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Introduction

• Data are often corrupted by noise and outliers

• What can we say about the topology/geometry underlying such noisy
data?

• Is it possible to generalize the distance based approach?



Geometric Inference

Question: Given an approximation C of a geometric object K, is it
possible to reliably estimate the topological and geometric properties
of K, knowing only the approximation C?

• The answer depends on:
- the considered class of objects (no hope to get a positive
answer in full generality),
- a notion of distance between the objects (approximation).

Question *: Given a point cloud C (or some other more compli-
cated set), is it possible to infer some robust topological or geometric
information of C?



Distance functions for geometric inference

Considered objects: compact subsets K of Rd

Distance:
distance function to a compact K ⊂ Rd: dK : x→ infp∈K ‖x− p‖
Hausdorf distance between two compact sets:

dH(K,K ′) = supx∈Rd |dK(x)− dK′(x)|

• Replace K and C by dK and dC

• Compare the topology of the offsets
Kr = d−1K ([0, r]) and Cr = d−1C ([0, r])



Distance functions: the three (indeed two) main
ingredients of stability

• the stability of the map K 7→ dK :
‖dK − dK′‖∞ = dH(K,K ′)
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Distance functions: the three (indeed two) main
ingredients of stability

• the stability of the map K 7→ dK :
‖dK − dK′‖∞ = dH(K,K ′)

• the 1-Lipschitz property for dK ;

• the 1-concavity of the function d2K :
x→ ‖x‖2 − d2K(x) is convex.

dK is differentiable almost
everywhere.

• the gradient vector field ∇dK is
well defined and integrable (al-
though not continuous).

• Isotopy lemma.

• dK admits a second derivative
almost everywhere.



The problem of “outliers”

If K ′ = K ∪ {x} where dK(x) > R, then ‖dK − dK′‖∞ > R: offset-based
inference methods fail!

Question: Can we generalize the previous approach by replacing the distance
function by a “distance-like” function having a better behavior with respect
to “’noise” and “outliers”?



Replacing compact sets by measures

A measure µ is a mass distribution on Rd:
mathematically, it is defined as a map µ that takes a (Borel) subset
B ⊂ Rd and outputs a nonnegative number µ(B). Moreover we ask
that if (Bi) are disjoint subsets, µ

(⋃
i∈NBi

)
=
∑
i∈N µ(Bi).

µ(B) corresponds to to the mass of µ contained in B



Replacing compact sets by measures

• a point cloud C = {p1, . . . , pn} defines a measure µC = 1
n

∑
i δpi

• the volume form on a k-dimensional submanifold M of Rd defines a
measure volk|M .

• etc...



Distance between measures

“The” Wasserstein distance dW (µ, ν) between two probability measures µ, ν
quantifies the optimal cost of pushing µ onto ν, the cost of moving a small
mass dx from x to y being ‖x− y‖2dx.

1. µ and ν are discrete measures:
µ =

∑
i ciδxi , ν =

∑
j djδyj with∑

j dj =
∑
i ci.

2. Transport plan: set of coeffi-
cients πij ≥ 0 with

∑
i πij =

dj and
∑
j πij = ci.

3. Cost of a transport plan

C(π) =
(∑

ij ‖xi − yj‖2πij
)1/2

4. dW (µ, ν) := infπ C(π)



Distance between measures

“The” Wasserstein distance dW (µ, ν) between two probability measures µ, ν
quantifies the optimal cost of pushing µ onto ν, the cost of moving a small
mass dx from x to y being ‖x− y‖2dx.

1. µ and ν are proba measures in Rd

2. Transport plan: π a proba measure on
Rd × Rd s.t. π(A × Rd) = µ(A) and
π(Rd ×B) = ν(B).

3. Cost of a transport plan

C(π) =
(∫

Rd×Rd ‖x− y‖
2dπ(x, y)

) 1
2

4. dW (µ, ν) := infπ C(π)



Wasserstein distance

Examples:

• If C1 and C2 are two point clouds, with #C1 = #C2, then
dW (µC1 , µC2) is the square root of the cost of a minimal least-square
matching between C1 and C2.

• If C = {p1, . . . , pn} is a point cloud, and C ′ =
{p1, . . . , pn−k−1, o1, . . . , ok} with d(oi, C) = R, then

dH(C,C ′) ≥ R but dW (µC , µC′) ≤
k

n
(R+ diam(C))



The distance to a measure

Distance function to a measure, first attempt:
Let m ∈]0, 1[ be a positive mass, and µ a probability measure on Rd:
δµ,m(x) = inf {r > 0 : µ(B(x, r)) > m}.

supp(µ)

x

δµ,m(x)

• δµ,m is the smallest distance needed to cap-
ture a mass of at least m;

• Coincides with the distance to the k-th
neighbor when m = k/n and µ =
1
n

∑n
i=1 δpi :

δµ,k/n(µ) = ‖x− pkC(x)‖
m



Distance function to a measure, first attempt:
Let m ∈]0, 1[ be a positive mass, and µ a probability measure on Rd:
δµ,m(x) = inf {r > 0 : µ(B(x, r)) > m}.

Unstability under Wasserstein perturbations:

µε = (1/2− ε)δ0 + (1/2 + ε)δ1

for ε > 0 : ∀x < 0, δµε,1/2(x) = |x− 1|

for ε = 0 : ∀x < 0, δµ0,1/2(x) = |x− 0|

Consequence: the map µ 7→ δµ,m ∈ C0(Rd) is discontinuous whatever the
(reasonable) topology on C0(Rd).

0 1

1
2
+ ε

1
2
− ε

R

Unstability of µ 7→ δµ,m



The distance function to a measure

Definition: Given a probability measure µ on Rd and m0 > 0, one defines:

dµ,m0
: x ∈ Rd 7→

(
1

m0

∫ m0

0

δ2µ,m(x)dm

)1/2



The distance function to a measure

Definition: Given a probability measure µ on Rd and m0 > 0, one defines:

dµ,m0
: x ∈ Rd 7→

(
1

m0

∫ m0

0

δ2µ,m(x)dm

)1/2

Example. Let C = {p1, . . . , pn} and µ = 1
n

∑n
i=1 δpi . Let pkC(x) denote the

kth nearest neighbor to x in C, and set m0 = k0/n:

dµ,m0(x) =

(
1

k0

k0∑
k=1

‖x− pkC(x)‖2
)1/2

m

δµ,m

1
n

2
n

k
n· · ·

‖x−pkC(x)‖

‖x−p2C(x)‖

‖x−p1C(x)‖



Another expression for dµ,m0

dµ,m0
(x) = min

µ̃

{
dW

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}

“The projection submeasure”: µ̃x,m0
= the restriction of µ on the ball

B = B(x, δµ,m0
(x)), whose trace on the sphere ∂B has been rescaled so that

the total mass of µ̃x,m0 is m0.

d2µ,m0
(x) =

1

m0

∫
h∈Rd

‖h− x‖2 dµ̃x,m0
= d2W

(
δx,

1

m0
µ̃x,m0

)

Rd
space of proba
measures

{
1

m0
µ̃ : µ̃(Rd) = m0 and µ̃ ≤ µ}

x

Dirac measures

µ̃x,m0

δx



Another expression for dµ,m0

dµ,m0
(x) = min

µ̃

{
dW

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}
Proof:



Another expression for dµ,m0

dµ,m0
(x) = min

µ̃

{
dW

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}
Proof: Only one transport plan : y ∈ Rd → x∫
Rd
‖h− x‖2dµ̃(h)



Another expression for dµ,m0

dµ,m0
(x) = min

µ̃

{
dW

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}
Proof:

pushforward of µ̃ by the dis-
tance function to x.

Fµ̃x (t) = µ̃x([0, t)) is the cumulative function of µ̃x and

F−1
µ̃x

(m) = inf{t ∈ R : Fµ̃x (t) > m} is its generalized
inverse

∫
Rd
‖h−x‖2dµ̃(h) =

∫
R+

t2dµ̃x(t) =

∫ m0

0

F−1µ̃x
(m)2dm



Another expression for dµ,m0

dµ,m0
(x) = min

µ̃

{
dW

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}
Proof:

pushforward of µ̃ by the dis-
tance function to x.

Fµ̃x (t) = µ̃x([0, t)) is the cumulative function of µ̃x and

F−1
µ̃x

(m) = inf{t ∈ R : Fµ̃x (t) > m} is its generalized
inverse

∫
Rd
‖h−x‖2dµ̃(h) =

∫
R+

t2dµ̃x(t) =

∫ m0

0

F−1µ̃x
(m)2dm

• µ̃ ≤ µ⇒ Fµ̃x(t) ≤ Fµx(t)⇒ F−1µ̃x
(m) ≥ F−1µx (m)

• Fµ̃x(t) = µ(B(x, t)) and F−1µ̃x
(m) = δµ̃,m(x)

∫
Rd
‖h− x‖2dµ̃(h) ≥

∫ m0

0

F−1µx (m)2dm =

∫ m0

0

δµ,m(x)2dm



Another expression for dµ,m0

dµ,m0
(x) = min

µ̃

{
dW

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}
Proof:

pushforward of µ̃ by the dis-
tance function to x.

Fµ̃x (t) = µ̃x([0, t)) is the cumulative function of µ̃x and

F−1
µ̃x

(m) = inf{t ∈ R : Fµ̃x (t) > m} is its generalized
inverse

∫
Rd
‖h−x‖2dµ̃(h) =

∫
R+

t2dµ̃x(t) =

∫ m0

0

F−1µ̃x
(m)2dm

∫
Rd
‖h− x‖2dµ̃(h) ≥

∫ m0

0

F−1µx (m)2dm =

∫ m0

0

δµ,m(x)2dm

Equality iff F−1
µ̃x

(m) = F−1
µx (m) for almost every m

⇒ equality if µ̃ = µ̃x,m0



Semiconcavity of d2µ,m0

Theorem: Let µ be a probability measure in Rd and let m0 ∈ (0, 1).

1. d2µ,m0
is 1-semiconcave, i.e. x ∈ Rd 7→ ‖x‖2 − d2µ,m0

is convex.

2. d2µ,m0
is differentiable almost everywhere in Rd, with gradient defined

by

∇xd2µ,m0
=

2

m0

∫
h∈Rd

(x− h) dµ̃x,m0
(h)

3. the function x ∈ Rd 7→ dµ,m0(x) is 1-Lipschitz.

Example. Let C = {p1, . . . , pn} and µ = 1
n

∑n
i=1 δpi . Let pkC(x) denote the

kth nearest neighbor to x in C, and set m0 = k0/n:

∇d2µ,m0
(x) = 2dµ,m0

∇dµ,m0
=

2

k0

k0∑
k=1

(x− pkC(x))



Semiconcavity of d2µ,m0

Proof:

d2µ,m0
(y) =

1

m0

∫
h∈Rd

‖y − h‖2 dµ̃y,m0(h)

≤ 1

m0

∫
h∈Rd

‖y − h‖2 dµ̃x,m0
(h)

dµ,m0 (x) = min
µ̃

{
dW

(
δx,

1

m0
µ̃

)
: µ̃(Rd) = m0 and µ̃ ≤ µ

}

supp(µ)

x

δµ,m(x)

m

y

m



Semiconcavity of d2µ,m0

Proof:

d2µ,m0
(y) =

1

m0

∫
h∈Rd

‖y − h‖2 dµ̃y,m0
(h)

≤ 1

m0

∫
h∈Rd

‖y − h‖2 dµ̃x,m0
(h)

=
1

m0

∫
h∈Rd

(
‖x− h‖2 + 2 〈x− h, y − x〉+ ‖y − x‖2

)
dµ̃x,m0(h)

= d2µ,m0
(x) + ‖y − x‖2 + 〈V, y − x〉

with V = 2
m0

∫
h∈Rd [x− h] dµ̃x,m0

(h).



Semiconcavity of d2µ,m0

Proof:

d2µ,m0
(y) =

1

m0

∫
h∈Rd

‖y − h‖2 dµ̃y,m0
(h)

≤ 1

m0

∫
h∈Rd

‖y − h‖2 dµ̃x,m0(h)

=
1

m0

∫
h∈Rd

(
‖x− h‖2 + 2 〈x− h, y − x〉+ ‖y − x‖2

)
dµ̃x,m0

(h)

= d2µ,m0
(x) + ‖y − x‖2 + 〈V, y − x〉

with V = 2
m0

∫
h∈Rd [x− h] dµ̃x,m0(h).

⇒ (‖y‖2 − d2µ,m0
(y))− (‖x‖2 − d2µ,m0

(x)) ≥ 〈2x− V, x− y〉

This is the gradient!



Stability of of µ→ dµ,m0

Theorem: If µ and ν are two probability measures on Rd and m0 > 0, then
‖dµ,m0 − dν,m0‖∞ ≤ 1√

m0
dW (µ, ν).



Stability of of µ→ dµ,m0

Theorem: If µ and ν are two probability measures on Rd and m0 > 0, then
‖dµ,m0 − dν,m0‖∞ ≤ 1√

m0
dW (µ, ν).

Proof:

Proposition: dH(Subm0
(µ),Subm0

(ν)) ≤ dW (µ, ν)

dµ,m0
(x) =

1
√
m0

dW (m0δx,Subm0
(µ))

≤ 1
√
m0

(dH(Subm0
(µ),Subm0

(ν)) + dW (m0δx,Subm0
(ν)))

≤ 1
√
m0

dW (µ, ν) + dν,m0(x)

Set of submeasures of µ of mass m0.



To summarize

Theorem

1. the function x 7→ dµ,m0(x) is 1-Lipschitz;

2. the function x 7→ ‖x‖2 − d2µ,m0
(x) is convex;

3. the map µ 7→ dµ,m0
from probability measures to continuous functions

is 1√
m0

–Lipschitz, ie

‖dµ,m0 − dµ′,m0‖∞ ≤
1
√
m0

dW (µ, µ′)

In practice: dµ,m0
and ∇dµ,m0

are very easy to compute for µ =
∑n
i=1 δpi ,

C = {p1, · · · pn} ⊂ Rd, even for pretty large d !



Consequences

Most of the topological and geometric inference for distance functions trans-
pose to distance to a measure functions!

This gives a way to associate robust geometric features to any prob-
ability measure in an Euclidean space:

• stable offsets topology and geometry,

• stable persistence diagrams,

• analogous of the notions of medial axes,

• L1 stability of ∇dµ,m0

• · · ·

=⇒



Example: a square with outliers

2300 points, 20% outliers



Example: a square with outliers

δµ,m0 , m0 = 0.023 (k = 50)

dµ,m0 , m0 = 0.023 (k = 50)

2300 points, 20% outliers



Example: a square with outliers

δµ,m0 , m0 = 0.023 (k = 50)

dµ,m0 , m0 = 0.023 (k = 50)



Example: a square with outliers



A 3D example

Reconstruction of an offset of a mechanical part from a noisy approximation
with 10% outliers



A reconstruction theorem

Theorem: Let µ be a proba measure with compact support K ⊂ Rd s. t.
(i) rα(K) > 0 for some α ∈ (0, 1] ,
(ii) ∃C > 0 s.t. ∀x ∈ K, µ(B(x, r)) ≥ Crk
Let µ′ be another measure, and ε be an upper bound on the uniform distance
between dK and dµ′,m0

. Then, for any r ∈ [4ε/α2, R − 3ε], the r-sublevel
sets of dµ,m0 and the offsets Kη, for 0 < η < R are homotopy equivalent, as
soon as:

W2(µ, µ
′) ≤

R
√
m0

5 + 4/α2
− C−1/km1/k+1/2

0



Comparison to kNN density estimation

Data: 1200 points p1, · · · , p1200

Density is estimated using

1. x 7→ m0

ωd−1(δµ̂,m0
(x)) , m0 = 150/1200 (k = 150) (Devroye-Wagner’77).

2. m0

2πdµ̂,m0
(x)2 , m0 = 150/1200 (k = 150).

µ̂ =
1

1200

1200∑
i=1

δpi
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2. m0

2πdµ̂,m0
(x)2 , m0 = 150/1200 (k = 150).

1. 2.



Comparison to kNN density estimation

Density is estimated using

1. x 7→ m0

ωd−1(δµ̂,m0
(x)) , m0 = 150/1200 (k = 150) (Devroye-Wagner’77).

2. m0

2πdµ̂,m0
(x)2 , m0 = 150/1200 (k = 150).



Comparison to kNN density estimation

1. 2.

[Biau, C., Cohen-Steiner, Devroye, Rodr̀ıguez 2011]: dµ,m0
can be turned into

a density estimator whose level sets foliation is the same as the one of dµ,m0 .



Pushing data along the gradient of dµ,m0

• Mean-Shift like algorithm (Fukunaga-Hostetler’75, Comaniciu-Meer ’02)

• Theoretical guarantees on the convergence of the algorithm and
“smoothness” of trajectories.

• “Fast concentration of mass” around underlying geometric structures?



Pushing data along the gradient of dµ,m0

Distance-based mean-shift followed by k-Means clustering on the point cloud
made of LUV colors of the pixels of the picture on the right (10 clusters).



Pushing data along the gradient of dµ,m0

Galaxies data set



Pushing data along the gradient of dµ,m0



Take-home messages

• µ 7→ dµ,m0
provide a way to associate geometry to a measure in Euclidean

space.

• dµ,m0 is robust to Wasserstein perturbations : outliers and noise are easily
handled (no assumption on the nature of the noise).

• dµ,m0
shares regularity properties with the usual distance function to a

compact.

• Geometric stability results in this measure-theoretic setting : topol-
ogy/geometry of the sublevel sets of dµ,m0 , stable notion of persistence
diagram for µ,...

• No need of statistical models.

• Algorithm: for finite point clouds dµ,m0
and ∇(dµ,m0

) can be easily and
efficiently computed in any dimension.

To get more details: C., Cohen-Steiner, Mérigot, Geometric Inference for Probability

Measures, J. Foundations of computational Mathematics, vol. 11, 6, 2011


