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Introduction

• Data often come as (sampling of) metric spaces or sets/spaces endowed with a
similarity measure with, possibly complex, topological/geometric structure.

• Goal of TDA: infer relevant topological and geometric features of these spaces.

• Challenges and goals:
→ no direct access to topological/geometric information: need of intermediate
constructions (simplicial complexes);
→ distinguish topological “signal” from noise;
→ topological information may be multiscale;
→ statistical analysis of topological information.

[distribution of galaxies] [3D shape database][Earthquake epicenters]
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A “classical” approach:

• Build a geometric filtered simplicial complex on top of (X, ρX) (ρX being a
metric/similarity on X).
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A “classical” approach:

• Build a geometric filtered simplicial complex on top of (X, ρX) (ρX being a
metric/similarity on X).

• Compute the persistent homology of the complex → persistence diagrams: mul-
tiscale topological signature.
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Use the metric on the space of per-
sistence diagrams.[C., Cohen-Steiner, Guibas, Mémoli, Oudot ’09]

• Compare the signatures of “close” data sets → robustness and stability results.



Topological signatures for data
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Examples:
- Filt(X) = Ripsα(X)
- Filt(X) = Čechα(X)
- Filt(X) = sublevelset filtration of ρ(.,M).

Questions:

• Stability properties of dgm(Filt(X)) ?

• Is dgm(Filt(X)) well-defined? (X may not be finite)



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Examples:

• Let S be a filtered simplicial complex. If Va = H(Sa) and vba : H(Sa)→ H(Sb)
is the linear map induced by the inclusion Sa ↪→ Sb then (H(Sa) | a ∈ R) is
a persistence module.

• Given a metric space (X, ρ) , H(Rips(X)) is a persistence module.

• Given a metric space (X, ρ) , H(Čech(X)) is a persistence module.

• If f : X → R is a function, then the filtration defined by the sublevel sets of
f , Fa = f−1((−∞, a]), induces a persistence module at homology level.
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Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Definition: A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem [CCGGO’09-CdSGO’12]:
q-tame persistence modules have well-defined persistence diagrams.



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

An idea about the definition of persistence diagrams:

a b
c

d
Number of points in any rectangle [a, b] × [c, d]
above the diagonal:

rk(vcb)− rk(vdb ) + rk(vda)− rk(vca)

Measures on rectangles:

a b c d



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Definition: A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem [CCGGO’09-CdSGO’12]:
q-tame persistence modules have well-defined persistence diagrams.

Theorem[CdSO’12]: Let X be a precompact metric space. Then H(Rips(X)) and
H(Čech(X)) are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!

Recall that a metric space (X, ρ) is precompact if for any ε > 0 there exists a finite subset Fε ⊂ X such that dH (X, Fε) < ε (i.e.
∀x ∈ X, ∃p ∈ Fε s.t. ρ(x, p) < ε).



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

A homomorphism of degree ε between two persis-
tence modules U and V is a collection Φ of linear
maps

(φa : Ua → Va+ε | a ∈ R)

such that vb+εa+ε ◦ φa = φb ◦ uba for all a ≤ b.

Ua U b

V a+ε V b+ε

An ε-interleaving between U and V is specified by two homomorphisms of degree ε
Φ : U → V and Ψ : V → U s.t. Φ ◦ Ψ and Ψ ◦ Φ are the “shifts” of degree 2ε
between U and V.

Ua

V a+ε

Ua+2ε

V a+3ε· · ·

· · ·
φa

ψa+ε

ua+2ε
a

va+3ε
a+ε

· · ·

· · ·



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Theorem [CCGGO’09-CdSGO’12]:
If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Theorem [CCGGO’09-CdSGO’12]:
If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

Strategy: build filtered complexes on top of metric spaces that induce q-tame
homology persistence modules and that turn out to be ε-interleaved when the
considered spaces are O(ε)-close.

Need to be defined.



Multivalued maps and correspondences

A multivalued map C : X ⇒ Y from a set X to a set Y is a subset of X × Y,
also denoted C, that projects surjectively onto X through the canonical projection
πX : X × Y → X. The image C(σ) of a subset σ of X is the canonical projection
onto Y of the preimage of σ through πX.

X

Y C

Y

X CT



Multivalued maps and correspondences

A multivalued map C : X ⇒ Y from a set X to a set Y is a subset of X × Y,
also denoted C, that projects surjectively onto X through the canonical projection
πX : X × Y → X. The image C(σ) of a subset σ of X is the canonical projection
onto Y of the preimage of σ through πX.

X

Y C

Y

X CT

The transpose of C, denoted CT , is the image of C through the symmetry map
(x, y) 7→ (y, x).

A multivalued map C : X ⇒ Y is a correspondence if CT is also a multivalued map.
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also denoted C, that projects surjectively onto X through the canonical projection
πX : X × Y → X. The image C(σ) of a subset σ of X is the canonical projection
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Example: ε-correspondence and Gromov-Hausdorff distance.

Let (X, ρX) and (Y, ρY) be compact metric spaces.
A correspondence C : X ⇒ Y is an ε-correspondence if
∀(x, y), (x′, y′) ∈ C, |ρX(x, x′)− ρY(y, y′)| ≤ ε.

dGH(X,Y) =
1

2
inf{ε ≥ 0 : there exists an ε-correspondence between Xand Y}

Y

X

C

x x′

y

y′



Multivalued simplicial maps

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map C : X ⇒ Y is ε-simplicial from S to T if for any a ∈ R and any
simplex σ ∈ Sa, every finite subset of C(σ) is a simplex of Ta+ε.
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Multivalued simplicial maps

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map C : X ⇒ Y is ε-simplicial from S to T if for any a ∈ R and any
simplex σ ∈ Sa, every finite subset of C(σ) is a simplex of Ta+ε.
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Y
C
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Proposition: Let S, T be filtered complexes with vertex sets X, Y respectively. If
C : X ⇒ Y is a correspondence such that C and CT are both ε-simplicial, then
together they induce a canonical ε-interleaving between H(S) and H(T).



The example of the Rips and Čech filtrations

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.
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Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.

Proof: Let C : X ⇒ Y be a correspondence with distortion at most ε.
If σ ∈ Rips(X, a) then ρX(x, x′) ≤ a for all x, x′ ∈ σ.
Let τ ⊆ C(σ) be any finite subset.
For any y, y′ ∈ τ there exist x, x′ ∈ σ s. t. y ∈ C(x), y′ ∈ C(x′) so

ρY(y, y′) ≤ ρX(x, x′) + ε ≤ a+ ε and τ ∈ Rips(Y, a+ ε)

⇒ C is ε-simplicial from Rips(X) to Rips(Y).
Symetrically, CT is ε-simplicial from Rips(Y) to Rips(X).
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Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.

Proof: Let C : X ⇒ Y be a correspondence with distortion at most ε.
If σ ∈ Rips(X, a) then ρX(x, x′) ≤ a for all x, x′ ∈ σ.
Let τ ⊆ C(σ) be any finite subset.
For any y, y′ ∈ τ there exist x, x′ ∈ σ s. t. y ∈ C(x), y′ ∈ C(x′) so

ρY(y, y′) ≤ ρX(x, x′) + ε ≤ a+ ε and τ ∈ Rips(Y, a+ ε)

⇒ C is ε-simplicial from Rips(X) to Rips(Y).
Symetrically, CT is ε-simplicial from Rips(Y) to Rips(X).

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Čech(X)) and H(Čech(Y)) are ε-interleaved.

Remark: Similar results for witness complexes (fixed landmarks)



Tameness of the Rips and Čech filtrations
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As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!



Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!

Theorem: Let X,Y be compact metric spaces. Then

db(dgm(H(Čech(X))), dgm(H(Čech(Y)))) ≤ 2dGH(X,Y),

db(dgm(H(Rips(X))), dgm(H(Rips(Y)))) ≤ 2dGH(X,Y).

Remark: The proofs never use the triangle inequality! The previous approch and results
easily extend to other settings like, e.g. spaces endowed with a similarity measure.



Persistence-based signatures

Signatures of some elementary shapes (approximated from finite samples):
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These observations bring up the question of how good our signatures are in practice.Experimental results:

Example of application
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