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Persistent homology

• A general mathematical framework to encode the evolution of the topology
(homology) of families of nested spaces (filtered complex, sublevel sets,...).

• Formalized by H. Edelsbrunner (2002) et al and G. Carlsson et al (2005) - wide
development during the last decade.

• Multiscale topological information.

• Barcodes/persistence diagrams can be efficiently computed.

• Stability properties
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• Nested family (filtration) of sublevel-sets f−1((−∞, α]) for α = −∞ to +∞.

• Track evolution of homology throughout the family.

α

Persistent homology for functions



1X

R

• Nested family (filtration) of sublevel-sets f−1((−∞, α]) for α = −∞ to +∞.

• Track evolution of homology throughout the family.

Persistent homology for functions



1X

R

• Nested family (filtration) of sublevel-sets f−1((−∞, α]) for α = −∞ to +∞.

• Track evolution of homology throughout the family.

Persistent homology for functions



1X

R

• Nested family (filtration) of sublevel-sets f−1((−∞, α]) for α = −∞ to +∞.

• Track evolution of homology throughout the family.

Persistent homology for functions



1X

R

• Nested family (filtration) of sublevel-sets f−1((−∞, α]) for α = −∞ to +∞.

• Track evolution of homology throughout the family.

Persistent homology for functions



1X

R

• Nested family (filtration) of sublevel-sets f−1((−∞, α]) for α = −∞ to +∞.

• Track evolution of homology throughout the family.

Persistent homology for functions



1X

R

• Nested family (filtration) of sublevel-sets f−1((−∞, α]) for α = −∞ to +∞.

• Track evolution of homology throughout the family.

Persistent homology for functions



1X

R

• Nested family (filtration) of sublevel-sets f−1((−∞, α]) for α = −∞ to +∞.

• Track evolution of homology throughout the family.

• Finite set of intervals (barcode) encodes births/deaths of topological features.

Persistent homology for functions
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• Nested family (filtration) of sublevel-sets f−1((−∞, α]) for α = −∞ to +∞.

• Track evolution of homology throughout the family.

• Finite set of intervals (barcode) encodes births/deaths of topological features.
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Persistent homology of filtered complexes

Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K be a filtration of a simplicial complex K s. t.
Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.



Persistent homology of filtered complexes

Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K be a filtration of a simplicial complex K s. t.
Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

• ∀t ≤ t′ ∈ R, f−1((−∞, t]) ⊆ f−1((−∞, t′]) → filtration of X by the sublevel
sets of f .

• If f is defined at the vertices of a simplicial complex K , the sublevel sets filtration
is a filtration of the simplicial complex K.

Relation between sublevel sets filtrations and filtered simplicial complexes:

• For σ = [v0, · · · , vk] ∈ K, f(σ) =
maxi=0,··· ,k f(vi)

• The simplices of K are ordered according in-
creasing f values (and dimension in case of
equal values on different simplices).



Persistent homology of filtered complexes

Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K be a filtration of a simplicial complex K s. t.
Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Algorithm to compute the Betti numbers β0, β1, · · · , βd of K:

β0 = β1 = · · · = βd = 0;
for i = 1 to m
k = dimσi − 1;
if σi is contained in a (k + 1)-cycle in Ki

then βk+1 = βk+1 + 1;
else βk = βk − 1;

end if;
end for;
output (β0, β1, · · · , βd);

The algorithm can be easily adapted to
keep track of an homology basis and pairs
positive simplices (birth of a new homo-
logical class) to negative simplices (death
of an existing homology class).

Notation: Hi
k = Hk(Ki)



Cycle associated to a positive simplex

Lemma: If σi is a positive k-cycle, then there exists a k-cycle cσ s.t.:
- cσ is not a boundary in Ki,
- cσ contains σi but no other positive k-simplex.
The cycle cσ is unique.

Proof:
By induction on the order of appearence of the simplices in the filtration.



Homology basis

• At the beginning: the basis of H0
k is empty.

• If a basis of Hi−1
k has been built and σi is a positive k-simplex then one adds

the homology class of the cycle ci associated to σi to the basis of Hi−1
k ⇒ basis

of Hi
k.

• If a basis of Hj−1
k has been built and σj is a negative (k + 1)-simplex:

– let ci1 , · · · , cip be the cycles associated to the positive simplices
σi1 , · · · , σip that form a basis of Hj−1

k

– d = ∂σj =
∑p
k=1 εkc

ik + b

– l(j) = max{ik : εk = 1}
– Remove the homology class of cl(j) from the basis of Hj−1

k ⇒ basis of
Hj
k.
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Homology basis

• At the beginning: the basis of H0
k is empty.

• If a basis of Hi−1
k has been built and σi is a positive k-simplex then one adds

the homology class of the cycle ci associated to σi to the basis of Hi−1
k ⇒ basis

of Hi
k.

• If a basis of Hj−1
k has been built and σj is a negative (k + 1)-simplex:

– let ci1 , · · · , cip be the cycles associated to the positive simplices
σi1 , · · · , σip that form a basis of Hj−1

k

– d = ∂σj =
∑p
k=1 εkc

ik + b

– l(j) = max{ik : εk = 1}
– Remove the homology class of cl(j) from the basis of Hj−1

k ⇒ basis of
Hj
k.

ci1
ci2

∂σj = ci1 + ci2

σj



Pairing simplices

• If a basis of Hj−1
k has been built and σj is a negative (k + 1)-simplex:

– let ci1 , · · · , cip be the cycles associated to the positive simplices
σi1 , · · · , σip that form a basis of Hj−1

k

– d = ∂σj =
∑p
k=1 εkc

ik + b

– l(j) = max{ik : εk = 1}
– Remove the homology class of cl(j) from the basis of Hj−1

k ⇒ basis of Hj
k.

The simplices σl(j) and σj are paired to form a persistent pair (σl(j), σj).
→ The homology class created by σl(j) in Kl(j) is killed by σj in Kj . The
persistence (or life-time) of this cycle is : j − l(j)− 1.

Remark: filtrations of K can be indexed by increasing sequences αi of real numbers
(useful when working with a function defined on the vertices of a simplicial complex).



Persistence algorithm: first version

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

L0 = L1 = · · · = Ld−1 = ∅
For j = 0 to m
k = dimσj − 1;
if σj is a negative simplex
l(j) = highest index of the positive simplices associated to ∂σj ;
Lk = Lk ∪ {(σl(j), σj)};

end if
end for
output L0, L1, · · · , Ld−1 ;



Persistence algorithm: first version

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

L0 = L1 = · · · = Ld−1 = ∅
For j = 0 to m
k = dimσj − 1;
if σj is a negative simplex
l(j) = highest index of the positive simplices associated to ∂σj ;
Lk = Lk ∪ {(σl(j), σj)};

end if
end for
output L0, L1, · · · , Ld−1 ;

How to test this condition?



The persistence algorithm: matrix version

The matrix of the boundary operator:

• M = (mij)i,j=1,··· ,m with coefficient in Z/2 defined by

mij = 1 if σi is a face of σj and mij = 0 otherwise

• For any column Cj , l(j) is defined by

(i = l(j))⇔ (mij = 1 and mi′j = 0 ∀i′ > i)

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.



The persistence algorithm: matrix version

Compute the matrix of the boundary operator M
For j = 0 to m

While (there exists j′ < j such that l(j′) == l(j))
Cj = Cj + Cj′ mod(2);

End while
End for
Output the pairs (l(j), j);

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Remark: The worst case complexity of the algorithm is O(m3) but much lower in
most practical cases.



The persistence algorithm: matrix version

A simple example:



Correctness of the algorithm

Proposition: the second algorithm (matric version) outputs the persistence pairs.

Proof: follows from the four remarks below.

1. At each step of the algorithm, the column Cj represents a chain of the form

∂

(
σj +

∑
i<j

εiσ
i

)
with εi ∈ {0, 1}

2. At this end of the algorithm, if j is s.t. l(j) is defined then σl(j) is a positive
simplex.

3. If at the end of the algorithm if the column Cj is zero then σj is positive.

4. If at the end of the algorithm the column Cj is not zero then (σl(j), σj) is a
persistence pair.



Persistence diagram

• each pair (σl(j), σj) is represented by (l(j), j) or (f(σl(j)), f(σj)) ∈ R2 when
considering filtrations induced by functions, or (αl(j), αj) if the filtration is in-
dexed by a real valued sequence (αi)i∈I .

• The diagonal {y = x} is added to the persistence diagram.

• Unpaired positive simplex σi → (i,+∞).



Persistence diagram

• each pair (σl(j), σj) is represented by (l(j), j) or (f(σl(j)), f(σj)) ∈ R2 when
considering filtrations induced by functions, or (αl(j), αj) if the filtration is in-
dexed by a real valued sequence (αi)i∈I .

• The diagonal {y = x} is added to the persistence diagram.

• Unpaired positive simplex σi → (i,+∞).

Points may have multiplicity



Persistence diagram

• each pair (σl(j), σj) is represented by (l(j), j) or (f(σl(j)), f(σj)) ∈ R2 when
considering filtrations induced by functions, or (αl(j), αj) if the filtration is in-
dexed by a real valued sequence (αi)i∈I .

• The diagonal {y = x} is added to the persistence diagram.

• Unpaired positive simplex σi → (i,+∞).

Barcodes: an alternative (equivalent) representation where each pair (i, j) is repre-
sented by the interval [i, j]

2 4 6



The bottleneck distance between two diagrams D1 and D2 is

dB(D1, D2) = inf
γ∈Γ

sup
p∈D1

‖p− γ(p)‖∞

where Γ is the set of all the bijections between D1 and D2 and ‖p − q‖∞ =
max(|xp − xq|, |yp − yq|).

Distance between persistence diagrams

birth

death

∞

0

Multiplicity: 2

Add the diagonal

D1

D2
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What if f is slightly perturbed?

Stability properties
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∞

What if f is slightly perturbed?

Theorem (Stability):
For any tame functions f, g : X→ R, d∞

B (Df ,Dg) ≤ ‖f − g‖∞.

Stability properties

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG
09], [C., de Silva, Glisse, Oudot 12]



Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

Input:
1. A finite set X of observations (point cloud with coordinates or pairwise distance
matrix),
2. A real valued function f defined on the observations (e.g. density estimate).

Goal: Partition the data according to the basins of attraction of the peaks of f

[C.,Guibas,Oudot,Skraba - J. ACM 2013]



Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]

1. Build a neighborhing graph G on top of X.

2. Compute the (0-dim) persistence of f to identify prominent peaks → number of
clusters (union-find algorithm).
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Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]

1. Build a neighborhing graph G on top of X.

2. Compute the (0-dim) persistence of f to identify prominent peaks → number of
clusters (union-find algorithm).

3. Chose a threshold τ > 0 and use the persistence algorithm to merge components
with prominence less than τ .

τ
τ = 0



Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]

τ
τ = 0

Complexity of the algorithm: O(n logn)

Theoretical guarantees:

- Stability of the number of clusters (w.r.t. perturbations of X and f).

- Partial stability of clusters: well identified stable parts in each cluster.

“soft ” clustering



Application to non-rigid shape segmentation
[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]

X : a 3D shape
f = HKS function on X

5 prominent
peaks/clusters

Problem: some part of clusters are unstable → dirty segments



Application to non-rigid shape segmentation
[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]

Problem: some part of clusters are unstable → dirty segments

Idea:
- Run the persistence based algorithm several times on random perturbations of f
(size bounded by the “persistence” gap).
- Partial stability of clusters allows to establish correspondences between clusters
across the different runs → for any x ∈ X, a vector giving the probability for x to
belong to each cluster.



Application to non-rigid shape segmentation
[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]



Other applications: classification, object recognition

[Li, Ovsjanikov, C. - CVPR’14]

Examples:

- Hand gesture recognition

- Persistence-based pooling for shape recognition [Bonis, Ovsjanikov, Oudot, C. 2016]



Persistent homology for (point cloud) data

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

Build topol.
structure

Persistent
homology

• Challenges and goals:
→ no direct access to topological/geometric information: need of intermediate
constructions (simplicial complexes);
→ distinguish topological “signal” from noise;
→ topological information may be multiscale;
→ statistical analysis of topological information.



Persistent homology for (point cloud) data

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

Build topol.
structure

Persistent
homology

• Build a geometric filtered simplicial complex on top of X̂m → multiscale topol.
structure.

• Compute the persistent homology of the complex → multiscale topol. signature.

• Compare the signatures of “close” data sets → robustness and stability results.

• Statistical properties of signatures



Filtered complexes and filtrations

A filtered simplicial complex S built on top of a set X is a family (Sa | a ∈ R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. Sa ⊆ Sb
for any a ≤ b.

A filtration F of a space X is a nested family (Fa | a ∈ R) of subspaces of X
such that Fa ⊆ Fb for any a ≤ b.

Example: If f : X → R is a function, then the sublevelsets of f ,
Fa = f−1((−∞, a]) define the sublevel set filtration associated to f .

Example: Rips and Cech filtrations



Persistent homology for (point cloud) data

• Build a geometric filtered simplicial complex
on top of X̂m → multiscale topol. structure.

• Compute the persistent homology of the
complex → multiscale topol. signature.

• Compare the signatures of “close” data sets
→ robustness and stability results.

• Statistical properties of signatures

X̂m: metric data set
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Persistent homology for (point cloud) data

• Build a geometric filtered simplicial complex
on top of X̂m → multiscale topol. structure.

• Compute the persistent homology of the
complex → multiscale topol. signature.

• Compare the signatures of “close” data sets
→ robustness and stability results.
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Persistent homology for (point cloud) data

Persistence barcode

• Build a geometric filtered simplicial complex
on top of X̂m → multiscale topol. structure.

• Compute the persistent homology of the
complex → multiscale topol. signature.

• Compare the signatures of “close” data sets
→ robustness and stability results.

• Statistical properties of signatures

X̂m: metric data set

Filt(X̂m): filtered simplicial complex

Persistence diagram



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ dGH(X,Y).

Bottleneck distance Gromov-Hausdorff distance

Rem: This result also holds for other families of filtrations (particular case of a more general
theorem).

[C., de Silva, Oudot - Geom. Dedicata 2013].

dGH(X,Y) := inf
Z,γ1,γ2

dH(γ1(X), γ2(X))

Z metric space, γ1 : X→ Z and γ2 : Y→ Z
isometric embeddings.



Application: non rigid shape classification

camel
cat
elephant
face
head
horse

∞

0
0

1
∞

0
0

1
∞

0
0

1
∞

0
0

1

MDS using bottleneck distance.

[C., Cohen-Steiner, Guibas, Mémoli, Oudot - SGP ’09]

• Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

• Compare diagrams of sampled shapes instead of shapes themselves.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Examples:

• Let S be a filtered simplicial complex. If Va = H(Sa) and vba : H(Sa)→ H(Sb)
is the linear map induced by the inclusion Sa ↪→ Sb then (H(Sa) | a ∈ R) is
a persistence module.

• Given a metric space (X, dX) , H(Rips(X)) is a persistence module.

• If f : X → R is a function, then the filtration defined by the sublevel sets of
f , Fa = f−1((−∞, a]), induces a persistence module at homology level.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Definition: A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem:

q-tame persistence modules have well-defined persistence diagrams.

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG’09], [C., de Silva, Glisse,
Oudot 12]



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

An idea about the definition of persistence diagrams:

a b
c

d
Number of points in any rectangle [a, b] × [c, d]
above the diagonal:

rk(vcb)− rk(vdb ) + rk(vda)− rk(vca)

Measures on rectangles:

a b c d



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Definition: A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem:

q-tame persistence modules have well-defined persistence diagrams.

Exercise: Let X be a precompact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

Recall that a metric space (X, ρ) is precompact if for any ε > 0 there exists a finite subset Fε ⊂ X such that dH (X, Fε) < ε (i.e.
∀x ∈ X, ∃p ∈ Fε s.t. ρ(x, p) < ε).

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG’09], [C., de Silva, Glisse,
Oudot 12]



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

A homomorphism of degree ε between two persis-
tence modules U and V is a collection Φ of linear
maps

(φa : Ua → Va+ε | a ∈ R)

such that vb+εa+ε ◦ φa = φb ◦ uba for all a ≤ b.

Ua U b

V a+ε V b+ε

An ε-interleaving between U and V is specified by two homomorphisms of degree ε
Φ : U → V and Ψ : V → U s.t. Φ ◦ Ψ and Ψ ◦ Φ are the “shifts” of degree 2ε
between U and V.

Ua

V a+ε

Ua+2ε

V a+3ε· · ·

· · ·
φa

ψa+ε

ua+2ε
a

va+3ε
a+ε

· · ·

· · ·



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm:

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm:

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]

Exercise: Show the stability theorem for (tame) functions :
let X be a topological space and let f, g : X→ R be two tame functions. Then

dB(Df ,Dg) ≤ ‖f − g‖∞.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm:

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

Strategy: build filtrations that induce q-tame homology persistence modules
and that turn out to be ε-interleaved when the considered spaces/functions are
O(ε)-close.

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]



Multivalued maps and correspondences

A multivalued map C : X ⇒ Y from a set X to a set Y is a subset of X × Y,
also denoted C, that projects surjectively onto X through the canonical projection
πX : X × Y → X. The image C(σ) of a subset σ of X is the canonical projection
onto Y of the preimage of σ through πX.

X

Y C

Y

X CT



Multivalued maps and correspondences

A multivalued map C : X ⇒ Y from a set X to a set Y is a subset of X × Y,
also denoted C, that projects surjectively onto X through the canonical projection
πX : X × Y → X. The image C(σ) of a subset σ of X is the canonical projection
onto Y of the preimage of σ through πX.

X

Y C

Y

X CT

The transpose of C, denoted CT , is the image of C through the symmetry map
(x, y) 7→ (y, x).

A multivalued map C : X⇒ Y is a correspondence if CT is also a multivalued map.



Multivalued maps and correspondences

A multivalued map C : X ⇒ Y from a set X to a set Y is a subset of X × Y,
also denoted C, that projects surjectively onto X through the canonical projection
πX : X × Y → X. The image C(σ) of a subset σ of X is the canonical projection
onto Y of the preimage of σ through πX.

X

Y C

Y

X CT

Example: ε-correspondence and Gromov-Hausdorff distance.

Let (X, ρX) and (Y, ρY) be compact metric spaces.
A correspondence C : X ⇒ Y is an ε-correspondence if
∀(x, y), (x′, y′) ∈ C, |ρX(x, x′)− ρY(y, y′)| ≤ ε.

dGH(X,Y) =
1

2
inf{ε ≥ 0 : there exists an ε-correspondence between Xand Y}

Y

X

C

x x′

y

y′



Multivalued simplicial maps

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map C : X⇒ Y is ε-simplicial from S to T if for any a ∈ R and any
simplex σ ∈ Sa, every finite subset of C(σ) is a simplex of Ta+ε.

X

Y
C

Y

X CT



Multivalued simplicial maps

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map C : X⇒ Y is ε-simplicial from S to T if for any a ∈ R and any
simplex σ ∈ Sa, every finite subset of C(σ) is a simplex of Ta+ε.

X

Y
C

Y

X CT

Proposition: Let S, T be filtered complexes with vertex sets X, Y respectively. If
C : X ⇒ Y is a correspondence such that C and CT are both ε-simplicial, then
together they induce a canonical ε-interleaving between H(S) and H(T).



The example of the Rips and Čech filtrations

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.



The example of the Rips and Čech filtrations

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.

Proof: Let C : X⇒ Y be a correspondence with distortion at most ε.
If σ ∈ Rips(X, a) then ρX(x, x′) ≤ a for all x, x′ ∈ σ.
Let τ ⊆ C(σ) be any finite subset.
For any y, y′ ∈ τ there exist x, x′ ∈ σ s. t. y ∈ C(x), y′ ∈ C(x′) so

ρY(y, y′) ≤ ρX(x, x′) + ε ≤ a+ ε and τ ∈ Rips(Y, a+ ε)

⇒ C is ε-simplicial from Rips(X) to Rips(Y).
Symetrically, CT is ε-simplicial from Rips(Y) to Rips(X).



The example of the Rips and Čech filtrations

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.

Proof: Let C : X⇒ Y be a correspondence with distortion at most ε.
If σ ∈ Rips(X, a) then ρX(x, x′) ≤ a for all x, x′ ∈ σ.
Let τ ⊆ C(σ) be any finite subset.
For any y, y′ ∈ τ there exist x, x′ ∈ σ s. t. y ∈ C(x), y′ ∈ C(x′) so

ρY(y, y′) ≤ ρX(x, x′) + ε ≤ a+ ε and τ ∈ Rips(Y, a+ ε)

⇒ C is ε-simplicial from Rips(X) to Rips(Y).
Symetrically, CT is ε-simplicial from Rips(Y) to Rips(X).

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Čech(X)) and H(Čech(Y)) are ε-interleaved.



The example of the Rips and Čech filtrations

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.

Proof: Let C : X⇒ Y be a correspondence with distortion at most ε.
If σ ∈ Rips(X, a) then ρX(x, x′) ≤ a for all x, x′ ∈ σ.
Let τ ⊆ C(σ) be any finite subset.
For any y, y′ ∈ τ there exist x, x′ ∈ σ s. t. y ∈ C(x), y′ ∈ C(x′) so

ρY(y, y′) ≤ ρX(x, x′) + ε ≤ a+ ε and τ ∈ Rips(Y, a+ ε)

⇒ C is ε-simplicial from Rips(X) to Rips(Y).
Symetrically, CT is ε-simplicial from Rips(Y) to Rips(X).

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Čech(X)) and H(Čech(Y)) are ε-interleaved.

Remark: Similar results for witness complexes (fixed landmarks)



Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!



Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!

Proof: show that Iba : H(Rips(X, a))→ H(Rips(X, b)) has
finite rank whenever a < b.

Let ε = (b − a)/2 and let F ⊂ X be finite s. t.
dH(X,F ) ≤ ε/2.

Then C = {(x, f) ∈ X × F |d(x, f) ≤ ε/2} is
an ε-correspondence.

Using the interleaving map, Iba factorizes as

HRips(X, a)→ HRips(F, a+ ε)→ HRips(X, a+ 2ε) = HRips(X, b)

finite dimensional

X

F
C



Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!

Theorem: Let X,Y be compact metric spaces. Then

db(dgm(H(Čech(X))), dgm(H(Čech(Y)))) ≤ 2dGH(X,Y),

db(dgm(H(Rips(X))), dgm(H(Rips(Y)))) ≤ 2dGH(X,Y).

Remark: The proofs never use the triangle inequality! The previous approch and results
easily extend to other settings like, e.g. spaces endowed with a similarity measure.



Why persistence

• Even when X is compact, Hp(Rips(X, a)), p ≥ 1, might be infinite dimen-
sional for some value of a:

aX

It is also possible to build such an example with the open Rips
complex:

[x0, x1, · · · , xk] ∈ Rips(X, a−)⇔ dX(xi, xj) < a, for all i, j



Why persistence

• Even when X is compact, Hp(Rips(X, a)), p ≥ 1, might be infinite dimen-
sional for some value of a:

aX

It is also possible to build such an example with the open Rips
complex:

[x0, x1, · · · , xk] ∈ Rips(X, a−)⇔ dX(xi, xj) < a, for all i, j

• For any α, β ∈ R such that 0 < α ≤ β and any integer k there exists a
compact metric space X such that for any a ∈ [α, β], Hk(Rips(X, a)) has a
non countable infinite dimension (can be embedded in R4 [Droz 2013]).



Why persistence

• Even when X is compact, Hp(Rips(X, a)), p ≥ 1, might be infinite dimen-
sional for some value of a:

aX

It is also possible to build such an example with the open Rips
complex:

[x0, x1, · · · , xk] ∈ Rips(X, a−)⇔ dX(xi, xj) < a, for all i, j

• If X is geodesic, then dim H1(Rips(X, a)) < +∞ for all a > 0 and
Dgm(H1(Rips(X))) is contained in the vertical line x = 0.

• For any α, β ∈ R such that 0 < α ≤ β and any integer k there exists a
compact metric space X such that for any a ∈ [α, β], Hk(Rips(X, a)) has a
non countable infinite dimension (can be embedded in R4 [Droz 2013]).

• If X is compact, then dim H1(Čech(X, a)) < +∞ for all a ([Smale-Smale,
C.-de Silva]).

• If X is a geodesic δ-hyperbolic space then Dgm(H2(Rips(X))) is contained
in a vertical band of width O(δ).



Some weaknesses

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ dGH(X,Y).

→ Vietoris-Rips (or Cech, witness) filtrations quickly become prohibitively large as
the size of the data increases ( O(|X|d) ), making the computation of persistence
practically almost impossible.

→ Persistence diagrams of Rips-Vietoris (and Cěch, witness,..) filtrations and
Gromov-Hausdorff distance are very sensitive to noise and outliers.



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Questions:

• Statistical properties of dgm(Filt(X̂m)) ? dgm(Filt(X̂m))→? as m→ +∞?
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∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Questions:

• Statistical properties of dgm(Filt(X̂m)) ? dgm(Filt(X̂m))→? as m→ +∞?

• Can we do more statistics with persistence diagrams?



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Stability thm: db(dgm(Filt(Xµ)), dgm(Filt(X̂m))) ≤ 2dGH(Xµ, X̂m)

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ P

(
dGH(Xµ, X̂m) >

ε

2

)So, for any ε > 0,



Deviation inequality

X̂m Filt(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Xµ compact

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Deviation inequality

X̂m Filt(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Theorem: If µ satisfies the (a, b)-standard assumption, then for any ε > 0:

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ min(

8b

aεb
exp(−maεb), 1).

Moreover lim
n→∞

P

(
db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
≤ C1

(
logm

m

)1/b
)

= 1.

where C1 is a constant only depending on a and b.

Xµ compact

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Deviation inequality

X̂m Filt(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Sketch of proof:

1. Upperbound P
(
dH(Xµ, X̂m) > ε

2

)
.

2. (a, b) standard assumption⇒ an explicit upperbound for the covering number
of Xµ (by balls of radius ε/2).

3. Apply “union bound” argument.

Xµ compact

C(ε) ≤ P (ε/2)

+ µ(B(x, ε/2)) ≥ a(ε/2)b

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Minimax rate of convergence

Let P(a, b,M) be the set of all the probability measures on the metric space (M, ρ)
satisfying the (a, b)-standard assumption on M:

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Minimax rate of convergence

Let P(a, b,M) be the set of all the probability measures on the metric space (M, ρ)
satisfying the (a, b)-standard assumption on M:

Remark: we can obtain slightly better bounds if Xµ is a submanifold of RD - see [Genovese,
Perone-Pacifico,Verdinelli, Wasserman 2011, 2012]

Theorem: Let P(a, b,M) be the set of (a, b)-standard proba measures on M. Then:

sup
µ∈P(a,b,M)

E
[
db(dgm(Filt(Xµ)), dgm(Filt(X̂m)))

]
≤ C

(
lnm

m

)1/b

where the constant C only depends on a and b (not on M!). Assume moreover that
there exists a non isolated point x in M and let xm be a sequence in M \ {x} such

that ρ(x, xm) ≤ (am)−1/b . Then for any estimator d̂gmm of dgm(Filt(Xµ)):

lim inf
m→∞

ρ(x, xm)−1 sup
µ∈P(a,b,M)

E
[
db(dgm(Filt(Xµ)), d̂gmm)

]
≥ C′

where C′ is an absolute constant.

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Numerical illustrations

- µ: unif. measure on Lissajous curve Xµ.
- Filt: distance to Xµ in R2.
- sample k = 300 sets of m points for m =
[2100 : 100 : 3000].
- compute

Êm = Ê[dB(dgm(Filt(Xµ)), dgm(Filt(X̂n)))].

- plot log(Êm) as a function of
log(log(m)/m).



Numerical illustrations

- µ: unif. measure on a torus Xµ.
- Filt: distance to Xµ in R3.
- sample k = 300 sets of n points for m =
[12000 : 1000 : 21000].
- compute

Êm = Ê[dB(dgm(Filt(Xµ)), dgm(Filt(X̂m)))].

- plot log(Êm) as a function of
log(log(m)/m).



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

D = {( di+bi
2

, di+bi
2

)}i ∈ I For p = ( b+d
2
, d−b

2
) ∈ D,

Λp(t) =


t− b t ∈ [b, b+d

2
]

d− t t ∈ ( b+d
2
, d]

0 otherwise.

Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

where kmax is the kth largest value in the set.



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

Properties

• For any t ∈ R and any k ∈ N, 0 ≤ λD(k, t) ≤ λD(k + 1, t).

• For any t ∈ R and any k ∈ N, |λD(k, t) − λD′(k, t)| ≤ dB(D,D′) where
dB(D,D′) denotes the bottleneck distance between D and D′.

stability properties of persistence landscapes



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

• Persistence encoded as an element of a functional space (vector space!).

• Expectation of distribution of landscapes is well-defined and can be approximated
from average of sampled landscapes.

• process point of view: convergence results and convergence rates → confidence
intervals can be computed using bootstrap.

[C., Fasy, Lecci, Rinaldo, Wasserman SoCG 2014]



Weak convergence of landscapes

Let P be a probability distribution on LT , and let λ1, . . . , λn ∼ P . Let µ be the
mean landscape:

µ(t) = E[λi(t)], t ∈ [0, T ].

We estimate µ with the sample average

λn(t) =
1

n

n∑
i=1

λi(t), t ∈ [0, T ].

Since E(λn(t)) = µ(t), λn is a point-wise unbiased estimator of µ.

Let LT be the space of landscapes with support contained in [0, T ].

For fixed t: pointwise convergence of λn(t) to µ(t) + CLT

Here, convergence of the process{√
n
(
λn(t)− µ(t)

)}
t∈[0,T ]



Weak convergence of landscapes

Let
F = {ft}0≤t≤T

where ft : LT → R is defined by ft(λ) = λ(t).

Empirical process indexed by ft ∈ F :

Gn(t) = Gn(ft) :=
√
n
(
λn(t)− µ(t)

)
=

1√
n

n∑
i=1

(ft(λi)− µ(t)) =
√
n(Pn−P )(ft)

Theorem [Weak convergence of landscapes]. Let G be a Brownian bridge with
covariance function κ(t, s) =

∫
ft(λ)fs(λ)dP (λ)−

∫
ft(λ)dP (λ)

∫
fs(λ)dP (λ), for

t, s ∈ [0, T ]. Then Gn  G.



Weak convergence of landscapes

Let
F = {ft}0≤t≤T

where ft : LT → R is defined by ft(λ) = λ(t).

Empirical process indexed by ft ∈ F :

Gn(t) = Gn(ft) :=
√
n
(
λn(t)− µ(t)

)
=

1√
n

n∑
i=1

(ft(λi)− µ(t)) =
√
n(Pn−P )(ft)

For t ∈ [0, T ], let σ(t) be the standard deviation of
√
nλn(t), i.e. σ(t) =√

nVar(λn(t)) =
√

Var(ft(λ1)).

Theorem [Uniform CLT]. Suppose that σ(t) > c > 0 in an interval [t∗ , t
∗] ⊂ [0, T ],

for some constant c. Then there exists a random variable W
d
= supt∈[t∗ ,t∗] |G(ft)|

such that

sup
z∈R

∣∣∣∣∣P
(

sup
t∈[t∗ ,t∗]

|Gn(t)| ≤ z

)
− P (W ≤ z)

∣∣∣∣∣ = O

(
(logn)7/8

n1/8

)
.



Some consequences

Theorem. Suppose that σ(t) > c > 0 in an interval [t∗ , t
∗] ⊂ [0, T ], for some

constant c. Then, given a confidence level 1 − α, one can construct confidence
functions `n(t) and un(t) such that

P
(
`n(t) ≤ µ(t) ≤ un(t) for all t ∈ [t∗ , t

∗]
)
≥ 1− α−O

(
(logn)7/8

n1/8

)
.

Also, supt (un(t)− `n(t)) = OP
(√

1
n

)
.

Bootstrap for landscapes → confidence bands for landscapes.
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Theorem. Suppose that σ(t) > c > 0 in an interval [t∗ , t
∗] ⊂ [0, T ], for some

constant c. Then, given a confidence level 1 − α, one can construct confidence
functions `n(t) and un(t) such that

P
(
`n(t) ≤ µ(t) ≤ un(t) for all t ∈ [t∗ , t

∗]
)
≥ 1− α−O

(
(logn)7/8

n1/8

)
.

Also, supt (un(t)− `n(t)) = OP
(√

1
n

)
.

Bootstrap for landscapes → confidence bands for landscapes.



To summarize

X̂m Rips(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

Xµ compact

Repeat n times: λ1(t), · · · , λn(t) → λn(t) ΛP (t) = E[λi(t)]

λXµ(t)

|λn(t)− ΛP (t)|

Bootstrap

|λXP
(t)− ΛP (t)| →

0 as m
→∞

Stability w.r.t. µ?

m→∞



Wasserstein distance
Let (M, ρ) be a metric space and let µ, ν be probability measures on M with finite
p-moments (p ≥ 1).

“The” Wasserstein distance Wp(µ, ν) quantifies the optimal cost of pushing µ onto
ν, the cost of moving a small mass dx from x to y being ρ(x, y)pdx.

• Transport plan: Π a proba measure on
M ×M such that Π(A × Rd) = µ(A)
and Π(Rd × B) = ν(B) for any borelian
sets A,B ⊂M .

• Cost of a transport plan:

C(Π) =

(∫
M×M

ρ(x, y)pdΠ(x, y)

) 1
p

• Wp(µ, ν) = infΠ C(Π)



Wasserstein distance

Example:

• If P = {p1, . . . , pn} is a point cloud, and P ′ = {p1, . . . , pn−k−1, o1, . . . , ok}
with d(oi, P ) = R, then

dH(C,C′) ≥ R but W2(µC , µC′) ≤
√
k

n
(R+ diam(C))



(Sub)sampling and stability of expected landscapes

X̂m Rips(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λRips(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Remarks:
- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distribu-
tions, not for expectations) ;
- also work with “Gromov-Wasserstein” metric;

- m
1
p cannot be replaced by a constant.



(Sub)sampling and stability of expected landscapes

X̂m Rips(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λRips(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Consequences:
• Subsampling: efficient and easy to parallelize algorithm to infer topol. information

from huge data sets.

• Robustness to outliers.

• R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes

X̂m Rips(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λRips(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Proof:

1. Wp(µ
⊗m, ν⊗m) ≤ m

1
pWp(µ, ν)

2. Wp(Pµ, Pν) ≤Wp(µ
⊗m, ν⊗m) (stability of persistence!)

3. ‖Λµ,m − Λν,m‖∞ ≤Wp(Pµ, Pν) (Jensen’s inequality)

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes

Example: Circle with one outlier.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes
[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Example: 3D shapes

From n = 100 subsamples of size m = 300



(Sub)sampling and stability of expected landscapes

(Toy) Example: Accelerometer data from smartphone.

- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]
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Cycle associated to a positive simplex

Lemma: If σi is a positive k-cycle, then there exists a k-cycle cσ s.t.:
- cσ is not a boundary in Ki,
- cσ contains σi but no other positive k-simplex.
The cycle cσ is unique.

Proof:
By induction on the order of appearence of the simplices in the filtration.



Homology basis

• At the beginning: the basis of H0
k is empty.

• If a basis of Hi−1
k has been built and σi is a positive k-simplex then one adds

the homology class of the cycle ci associated to σi to the basis of Hi−1
k ⇒

basis of Hi
k.

• If a basis of Hj−1
k has been built and σj is a negative (k + 1)-simplex:

– let ci1 , · · · , cip be the cycles associated to the positive simplices
σi1 , · · · , σip that form a basis of Hj−1

k

– d = ∂σj =
∑p
k=1 εkc

ik + b

– l(j) = max{ik : εk = 1}
– Remove the homology class of cl(j) from the basis of Hj−1

k ⇒ basis of
Hj
k.



Pairing simplices

If a basis of Hj−1
k has been built and σj is a negative (k + 1)-simplex:

• let ci1 , · · · , cip be the cycles associated to the positive simplices σi1 , · · · , σip
that form a basis of Hj−1

k

• d = ∂σj =
∑p
k=1 εkc

ik + b

• l(j) = max{ik : εk = 1}
• Remove the homology class of cl(j) from the basis of Hj−1

k ⇒ basis of Hj
k.

The simplices σl(j) and σj are paired to form a persistent pair (σl(j), σj).
→ The homology class created by σl(j) in Kl(j) is killed by σj in Kj . The persistence
(or life-time) of this cycle is : j − l(j)− 1.

Remark: filtrations of K can be indexed by increasing sequences αi of real numbers
(useful when working with a function defined on the vertices of a simplicial complex).



The persistence algorithm: first version

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

L0 = L1 = · · · = Ld−1 = ∅
For j = 0 to m
k = dimσj − 1;
if σj is a negative simplex
l(j) = highest index of the positive simplices associated to ∂σj ;
Lk = Lk ∪ {(σl(j), σj)};

end if
end for

Output: L0, L1, · · · , Ld−1 ;



The persistence algorithm: first version

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

L0 = L1 = · · · = Ld−1 = ∅
For j = 0 to m
k = dimσj − 1;
if σj is a negative simplex
l(j) = highest index of the positive simplices associated to ∂σj ;
Lk = Lk ∪ {(σl(j), σj)};

end if
end for

Output: L0, L1, · · · , Ld−1 ;

How to test this condition?
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