‖x− y‖}

The Medial axis of M :

M(M) = {x ∈ Rd : |ΓM (x)| ≥ 2}

x ∈ Rd is a critical point of dM iff x is contained in
the convex hull of ΓM (x).

Theorem: [Grove, Cheeger,...] Let M ⊂ Rd be a compact set.

• if r is a regular value of dM , then d−1
M (r) is a topological submanifold of Rd of

codim 1.

• Let 0 < r1 < r2 be such that [r1, r2] does not contain any critical value of dM .
Then all the level sets d−1

M (r), r ∈ [r1, r2] are isotopic and

Mr2 \Mr1 = {x ∈ Rd : r1 < dM (x) ≤ r2}

is homeomorphic to d−1
M (r1)× (r1, r2].



Reach and weak feature size

M

M(M)

wfs(M)

reach(M)

The reach of M , τ(M) is the smallest distance from M(M) to M :

τ(M) = inf
y∈M(M)

dM (y)

The weak feature size of M , wfs(M), is the smallest distance from the set of critical
points of dM to M :

wfs(M) = inf{dM (y) : y ∈ Rd \M and y crit. point of dM}



Reach, µ-reach and geometric inference
(Not developed in this course - just an example of result)

More generally, for compact sets with positive µ-reach ( wfs(M) ≤ rµ(M) ≤ τ(M) ):

Topological/geometric properties of the offsets of K are stable with respect to
Hausdorff approximation:

1. Topological stability of the offsets (CCSL’06, NSW’06).

2. Approximate normal cones (CCSL’08).

3. Boundary measures (CCSM’07), curvature measures (CCSLT’09), Voronoi covariance
measures (GMO’09).

“Theorem:” Let M ⊂ Rd be such that τ = τ(M) > 0 and let
P ⊂ Rd be such that dH(M,P ) < cτ for some (explicit) constant
c. Then, for well-chosen (and explicit) r, P r, and thus its nerve, is
homotopy equivalent to M .



The probabilistic setting

Let M ⊂ Rd be a k-dim compact submanifold with positive reach r1(M) ≥ τ > 0.

Let µ be a probability measure such that Supp(µ) = M which is (a, k)-standard:
there exists r0 ≥ τ/8 > 0 such that for any x ∈M , µ(B(x, r)) ≥ ark.

Let X = {x1, · · · , xn} ⊂ Rd be n points i.i.d. sampled according to µ.

Goal: Upper bound P (Xr 6∼= M) where ∼= denotes the homotopy equivalence.

M

x1

x2

xn

Connection to support estimation problems: it is enough to bound
P (dH(X,M) > ε) .



Minimax risk

Let Q = Q(d, k, τ, a) be the family of probability measures on Rd such that for any
µ ∈ Q:
- Supp(µ) is a compact k-dimensional manifold with positive reach larger than τ ;
- µ is (a, k)-standard.

Given µ ∈ Q, Supp(µ) = M , denote by M̂ any homotopy type estimator of M that
takes as input n-uples of points from M and outputs a set whose homotopy type
“estimates” the homotopy type of M (e.g. a union of balls).

Rn = inf
M̂

sup
Q∈Q

Qn(M̂ 6∼= M)

Theorem: There exist constants Ca, C
′
a, C

′′
a > 0 such that

1

8
exp(−nCaτ

k) ≤ Rn ≤ C ′
a

1

τk
exp(−nC ′′

a τ
k)
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