MPRI 2014/15

Dealing with noise and outliers: distance functions to measures

F. Chazal Geometrica Group INRIA Saclay

Introduction

- Data are often corrupted by noise and outliers
- What can we say about the topology/geometry underlying such noisy data?
- Is it possible to generalize the distance based approach?

Geometric Inference

Question: Given an approximation C of a geometric object K, is it possible to reliably estimate the topological and geometric properties of K, knowing only the approximation C?

Question *: Given a point cloud C (or some other more complicated set), is it possible to infer some robust topological or geometric information of C?

- The answer depends on:
 - the considered class of objects (no hope to get a positive answer in full generality),
 - a notion of distance between the objects (approximation).

Distance functions for geometric inference

Considered objects: compact subsets K of \mathbb{R}^d

Distance:

distance function to a compact $K \subset \mathbb{R}^d$: $d_K : x \to \inf_{p \in K} ||x - p||$ Hausdorf distance between two compact sets:

$$d_H(K, K') = \sup_{x \in \mathbb{R}^d} |d_K(x) - d_{K'}(x)|$$

- Replace K and C by d_K and d_C
- Compare the topology of the offsets $K^r = d_K^{-1}([0,r]) \text{ and } C^r = d_C^{-1}([0,r])$

Distance functions: the three (indeed two) main ingredients of stability

• the stability of the map $K \mapsto d_K$: $\|d_K - d_{K'}\|_{\infty} = d_H(K, K')$

Distance functions: the three (indeed two) main ingredients of stability

- the stability of the map $K \mapsto d_K$: $\|d_K - d_{K'}\|_{\infty} = d_H(K, K')$
- the 1-Lipschitz property for d_K ; $\longrightarrow \frac{d_K}{everywhere}$.

Distance functions: the three (indeed two) main ingredients of stability

- the stability of the map $K \mapsto d_K$: $\|d_K - d_{K'}\|_{\infty} = d_H(K, K')$
- the 1-Lipschitz property for d_K ; \longrightarrow

 d_K is differentiable almost everywhere.

- the gradient vector field ∇d_K is well defined and integrable (although not continuous).
- Isotopy lemma.
- d_K admits a second derivative almost everywhere.
- the 1-concavity of the function d_K^2 : $x \to \|x\|^2 - d_K^2(x)$ is convex.

The problem of "outliers"

If $K' = K \cup \{x\}$ where $d_K(x) > R$, then $||d_K - d_{K'}||_{\infty} > R$: offset-based inference methods fail!

Question: Can we generalize the previous approach by replacing the distance function by a "distance-like" function having a better behavior with respect to "noise" and "outliers"?

Replacing compact sets by measures

A measure μ is a mass distribution on \mathbb{R}^d : mathematically, it is defined as a map μ that takes a (Borel) subset $B \subset \mathbb{R}^d$ and outputs a nonnegative number $\mu(B)$. Moreover we ask that if (B_i) are disjoint subsets, $\mu(\bigcup_{i \in \mathbb{N}} B_i) = \sum_{i \in \mathbb{N}} \mu(B_i)$.

 $\mu(B)$ corresponds to to the mass of μ contained in B

Replacing compact sets by measures

- a point cloud $C = \{p_1, \ldots, p_n\}$ defines a measure $\mu_C = \frac{1}{n} \sum_i \delta_{p_i}$
- the volume form on a k-dimensional submanifold M of \mathbb{R}^d defines a measure $\operatorname{vol}_{k|M}$.
- etc...

Distance between measures

"The" Wasserstein distance $d_W(\mu, \nu)$ between two probability measures μ, ν quantifies the optimal cost of pushing μ onto ν , the cost of moving a small mass dx from x to y being $||x - y||^2 dx$.

- 1. μ and ν are discrete measures: $\mu = \sum_{i} c_i \delta_{x_i}, \ \nu = \sum_{j} d_j \delta_{y_j}$ with $\sum_{j} d_j = \sum_{i} c_i.$
 - 2. Transport plan: set of coefficients $\pi_{ij} \geq 0$ with $\sum_i \pi_{ij} = d_j$ and $\sum_j \pi_{ij} = c_i$.
 - 3. Cost of a transport plan $C(\pi) = \left(\sum_{ij} \|x_i - y_j\|^2 \pi_{ij}\right)^{1/2}$

4. $d_W(\mu, \nu) := \inf_{\pi} C(\pi)$

Distance between measures

"The" Wasserstein distance $d_W(\mu, \nu)$ between two probability measures μ, ν quantifies the optimal cost of pushing μ onto ν , the cost of moving a small mass dx from x to y being $||x - y||^2 dx$.

1. μ and ν are proba measures in \mathbb{R}^d

- 2. Transport plan: π a proba measure on $\mathbb{R}^d \times \mathbb{R}^d$ s.t. $\pi(A \times \mathbb{R}^d) = \mu(A)$ and $\pi(\mathbb{R}^d \times B) = \nu(B).$
- 3. Cost of a transport plan $C(\pi) = \left(\int_{\mathbb{R}^d \times \mathbb{R}^d} \|x - y\|^2 d\pi(x, y) \right)^{\frac{1}{2}}$

4.
$$d_W(\mu, \nu) := \inf_{\pi} C(\pi)$$

Wasserstein distance

Examples:

• If C_1 and C_2 are two point clouds, with $\#C_1 = \#C_2$, then $d_W(\mu_{C_1}, \mu_{C_2})$ is the square root of the cost of a minimal least-square matching between C_1 and C_2 .

• If
$$C = \{p_1, \dots, p_n\}$$
 is a point cloud, and $C' = \{p_1, \dots, p_{n-k-1}, o_1, \dots, o_k\}$ with $d(o_i, C) = R$, then
 $d_H(C, C') \ge R$ but $d_W(\mu_C, \mu_{C'}) \le \frac{k}{n}(R + \operatorname{diam}(C))$

The distance to a measure

Distance function to a measure, first attempt: Let $m \in]0,1[$ be a positive mass, and μ a probability measure on \mathbb{R}^d : $\delta_{\mu,m}(x) = \inf \{r > 0 : \mu(\mathbb{B}(x,r)) > m\}.$

- $\delta_{\mu,m}$ is the smallest distance needed to capture a mass of at least m;
- Coincides with the distance to the k-th neighbor when m=k/n and $\mu=\frac{1}{n}\sum_{i=1}^n\delta_{p_i}$:

$$\delta_{\mu,k/n}(\mu) = \|x - p_C^k(x)\|$$

Unstability of $\mu \mapsto \delta_{\mu,m}$

Distance function to a measure, first attempt: Let $m \in]0,1[$ be a positive mass, and μ a probability measure on \mathbb{R}^d : $\delta_{\mu,m}(x) = \inf \{r > 0 : \mu(\mathbb{B}(x,r)) > m\}.$

Unstability under Wasserstein perturbations:

$$\begin{split} \mu_{\varepsilon} &= (1/2 - \varepsilon)\delta_0 + (1/2 + \varepsilon)\delta_1 \\ \text{for } \varepsilon &> 0: \ \forall x < 0, \ \delta_{\mu_{\varepsilon}, 1/2}(x) = |x - 1| \\ \text{for } \varepsilon &= 0: \ \forall x < 0, \ \delta_{\mu_0, 1/2}(x) = |x - 0| \end{split}$$

Consequence: the map $\mu \mapsto \delta_{\mu,m} \in C^0(\mathbb{R}^d)$ is discontinuous whatever the (reasonable) topology on $C^0(\mathbb{R}^d)$.

The distance function to a measure

Definition: Given a probability measure μ on \mathbb{R}^d and $m_0 > 0$, one defines:

$$d_{\mu,m_0}: x \in \mathbb{R}^d \mapsto \left(\frac{1}{m_0} \int_0^{m_0} \delta_{\mu,m}^2(x) dm\right)^{1/2}$$

The distance function to a measure

Definition: Given a probability measure μ on \mathbb{R}^d and $m_0 > 0$, one defines:

$$d_{\mu,m_{0}}: x \in \mathbb{R}^{d} \mapsto \left(\frac{1}{m_{0}} \int_{0}^{m_{0}} \delta_{\mu,m}^{2}(x) dm\right)^{1/2}$$

$$\|x - p_{C}^{k}(x)\| = \left\|x - p_{C}^{2}(x)\| = \left\|x - p_{C}^{1}(x)\|\right\| = \left\|\frac{1}{n} - \frac{2}{n} + \dots + \frac{k}{n}\right\|$$

Example. Let $C = \{p_1, \ldots, p_n\}$ and $\mu = \frac{1}{n} \sum_{i=1}^n \delta_{p_i}$. Let $p_C^k(x)$ denote the *k*th nearest neighbor to *x* in *C*, and set $m_0 = k_0/n$:

$$d_{\mu,m_0}(x) = \left(\frac{1}{k_0}\sum_{k=1}^{k_0} \|x - p_C^k(x)\|^2\right)^{1/2}$$

"The projection submeasure": $\tilde{\mu}_{x,m_0}$ = the restriction of μ on the ball $B = \mathbb{B}(x, \delta_{\mu,m_0}(x))$, whose trace on the sphere ∂B has been rescaled so that the total mass of $\tilde{\mu}_{x,m_0}$ is m_0 .

$$d_{\mu,m_0}^2(x) = \frac{1}{m_0} \int_{h \in \mathbb{R}^d} \|h - x\|^2 \, d\tilde{\mu}_{x,m_0} = d_W^2\left(\delta_x, \frac{1}{m_0}\tilde{\mu}_{x,m_0}\right)$$

$$d_{\mu,m_0}(x) = \min_{\tilde{\mu}} \left\{ d_W\left(\delta_x, \frac{1}{m_0}\tilde{\mu}\right) : \tilde{\mu}(\mathbb{R}^d) = m_0 \text{ and } \tilde{\mu} \le \mu \right\}$$

Proof:

$$\begin{aligned} d_{\mu,m_0}(x) &= \min_{\tilde{\mu}} \left\{ d_W\left(\delta_x, \frac{1}{m_0}\tilde{\mu}\right) : \tilde{\mu}(\mathbb{R}^d) = m_0 \text{ and } \tilde{\mu} \leq \mu \right\} \\ \text{Proof:} & \text{Only one transport plan} : y \in \mathbb{R}^d \to x \\ \int_{\mathbb{R}^d} \|h - x\|^2 d\tilde{\mu}(h) \end{aligned}$$

$$d_{\mu,m_0}(x) = \min_{\tilde{\mu}} \left\{ d_W\left(\delta_x, \frac{1}{m_0}\tilde{\mu}\right) : \tilde{\mu}(\mathbb{R}^d) = m_0 \text{ and } \tilde{\mu} \le \mu \right\}$$

Proof:

$$\int_{\mathbb{R}^d} \|h - x\|^2 d\tilde{\mu}(h) = \int_{\mathbb{R}_+} t^2 d\tilde{\mu}_x(t) = \int_0^{m_0} F_{\tilde{\mu}_x}^{-1}(m)^2 dm$$

pushforward of $\tilde{\mu}$ by the distance function to x.

 $F_{\tilde{\mu}_x}(t) = \tilde{\mu}_x([0,t))$ is the cumulative function of $\tilde{\mu}_x$ and $F_{\tilde{\mu}_x}^{-1}(m) = \inf\{t \in \mathbb{R} : F_{\tilde{\mu}_x}(t) > m\}$ is its generalized inverse

$$d_{\mu,m_0}(x) = \min_{\tilde{\mu}} \left\{ d_W\left(\delta_x, \frac{1}{m_0}\tilde{\mu}\right) : \tilde{\mu}(\mathbb{R}^d) = m_0 \text{ and } \tilde{\mu} \le \mu \right\}$$

Proof:

$$\int_{\mathbb{R}^d} \|h - x\|^2 d\tilde{\mu}(h) = \int_{\mathbb{R}_+} t^2 d\tilde{\mu}_x(t) = \int_0^{m_0} F_{\tilde{\mu}_x}^{-1}(m)^2 dm$$

pushforward of $\tilde{\mu}$ by the distance function to x.

 $F_{\tilde{\mu}_x}(t) = \tilde{\mu}_x([0,t))$ is the cumulative function of $\tilde{\mu}_x$ and $F_{\tilde{\mu}_x}^{-1}(m) = \inf\{t \in \mathbb{R} : F_{\tilde{\mu}_x}(t) > m\}$ is its generalized inverse

•
$$\tilde{\mu} \le \mu \Rightarrow F_{\tilde{\mu}_x}(t) \le F_{\mu_x}(t) \Rightarrow F_{\tilde{\mu}_x}^{-1}(m) \ge F_{\mu_x}^{-1}(m)$$

• $F_{\tilde{\mu}_x}(t) = \mu(\mathbb{B}(x,t))$ and $F_{\tilde{\mu}_x}^{-1}(m) = \delta_{\tilde{\mu},m}(x)$

$$\int_{\mathbb{R}^d} \|h - x\|^2 d\tilde{\mu}(h) \ge \int_0^{m_0} F_{\mu_x}^{-1}(m)^2 dm = \int_0^{m_0} \delta_{\mu,m}(x)^2 dm$$

$$d_{\mu,m_0}(x) = \min_{\tilde{\mu}} \left\{ d_W\left(\delta_x, \frac{1}{m_0}\tilde{\mu}\right) : \tilde{\mu}(\mathbb{R}^d) = m_0 \text{ and } \tilde{\mu} \le \mu \right\}$$

Proof:

$$\int_{\mathbb{R}^d} \|h - x\|^2 d\tilde{\mu}(h) = \int_{\mathbb{R}_+} t^2 d\tilde{\mu}_x(t) = \int_0^{m_0} F_{\tilde{\mu}_x}^{-1}(m)^2 dm$$

pushforward of $\tilde{\mu}$ by the distance function to x.

 $F_{\tilde{\mu}_x}(t) = \tilde{\mu}_x([0,t))$ is the cumulative function of $\tilde{\mu}_x$ and $F_{\tilde{\mu}_x}^{-1}(m) = \inf\{t \in \mathbb{R} : F_{\tilde{\mu}_x}(t) > m\}$ is its generalized inverse

Equality iff
$$F_{\tilde{\mu}_x}^{-1}(m) = F_{\mu_x}^{-1}(m)$$
 for almost every m
 \Rightarrow equality if $\tilde{\mu} = \tilde{\mu}_{x,m_0}$

$$\int_{\mathbb{R}^d} \|h - x\|^2 d\tilde{\mu}(h) \bigotimes_{0}^{m_0} F_{\mu_x}^{-1}(m)^2 dm = \int_{0}^{m_0} \delta_{\mu,m}(x)^2 dm$$

Semiconcavity of d^2_{μ,m_0}

Theorem: Let μ be a probability measure in \mathbb{R}^d and let $m_0 \in (0, 1)$.

- 1. d^2_{μ,m_0} is 1-semiconcave, i.e. $\mathbf{x} \in \mathbb{R}^d \mapsto \|x\|^2 d^2_{\mu,m_0}$ is convex.
- 2. d^2_{μ,m_0} is differentiable almost everywhere in \mathbb{R}^d , with gradient defined by

$$\nabla_x d^2_{\mu,m_0} = \frac{2}{m_0} \int_{h \in \mathbb{R}^d} (x-h) \, d\tilde{\mu}_{x,m_0}(h)$$

3. the function $x \in \mathbb{R}^d \mapsto d_{\mu,m_0}(x)$ is 1-Lipschitz.

Example. Let $C = \{p_1, \ldots, p_n\}$ and $\mu = \frac{1}{n} \sum_{i=1}^n \delta_{p_i}$. Let $p_C^k(x)$ denote the *k*th nearest neighbor to *x* in *C*, and set $m_0 = k_0/n$:

$$\nabla d_{\mu,m_0}^2(x) = 2d_{\mu,m_0}\nabla d_{\mu,m_0} = \frac{2}{k_0}\sum_{k=1}^{k_0} (x - p_C^k(x))$$

Semiconcavity of d^2_{μ,m_0}

Proof:

$$d_{\mu,m_{0}}^{2}(y) = \frac{1}{m_{0}} \int_{h \in \mathbb{R}^{d}} ||y - h||^{2} d\tilde{\mu}_{y,m_{0}}(h)$$

$$\leq \frac{1}{m_{0}} \int_{h \in \mathbb{R}^{d}} ||y - h||^{2} d\tilde{\mu}_{x,m_{0}}(h)$$

$$d_{\mu,m_{0}}(x) = \min_{\tilde{\mu}} \left\{ d_{W} \left(\delta_{x}, \frac{1}{m_{0}} \tilde{\mu} \right) : \tilde{\mu}(\mathbb{R}^{d}) = m_{0} \text{ and } \tilde{\mu} \leq \mu \right\}$$

$$\int_{u}^{\delta_{\mu,m}(x)} \int_{u}^{\delta_{\mu,m}(x)} \int_{u}^{\delta_{\mu,m$$

Semiconcavity of d^2_{μ,m_0}

Proof:

$$\begin{aligned} d_{\mu,m_0}^2(y) &= \frac{1}{m_0} \int_{h \in \mathbb{R}^d} \|y - h\|^2 \, d\tilde{\mu}_{y,m_0}(h) \\ &\leq \frac{1}{m_0} \int_{h \in \mathbb{R}^d} \|y - h\|^2 \, d\tilde{\mu}_{x,m_0}(h) \\ &= \frac{1}{m_0} \int_{h \in \mathbb{R}^d} \left(\|x - h\|^2 + 2 \, \langle x - h, y - x \rangle + \|y - x\|^2 \right) \, d\tilde{\mu}_{x,m_0}(h) \\ &= d_{\mu,m_0}^2(x) + \|y - x\|^2 + \langle V, y - x \rangle \end{aligned}$$

with $V = \frac{2}{m_0} \int_{h \in \mathbb{R}^d} [x - h] d\tilde{\mu}_{x,m_0}(h).$

Semiconcavity of d^2_{μ,m_0}

Proof:

$$\begin{split} d_{\mu,m_0}^2(y) &= \frac{1}{m_0} \int_{h \in \mathbb{R}^d} \|y - h\|^2 d\tilde{\mu}_{y,m_0}(h) \\ &\leq \frac{1}{m_0} \int_{h \in \mathbb{R}^d} \|y - h\|^2 d\tilde{\mu}_{x,m_0}(h) \\ &= \frac{1}{m_0} \int_{h \in \mathbb{R}^d} \left(\|x - h\|^2 + 2\langle x - h, y - x \rangle + \|y - x\|^2 \right) d\tilde{\mu}_{x,m_0}(h) \\ &= d_{\mu,m_0}^2(x) + \|y - x\|^2 + \langle V, y - x \rangle \\ \text{with } V &= \frac{2}{m_0} \int_{h \in \mathbb{R}^d} [x - h] d\tilde{\mu}_{x,m_0}(h) \\ &\Rightarrow \left(\|y\|^2 - d_{\mu,m_0}^2(y) \right) - \left(\|x\|^2 - d_{\mu,m_0}^2(x) \right) \geq \langle 2x - V, x - y \rangle \\ & \text{This is the gradient!} \end{split}$$

Stability of of $\mu \to d_{\mu,m_0}$

Theorem: If μ and ν are two probability measures on \mathbb{R}^d and $m_0 > 0$, then $\|d_{\mu,m_0} - d_{\nu,m_0}\|_{\infty} \leq \frac{1}{\sqrt{m_0}} d_W(\mu,\nu).$

Stability of of $\mu \to d_{\mu,m_0}$

Theorem: If μ and ν are two probability measures on \mathbb{R}^d and $m_0 > 0$, then $\|d_{\mu,m_0} - d_{\nu,m_0}\|_{\infty} \leq \frac{1}{\sqrt{m_0}} d_W(\mu,\nu).$

Proof: Set of submeasures of μ of mass m_0 . *Proposition:* $d_H(\operatorname{Sub}_{m_0}(\mu), \operatorname{Sub}_{m_0}(\nu)) \leq d_W(\mu, \nu)$

$$\begin{aligned} d_{\mu,m_0}(x) &= \frac{1}{\sqrt{m_0}} d_W(m_0 \delta_x, \operatorname{Sub}_{m_0}(\mu)) \\ &\leq \frac{1}{\sqrt{m_0}} (d_H(\operatorname{Sub}_{m_0}(\mu), \operatorname{Sub}_{m_0}(\nu)) + d_W(m_0 \delta_x, \operatorname{Sub}_{m_0}(\nu))) \\ &\leq \frac{1}{\sqrt{m_0}} d_W(\mu, \nu) + d_{\nu,m_0}(x) \end{aligned}$$

To summarize

Theorem

- 1. the function $x \mapsto d_{\mu,m_0}(x)$ is 1-Lipschitz;
- 2. the function $x \mapsto \|x\|^2 d^2_{\mu,m_0}(x)$ is convex;
- 3. the map $\mu\mapsto d_{\mu,m_0}$ from probability measures to continuous functions is $\frac{1}{\sqrt{m_0}}\text{-Lipschitz}$, ie

$$\|d_{\mu,m_0} - d_{\mu',m_0}\|_{\infty} \le \frac{1}{\sqrt{m_0}} d_W(\mu,\mu')$$

In practice: d_{μ,m_0} and $\nabla d_{\mu,m_0}$ are very easy to compute for $\mu = \sum_{i=1}^n \delta_{p_i}$, $C = \{p_1, \dots, p_n\} \subset \mathbb{R}^d$, even for pretty large d!

Consequences

Most of the topological and geometric inference for distance functions transpose to distance to a measure functions!

- ⇒ This gives a way to associate robust geometric features to any probability measure in an Euclidean space:
 - stable offsets topology and geometry,
 - stable persistence diagrams,
 - analogous of the notions of medial axes,
 - L^1 stability of $\nabla d_{\mu,m_0}$
 - • •

2300 points, 20% outliers

2300 points, 20% outliers

 δ_{μ,m_0} , $m_0 = 0.023$ (k = 50)

 δ_{μ,m_0} , $m_0 = 0.023$ (k = 50)

 d_{μ,m_0} , $m_0 = 0.023$ (k = 50)

A 3D example

Reconstruction of an offset of a mechanical part from a noisy approximation with 10% outliers

A reconstruction theorem

Theorem: Let μ be a proba measure with compact support $K \subset \mathbb{R}^d$ s. t. (i) $r_{\alpha}(K) > 0$ for some $\alpha \in (0, 1]$, (ii) $\exists C > 0$ s.t. $\forall x \in K$, $\mu(\mathbb{B}(x, r)) \geq Cr^k$ Let μ' be another measure, and ε be an upper bound on the uniform distance

between d_K and d_{μ',m_0} . Then, for any $r \in [4\varepsilon/\alpha^2, R - 3\varepsilon]$, the *r*-sublevel sets of d_{μ,m_0} and the offsets K^{η} , for $0 < \eta < R$ are homotopy equivalent, as soon as:

$$W_2(\mu,\mu') \le \frac{R\sqrt{m_0}}{5+4/\alpha^2} - C^{-1/k} m_0^{1/k+1/2}$$

Data: 1200 points p_1, \dots, p_{1200}

Density is estimated using

1. $x \mapsto \frac{m_0}{\omega_{d-1}(\delta_{\hat{\mu},m_0}(x))}$, $m_0 = 150/1200$ (k = 150) (Devroye-Wagner'77). 2. $\frac{m_0}{2\pi d_{\hat{\mu},m_0}(x)^2}$, $m_0 = 150/1200$ (k = 150).

Density is estimated using

1. $x \mapsto \frac{m_0}{\omega_{d-1}(\delta_{\hat{\mu},m_0}(x))}$, $m_0 = 150/1200$ (k = 150) (Devroye-Wagner'77). 2. $\frac{m_0}{2\pi d_{\hat{\mu},m_0}(x)^2}$, $m_0 = 150/1200$ (k = 150).

Density is estimated using

1.
$$x \mapsto \frac{m_0}{\omega_{d-1}(\delta_{\hat{\mu},m_0}(x))}$$
, $m_0 = 150/1200$ ($k = 150$) (Devroye-Wagner'77).
2. $\frac{m_0}{2\pi d_{\hat{\mu},m_0}(x)^2}$, $m_0 = 150/1200$ ($k = 150$).

[Biau, C., Cohen-Steiner, Devroye, Rodriguez 2011]: d_{μ,m_0} can be turned into a density estimator whose level sets foliation is the same as the one of d_{μ,m_0} .

- Mean-Shift like algorithm (Fukunaga-Hostetler'75, Comaniciu-Meer '02)
- Theoretical guarantees on the convergence of the algorithm and "smoothness" of trajectories.
- "Fast concentration of mass" around underlying geometric structures?

Distance-based mean-shift followed by k-Means clustering on the point cloud made of LUV colors of the pixels of the picture on the right (10 clusters).

Galaxies data set

Take-home messages

- $\mu \mapsto d_{\mu,m_0}$ provide a way to associate geometry to a measure in Euclidean space.
- d_{μ,m_0} is robust to Wasserstein perturbations : outliers and noise are easily handled (no assumption on the nature of the noise).
- d_{μ,m_0} shares regularity properties with the usual distance function to a compact.
- Geometric stability results in this measure-theoretic setting : topology/geometry of the sublevel sets of d_{μ,m_0} , stable notion of persistence diagram for $\mu,...$
- No need of statistical models.
- Algorithm: for finite point clouds d_{μ,m_0} and $\nabla(d_{\mu,m_0})$ can be easily and efficiently computed in any dimension.

To get more details: C., Cohen-Steiner, Mérigot, Geometric Inference for Probability Measures, J. Foundations of computational Mathematics, vol. 11, 6, 2011