Topological signature of Data : a (partial) introduction to Topological Data Analysis

Frédéric Chazal INRIA Saclay frederic.chazal@inria.fr

Introduction

- Data often come as (sampling of) metric spaces or sets/spaces endowed with a similarity measure with, possibly complex, topological/geometric structure.
- Goal of TDA: infer relevant topological and geometric features of these spaces.
- Challenges and goals:

 \rightarrow no direct access to topological/geometric information: need of intermediate constructions (simplicial complexes);

- \rightarrow distinguish topological "signal" from noise;
- ightarrow topological information may be multiscale; ightarrow
- \rightarrow statistical analysis of topological information.

- A "classical" approach:
 - Build a geometric filtered simplicial complex on top of (X, ρ_X) (ρ_X being a metric/similarity on X).

A "classical" approach:

- Build a geometric filtered simplicial complex on top of (X, ρ_X) (ρ_X being a metric/similarity on X).
- Compute the persistent homology of the complex \rightarrow persistence diagrams: multiscale topological signature.

- Build a geometric filtered simplicial complex on top of (X, ρ_X) (ρ_X being a metric/similarity on X).
- Compute the persistent homology of the complex \rightarrow persistence diagrams: multiscale topological signature.
- Compare the signatures of "close" data sets \rightarrow robustness and stability results.

Questions:

- Is dgm(Filt(X)) well-defined? (X may not be finite)
- Stability properties of dgm(Filt(X)) ?

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Examples:

- Let S be a filtered simplicial complex. If V_a = H(S_a) and v^b_a : H(S_a) → H(S_b) is the linear map induced by the inclusion S_a → S_b then (H(S_a) | a ∈ R) is a persistence module.
- Given a metric space (X, ρ) , H(Rips(X)) is a persistence module.
- Given a metric space (X, ρ) , $H(\check{Cech}(X))$ is a persistence module.
- If f : X → R is a function, then the filtration defined by the sublevel sets of f, F_a = f⁻¹((-∞, a]), induces a persistence module at homology level.

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Definition: A persistence module \mathbb{V} is q-tame if for any a < b, v_a^b has a finite rank.

```
Theorem [CCGGO'09-CdSGO'12]:
```

q-tame persistence modules have well-defined persistence diagrams.

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

An idea about the definition of persistence diagrams:

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Definition: A persistence module \mathbb{V} is q-tame if for any a < b, v_a^b has a finite rank.

Theorem [CCGGO'09-CdSGO'12]: q-tame persistence modules have well-defined persistence diagrams.

Theorem[CdSO'12]: Let X be a precompact metric space. Then H(Rips(X)) and $H(\check{C}ech(X))$ are q-tame.

As a consequence dgm(H(Rips(\mathbb{X}))) and dgm(H(Čech(\mathbb{X}))) are well-defined!

Recall that a metric space (X, ρ) is precompact if for any $\epsilon > 0$ there exists a finite subset $F_{\epsilon} \subset X$ such that $d_{H}(X, F_{\epsilon}) < \epsilon$ (i.e. $\forall x \in X, \exists p \in F_{\epsilon} \text{ s.t. } \rho(x, p) < \epsilon$).

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

A homomorphism of degree ϵ between two persistence modules $\mathbb U$ and $\mathbb V$ is a collection Φ of linear maps

$$(\phi_a: U_a \to V_{a+\epsilon} \mid a \in \mathbf{R})$$

such that $v_{a+\epsilon}^{b+\epsilon} \circ \phi_a = \phi_b \circ u_a^b$ for all $a \leq b$.

An ε -interleaving between \mathbb{U} and \mathbb{V} is specified by two homomorphisms of degree ϵ $\Phi : \mathbb{U} \to \mathbb{V}$ and $\Psi : \mathbb{V} \to \mathbb{U}$ s.t. $\Phi \circ \Psi$ and $\Psi \circ \Phi$ are the "shifts" of degree 2ϵ between \mathbb{U} and \mathbb{V} .

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Stability Theorem [CCGGO'09-CdSGO'12]: If $\mathbb U$ and $\mathbb V$ are q-tame and ϵ -interleaved for some $\epsilon\geq 0$ then

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

```
Stability Theorem [CCGGO'09-CdSGO'12]: If \mathbb U and \mathbb V are q-tame and \epsilon-interleaved for some \epsilon \geq 0 then
```

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$

Strategy: build filtered complexes on top of metric spaces that induce **q-tame** homology persistence modules and that turn out to be ϵ -interleaved when the considered spaces are $O(\epsilon)$ -close.

Need to be defined.

Multivalued maps and correspondencesCX C^T

 \mathbb{X}

Y

A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ from a set \mathbb{X} to a set \mathbb{Y} is a subset of $\mathbb{X} \times \mathbb{Y}$, also denoted C, that projects surjectively onto \mathbb{X} through the canonical projection $\pi_{\mathbb{X}} : \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$. The image $C(\sigma)$ of a subset σ of \mathbb{X} is the canonical projection onto \mathbb{Y} of the preimage of σ through $\pi_{\mathbb{X}}$.

Y

Multivalued maps and correspondences

A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ from a set \mathbb{X} to a set \mathbb{Y} is a subset of $\mathbb{X} \times \mathbb{Y}$, also denoted C, that projects surjectively onto \mathbb{X} through the canonical projection $\pi_{\mathbb{X}} : \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$. The image $C(\sigma)$ of a subset σ of \mathbb{X} is the canonical projection onto \mathbb{Y} of the preimage of σ through $\pi_{\mathbb{X}}$.

The transpose of C, denoted C^T , is the image of C through the symmetry map $(x, y) \mapsto (y, x)$.

A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ is a correspondence if C^T is also a multivalued map.

Multivalued maps and correspondences

A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ from a set \mathbb{X} to a set \mathbb{Y} is a subset of $\mathbb{X} \times \mathbb{Y}$, also denoted C, that projects surjectively onto \mathbb{X} through the canonical projection $\pi_{\mathbb{X}} : \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$. The image $C(\sigma)$ of a subset σ of \mathbb{X} is the canonical projection onto \mathbb{Y} of the preimage of σ through $\pi_{\mathbb{X}}$.

Example: *c*-correspondence and Gromov-Hausdorff distance.

Let $(\mathbb{X}, \rho_{\mathbb{X}})$ and $(\mathbb{Y}, \rho_{\mathbb{Y}})$ be compact metric spaces. A correspondence $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ is an ϵ -correspondence if $\forall (x, y), (x', y') \in C$, $|\rho_{\mathbb{X}}(x, x') - \rho_{\mathbb{Y}}(y, y')| \leq \varepsilon$.

 $(x,y), (x',y') \in C, |\rho_{\mathbb{X}}(x,x') - \rho_{\mathbb{Y}}(y,y')| \leq \varepsilon.$ $y = \frac{1}{2} \inf\{\varepsilon \geq 0 : \text{there exists an } \varepsilon\text{-correspondence between } \mathbb{X} \text{ and } \mathbb{Y}\}$

 \boldsymbol{y}

Let \mathbb{S} and \mathbb{T} be two filtered simplicial complexes with vertex sets \mathbb{X} and \mathbb{Y} respectively. A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ is ε -simplicial from \mathbb{S} to \mathbb{T} if for any $a \in \mathbb{R}$ and any simplex $\sigma \in \mathbb{S}_a$, every finite subset of $C(\sigma)$ is a simplex of $\mathbb{T}_{a+\varepsilon}$.

Let \mathbb{S} and \mathbb{T} be two filtered simplicial complexes with vertex sets \mathbb{X} and \mathbb{Y} respectively. A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ is ε -simplicial from \mathbb{S} to \mathbb{T} if for any $a \in \mathbb{R}$ and any simplex $\sigma \in \mathbb{S}_a$, every finite subset of $C(\sigma)$ is a simplex of $\mathbb{T}_{a+\varepsilon}$.

Proposition: Let \mathbb{S} , \mathbb{T} be filtered complexes with vertex sets \mathbb{X} , \mathbb{Y} respectively. If $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ is a correspondence such that C and C^T are both ε -simplicial, then together they induce a canonical ε -interleaving between $H(\mathbb{S})$ and $H(\mathbb{T})$.

Proposition: Let $(\mathbb{X}, \rho_{\mathbb{X}})$, $(\mathbb{Y}, \rho_{\mathbb{Y}})$ be metric spaces. For any $\epsilon > 2d_{\mathrm{GH}}(\mathbb{X}, \mathbb{Y})$ the persistence modules $\mathrm{H}(\mathrm{Rips}(\mathbb{X}))$ and $\mathrm{H}(\mathrm{Rips}(\mathbb{Y}))$ are ϵ -interleaved.

Proposition: Let (X, ρ_X) , (Y, ρ_Y) be metric spaces. For any $\epsilon > 2d_{GH}(X, Y)$ the persistence modules H(Rips(X)) and H(Rips(Y)) are ϵ -interleaved.

Proof: Let $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ be a correspondence with distortion at most ϵ . If $\sigma \in \operatorname{Rips}(\mathbb{X}, a)$ then $\rho_{\mathbb{X}}(x, x') \leq a$ for all $x, x' \in \sigma$. Let $\tau \subseteq C(\sigma)$ be any finite subset. For any $y, y' \in \tau$ there exist $x, x' \in \sigma$ s. t. $y \in C(x)$, $y' \in C(x')$ so

 $\rho_{\mathbb{Y}}(y, y') \le \rho_{\mathbb{X}}(x, x') + \epsilon \le a + \epsilon \text{ and } \tau \in \operatorname{Rips}(\mathbb{Y}, a + \epsilon)$

 $\Rightarrow C \text{ is } \epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{X}) \text{ to } \operatorname{Rips}(\mathbb{Y}).$ Symetrically, C^T is $\epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{Y}) \text{ to } \operatorname{Rips}(\mathbb{X}).$

Proposition: Let (X, ρ_X) , (Y, ρ_Y) be metric spaces. For any $\epsilon > 2d_{GH}(X, Y)$ the persistence modules H(Rips(X)) and H(Rips(Y)) are ϵ -interleaved.

Proof: Let $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ be a correspondence with distortion at most ϵ . If $\sigma \in \operatorname{Rips}(\mathbb{X}, a)$ then $\rho_{\mathbb{X}}(x, x') \leq a$ for all $x, x' \in \sigma$. Let $\tau \subseteq C(\sigma)$ be any finite subset. For any $y, y' \in \tau$ there exist $x, x' \in \sigma$ s. t. $y \in C(x), y' \in C(x')$ so

 $\rho_{\mathbb{Y}}(y, y') \le \rho_{\mathbb{X}}(x, x') + \epsilon \le a + \epsilon \text{ and } \tau \in \operatorname{Rips}(\mathbb{Y}, a + \epsilon)$

 $\Rightarrow C \text{ is } \epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{X}) \text{ to } \operatorname{Rips}(\mathbb{Y}).$ Symetrically, C^T is $\epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{Y}) \text{ to } \operatorname{Rips}(\mathbb{X}).$

Proposition: Let $(\mathbb{X}, \rho_{\mathbb{X}}), (\mathbb{Y}, \rho_{\mathbb{Y}})$ be metric spaces. For any $\epsilon > 2d_{GH}(\mathbb{X}, \mathbb{Y})$ the persistence modules $H(\operatorname{\check{Cech}}(\mathbb{X}))$ and $H(\operatorname{\check{Cech}}(\mathbb{Y}))$ are ϵ -interleaved.

Proposition: Let (X, ρ_X) , (Y, ρ_Y) be metric spaces. For any $\epsilon > 2d_{GH}(X, Y)$ the persistence modules H(Rips(X)) and H(Rips(Y)) are ϵ -interleaved.

Proof: Let $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ be a correspondence with distortion at most ϵ . If $\sigma \in \operatorname{Rips}(\mathbb{X}, a)$ then $\rho_{\mathbb{X}}(x, x') \leq a$ for all $x, x' \in \sigma$. Let $\tau \subseteq C(\sigma)$ be any finite subset. For any $y, y' \in \tau$ there exist $x, x' \in \sigma$ s. t. $y \in C(x), y' \in C(x')$ so

 $\rho_{\mathbb{Y}}(y, y') \le \rho_{\mathbb{X}}(x, x') + \epsilon \le a + \epsilon \text{ and } \tau \in \operatorname{Rips}(\mathbb{Y}, a + \epsilon)$

 $\Rightarrow C \text{ is } \epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{X}) \text{ to } \operatorname{Rips}(\mathbb{Y}).$ Symetrically, C^T is $\epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{Y}) \text{ to } \operatorname{Rips}(\mathbb{X}).$

Proposition: Let $(\mathbb{X}, \rho_{\mathbb{X}}), (\mathbb{Y}, \rho_{\mathbb{Y}})$ be metric spaces. For any $\epsilon > 2d_{GH}(\mathbb{X}, \mathbb{Y})$ the persistence modules $H(\operatorname{\check{Cech}}(\mathbb{X}))$ and $H(\operatorname{\check{Cech}}(\mathbb{Y}))$ are ϵ -interleaved.

Remark: Similar results for witness complexes (fixed landmarks)

Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Cech(X)) are q-tame.

As a consequence dgm(H(Rips(X))) and dgm($H(\check{Cech}(X))$) are well-defined!

Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Cech(X)) are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!

Theorem: Let \mathbb{X}, \mathbb{Y} be compact metric spaces. Then

 $d_{b}(\mathsf{dgm}(H(\check{C}ech(\mathbb{X}))),\mathsf{dgm}(H(\check{C}ech(\mathbb{Y})))) \leq 2d_{GH}(\mathbb{X},\mathbb{Y}),$

 $d_{\mathrm{b}}(\mathsf{dgm}(\mathrm{H}(\mathrm{Rips}(\mathbb{X}))),\mathsf{dgm}(\mathrm{H}(\mathrm{Rips}(\mathbb{Y})))) \leq 2d_{\mathrm{GH}}(\mathbb{X},\mathbb{Y}).$

Remark: The proofs never use the triangle inequality! The previous approch and results easily extend to other settings like, e.g. spaces endowed with a similarity measure.

Persistence-based signatures

Signatures of some elementary shapes (approximated from finite samples):

Example of application

Experimental results:

Example of application

Experimental results:

Example of application

Experimental results:

References

- F. Chazal, V. de Silva, S. Oudot, Persistence Stability for Geometric complexes, Geometria Dedicata 2014 (online first Dec. 2013).
- F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Mémoli, S. Oudot. Gromov-Hausdorff Stable Signatures for Shapes using Persistence. In Computer Graphics Forum, pp. 1393-1403, 2009.
- F. Chazal, V. de Silva, M. Glisse, S. Oudot, The Structure and Stability of Persistence Modules, arXiv:1207.3674, July 2012.