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Highlighting and inferring
the topological structure of data

Idea:
e Group data points in “local clusters”

e Summarize the data through the combinatorial /topological structure of inter-
section patterns of “clusters”

Goal: Do it in a way that preserves (some of) the topological features of the data.



Background mathematical notions

Topological space

A topology on a set X is a family O of subsets of X that satisfies the three following
conditions:

i) the empty set () and X are elements of O,

ii) any union of elements of O is an element of O,

iii) any finite intersection of elements of O is an element of O.

The set X together with the family O, whose elements are called open sets, is a
topological space. A subset C' of X is closed if its complement is an open set.

A map f: X — X’ between two topological spaces X and X' is continuous if and
only if the pre-image f~'(O’') = {x € X : f(z) € O’} of any open set O’ C X' is
an open set of X. Equivalently, f is continuous if and only if the pre-image of any
closed set in X' is a closed set in X (exercise).

A topological space X is a compact space if any open cover of X admits a finite
subcover, i.e. for any family {U;};cr of open sets such that X = U;c;U; there
exists a finite subset J C [ of the index set I such that X = U,;c;U;.



Background mathematical notions

Metric space

A metric (or distance) on X isa map d: X x X — |0, +00) such that:
i) for any x,y € X, d(x,y) = d(y, x),

ii) for any x,y € X, d(x,y) = 0 if and only if x =y,

iii) for any x,y,z € X, d(x,z) < d(x,y) + d(y, 2).

The set X together with d is a metric space.

The smallest topology containing all the open balls B(z,r) = {y € X : d(z,y) < r}
Is called the metric topology on X induced by d.

Example: the standard topology in an Euclidean space is the one induced by the
metric defined by the norm: d(z,y) = || — y||.

Compacity: a metric space X is compact if and only if any sequence in X has a
convergent subsequence. In the Euclidean case, a subset K C R (endowed with

the topology induced from the Euclidean one) is compact if and only if it is closed
and bounded (Heine-Borel theorem).



Comparing topological spaces

Homeomorphy and isotopy

e X and Y are homeomorphic if there exists a bijection h : X — Y s. t. h and
h~! are continuous.

e X.Y C R? are ambient isotopic if there exists a continuous map F : R? x
0,1] = R%s. t. F(.,0) = Idga, F(X,1) =Y and Vt € [0,1], F(.,%) is an
homeomorphim of R?.



Comparing topological spaces

Homotopy, homotopy type
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e Two maps fo : X — Y and f1 : X — Y are homotopic if there exists a
continuous map H : [0,1] x X — Y s. t. Vo € X, H(0,2) = fo(x) and

Hl(la 'CU) — fl(x)
e X and Y have the same homotopy type (or are homotopy equivalent) if there

exists continuous maps f: X - Y andg:Y — X s. t. go f is homotopic
to Idx and f o g is homotopic to Idy.



Comparing topological spaces

Homotopy, homotopy type
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If X C Y and if there exists a continuous map H : [0,1] x X — X s.t.:
)Ve e X, H0,z) = x,

i)Ve e X, H(l,x) €Y

i) Vy e Y, VvVt € [0,1], H(t,y) € Y,

then X and Y are homotopy equivalent. If one replaces condition iii) by Vy € Y,
vVt € [0,1], H(t,y) = y then H is a deformation retract of X onto Y.



Simplicial complexes

o
0-simplex: 1-simplex: 2-simplex: 3-simplex: etc
vertex edge triangle tetrahedron

Given a set P = {po,...,pr} C R® of k + 1 affinely independent points, the k-
dimensional simplex o, or k-simplex for short, spanned by P is the set of convex

combinations
k k
Z)\Z p;, with Z)\Z =1 and X; > 0.
i=0 i=0

The points pg, ..., pr are called the vertices of o.



Simplicial complexes

A (finite) simplicial complex K in R% is a (finite) collection of simplices such that:

1. any face of a simplex of K is a simplex of K,

2. the intersection of any two simplices of K is either empty or a common face
of both.

The underlying space of K, denoted by |K| C R is the union of the simplices of K.



Abstract simplicial complexes

Let P = {p1,---pn} be a (finite) set. An
abstract simplicial complex K with vertex set

P is a set of subsets of P satisfying the two
conditions :

1. The elements of P belong to K.
2. f e K and 0 C 7, then 0 € K.

The elements of K are the simplices.

Let {e1,---en} a basis of R". “The" geometric realization of K is the (geometric)
subcomplex |K | of the simplex spanned by e, - - - e, such that:

[e’io ezk] S ’K‘ i {p’ioa“‘ apik} c K

| K| is a topological space (subspace of an Euclidean space)!



Abstract simplicial complexes

Let P = {p1,---pn} be a (finite) set. An
abstract simplicial complex K with vertex set
P is a set of subsets of P satisfying the two

conditions :

1. The elements of P belong to K.
2. f e K and 0 C 7, then 0 € K.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces
(good for top./geom. inference) and as combinatorial objects (abstract simplicial

complexes, good for computations).



Covers and nerves

Us
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An open cover of a topological space X is a collection U = (U;)icr of open subsets
U; C X, 1€ I where I is a set, such that X = U;<;U;.

Given a cover of a topological space X, U = (U;);cr, its nerve is the abstract
simplicial complex C'(U) whose vertex set is U and such that

o = Uiy, Uiy, , Ui, ] € CU) if and only if Nj_o Ui, # 0.



The nerve theorem
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The Nerve Theorem:
Let U = (U;)icr be a finite open cover of a subset X of R? such that any intersec-
tion of the U;'s is either empty or contractible. Then X and C(U) are homotopy

equivalent.

For non-experts, you can replace:
- “contractible” by “convex’,
- "are homotopy equivalent” by "have many topological invariants in common”



Building interesting covers and nerves

Two directions:

1. Covering data by balls:

— distance functions frameworks,
persistence-based signatures,...

— geometric inference, provide a
framework to establish various the-
oretical results in TDA.

2. Using a function defined on the data:

— the Mapper algorithm
— exploratory data analysis and visual-

1zation




Covers and nerves for exploratory data analysis.



Pull back of a cover

Let f: X — R (or R?%) a continuous function where X is a topological space and
let U = (Us;)ser be a cover of R (or R%).

The collection of open sets (f~(U;))ier is the pull back cover of X induced by

(f,U).



Pull back of a cover

Take the connected components of the f~'(U;), i €
cover.

— the refined pull back

Take the nerve of the refined cover. .
Warning: The nerve theorem does

not apply in general!



The Mapper algorithm

Input:
- a data set X with a metric or a A
dissimilarity measure, o 00 °
- a function f: X — R or RY, ° % |
- a cover U of f(X). : """""""""" . L
0. . o’ |
® o ..Q
1. for each U € U, decompose f~*(U) T
into clusters Cy,1, -+ ,Cu,ky - O

2. Compute the nerve of the cover of X
defined by the CU,l, JO ,CU,kU, U e
U

O
Output: a simplicial complex, the nerve (often a graph for well-chosen
covers — easy to visualize):
- a vertex vy ; for each cluster Cy 4,
- an edge between vy ; and vy ; iff CyicapCyr ; # ()



The Mapper algorithm

Input:
- a data set X with a metric or a

dissimilarity measure,
- a function f: X — R or R

y
- a cover U of f(X). \

L A very simple method but
many choices to make!

1. for each U € U, decompose f~! |
mtogg,l, . CUky -

2. Compute the nerve of the cover of X

defined by the Cy 1, ,Cuk,, U € Many (still open) theoretical
U questions!

Output: a simplicial complex, the nerve (often a graph for well-chosen
covers — easy to visualize):

- a vertex vy ; for each cluster Cy 4,

- an edge between vy ; and vy ; iff CyicapCyr ; # ()



Choice of lens/filter

f : X — R is often called a lens or a filter.

Classical choices:

e density estimates

o centrality f(z) =), cx d(z,y)

e excentricity f(x) = maxyex d(x,y)

e PCA coordinates, NLDR coordinates,...
e Eigenfunctions of graph laplacians.

e Functions detecting anomalous behavior or
outliers.

e Distance to a root point (filamentary struc-
tures reconstruction).

o Etc ...
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Choice of lens/filter

f : X — R is often called a lens or a filter.

May reveal some ambiguity in the o e® ®
use of non linear dimensionality : ® .
reduction (NLDR) methods. eee @
. . Y )
Classical choices: 5 °,
I E
e density estimates . °
e centrality f(x) =
e excentricity f(x)/= max,ex d(x,y) . ................. .
o o
e PCA coordinates, NLDR coordinates,... . ® ®
e Eigenfunctions of graph laplacians. e
@ ® o

e Functions detecting anomalous behavior or
outliers.

e Distance to a root point (filamentary struc-
tures reconstruction).

o Etc ...




Choice of covers (case of R)

The resolution r is the maximum diameter of an interval in /. The resolution may

also be replaced by a number N of intervals in the cover.
The gain g is the percentage of overlap between intervals (when they overlap).

b A
.
Intuition: V
- small r (large N) — finer resolution, more nodes.
- large 7 (small N) — rougher resolution, less nodes.
g=0.25 ||

- small g — less connectivity.
- large g — more connectivity (the dimensionality of the

nerve increases).




Choice of covers (case of R)

The resolution r is the maximum diameter of an interval in (/. The resolution may

also be replaced by a number N of intervals in the cover.
The gain g is the percentage of overlap between intervals (when they overlap).

b A
.
Intuition: '
- small r (large N) — finer resolution, more nodes.
- large 7 (small N) — rougher resolution, less nodes.
g=0.25 ||

- small g — less connectivity.
- large g — more connectivity (the dimensionality of the

nerve increases).

Major warning: the output of Mapper is very sensitive to the choice
of the parameters (see practical classes).

\

Not a well-understood phenomenon




2 strategies:

Choice of clusters
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Choice of clusters

2 strategies: A
o 0
.......... e
° °
o
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o
o
o
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In general, need to select a global
parameter, such as number of neigh-
Build a neighboring graph (kNN, Rips,...) bors for kNN, radius for Rips, to
build the graph: not adaptative.

Take the connected components of the subgraph
spanned by the vertices in the bin f~'(U).



Choice of clusters

2 strategies: A
o 0
.......... e
° °
o
° ¢ /f—L
o o
‘9 ° o*
..... o g

More adaptative: the clustering parameters (or
even the clustering algorithm) can be adapted to

each bin. Clustering of each bin

f~H(U) (using your favorite
clustering algorithm)



Two “classical” applications of Mapper:
clustering and feature selection

Clustering:

1. Build a Mapper graph/complex from the data,
2. Find interesting structures (loops, flares),

3. Use these structures to exhibit interesting clusters.



Two “classical” applications of Mapper:
clustering and feature selection

Clustering:
Some difficulties:

Choice of the parameters?

ﬁ Done by hand...

1. Build a Mapper graph/complex from the data, J

2. Find interesting structures (loops, flares), g

3. Use these structures to exhibit interesting clusters.

_

ﬁ

Statistical relevance?



Two “classical” applications of Mapper:
clustering and feature selection

Clustering: “ e — MME — BT — 100 — 100 4.
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Topological Methods for Exploring Low-density States in
Biomolecular Folding Pathways, Yao et al., J. Chemical |%o%
Physics, 2009 )




Two “classical” applications of Mapper:
clustering and feature selection

Feature selection:

1. Build a Mapper graph/complex from the data,

2. Find interesting structures (loops, flares),

3. Select the features/variables that best discriminate the
data in these structures.



Two “classical” applications of Mapper:
clustering and feature selection

Feature selection:
Some difficulties:

Choice of the parameters?

VH Done by hand...

1. Build a Mapper graph/complex from the data, J

2. Find interesting structures (loops, flares), g

3. Select the features/variables that best discriminate the
data in these structures.



Two “classical” applications of Mapper:
clustering and feature selection

Feature selection:

Colored by ESR1 levels (| B Colored by chemaking levels

(&

High ESR1

death
death

Example:

lower chemoking ackvity in low ESR1 (death)

survived
survived

High ESR1 Low ESR1

Data: breast cancer pa-
tients that went through
specific therapy.

Colored by ESR1 levels | D

X Low ESR
High ESR1

relapsed
relapsed

lowar chamoking aciivity in low ESR1 (relapsed)

. - : -
'- l-i. . .5 : . ')-’(. ar,
higher chemakine activity in low ESR1 {no relapse :
3
[~ —

no relapse
no relapse

|
fow high

Extracting insights from the shape of complex data using topology,
Lum et al., Nature, 2013

f : eccentricity, N = 30, g = 0.33

Goal: detect variables that influence survival after therapy in breast cancer patients



Reeb graph and Mapper

The output of the Mapper algorithm can be seen as a discretized version of the

Reeb graph.

A
Equivalence relation:
r ~ z' iff x and ' are in the same

....................................... connected comp. of f_l(f(a:)).

4,_f\, Reeb “graph’:
________________________________ Gf — X/ ~
Gy
Warning:

- GG is not always a graph (very specific conditions on X and f),
- No clear connection or convergence result relating the Mapper graph and the

Reeb graph.



Reeb graph and Mapper

Exercise: What is the Mapper/Reeb
graph of the height function on the
trefoil knot?




Take-home messages

The Mapper algorithm:

1. local clustering guided by a function,

2. global connectivity relationships between clusters (covers and nerves).

— other ways to combine local clustering, covers and nerves can be imagined!

The Mapper methods is an exploratory data analysis tool:
+ it has been shown to be very powerfull in various applications,
- but it usually does not come with theoretical guarantees.

Covers and nerves:
+ very interesting, simple and fruitfull ideas for topological data analysis,

+ many ideas and open questions to explore (in a statistical and data analysis
perspective) from the theoretical point of view.






A few basic ideas about geometric inference:
union of balls and distance functions



Union of balls and distance functions

Data set : a point cloud P embedded in R?, sampled around a compact set M.

General idea:
1. Cover the data with union of balls of fixed radius

centered on the data points.

2. Infer topological information about M from (the
nerve of) the union of balls centered on P.




Union of balls and distance functions

Data set : a point cloud P embedded in R?, sampled around a compact set M.

General idea:
1. Cover the data with union of balls of fixed radius

centered on the data points.

2. Infer topological _information about M from (the

nerve of }the union of balls)centered on P.

Nerve theorem

Bridge the gap between continuous approxi-
mations of K and combinatorial descriptions
required by algorithms.
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M" =dy,; ([0,7]) and P" = d»"([0,7])



Union of balls and distance functions

Data set : a point cloud P embedded in R?, sampled around a compact set M.

General idea:
1. Cover the data with union of balls of fixed radius

centered on the data points.

2. Infer topological _information about M from (the

nerve of }the union of balls)centered on P.

Sublevel set of the distance function dp : R — R is defined by

dp(z) = 322 |z — p Regularity conditions?
Sampling conditions?
— Compare the topology/geometry of the of the offsets

M" =dy,; ([0,7]) and P" = d»"([0,7])



The Hausdortf distance

The distance function to a compact M C R?, dy; : R — R is defined by

du(w) = inf o —p

The Hausdorf distance between two compact sets M, M’ C R<:

dg (M, M') = sup dy(z) — dp ()]
rER



Medial axis and critical points

Fv(z)={yeM:du(x)=|z—y|}

The Medial axis of M:

M(M) ={z € R* : [T ()] > 2}

r € R? is a critical point of das iff = is contained in
the convex hull of I'js(x).

Theorem: [Grove, Cheeger,...] Let M C R? be a compact set.

e if 7 is a regular value of dys, then d;, (r) is a topological submanifold of R¢ of
codim 1.

o Let 0 < r; < r2 be such that [r1,r2] does not contain any critical value of das.
Then all the level sets d,;' (1), r € [r1, 2] are isotopic and

M\ M™ ={z eR:r <du(z) <72}

is homeomorphic to d,; (r1) x (r1,72].



Reach and weak feature size

The reach of M, 7(M) is the smallest distance from M (M) to M:

r(M)= inf du(y)

The weak feature size of M, wfs(M), is the smallest distance from the set of critical
points of dy; to M:

wis(M) = inf{da(y) : y € R*\ M and y crit. point of dus}



Reach, p-reach and geometric inference
(Not developed in this course - just an example of result)

“Theorem:” Let M C R? be such that 7 = 7(M) > 0 and let
P C R? be such that dg (M, P) < cr for some (explicit) constant
c. Then, for well-chosen (and explicit) r, P", and thus its nerve, is
homotopy equivalent to M.

More generally, for compact sets with positive p-reach ( wfs(M) < r, (M) < 7(M) ):

Topological /geometric properties of the offsets of K are stable with respect to
Hausdorff approximation:

1. Topological stability of the offsets (CCSL'06, NSW'06).
2. Approximate normal cones (CCSL'08).

3. Boundary measures (CCSM'07), curvature measures (CCSLT'09), Voronoi covariance
measures (GMQO'09).



The probabilistic setting

Let M C R? be a k-dim compact submanifold with positive reach 1 (M) > 7 > 0.

Let © be a probability measure such that Supp(p) = M which is (a, k)-standard.
there exists ro > 7/8 > 0 such that for any x € M, u(B(x,r)) > ar”.

Let X = {z1, - ,zn} C R? be n points i.i.d. sampled according to L.

Goal: Upper bound P(X" 22 M) where = denotes the homotopy equivalence.

Connection to support estimation problems: it is enough to bound
P(dH(X, M) > E) :



Minimax risk

Let Q = Q(d, k, T,a) be the family of probability measures on R such that for any

pne Q:
- Supp(p) is a compact k-dimensional manifold with positive reach larger than 7;

- 1 is (a, k)-standard.

Given pu € Q, Supp(u) = M, denote by M any homotopy type estimator of M that
takes as input n-uples of points from M and outputs a set whose homotopy type

“estimates” the homotopy type of M (e.g. a union of balls).

R, = inf sup Q" (M % M)
M QeQ

Theorem: There exist constants C,,C’,C” > 0 such that

1 1
- exp(—nCaTk) <R, < Ca_k exp(—nCé/Tk)
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