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Introduction

[distribution of galaxies] [Earthquake epicenters] [3D shape database]
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e Data often come as (sampling of) metric spaces or sets/spaces endowed with a
similarity measure with, possibly complex, topological /geometric structure.

e Goal of TDA: infer relevant topological and geometric features of these spaces.

e Challenges and goals:
— no direct access to topological /geometric information: need of intermediate
constructions (simplicial complexes);

— distinguish topological “signal” from noise;
— topological information may be multiscale;
— statistical analysis of topological information.




Topological signatures for data
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O_ O-dimensional homology generators

— 1-dimensional homology generators

A “classical”’ approach:

e Build a geometric filtered simplicial complex on top of (X, px) (px being a
metric/similarity on X).
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A “classical”’ approach:

e Build a geometric filtered simplicial complex on top of (X, px) (px being a
metric/similarity on X).

e Compute the persistent homology of the complex — persistence diagrams: mul-
tiscale topological signature.



Topological signatures for data
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[C., Cohen-Steiner, Guibas, Mémoli, Oudot '09]

Use the metric on the space of per-
sistence diagrams.
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e Build a geometric filtered simplicial complex on top of (X, px) (px being a

metric/similarity on X).

e Compute the persistent homology of the complex — persistence diagrams: mul-

tiscale topological signature.

e Compare the signatures of “close” data sets — robustness and stability results.



Topological signatures for data
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Examples:

- Filt(X) = Rips,, (X)
- Filt(X) = Cechgq (X)
- Filt(X) = sublevelset filtration of p(., M).

Questions:
o Is dgm(Filt(X)) well-defined? (X may not be finite)

e Stability properties of dgm(Filt(X)) 7



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Examples:

o Let S be a filtered simplicial complex. If V, = H(S,) and v2 : H(S,) — H(Ss)
is the linear map induced by the inclusion S, — S; then (H(S;) | a € R) is
a persistence module.

e Given a metric space (X, p) , H(Rips(X)) is a persistence module.
e Given a metric space (X, p) , H(Cech(X)) is a persistence module.

e If f: X — R is a function, then the filtration defined by the sublevel sets of
f, Fo = f ' ((—00,al]), induces a persistence module at homology level.



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Definition: A persistence module V is g-tame if for any a < b, v° has a finite rank.

Theorem [CCGGO’'09-CdSGO'12]:
g-tame persistence modules have well-defined persistence diagrams.



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

An idea about the definition of persistence diagrams:

Measures on rectangles:

Number of points in any rectangle |a,b] X |[c,d]
above the diagonal:

rk(vy) — rk(vg) + rk(vff) — rk(vg)




Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Definition: A persistence module V is g-tame if for any a < b, v° has a finite rank.

Theorem [CCGGO’'09-CdSGO'12]:
g-tame persistence modules have well-defined persistence diagrams.

Theorem[CdSO'12]: Let X be a precompact metric space. Then H(Rips(X)) and
H(Cech(X)) are g-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Cech(X))) are well-defined!

Recall that a metric space (X, p) is precompact if for any € > O there exists a finite subset F'e C X such that d g7 (X, F¢) < € (i.e.
Ve € X,3dp € Fe s.t. p(x,p) < €).



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.
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Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €
R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy
the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Stability Theorem [CCGGO'09-CdSGO'12]:
If U and V are g-tame and e-interleaved for some € > 0 then

dp(dgm(U),dgm(V)) < e



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €
R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy
the composition law vy o v? = v¢ whenever a < b < ¢, and where v? is the identity

a —

map on V.

Stability Theorem [CCGGO'09-CdSGO'12]:
If U and V are g-tame and e-interleaved for some € > 0 then

dp(dgm(U),dgm(V)) < ¢

Strategy: build filtered complexes on top of metric spaces that induce g-tame
homology persistence modules and that turn out to be e-interleaved when the

considered spaces are

Need to be defined.



Multivalued maps and correspondences

Y X

X

Y
A multivalued map C' : X = Y from a set X to a set Y is a subset of X X VY,
also denoted (', that projects surjectively onto X through the canonical projection
mx : X X Y — X. The image C(o0) of a subset o of X is the canonical projection
onto Y of the preimage of o through 7x.



Multivalued maps and correspondences

Y X

X

Y
A multivalued map C' : X = Y from a set X to a set Y is a subset of X X VY,

also denoted (', that projects surjectively onto X through the canonical projection

mx : X X Y — X. The image C(o0) of a subset o of X is the canonical projection
onto Y of the preimage of o through 7x.

The transpose of C, denoted C?, is the image of C' through the symmetry map
(z,y) = (y,2).

A multivalued map C : X = Y is a correspondence if C* is also a multivalued map.



Multivalued maps and correspondences

Y X
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A multivalued map C' : X = Y from a set X to a set Y is a subset of X X VY,
also denoted (', that projects surjectively onto X through the canonical projection
mx : X X Y — X. The image C(o0) of a subset o of X is the canonical projection

onto Y of the preimage of o through 7x.

Example: e-correspondence and Gromov-Hausdorff distance.

Y
Let (X, px) and (Y, py) be compact metric spaces. ,
A correspondence C' : X = Y is an e-correspondence if 4
\V/(CE,y), (CE/,y/) e C, |:0X(CC733/) - py(y,y’)\ < e. Y

1

dap(X,Y) = 5 inf{e > 0 : there exists an e-correspondence between Xand Y}



Multivalued simplicial maps

X

Y

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map €' : X =2 Y is e-simplicial from S to T if for any a € R and any
simplex o € S,, every finite subset of C (o) is a simplex of T,..



Multivalued simplicial maps

X

Y

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map €' : X =2 Y is e-simplicial from S to T if for any a € R and any
simplex o € S,, every finite subset of C (o) is a simplex of T,..

Proposition: Let S, T be filtered complexes with vertex sets X, Y respectively. If
C : X =2 Y is a correspondence such that C and C* are both e-simplicial, then
together they induce a canonical e-interleaving between H(S) and H(T).



The example of the Rips and Cech filtrations

Proposition: Let (X, px), (Y, py) be metric spaces. For any € > 2dgu(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are e-interleaved.



The example of the Rips and Cech filtrations

Proposition: Let (X, px), (Y, py) be metric spaces. For any € > 2dgu(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are e-interleaved.

Proof: Let (': X = Y be a correspondence with distortion at most e.
f o € Rips(X, a) then px(z,2") <a for all z,2" € o.

Let 7 C C(0) be any finite subset.

For any v,y € T thereexist z,2' € os. t. ye C(x), vy € C(z') so

py(y,y') < px(z,2’) + e < a+eand 7 € Rips(Y,a + ¢)

= C'is e-simplicial from Rips(X) to Rips(Y).
Symetrically, C* is e-simplicial from Rips(Y) to Rips(X).
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Proposition: Let (X, px), (Y, py) be metric spaces. For any € > 2dgu(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are e-interleaved.

Proof: Let (': X = Y be a correspondence with distortion at most e.
f o € Rips(X, a) then px(z,2") <a for all z,2" € o.
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For any v,y € T thereexist z,2' € os. t. ye C(x), vy € C(z') so
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= C'is e-simplicial from Rips(X) to Rips(Y).
Symetrically, C* is e-simplicial from Rips(Y) to Rips(X).

Proposition: Let (X, px), (Y, py) be metric spaces. For any ¢ > 2dgu(X,Y) the
persistence modules H(Cech(X)) and H(Cech(Y)) are e-interleaved.



The example of the Rips and Cech filtrations

Proposition: Let (X, px), (Y, py) be metric spaces. For any € > 2dgu(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are e-interleaved.

Proof: Let (': X = Y be a correspondence with distortion at most e.
f o € Rips(X, a) then px(z,2") <a for all z,2" € o.

Let 7 C C(0) be any finite subset.

For any v,y € T thereexist z,2' € os. t. ye C(x), vy € C(z') so

py(y,y') < px(z,2’) + e < a+eand 7 € Rips(Y,a + ¢)

= C'is e-simplicial from Rips(X) to Rips(Y).
Symetrically, C* is e-simplicial from Rips(Y) to Rips(X).

Proposition: Let (X, px), (Y, py) be metric spaces. For any ¢ > 2dgu(X,Y) the
persistence modules H(Cech(X)) and H(Cech(Y)) are e-interleaved.

Remark: Similar results for witness complexes (fixed landmarks)



Tameness of the Rips and Cech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Cech(X))
are g-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Cech(X))) are well-defined!



Tameness of the Rips and Cech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Cech(X))
are g-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Cech(X))) are well-defined!

Theorem: Let X, Y be compact metric spaces. Then
dp, (dgm(H(Cech(X))), dgm(H(Cech(Y)))) < 2dau(X,Y),

db(dgm(H(Rips(X))), dgm(H(Rips(Y)))) < 2dan (X, Y).

Remark: The proofs never use the triangle inequality! The previous approch and results
easily extend to other settings like, e.g. spaces endowed with a similarity measure.
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Persistence-based signatures

Signatures of some elementary shapes (approximated from finite samples):
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Example of application

Experimental results:
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Example of application

Experimental results:

camels
cats

elephants

faces

heads

horses

0.04

0.035

4 003

- {10.025

- 002

0.015

oo

0.005



Example of application

Experimental results:
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