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Persistent homology

X topological space

f: X—R

- T

Nested spaces

persistence -

Persistence diagram

e A general mathematical framework to encode the evolution of the topology
(homology) of families of nested spaces (filtered complex, sublevel sets,...).

e Formalized by H. Edelsbrunner (2002) et al and G. Carlsson et al (2005) - wide
development during the last decade.

e Multiscale topological information.

e Barcodes/persistence diagrams can be efficiently computed.

e Stability properties



Persistent homology for functions

o Nested family (filtration) of sublevel-sets f~*((—o0, a]) for a = —o0 to +oo0.
e Track evolution of homology throughout the family.

R A




Persistent homology for functions

o Nested family (filtration) of sublevel-sets f~*((—o0, a]) for a = —o0 to +oo0.
e Track evolution of homology throughout the family.

R A

<Y



Persistent homology for functions

o Nested family (filtration) of sublevel-sets f~*((—o0, a]) for a = —o0 to +oo0.
e Track evolution of homology throughout the family.

R A




Persistent homology for functions

o Nested family (filtration) of sublevel-sets f~*((—o0, a]) for a = —o0 to +oo0.
e Track evolution of homology throughout the family.

R A

<Y



Persistent homology for functions

o Nested family (filtration) of sublevel-sets f~*((—o0, a]) for a = —o0 to +oo0.
e Track evolution of homology throughout the family.

R A

<Y



Persistent homology for functions

o Nested family (filtration) of sublevel-sets f~*((—o0, a]) for a = —o0 to +oo0.
e Track evolution of homology throughout the family.

R A

<Y



Persistent homology for functions

o Nested family (filtration) of sublevel-sets f~*((—o0, a]) for a = —o0 to +oo0.
e Track evolution of homology throughout the family.

R A




Persistent homology for functions

o Nested family (filtration) of sublevel-sets f~*((—o0, a]) for a = —o0 to +oo0.
e Track evolution of homology throughout the family.

e Finite set of intervals (barcode) encodes births/deaths of topological features.

AR A




Persistent homology for functions

o Nested family (filtration) of sublevel-sets f~*((—o0, a]) for a = —o0 to +oo0.
e Track evolution of homology throughout the family.

e Finite set of intervals (barcode) encodes births/deaths of topological features.




Persistent homology for functions
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barcode for holes (1-d homology)
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Persistent homology of filtered complexes

let ) = K°Cc K'C--- C Km — K be a filtration of a simplicial complex K s. t.
Kt = K" Uo" where 0™ is a simplex of K.



Persistent homology of filtered complexes

Let 0= K? C Kl C .-+ C K™ = K be a filtration of a simplicial complex K s. t.
Kt = K" Uo" where 0™ is a simplex of K.

Relation between sublevel sets filtrations and filtered simplicial complexes:

o Vt <t €R, f 1 ((—00,t]) C f'((—o00,t']) — filtration of X by the sublevel
sets of f.

o If f isdefined at the vertices of a simplicial complex K , the sublevel sets filtration

is a filtration of the simplicial complex K. \

e For ¢ = |vo,---,vx] € K, f(o) =
maxi—o,... x f(v;)
e The simplices of K are ordered according in-

creasing f values (and dimension in case of
equal values on different simplices).



Persistent homology of filtered complexes

Let ) = K’ ¢ K' € --- € K™ = K be a filtration of a simplicial complex K s. t.
Kt = K" Uo" where 0™ is a simplex of K.

Algorithm to compute the Betti numbers 3y, 51,--- , B4 of K:
60251:---:/66120;
for: =1 to m
k =dimo* — 1;

if 0” is contained in a (k + 1)-cycle in K*
then Bx11 = Bry1 + 1,
else S = B — 1, The algorithm can be easily adapted to
end if; keep track of an homology basis and pairs
end for; positive simplices (birth of a new homo-
output (Bo, S1,- -+, Ba); logical class) to negative simplices (death
of an existing homology class).

Notation: H; = Hy(K")



Cycle associated to a positive simplex

LAL LN L)

Lemma: If 6 is a positive k-cycle, then there exists a k-cycle ¢, s.t.:

- ¢» 1S not a boundary in K
- ¢, contains o’ but no other positive k-simplex.

The cycle ¢” is unique.

Proof:
By induction on the order of appearence of the simplices in the filtration.



Homology basis

LAL LN LN

e At the beginning: the basis of H} is empty.

e If a basis of HZ_l has been built and ¢* is a positive k-simplex then one adds
the homology class of the cycle ¢ associated to ¢* to the basis of H,Z_l = basis

of H}.
e If a basis of H} ™' has been built and o7 is a negative (k + 1)-simplex:

— let ¢,---,c' be the cycles associated to the positive simplices
o', ..., 0" that form a basis of H} ™'

— d= 00" = Py erLc't + b
- l(]) — max{ik &k = 1}

— Remove the homology class of ) from the basis of H,z_l = basis of
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Homology basis

0o’ = c't + *2

LALGN A,

e At the beginning: the basis of H} is empty.
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Pairing simplices

e If a basis of H} ™' has been built and o7 is a negative (k + 1)-simplex:

— let ¢',---,c' be the cycles associated to the positive simplices
o'l,---,0'? that form a basis of H,z_l
—d=00" =3 "P_ exc* +b

— I(j) = max{ix : e, = 1}

— Remove the homology class of ¢!/) from the basis of H;i_l = basis of H,Z

The simplices 6') and ¢/ are paired to form a persistent pair (6'7), g%).
— The homology class created by ¢'/) in K'Y s k|IIed by ¢’ in K7. The
persistence (or life-time) of this cycleis : 7 — I(j) —

Remark: filtrations of K can be indexed by increasing sequences «; of real numbers
(useful when working with a function defined on the vertices of a simplicial complex).



Persistence algorithm: first version

Input: ) = K ¢ K' ¢ --- ¢ K™ = K a d-dimensional filtration of a simplicial
complex K s. t. K'™' = K*Ug*"" where 6" is a simplex of K.

Lo=L1=---=Lg1=10
For  =0tom
k = dimo’ — 1:
if o7 is a negative simplex
[(j) = highest index of the positive simplices associated to do”;
Li = L, U{(c'YD) o)},
end if
end for
output Lo, L1, -+ ,Lq_1 ;



Persistence algorithm: first version

Input: ) = K ¢ K' ¢ --- ¢ K™ = K a d-dimensional filtration of a simplicial
complex K s. t. K'™' = K*Ug*"" where 6" is a simplex of K.

Lo=Li=---=Lg1=10
For j =0 tom
k=dimo’ — 1:

@is a negative si@

[(7) = hightest index of the positive simplices associated to 9o”7;
L, = L, {(Jl(j)7gj)};
end if
end for

output Lo, L1|---

How to test this condition?



The persistence algorithm: matrix version

Input: ) = K ¢ K' ¢ --- ¢ K™ = K a d-dimensional filtration of a simplicial
complex K s. t. K'™' = K*Ug*"! where 6" is a simplex of K.

The matrix of the boundary operator:

1001 0)
010100
00001
o1l 1 0] 1)
000 1
00 0 1
0000

__\\
—
[—
]
S

o O
-

@)
o)

o O O
-
= o O

o M = (mij)i j=1,...,m With coefficient in Z/2 defined by
mi; = 1 if ¢* is a face of 67 and m;; = 0 otherwise
e For any column C, I(j) is defined by

(i =1(j)) & (miy; =1 and my; =0 Vi’ > 1)



The persistence algorithm: matrix version

Input: ) = K° ¢ K' ¢ --- C K™ = K a d-dimensional filtration of a simplicial
complex K s. t. K™t = K* Ug'"! where 6" is a simplex of K.

Compute the matrix of the boundary operator M
For j =0 tom
While (there exists j' < j such that I(j') == I(j))
C; = C; + Cj mod(2);
End while
End for
Output the pairs (1(5),7);

Remark: The worst case complexity of the algorithm is O(m?®) but much lower in
most practical cases.



The persistence algorithm: matrix version

A simple example:
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Correctness of the algorithm

Proposition: the second algorithm (matric version) outputs the persistence pairs.

Proof: follows from the four remarks below.

1. At each step of the algorithm, the column C'; represents a chain of the form
0 (O’j + Zsmi> with ¢; € {0,1}

2. At this end of the algorithm, if j is s.t. 1(j) is defined then ¢'¥) is a positive
simplex.

3. If at the end of the algorithm if the column C; is zero then ¢ is positive.

4. If at the end of the algorithm the column C; is not zero then ('), o7) is a
persistence pair.



Persistence diagram

OO"

each pair ('), 57) is represented by (1(5),7) or (f(c'¥)), f(67)) € R? when
considering filtrations induced by functions, or (a;(;), ;) if the filtration is in-
dexed by a real valued sequence (a;)icr.

The diagonal {y = z} is added to the persistence diagram.

Unpaired positive simplex 0" — (i, +00).



Persistence diagram

OO"

each pair ('), 57) is represented by (1(5),7) or (f(c'¥)), f(67)) € R? when
considering filtrations induced by functions, or (a;(;), ;) if the filtration is in-
dexed by a real valued sequence (a;)icr.

The diagonal {y = z} is added to the persistence diagram.

Unpaired positive simplex 0" — (i, +00).

Points may have multiplicity



Persistence diagram

OO"

e each pair (¢!, 07) is represented by (1(4),7) or (f(c'9)), f(67)) € R? when
considering filtrations induced by functions, or (a;(;), ;) if the filtration is in-
dexed by a real valued sequence (a;)icr.

e The diagonal {y = x} is added to the persistence diagram.
e Unpaired positive simplex 0" — (i, +00).

Barcodes: an alternative (equivalent) representation where each pair (i, j) is repre-
sented by the interval |7, J]




Distance between persistence diagrams

death !
m ............................................................

\ ® D2
Add the diagonal

Multiplicity: 2

|
O birth

The bottleneck distance between two diagrams D; and Ds is

dp(D1,D2) = inf sup ||p — v(p)||ec
Y€l peDy

where I' is the set of all the bijections between D; and D3 and ||p — ¢l =

max(]a:‘p — ajq’a ‘yp — yq‘)-



Stability properties

What if f is slightly perturbed?

<V



Stability properties

Theorem (Stability):
For any tame functions f,g: X = R, d3’(D¢,Dy) < ||f — 9l/co-

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG
09], [C., de Silva, Glisse, Oudot 12]

R A
What if f is slightly perturbed?

<V



Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.

Input:

1. A finite set X of observations (point cloud with coordinates or pairwise distance
matrix),

2. A real valued function f defined on the observations (e.g. density estimate).

Goal: Partition the data according to the basins of attraction of the peaks of f



Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.
[C.,Guibas,Oudot,Skraba - J. ACM 2013]

topological

1. Build a neighborhing graph G on top of X.

2. Compute the (0-dim) persistence of f to identify prominent peaks — number of
clusters (union-find algorithm).
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Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.
[C.,Guibas,Oudot,Skraba - J. ACM 2013]

6 prominent]

peaks

1. Build a neighborhing graph G on top of X.
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Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.

1. Build a neighborhing graph G on top of X.

2. Compute the (0-dim) persistence of f to identify prominent peaks — number of
clusters (union-find algorithm).

3. Chose a threshold 7 > 0 and use the persistence algorithm to merge components
with prominence less than 7.



Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.
[C.,Guibas,Oudot,Skraba - J. ACM 2013]

Complexity of the algorithm: O(nlogn)

Theoretical guarantees:

- Stability of the number of clusters (w.r.t. perturbations of X and f).

- Partial stability of clusters: well identified stable parts in each cluster.

K» “soft " clustering



Application to non-rigid shape segmentation

Persistence diagram for david1 with f = HKS(0.1)

80+

\4

60 -

50

40 - ,
T 5  prominent
o, peaks/clusters
10+

X 3 3 D Sh a p e 00 1|0 2|o 50 4|0 5|o éo ?Io slo

f = HKS function on X

Problem: some part of clusters are unstable — dirty segments



Application to non-rigid shape segmentation

Problem: some part of clusters are unstable — dirty segments

Idea:
- Run the persistence based algorithm several times on random perturbations of f

(size bounded by the “persistence” gap).
- Partial stability of clusters allows to establish correspondences between clusters

across the different runs — for any x € X, a vector giving the probability for = to
belong to each cluster.



Application to non-rigid shape segmentation

N G

B R ¢
| f [ ¢ ¢

10

Persistence diagram for cat7 with f = HKS(0.1)
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50 -

20+
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Persistence diagram for cat1 with f = HKS(0.1)
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Other applications: classification, object recognition

Examples:
- Hand gesture recognition

22928222
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- Persistence-based pooling for shape recognition




Persistent homology for (point cloud) data

X . —
" "™ ,* Build topol. Persistent
‘e, s * structure homology

o o.° 0

e Challenges and goals:
— no direct access to topological /geometric information: need of intermediate
constructions (simplicial complexes); ,

. . . . b _- 11 - . --'s's"'i\\;s‘.
— distinguish topological “signal” from noise; \\\\\\\\

':&\\“‘\“'\
<l
— topological information may be multiscale; /\/ i

<)

Q
S8
e,
\

\
— statistical analysis of topological information.



Persistent homology for (point cloud) data

oo

° X : ./ﬂ — . |
% " .* Build topol. Persistent |
“e s L ’ structure homology |
([ ( ° o 0 y
0

Build a geometric filtered simplicial complex on top of X,, — multiscale topol.
structure.

Compute the persistent homology of the complex — multiscale topol. signature.
Compare the signatures of “close” data sets — robustness and stability results.

Statistical properties of signatures



Filtered complexes and filtrations

SRLE

A filtered simplicial complex S built on top of a set X is a family (S, | a € R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. S, C Sy
for any a < b.

/A\ filtration I of a space X is a nested family (IF, | a € R) of subspaces of X
such that I, C [y, for any a < b.

&» Example: If f : X — R is a function, then the sublevelsets of f,

F, = f~'((—00, a]) define the sublevel set filtration associated to f.

\ Example: Rips and Cech filtrations




Persistent homology for (point cloud) data

. —_—
—
e
' .
O

Xm: metric data set

e Build a geometric filtered simplicial complex
on top of X,, — multiscale topol. structure.

e Compute the persistent homology of the
complex — multiscale topol. signature.

e Compare the signatures of “close” data sets
— robustness and stability results.

e Statistical properties of signatures



Persistent homology for (point cloud) data
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A e

Xm: metric data se

k» Filt(X,, ): filtered simplicial complex

e Build a geometric filtered simplicial complex
on top of X,, — multiscale topol. structure.

e Compute the persistent homology of the
complex — multiscale topol. signature.

e Compare the signatures of “close” data sets
— robustness and stability results.

e Statistical properties of signatures



Persistent homology for (point cloud) data
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Xom: metric data ge

k» Filt(X,, ): filtered simplicial complex

e Build a geometric filtered simplicial complex
on top of X,, — multiscale topol. structure.

e Compute the persistent homology of the
complex — multiscale topol. signature.

e Compare the signatures of “close” data sets
— robustness and stability results.

e Statistical properties of signatures



Persistent homology for (point cloud) data

............

i

AN

X, metric data set

k» Filt(X,, ): filtered simplicial complex

e Build a geometric filtered simplicial complex
on top of X,, — multiscale topol. structure.

e Compute the persistent homology of the
complex — multiscale topol. signature.

e Compare the signatures of “close” data sets
— robustness and stability results.

e Statistical properties of signatures



............

Persistence barcode

i

e Build a geometric filtered simplicial complex
on top of X,, — multiscale topol. structure.

e Compute the persistent homology of the
complex — multiscale topol. signature.

e Compare the signatures of “close” data sets Persistence diagram

— robustness and stability results. >

e Statistical properties of signatures



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

3b(dgm(Rips(X)), dgm(Rips(Y))) < deu (X,Y).

Gromov-Hausdorff distance

dau(X,Y) := , ivfllf,m da (711 (X), v2(X))

Z, metric space, 71 : X =+ Zandvy2 : Y — Z
Isometric embeddings.

Bottleneck distance

Rem: This result also holds for other families of filtrations (particular case of a more general
theorem).



Application: non rigid shape classification

ﬁﬂ"ﬁ?ﬁ%‘n’ﬂ\ H&M“ _ ° :ggpel
a2 DL E & & T
ﬂm'@mmmnm”” ® ® horse

TITIXEKEKEK i .-

808808080 ¢ 608 ¢8°¢
K’EH\HMHMH ”” \ ﬂus'r@:otteneck c.iistalnce..

T T T a

e Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

e Compare diagrams of sampled shapes instead of shapes themselves.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €
R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Examples:

o Let S be a filtered simplicial complex. If V, = H(S,) and v2 : H(S,) — H(Ss)
is the linear map induced by the inclusion S, — S; then (H(S;) | a € R) is
a persistence module.

e Given a metric space (X, dx) , H(Rips(X)) is a persistence module.

o If f: X — R is a function, then the filtration defined by the sublevel sets of
f, Fo = f ' ((—00,al]), induces a persistence module at homology level.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Definition: A persistence module V is g-tame if for any a < b, v° has a finite rank.

Theorem:

g-tame persistence modules have well-defined persistence diagrams.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

An idea about the definition of persistence diagrams:

Measures on rectangles:

Number of points in any rectangle |a,b] X |[c,d]
above the diagonal:

rk(vy) — rk(vg) + rk(vff) — rk(vg)




Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Definition: A persistence module V is g-tame if for any a < b, v° has a finite rank.

Theorem:

g-tame persistence modules have well-defined persistence diagrams.

Exercise: Let X be a precompact metric space. Then H(Rips(X)) and H(Cech(X))

are g-tame.

Recall that a metric space (X, p) is precompact if for any € > O there exists a finite subset F'e C X such that d g7 (X, F¢) < € (i.e.
Ve € X,3dp € Fe s.t. p(x,p) < €).



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.
A homomorphism of deg-ree € betwe.en two pgrsis— [7a [7b
tence modules U and V is a collection ® of linear
maps \ () \
(0 : Uy = Vare | a € R) Jote — pp J/bFe

such that vgiz O (pg = Pp © ug for all a <b.

An e-interleaving between U and V is specified by two homomorphisms of degree ¢
®:U—->Vand ¥ :V 5> Ust. PoV¥ and ¥ o & are the “shifts” of degree 2¢

between U and V.

2
[]& aa—i_; Ua—|—2€

N AN

> Va—l—e a+3€ Va—l—Se -
va—|—e



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Stability Thm:

If U and V are g-tame and e-interleaved for some ¢ > 0 then

dp(dgm(U),dgm(V)) < e



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Stability Thm:

If U and V are g-tame and e-interleaved for some ¢ > 0 then

dp(dgm(U),dgm(V)) < e

Exercise: Show the stability theorem for (tame) functions :
let X be a topological space and let f,g: X — R be two tame functions. Then

dg(Dys,Dy) < ||f — 9llco-



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Stability Thm:

If U and V are g-tame and e-interleaved for some ¢ > 0 then

dp(dgm(U),dgm(V)) < ¢

Strategy: build filtrations that induce g-tame homology persistence modules
and that turn out to be c-interleaved when the considered spaces/functions are

O(e)-close.



Multivalued maps and correspondences

Y X

X

Y
A multivalued map C' : X = Y from a set X to a set Y is a subset of X X VY,
also denoted (', that projects surjectively onto X through the canonical projection
mx : X X Y — X. The image C(o0) of a subset o of X is the canonical projection
onto Y of the preimage of o through 7x.



Multivalued maps and correspondences

Y X

X

Y
A multivalued map C' : X = Y from a set X to a set Y is a subset of X X VY,

also denoted (', that projects surjectively onto X through the canonical projection

mx : X X Y — X. The image C(o0) of a subset o of X is the canonical projection
onto Y of the preimage of o through 7x.

The transpose of C, denoted C?, is the image of C' through the symmetry map
(z,y) = (y,2).

A multivalued map C : X = Y is a correspondence if C* is also a multivalued map.



Multivalued maps and correspondences

Y X

X

Y

A multivalued map C' : X = Y from a set X to a set Y is a subset of X X VY,
also denoted (', that projects surjectively onto X through the canonical projection
mx : X X Y — X. The image C(o0) of a subset o of X is the canonical projection

onto Y of the preimage of o through 7x.

Example: e-correspondence and Gromov-Hausdorff distance.

Y
Let (X, px) and (Y, py) be compact metric spaces. ,
A correspondence C' : X = Y is an e-correspondence if 4
\V/(CE,y), (CE/,y/) e C, |:0X(CC733/) - py(y,y’)\ < e. Y

1

dap(X,Y) = 5 inf{e > 0 : there exists an e-correspondence between Xand Y}



Multivalued simplicial maps

X

Y

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map €' : X =2 Y is e-simplicial from S to T if for any a € R and any
simplex o € S,, every finite subset of C (o) is a simplex of T,..



Multivalued simplicial maps

X

Y

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map €' : X =2 Y is e-simplicial from S to T if for any a € R and any
simplex o € S,, every finite subset of C (o) is a simplex of T,..

Proposition: Let S, T be filtered complexes with vertex sets X, Y respectively. If
C : X =2 Y is a correspondence such that C and C* are both e-simplicial, then
together they induce a canonical e-interleaving between H(S) and H(T).



The example of the Rips and Cech filtrations

Proposition: Let (X, px), (Y, py) be metric spaces. For any € > 2dgu(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are e-interleaved.



The example of the Rips and Cech filtrations

Proposition: Let (X, px), (Y, py) be metric spaces. For any € > 2dgu(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are e-interleaved.

Proof: Let (': X = Y be a correspondence with distortion at most e.
f o € Rips(X, a) then px(z,2") <a for all z,2" € o.

Let 7 C C(0) be any finite subset.

For any v,y € T thereexist z,2' € os. t. ye C(x), vy € C(z') so

py(y,y') < px(z,2’) + e < a+eand 7 € Rips(Y,a + ¢)

= C'is e-simplicial from Rips(X) to Rips(Y).
Symetrically, C* is e-simplicial from Rips(Y) to Rips(X).



The example of the Rips and Cech filtrations

Proposition: Let (X, px), (Y, py) be metric spaces. For any € > 2dgu(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are e-interleaved.

Proof: Let (': X = Y be a correspondence with distortion at most e.
f o € Rips(X, a) then px(z,2") <a for all z,2" € o.

Let 7 C C(0) be any finite subset.

For any v,y € T thereexist z,2' € os. t. ye C(x), vy € C(z') so

py(y,y') < px(z,2’) + e < a+eand 7 € Rips(Y,a + ¢)

= C'is e-simplicial from Rips(X) to Rips(Y).
Symetrically, C* is e-simplicial from Rips(Y) to Rips(X).

Proposition: Let (X, px), (Y, py) be metric spaces. For any ¢ > 2dgu(X,Y) the
persistence modules H(Cech(X)) and H(Cech(Y)) are e-interleaved.



The example of the Rips and Cech filtrations

Proposition: Let (X, px), (Y, py) be metric spaces. For any € > 2dgu(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are e-interleaved.

Proof: Let (': X = Y be a correspondence with distortion at most e.
f o € Rips(X, a) then px(z,2") <a for all z,2" € o.

Let 7 C C(0) be any finite subset.

For any v,y € T thereexist z,2' € os. t. ye C(x), vy € C(z') so

py(y,y') < px(z,2’) + e < a+eand 7 € Rips(Y,a + ¢)

= C'is e-simplicial from Rips(X) to Rips(Y).
Symetrically, C* is e-simplicial from Rips(Y) to Rips(X).

Proposition: Let (X, px), (Y, py) be metric spaces. For any ¢ > 2dgu(X,Y) the
persistence modules H(Cech(X)) and H(Cech(Y)) are e-interleaved.

Remark: Similar results for witness complexes (fixed landmarks)



Tameness of the Rips and Cech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Cech(X))
are g-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Cech(X))) are well-defined!



Tameness of the Rips and Cech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Cech(X))

are g-tame.
As a consequence dgm(H(Rips(X))) and dgm(H(Cech(X))) are well-defined!

Proof: show that I? : H(Rips(X, a)) — H(Rips(X, b)) has

finite rank whenever a < b. o —_—
Let e = (b—a)/2 and let ' C X be finite s. t. C
du (X, F) < €/2. F* -
Then C = {(z,f) € X x F|d(x, f) < €/2} is o
an e-correspondence.
o o — X

Using the interleaving map, I° factorizes as

HRips(X,a) —=HRips(F,a + €)— HRips(X, a + 2¢) = HRips(X, b)

finite dimensional



Tameness of the Rips and Cech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Cech(X))
are g-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Cech(X))) are well-defined!

Theorem: Let X, Y be compact metric spaces. Then
dp, (dgm(H(Cech(X))), dgm(H(Cech(Y)))) < 2dau(X,Y),

db(dgm(H(Rips(X))), dgm(H(Rips(Y)))) < 2dan (X, Y).

Remark: The proofs never use the triangle inequality! The previous approch and results
easily extend to other settings like, e.g. spaces endowed with a similarity measure.



Why persistence

e Even when X is compact, H,(Rips(X,a)), p > 1, might be infinite dimen-
sional for some value of a:

It is also possible to build such an example with the open Rips
X q complex:

[zo,z1, -+ ,zk] € Rips(X,a™ ) & dx(x;,z;) < a, foralli,j



Why persistence

e Even when X is compact, H,(Rips(X,a)), p > 1, might be infinite dimen-
sional for some value of a:

It is also possible to build such an example with the open Rips
X q complex:

[zo,x1, - ,xk] € Rips(X,a™ ) & dx(z;,xj) < a, foralli,j
e For any o, € R such that 0 < a < 3 and any integer k there exists a

compact metric space X such that for any a € |a, 8], Hx(Rips(X,a)) has a
non countable infinite dimension (can be embedded in R* [Droz 2013]).



Why persistence

e Even when X is compact, H,(Rips(X,a)), p > 1, might be infinite dimen-
sional for some value of a:

It is also possible to build such an example with the open Rips
X q complex:

[zo,x1, - ,xk] € Rips(X,a™ ) & dx(z;,xj) < a, foralli,j
e For any o, € R such that 0 < a < 3 and any integer k there exists a

compact metric space X such that for any a € |a, 8], Hx(Rips(X,a)) has a
non countable infinite dimension (can be embedded in R* [Droz 2013]).

o If X is compact, then dim H;(Cech(X,a)) < +oo for all a ([Smale-Smale,
C.-de Silval).

o If X is geodesic, then dimH;(Rips(X,a)) < +oo for all @ > 0 and
Dgm(H; (Rips(X))) is contained in the vertical line z = 0.

o If X is a geodesic d-hyperbolic space then Dgm(H2(Rips(X))) is contained
in a vertical band of width O(9).



Some weaknesses

If X and Y are pre-compact metric spaces, then

dp (dgm(Rips(X)),dgm(Rips(Y))) < deu (X, Y).

— Vietoris-Rips (or Cech, witness) filtrations quickly become prohibitively large as
the size of the data increases ( O(|X|%) ), making the computation of persistence
practically almost impossible.

— Persistence diagrams of Rips-Vietoris (and Cé&ch, witness,..) filtrations and
Gromov-Hausdorff distance are very sensitive to noise and outliers.



Statistical setting

(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
- Filt(Xm) = Rips, (Xim)
. - Filt(Xpm) = Cecha (X))
Sample m points -~
» P - Filt(X;,) = sublevelset filtration of p(.,X,,).
according to L. e

AN

dgm(Filt(X

Questions:
e Statistical properties of dgm(Filt(X,»)) ? dgm(Filt(X.n)) —7? as m — +00?



Statistical setting

(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
- Filt(Xm) = Rips, (Xim)
. - Filt(Xpm) = Cecha (X))
Sample m points -~
» P - Filt(X;,) = sublevelset filtration of p(.,X,,).
according to L. e

AN

dgm(Filt(X

Questions:
e Statistical properties of dgm(Filt(X,»)) ? dgm(Filt(X.n)) —7? as m — +00?

e Can we do more statistics with persistence diagrams?



Statistical setting

(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
_ Filt(Xom) = Rips,, (Xm)
Sample m points - Filt(Xm) = Cecha (Xim)
. - Filt(X;,) = sublevelset filtration of p(.,X,,).
according to L. oo

AN

dgm(Filt(X

AN

Stability thm: dp,(dgm(Filt(X,)), dgm(Filt(X,))) < 2dan (X, Xom)

So, for any € > 0,

P (db (dgm(Filt(XM)),dgm(Filt(Xm))) > s) <P (daH(Xme) > %)



Deviation inequality

—n ° '
* S .
X1, Xz, X o Xm 2
I.I.d. sampled ‘. L
according to L. e o.°

For a,b > 0, u satisfies the (a, b)-standard assumption if for any x € X,, and any
r > 0, we have u(B(z,7)) > min(ar®, 1).



Deviation inequality

./ﬂ ° ..
* X « — B
Xl,X27'°',Xm o. m o
I.I.d. sampled ‘. L
according to L. e o.°

For a,b > 0, u satisfies the (a, b)-standard assumption if for any x € X,, and any
r > 0, we have u(B(z,7)) > min(ar®, 1).

Theorem: If u satisfies the (a, b)-standard assumption, then for any € > 0:

P (db (dgm(Filt(XH)), dgm(Filt(Xm)» > 8) < min(a8—; exp(—mae®), 1).

R 1/b
Moreover lim P <db (dgm(Filt(XM)),dgm(Filt(Xm))) < C4 <logm> > — 1.

n—oo 144

where C'; is a constant only depending on a and b.



Deviation inequality

* S .
X1, Xz, X o Xm 2
I.I.d. sampled ‘. L
according to L. e o.°

For a,b > 0, u satisfies the (a, b)-standard assumption if for any x € X,, and any
r > 0, we have u(B(z,7)) > min(ar®, 1).

Sketch of proof:
1. Upperbound P (dH(XM,Xm) > %)

2. (a,b) standard assumption = an explicit upperbound for the covering number

of X,, (by balls of radius £/2). 7

3. Apply “union bound” argument.
C(e) < P(g/2)
+ w(B(z,e/2)) > a(e/2)"



Minimax rate of convergence

Let P(a,b, M) be the set of all the probability measures on the metric space (M, p)
satisfying the (a, b)-standard assumption on M:



Minimax rate of convergence

Let P(a,b, M) be the set of all the probability measures on the metric space (M, p)
satisfying the (a, b)-standard assumption on M:

Theorem: Let P(a,b, M) be the set of (a, b)-standard proba measures on M. Then:

A {db(dgm(Fﬂt(Xu)),dgm(Fﬂt(Xm)))} <C (m_W)l/b

pEP(a,b,M) m

where the constant C only depends on a and b (not on M!). Assume moreover that
there exists a non isolated point x in M and let x,, be a sequence in M \ {z} such

that p(z, zm) < (am)~*/® . Then for any estimator d/gam of dgm(Filt(X,,)):

liminf p(z, zm)” " sup E [db(dgm(Filt(Xu)), d/g?nm)} > ('

m=r oo nEP(a,b,M)

where C’ is an absolute constant.

Remark: we can obtain slightly better bounds if X,, is a submanifold of RY - see [Genovese,
Perone-Pacifico,Verdinelli, Wasserman 2011, 2012]



Numerical illustrations

e
Multiplicity 4 —

- w: unif. measure on Lissajous curve X, . — =~
- Filt: distance to X,u In RQ. 3351 |y = 099287 +2.2274 linear |
- sample k£ = 300 sets of m points for m = 4}
[2100 . 100 . 3000] 345
- compute el
E.. = E[ds(dgm(Filt(X,)), dgm(Filt(X))]. |

AN

- plot log(E,,) as a function of 3%

log(log(m)/m) é -5.I95 -5.I9 -5.IE55 -5.IEE -5.:7'5 -5.I.'f' -5.:35 -5.IE -5_I55



Numerical illustrations

- w: unif. measure on a torus X,,.

- Filt: distance to X, in R”.

- sample k = 300 sets of n points for m =
(12000 : 1000 : 21000].

- compute

E.. = E[ds(dgm(Filt(X,)), dgm(Filt(Xm)))].

- plot log(E,)
log(log(m)/m).
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Persistence landscapes

d+b d=b
, 2 A 2
Ad S
®----- T
i A
- />O<\ » L10
D_{(dz_zl'bijdz;_bz)}iel Forp:(b;d,d;b) ED
t—b te [ba bizd]
Ap(t) = qd—t te (X4, d]
0 otherwise.

Persistence landscape [Bubenik 2012]:

Ap(k,t) = kmax A,(t), teR keN,

pedgm

where kmax is the kth largest value in the set.



Persistence landscapes
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Persistence landscape [Bubenik 2012]:

Ap(k,t) = kmax A,(t), teR keN,

pedgm
Properties
e Foranyt € Randany k€N, 0 < Ap(k,t) < Ap(k+1,¢).
e Foranyt € R and any k € N, |Ap(k,t) — Ap/(k,t)| < dp(D,D") where

dg (D, D") denotes the bottleneck distWD and D’.

stability properties of persistence landscapes



Persistence landscapes

2
Ad SR
I‘ _______
®----- T
: P
- />O<\ , b

e Persistence encoded as an element of a functional space (vector space!).

e Expectation of distribution of landscapes is well-defined and can be approximated
from average of sampled landscapes.

e process point of view: convergence results and convergence rates — confidence
Intervals can be computed using bootstrap.



Weak convergence of landscapes

Let L1 be the space of landscapes with support contained in [0, 7.

Let P be a probability distribution on L7, and let A\1,..., A, ~ P. Let u be the

mean landscape:
u(t) =E[Xi(t)], tel0,T].

We estimate 1 with the sample average
Z Ai( 0,T7.
Since E(A\.(t)) = u(t), A\n is a point-wise unbiased estimator of s.

For fixed t: pointwise convergence of A, (t) to u(t) + CLT

Here, convergence of the process

{Vi () = () }tem



Weak convergence of landscapes

Let
F ={ftro<e<r
where f; : L — R is defined by fi(A) = A(¢).

Empirical process indexed by f: € F:

Gn(t) = Gul(fi) = vt (An(t) - Z = \/n(Pa—P)(f:)

%\

Theorem [Weak convergence of Iandscapes]. Let G be a Brownian bridge with
covariance function k(t,s) = [ ft(A) fs(N)dP(X) — [ ft(N)dP(X) [ fs(A\)dP(X), for
t,s € [0,T]. Then G, ~ G.



Weak convergence of landscapes
Let
F =A{ftlo<e<r
where f; : L — R is defined by fi(A) = A(¢).
Empirical process indexed by f: € F:

%\

Gn(t) = Gul(fi) = vt (An(t) - Z = \/n(Pa—P)(f:)

For t € [O,T], let o(t) be the standard deviation of /nA.(t), ie. o(t) =
\/nVar \/Var (fe(A1)).

Theorem [Uniform CLT]. Suppose that o(¢t) > ¢ > 0Oin an mterval ., t*] C [0,T],
for some constant c. Then there exists a random variable W = Sup,cpy, ¢ 1G(ft))
such that

7/8
sup IP’( sup  |Gn(t)] < z) _PW<2)|=0 ((1053)8 ) .
te

z€R [t ,t%]




Some consequences

Bootstrap for landscapes — confidence bands for landscapes.

Theorem. Suppose that o(t) > ¢ > 0 in an interval [t.,t"| C [0,T], for some
constant c. Then, given a confidence level 1 — o, one can construct confidence
functions £,,(t) and u,(t) such that

P(En(t) < u(t) <up(t) for all t € [t. ,t*]> >1—a—0 ((logn)7/8> .

n1/8

Also, sup, (un (1) — £n (1)) = Op (\/g)

Sample Space Mean 1st Landscape (n=30) Mean Silhouette (p=4)
ple sp __with Adaptive 95% band . _ Wwith Adaptive 95% band
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Some consequences

Bootstrap for landscapes — confidence bands for landscapes.

Theorem. Suppose that o(t) > ¢ > 0 in an interval [t.,t"| C [0,T], for some

constant c.
functions £,,(t) and u,(t) such that

P(ﬁn(t) < u(t) <up(t) for all t € [t. ,t*]> >1—a—0 (

Also, sup, (un (1) — £n (1)) = Op (\/g)
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Then, given a confidence level 1 — «, one can construct confidence

Mean 1st Landscape (n=30)

with 95% confidence band
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To summarize

,/_\‘ ... ) ..
X1, X2, Xm o, X 2 Rips(X;,)
I.l.d. sampled ‘. . .
according to L. e o.°
Bootstrap
Repeat n times: A1 (¢ * E[X:(t)]
|>\ (t) — Ap (D)

m — OO O

Stability w.r.t. u?




VWasserstein distance

Let (M, p) be a metric space and let i, v be probability measures on M with finite
p-moments (p > 1).

“The" Wasserstein distance W, (i, ) quantifies the optimal cost of pushing u onto
v, the cost of moving a small mass dx from = to y being p(x,y)’dx.

Ci1/ N\------"""°° >
dl e Transport plan: II a proba measure on

. M x M such that II(A x R%) = u(A)
C; O o _?T_ijj and II(R* x B) = v(B) for any borelian
Q LY sets A, B C M.
d;

Q e PO : E e Cost of a transport plan:

O : _- _ﬁ o ;O C(II) = (/MxM px, y)" dll(z, y)) ’

o W,(u,v) = inf C(II)

K =



VWasserstein distance

® o0 ° ®
o ©® o0 0 ° °
°
.o...QO:o\ —> °
0.....
° '0..
o.o.'o
o ®

Example:

o If P={pi1,...,pn} is a point cloud, and P’ = {p1,...,pn—k—1,01,...,0k}
with d(o;, P) = R, then
dn(C.C'Y> R but  Waluo, per) < v (R + diam(C))

n



(Sub)sampling and stability of expected landscapes

. % * .
./_\“ ° °
at X17X27°” 7Xm: ,Lb®m '..
I.l.d. sampled * o o !
according to w. e
8 Ay (t) = Ep, [A(1)

Theorem: Let (M, p) be a metric space and let i, v be proba measures on M with
compact supports. We have

1
[Ap,m — Avmlloo < meWy(p,v)

where W, denotes the Wasserstein distance with cost function p(x,y)?.

Remarks:
- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distribu-

tions, not for expectations) ;

- also work with “Gromov-Wasserstein” metric;
1
- mP cannot be replaced by a constant.



(Sub)sampling and stability of expected landscapes

I.1.d. sampled el .
according to L.

Apm (t) = Ep, [A()]

Theorem: Let (M, p) be a metric space and let i, v be proba measures on M with
compact supports. We have

1
[Ap,m — Avmlloo < meWy(p,v)

where W, denotes the Wasserstein distance with cost function p(x,y)?.
Consequences:

e Subsampling: efficient and easy to parallelize algorithm to infer topol. information
from huge data sets.

e Robustness to outliers.

e R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/



(Sub)sampling and stability of expected landscapes
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Apm (t) = Ep, [A()]

Theorem: Let (M, p) be a metric space and let i, v be proba measures on M with
compact supports. We have

1
[Ap,m — Avmlloo < meWy(p,v)

where W, denotes the Wasserstein distance with cost function p(x,y)?.
Proof:

1
L Wy (u®™, v®™) < m Wiy (u, v)

2. Wy(Py,P,) < Wy(u®™,v®™) (stability of persistence!)
3. ||Aum — Avmlloo < Wy(P,, P,) (Jensen’s inequality)



(Sub)sampling and stability of expected landscapes

Example: Circle with one outlier.
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(Sub)sampling and stability of expected landscapes

Example: 3D shapes

Average Landscapes Dissimilarity Matrix
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From n = 100 subsamples of size m = 300




(Sub)sampling and stability of expected landscapes

(Toy) Example: Accelerometer data from smartphone.
Walking Experiment with iPhone app
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- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!
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Cycle associated to a positive simplex

LAL LN N

Lemma: If o' is a positive k-cycle, then there exists a k-cycle ¢, s.t.:
- ¢, IS not a boundary in K

- ¢, contains o* but no other positive k-simplex.

The cycle ¢ is unique.

Proof:
By induction on the order of appearence of the simplices in the filtration.



Homology basis

e At the beginning: the basis of H} is empty.

e If a basis of H,i_l has been built and ¢* is a positive k-simplex then one adds
the homology class of the cycle ¢ associated to ¢* to the basis of H;_l =

basis of Hj..
e If a basis of H} ™' has been built and o7 is a negative (k + 1)-simplex:
— let ¢'t,--- ¢ be the cycles associated to the positive simplices
o' ... o' that form a basis of H,Z_l
— d=00? =3P _epc’* +b

— I(j) = max{i : e, = 1}

— Remove the homology class of c!9) from the basis of H,Z_l = basis of



Pairing simplices

If a basis of H) ™' has been built and ¢/ is a negative (k + 1)-simplex:

7

o let c't,---  c'? be the cycles associated to the positive simplices gl ... g'P
that form a basis of H” :
o d =00’ = Zlé“kczk—l-b

o [(j) = max{ix:er =1}

e Remove the homology class of ¢!/) from the basis of Hg_l = basis of H;z

The simplices 6') and ¢/ are paired to form a persistent pair (¢'7), o%).
— The homology class created by ¢!\ in KZ(J) is killed by ¢ in K?. The persistence
(or life-time) of this cycle is : 7 —I(j) —

Remark: filtrations of K can be indexed by increasing sequences «; of real numbers
(useful when working with a function defined on the vertices of a simplicial complex).



The persistence algorithm: first version

Input: ) = K° ¢ K' C --- C K™ = K a d-dimensional filtration of a simplicial
complex K's. t. K’ = K*Uo"™ where ¢*™! is a simplex of K.

Lo=Li=---=Lg1=10
For j =0tom
k =dimo’ — 1,
if o7 is a negative simplex
[(j) = highest index of the positive simplices associated to do”;
Ly = Li U {(al(j),aj)};
end if
end for

Output: Lo, L1, -+ ,La—1 ;



The persistence algorithm: first version

Input: ) = K° ¢ K' C --- C K™ = K a d-dimensional filtration of a simplicial
P . =4 .
complex K's. t. K’ = K*Uo"™ where ¢*™! is a simplex of K.

Lo=Li=---=Lg1=10
For j =0 tom
k=dimo’l — 1:

if @a negative 9@

— hngest index of the positive simplices associated to do”;

Lk —Lk {(a'),07)};
end if
end for

Output: Lo,LlK,Ldl :

—» How to test this condition?
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