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Motivation and goals. In many practical situations, geometric objects
are only known through a finite set of possibly noisy sample points. A natu-
ral question is then to recover the geometry and the topology of the unknown
object from this information. The most classical example is probably surface
reconstruction, where the points are measured on the surface of a real world
object. A perhaps more surprising example is the study of the large scale
structure formed by the galaxies, which cosmologists believe to be an inter-
connected network of walls and filaments. In other applications, the shape of
interest may be a low dimensional object embedded in a higher-dimensional
space, which is the basic assumption in manifold learning [105]. This is for
example the case in time series analysis, when the shape of study is the at-
tractor of a dynamical system sampled by a sequence of observations. When
these structures are highly nonlinear and have a non trivial topology as it is
often the case, simple dimensionality reduction techniques do not suffice and
must be complemented with more geometric and topological techniques.

A lot of research was done in this direction, originating from several sources.
A bunch of contributions came from the field of computational geometry,
where much effort was done to elaborate provably correct surface recon-
struction algorithms, under a suitable sampling condition. We refer to [65]
for a thorough review of this approach. However most of this research fo-
cused on the case of sampled smooth surfaces in R3, which is by now fairly
well covered. Extending these results to higher dimensional submanifolds
and to non smooth objects is one of the objectives of this book. Such an
extension requires new data structures to walk around the curse of dimen-
sionality. Handling more general geometric shapes also requires concepts
from topology and has provoked an interest in the subject of computational
topology. Computational topology has recently gained a lot of momentum
and has been very successful at providing qualitative invariants and effi-
cient algorithms to compute them. Its application to data analysis led to
the rapidly evolving field of topological data analysis that provides a general
framework to analyze the shape of data and has been applied to various
types of data across many fields.

This book. This book intends to cover various aspects of geometric and
topological inference, from data representation and combinatorial questions
to persistent homology, an adaptation of homology to point cloud data. The
aim of this book is not to provide a comprehensive treatment of topological
data analysis but to describe the mathematical and algorithmic foundations
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of the subject.

Two main concepts will play a central role in this book : simplicial com-
plexes and distance functions. Simplicial complexes generalize the notion of
triangulation of a surface and are constructed by gluing together simplices :
points, line segments, triangles and their higher dimensional counterparts.
Simplicial complexes can be considered, at the same time, as continuous ob-
jects carrying topological and geometric information and as combinatorial
data structures that can be efficiently implemented. Simplicial complexes
can be used to produce fine meshes leading to faithfull approximations well
suited to scientific computing purposes, or much coarser approximations,
still useful to infer important features of shapes such as their homology or
some local geometric properties.

Simplicial complexes have been known and studied for a long time in math-
ematics but only used in low dimensions due to their high complexity. In
this book, we will address the complexity issues by focusing on the inherent,
usually unknown, structure in the data which we assume to be of relative low
intrinsic dimension. We will put emphasis on output-sensitive algorithms,
introduce new simplicial complexes with low complexity, and describe ap-
proximation algorithms that scale well with the dimension.

Another central concept in this book is the notion of distance function. All
the simplicial complexes used in this book encode proximity relationships
between the data points. A prominent role is taken by Voronoi diagrams,
their dual Delaunay complexes and variants of those, but other simplicial
complexes based on distances like the Čech, the Vietoris-Rips or the witness
complexes will also be considered.

The book is subdivided into four parts.

Part I contains two chapters that present background material on topological
spaces and simplicial complexes.

Part II introduces Delaunay complexes and their variants. Since Delau-
nay complexes are closely related to polytopes, the main combinatorial and
algorithmic properties of polytopes are presented first in Chapter 3.

Delaunay complexes, to be introduced in Chapter 4 are defined from Voronoi
diagrams which are natural space partitions induced by the distance func-
tion to a sample. Delaunay complexes appear as the underlying basic data
structure for manifold reconstruction. The extensions of Voronoi diagrams
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and Delaunay complexes to weighted distances are also presented together
with their relevant applications to kth-nearest neighbor search and Breg-
man divergences which are used in information theory, image processing
and statistical analysis.

Although Delaunay triangulations have many beautiful properties, their size
depends exponentially on the dimension of the space in the worst-case. It is
thus important to exhibit realistic assumptions under which the complexity
of the Delaunay triangulation does not undergo such a bad behaviour. This
will be done through the notion of nets. Another issue comes from the fact
that, in dimensions greater than 2, Delaunay simplices may have an arbitrar-
ily small volume, even if their vertices are well distributed. Avoiding such
bad simplices is a major issue and the importance of thick triangulations has
been recognized since the early days of differential topology. They play a
central role in numerical simulations to ensure the convergence of numerical
methods solving partial differential equations. They also play a central role
in the triangulation of manifolds and, in particular, the reconstruction of
submanifolds of high dimensional spaces as shown in Chapter 8. Chapter 5
defines thick triangulations and introduces a random perturbation technique
to construct thick Delaunay triangulations in Euclidean space.

Chapter 6 introduces two filtrations of simplicial complexes. Filtrations are
nested sequences of subcomplexes that allow to compute persistent homology
as described in Chapter 11. We first introduce alpha-complexes and show
that they provide natural filtrations of Delaunay and weighted Delaunay
complexes. We then introduce witness complexes and their filtrations. The
witness complex is a weak version of the Delaunay complex that can be
constructed in general metric spaces using only pairwise distances between
the points, without a need for coordinates. We will also introduce a filtration
of the witness complex.

Part III is devoted to the problem of reconstructing a submanifold M of
Rd from a finite point sample P ∈ M. The ultimate goal is to compute a
triangulation of M, i.e. a simplicial complex that is homeomorphic to M.
This is a demanding quest and, in this part, we will restrict our attention
to the case where M is a smooth submanifold of Rd.

In Chapter 7, we introduce the basic concepts and results, and state a the-
orem that provides conditions for a simplicial complex M̂ with vertex set
P ⊂ M to be both a triangulation and a good geometric approximation of
M.
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Chapter 8 is devoted to the problem of reconstructing submanifolds from
point samples. This problem is of primary importance whenM is a surface
of R3 (it is then known as the surface reconstruction problem). It also
founds applications in higher dimensions in the context of data analysis
where data are considered as points in some Euclidean space, of possibly
high dimension. In this chapter, we first exhibit conditions under which the
alpha-complex of P ⊂ M has the same homotopy type as M, a weaker
property than being homeomorphic to M. We then consider the problem
of reconstructing a smooth submanifoldM embedded in a space of possibly
high dimension d. We then cannot afford to triangulate the ambient space
as is being routinely done when working in low dimensions. A way to walk
around this difficulty is to assume, as is common practice in data analysis
and machine learning, that the intrinsic dimension k of M is small, even
if the dimension of the ambient space may be very large. Chapter 8 takes
advantage of this assumption and presents a reconstruction algorithm whose
complexity is linear in d and exponential only in k.

The assumptions made in Part III are very demanding: the geometric struc-
tures of the data should be smooth submanifolds, the amount of noise in
the data should be small and the sampling density should be high. These
assumptions may not be satisfied in practical situations. Part IV aims at
weakening the assumptions. Chapter 9 studies the stability properties of
the sublevel sets of distance functions and provide sampling conditions to
infer the underlying geometry and topology of data.

Approximations in Chapter 9 are with respect to the Hausdorff distance.
This is a too strong limitation when the data contain outliers that are far
away from the underlying structure we want to infer.To overcome this prob-
lem, Chapter 10 introduces a new framework where data are no longer con-
sidered as points but as distributions of mass or, more precisely probability
measures. It is shown that the distance function approach can be extended
to this more general framework.

Although Chapters 9 and 10 provide strong results on the topology of the
sublevel sets of distance functions, computing and manipulating such sub-
level sets is limited in practice to low dimensions. To go beyond these limi-
tations, we restrict our quest to the inference of some topological invariants
of the level sets, namely their homology and the associated Betti numbers.
Chapter 11 introduces persistent homology and provides tools to robustly
infer the homology of sampled shapes.
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Efficient implementations of most of the algorithms described in this book
can be found in the CGAL library (http://www.cgal.org/) or in the GUDHI
library (http://gudhi.gforge.inria.fr/).
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20 CHAPTER 1. TOPOLOGICAL SPACES

Basic mathematical notions useful in the sequel of this book are given in this
chapter. For conciseness, the definitions and results are not always given in
their full generality. They are restricted to the simplest version necessary to
follow and understand the results and proofs of this book.

1.1 Topological spaces

This section quickly recalls a few basic notions and definitions from general
topology. Most of the topological objects encountered in this book are metric
spaces whose definition is also recalled.

A topology on a set X is a family O of subsets of X that satisfies the three
following conditions: encountered in this book are metric spaces whose def-
inition is also recalled.

Definition 1.1 (Topological space) A topology on a set X is a family
O of subsets of X that satisfies the three following conditions:

1. the empty set ∅ and X are elements of O,

2. any union of elements of O is an element of O,

3. any finite intersection of elements of O is an element of O.

The set X together with the family O, whose elements are called open sets,
is a topological space. A subset C of X is closed if its complement is an
open set. If Y ⊂ X is a subset of X, then the family OY = {O∩Y : O ∈ O}
is a topology on Y , called the induced topology.

Definition 1.2 (Closure, interior and boundary) Lat S be a subset of
a topological space X. The closure S̄ of S, is the smallest closed set con-
taining S. The interior S̊ of S is the largest open set contained in S. The
boundary ∂S of S is the set difference ∂S = S̄ \ S̊.

Definition 1.3 (Metric space) A metric (or distance) on a set X is a
map d : X ×X → [0,+∞) such that:

1. for any x, y ∈ X, d(x, y) = d(y, x),

2. for any x, y ∈ X, d(x, y) = 0 if and only if x = y,
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3. for any x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

The set X together with d is a metric space. The smallest topology containing
all the open balls B(x, r) = {y ∈ X : d(x, y) < r} is called the metric
topology on X induced by d.

Definition 1.4 (Continuous map) A map f : X → X ′ between two
topological spaces X and X ′ is continuous if and only if the pre-image
f−1(O′) = {x ∈ X : f(x) ∈ O′} of any open set O′ ⊂ X ′ is an open
set of X. Equivalently, f is continuous if and only if the pre-image of any
closed set in X ′ is a closed set in X.

Definition 1.5 (Compact space) A topological space X is a compact spa-
ce if any open cover of X admits a finite subcover, i.e. for any family {Ui}i∈I
of open sets such that X = ∪i∈IUi there exists a finite subset J ⊆ I of the
index set I such that X = ∪j∈JUj.

For metric spaces, compacity is characterized using sequences: a metric
space X is compact if and only if any sequence in X has a convergent
subsequence.

Definition 1.6 (Connected spaces) A topological space X is connected
if it is not the union of two disjoint open sets: if O1, O2 are two open sets
such that X = O1 ∪O2 then O1 = ∅ or O2 = ∅.
A topological space X is path-connected if for any x, y ∈ X there exists a
continuous map γ : [0, 1]→ X such that γ(0) = x and γ(1) = y.

A path-connected space is always connected, but the reverse is not true in
general. See Exercise 1.1.

Euclidean spaces. The space Rd, d ≥ 1 and its subsets are examples of
particular interest. All along the book, for x = (x1, · · · , xd) ∈ Rd

‖x‖ =

d∑

i=1

x2
i
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denotes the Euclidean norm on Rd. It induces the Euclidean metric on Rd :
d(x, y) = ‖x − y‖. The standard topology on Rd is the one induced by the
Euclidean metric.

A subset K ⊂ Rd (endowed with the topology induced from the Euclidean
one) is compact if and only if it is closed and bounded (Heine-Borel theorem).

1.2 Comparing topological spaces

There are many ways of measuring how close two objects are. We distinguish
between topological and geometric criteria.

1.2.1 Homeomorphism, isotopy and homotopy equivalence

In topology, two topological spaces are considered to be the same when they
are homeomorphic.

Definition 1.7 (Homeomorphism) Two topological spaces X and Y are
homeomorphic if there exists a continuous bijective map h : X → Y such that
its inverse h−1 is also continuous. The map h is called a homeomorphism.

As an example, a circle and a simple closed polygonal curve are homeomor-
phic. On the other hand, a circle and a segment are not homeomorphic. See
Exercise 1.6.

The continuity of the inverse map in the definition is automatic in some
cases. If U is an open subset of Rd and f : U → Rd is an injective continuous
map, then V = f(U) is open and f is a homeomorphism between U and V
by Brower’s invariance of domain.1 The domain invariance theorem may be
generalized to manifolds: If M and N are topological k-manifolds without
boundary and f : U → N is an injective continuous map from an open
subset of M to N , then f is open and is an homeomorphism between U and
f(U).

IfX is homeomorphic to the standard unit ball of Rd, X is called a topological
ball.

1See T. Tao’s blog https://terrytao.wordpress.com/2011/06/13/

brouwers-fixed-point-and-invariance-of-domain-theorems-and-hilberts-fifth-problem/

https://terrytao.wordpress.com/2011/06/13/brouwers-fixed-point-and-invariance-of-domain-theorems-and-hilberts-fifth-problem/ 
https://terrytao.wordpress.com/2011/06/13/brouwers-fixed-point-and-invariance-of-domain-theorems-and-hilberts-fifth-problem/ 
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The notions of compacity and connexity are preserved by homeomorphism.
See Exercise 1.4.

Let h be a map between two topological spaces X and Y . If h is a homeo-
morphism onto its image, it is called an embedding of X in Y .

When the considered spaces X and Y are subspaces of Rd, the notion of
isotopy is stronger than the notion of homeomorphism to ditinguish between
spaces.

Definition 1.8 (Ambient isotopy) An ambient isotopy between X ⊂ Rd
and Y ⊂ Rd is a map F : Rd × [0, 1] → Rd such that F (., 0) is the identity
map on Rd, F (X, 1) = Y and for any t ∈ [0, 1], F is a homeomorphism of
Rd.

Intuitively, the previous definition means that X can be continuously de-
formed into Y without creating any self-intersection or topological changes.
The notion of isotopy is stronger than the notion of homeomorphism in the
sense that if X and Y are isotopic, then they are obviously homeomorphic.
Converselym two subspaces of Rd that are homeomorphic may not be iso-
topic. This is the case for a knotted and an unknotted torus embedded in
R3 as the ones in Figure 1.1. Note that, although intuitively obvious, prov-
ing that these two surfaces are not isotopic is a non obvious exercise that
requires some background in algebraic topology.

Figure 1.1: Two surfaces embedded in R3 homeomorphic to a torus that are
not isotopic.

In general, deciding whether two spaces are homeomorphic is a very difficult
task. It is sometimes more convenient to work with a weaker notion of
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equivalence between spaces called homotopy equivalence.

Given two topological spaces X and Y , two maps f0, f1 : X → Y are
homotopic if there exists a continuous map H : [0, 1]×X → Y such that for
all x ∈ X, H(0, x) = f0(x) and H(1, x) = f1(x). Homotopy equivalence is
defined in the following way.

Definition 1.9 (Homotopy equivalence) Two topological spaces X and
Y have the same homotopy type (or are homotopy equivalent) if there exist
two continuous maps f : X → Y and g : Y → X such that g◦f is homotopic
to the identity map in X and f ◦ g is homotopic to the identity map in Y .

As an example, the unit ball in an Euclidean space and a point are homo-
topy equivalent but not homeomorphic. A circle and an annulus are also
homotopy equivalent - see Figure 1.2 and Exercises 1.8.

f0(x) = x

ft(x) = (1− t)x

f1(x) = 0

homotopy equiv.

homotopy equiv.

not homotopy equiv.

Figure 1.2: An example of two maps that are homotopic (left) and examples
of spaces that are homotopy equivalent, but not homeomorphic (right).

Definition 1.10 (Contractible space) A contractible space is a space that
has the same homotopy type as a single point.

For example, a segment, or more generally any ball in an Euclidean space
Rd is contractible - see Exercise 1.7.

It is often difficult to prove homotopy equivalence directly from the defini-
tion. When Y is a subset of X, the following criterion reveals useful to prove
homotopy equivalence between X and Y .

Proposition 1.11 If Y ⊂ X and if there exists a continuous map H :
[0, 1]×X → X such that:
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1. ∀x ∈ X, H(0, x) = x,

2. ∀x ∈ X, H(1, x) ∈ Y ,

3. ∀y ∈ Y, ∀t ∈ [0, 1], H(t, y) ∈ Y ,

then X and Y are homotopy equivalent.

Definition 1.12 (Deformation retract) If, in Proposition 1.11, the last
property of H is replaced by the following stronger one

∀y ∈ Y, ∀t ∈ [0, 1], H(t, y) = y,

then H is called a deformation retract of X to Y .

A classical way to characterize and quantify topological properties and fea-
tures of spaces is to consider their topological invariants . Theses are mathe-
matical objects (numbers, groups, polynomials,...) associated to each topo-
logical space that have the property of being the same for homeomorphic
spaces. The homotopy type is clearly a topological invariant: two homeo-
morphic spaces are homotopy equivalent. The converse is false: for example,
a point and a segment are homotopy equivalent but are not homeomorphic.
See Exercise 1.7. Moreover, most of the topological invariants considered in
the sequel are indeed homotopy invariants, i.e. they are the same for spaces
that are homotopy equivalent.

1.2.2 Hausdorff distance

The set of compact subsets of a metric space can be endowed with a metric,
called the Hausdorff distance, that allows to measure how two compact
subsets are far away from each other. We give here the definition for compact
subspaces of Rd but it immediately adapts to the compact subsets of any
metric space.

Definition 1.13 (Offset) Given a compact set X of Rd, the tubular neigh-
borhood or offset Xε of X of radius ε, i.e. the set of all points at distance
at most ε from X:

Xε = {y ∈ Rd : inf
x∈X
‖x− y‖ ≤ ε} =

⋃

x∈X
B̄(x, ε)}

where B̄(x, ε) denotes the closed ball {y ∈ Rd : ‖x− y‖ ≤ ε}.
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Definition 1.14 The Hausdorff distance dH(X,Y ) between two closed sub-
sets X and Y of Rd is the infimum of the ε ≥ 0 such that X ⊂ Y ε and
Y ⊂ Xε. Equivalently,

dH(X,Y ) = max

(
sup
y∈Y

( inf
x∈X
‖x− y‖), sup

x∈X
( inf
y∈Y
‖x− y‖)

)
.

The Hausdorff distance defines a distance on the space of compact subsets
of Rd. See Exercise 1.10.

1.3 Exercises

Exercise 1.1 Let X be a path connected space. Show that X is connected.
Let X ⊂ R2 be the union of the vertical closed segment {0}× [−1, 1] and the
curve {(t, sin(1

t )) ∈ R2 : t ∈ (0, 1]}. Show that X is compact and connected
but not path-connected.

Exercise 1.2 Let S be a subset of a metric space X. Show that:

1. x ∈ X ∈ S̄ if and only if for any r > 0, B(x, r) ∩ S 6= ∅.
2. x ∈ X ∈ S̊ if and only if there exists r > 0 such that B(x, r) ⊂ S.

Exercise 1.3 Let X be a metric space. Given x ∈ X and r > 0, show that
the set B̄(x, r) = {y ∈ X : d(x, y) ≤ r} is a closed set which is indeed the
closure of the open ball B(x, r) = {y ∈ X : d(x, y) < r}.

Exercise 1.4 Let X,Y two homeomorphic topological spaces. Prove the
following equivalences:

1. X is compact if and only if Y is compact.

2. X is connected (resp. path-connected) if and only if Y is connected
(resp. path-connected).

Exercise 1.5 Show that the Euclidean space is not compact (without using
the Heine-Borel theorem).
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Exercise 1.6 A continuous polygonal curve P ⊂ R2 with consecutive edges
e1 = [p1, p2], e2 = [p2, p3], · · · en = [pn, pn+1] is simple and closed if and only
if ei∩ej = ∅ whenever 2 ≤ |i−j| mod (n), ei∩ei+1 = pi+1 for i = 1, · · ·n−1
and en ∩ e1 = p1. Show that P is homeomorphic to a circle.
Show that a circle and a segment are not homeomorphic.

Exercise 1.7 Let X be a segment (i.e. a space homeomorphic to [0, 1])
and let Y be a point. Prove that X and Y are homotopy equivalent but not
homeomorphic. More generally prove that any ball in Rd is contractible.

Exercise 1.8 Let X be the unit circle in R2 and let Y ⊂ R2 be the annulus
of inner radius 1 and outer radius 2. Prove that X and Y are homotopy
equivalent.

Exercise 1.9 Let X and Y be two topological spaces that are homotopy
equivalent. Show that if X is path-connected, then Y is also path-connected.

Exercise 1.10 Show that the Hausdorff distance is a distance on the space
of compact subsets of Rd. Show that this is no longer true if we extend the
definition to non compact sets (give an example of two different sets that are
at distance 0 from each other).

1.4 Bibliographical notes

All the notions introduced in this chapter are classical, but fundamental,
and presented with many details in the classical mathematical litterature.
For more details about basic topology, the reader may refer to any standard
book on general topology such as, e.g. [114]. The geometry of metric spaces
is a wide subject in mathematics. The reader interested in the topics may
have a look at [30]. More details and results about the notions of homotopy
and homotopy equivalenve can be found in [87, pp. 171-172] or [113, p. 108].
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Geometric shapes like curves, surfaces or their generalization in higher di-
mensions Com are “continuous” mathematical objects that cannot be di-
rectly encoded as a finite discrete structure usable by computers or comput-
ing devices. It is thus necessary to find representations of these shapes that
are rich enough to capture their geometric structure and to comply with the
contraints inherent to the discrete and finite nature of implementable data
structures. On another side, when the only available data are point clouds
sampled around unknown shapes, it is necessary to be able to build some
continuous space on top of the data that faithfully encode the topology and
the geometry of the underlying shape. Simplicial complexes offer a classical
and flexible solution to overcome these difficulties.

2.1 Geometric simplicial complexes

The points of a finite set P = {p0, p1, · · · , pk} in Rd are said to be affinely
independent if they are not contained in any affine subspace of dimension
less than k.

Definition 2.1 (Simplex) Given a set P = {p0, . . . , pk} ⊂ Rd of k + 1
affinely independent points, the k-dimensional simplex σ, or k-simplex for
short, spanned by P is the set of convex combinations

k∑

i=0

λi pi, with
k∑

i=0

λi = 1 and λi ≥ 0.

The points p0, . . . , pk are called the vertices of σ.

Notice that σ is the convex hull of the points P , i.e. the smallest convex
subset of Rd containing p0, p1, · · · , pk. A 0-simplex is a point, a 1-simplex
is a line segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron.

The faces of the simplex σ whose vertex set is P are the simplices spanned
by the subsets of P . Any face different from σ is called a proper face of σ.

For example, the faces of a triangle spanned by 3 independent points {p0, p1, p2} ∈
Rd are the simplices ∅, [p0], [p1], [p0, p1], [p1, p2], [p2, p0] and [p0, p1, p2]. Ob-
serve that, by convention, ∅ is usually added to the faces as the simplex
spanned by the empty subset of the vertices.
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Definition 2.2 (Simplicial complex) A (finite) simplicial complex K in
Rd is a (finite) collection of simplices such that:

1. any face of a simplex of K is a simplex of K,

2. the intersection of any two simplices of K is either empty or a common
face of both.

All the simplicial complexes considered in this book are finite. The simplices
of K are called the faces of K. The dimension of K is the highest dimension
of its simplices. A complex of dimension k is also called a k-complex. A
subset of the simplices of K which is itself a simplicial complex is called
a subcomplex of K. The j-skeleton Skj(K) of K is the subcomplex of K
consisting of the simplices of dimension at most j.

Figure 2.1: Left: an example of a simplicial complex. Right: a union of
simplices which is not a simplicial complex

For a simplicial complex K in Rd, its underlying space |K| ⊂ Rd is the union
of the simplices of K. The topology of K is the topology induced on |K|
by the standard topology in Rd. When there is no risk of confusion, we do
not clearly make the distinction between a complex in Rd and its underlying
space.

2.2 Abstract simplicial complexes

Notice that when its vertex set is known, a simplicial complex in Rd is fully
and combinatorialy characterized by the list of its simplices. This leads to
the following notion of abstract simplicial complex.
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Definition 2.3 (Abstract simplicial complex) Let V = {v1, · · · vn} be
a finite set. An abstract simplicial complex K̃ with vertex set V is a set of
finite subsets of V satisfying the two conditions :

1. The elements of V belong to K̃.

2. If τ ∈ K̃ and σ ⊆ τ , then σ ∈ K̃.

The elements of K̃ are called the simplices or the faces of K̃. If σ ∈ K̃ has
precisely k + 1 elements, the dimension of σ is k and we say that σ is a
k-simplex. The dimension of K̃ is the maximal dimension of its simplices.

Any simplicial complex K in Rd naturally determines an abstract simplicial
complex K̃, called the vertex scheme of K: K and K̃ have the same set of
vertices and the simplices of K̃ are the sets of vertices of the simplices of K.
Conversely, if an abstract complex K̃ is the vertex scheme of a complex K
in Rd, then K is called a geometric realization of K̃. Notice that any finite
abstract simplicial complex K̃ has a geometric realization in an Euclidean
space in the following way. Let {v1, v2, · · · , vn} be the vertex set of K̃
where n is the number of vertices of K̃, and let σ ⊂ Rn be the simplex
spanned by {e1, e2, · · · , en} where, for any i = 1, · · · , n, ei is the vector
whose coordinates are all 0 except the ith one which is equal to 1. Then K
is the subcomplex of σ defined by [ei0 , · · · , eik ] is a k-simplex of K if and
only if [vi0 , · · · , vik ] is a simplex of K. It can also be proven that any finite
abstract simplicial complex of dimension d can be realized as a simplicial
complex in R2d+1 (Exercice 2.3).

Definition 2.4 (Isomorphism of abstract simplicial complexes) Two
abstract simplicial complexes K̃, K̃ ′ with vertex sets V and V ′ are isomor-
phic if there exists a bijection φ : V → V ′ such that {v0, · · · vk} ∈ K̃ if and
only if {φ(v0), · · ·φ(vk)} ∈ K̃ ′.

The relation of isomorphism between two abstract simplicial complexes in-
duces homeomorphism between their geometric realizations.

Proposition 2.5 If two simplicial complexes K,K ′ are the geometric re-
alizations of two isomorphic abstract simplicial complexes K̃, K̃ ′, then |K|
and |K ′| are homeomorphic topological spaces. In particular, the underlying
spaces of any two geometric realizations of an abstract simplicial complex
are homeomorphic.
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In this book, we will often encounter abstract simplicial complexes whose
vertices are points in Rd. Let K̃ be an abstract complex with vertex set
V ⊂ Rd. If the convex hull of each k-simplex σ = {v0, · · · , vk} ∈ K̃ is a
geometric k-simplex in Rd and if the collection of these simplices defines a
simplical complex K, then we say that K̃ naturally embeds in Rd and that
K is the natural embedding of K̃ . When there is no ambiguity, the same
notation is used for K̃ and K.

An important remark about terminology: as the underlying spaces
of all geometric realizations of an abstract simplicial complex are homeo-
morphic to each other, it is usual to relate the topological properties of
these underlying spaces to the complex itself. For example, when one claims
that an abstract simplicial complex K is homeomorphic or homotopy equiv-
alent to a topological space X, it is meant that the underlying space of any
geometric realization of K is homeomorphic or homotopy equivalent to X.

2.3 Nerve

As noticed in previous the section, simplicial complexes can be seen at the
same time as topological spaces and as purely combinatorial objects.

Definition 2.6 (Covers) An open cover of a topological space X is a col-
lection U = (Ui)i∈I of open subsets Ui ⊆ X, i ∈ I where I is a set, such
that X = ∪i∈IUi. Similarly, a closed cover of X is a collection of closed sets
whose union is X.

Definition 2.7 (Nerve) Given a cover of a topological space X, U = (Ui)i∈I
we associate an abstract simplicial complex C(U) whose vertex set is U and
such that

σ = [Ui0 , Ui1 , · · · , Uik ] ∈ C(U) if and only if ∩kj=0 Uij 6= ∅.

Such a simplicial complex is called the nerve of the cover U .

When all the sets Ui are open and all their finite intersections are con-
tractible, i.e. are homotopy equivalent to a point, the Nerve Theorem relates
the topology of X and C(U).
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Theorem 2.8 (Nerve Theorem) Let U = (Ui)i∈I be a finite open cover
of a subset X of Rd such that any intersection of the Ui’s is either empty or
contractible. Then X and C(U) are homotopy equivalent.

The nerve theorem also holds for closed covers under a slightly more re-
strictive assumption on X. The following version is general enough for our
purpose.

Theorem 2.9 (Nerve Theorem for convex covers) Let X ⊂ Rd be a
finite union of closed convex sets F = (Fi)i∈I in Rd. Then X and C(F) are
homotopy equivalent.

A cover satisfying the assumptions of the Nerve Theorem is sometimes called
a good cover . The Nerve Theorem is of fundamental importance in compu-
tational topology and geometric inference: it provides a way to encode the
homotopy type of continuous topological space X by a simplical complex
describing the intersection pattern of a good cover. In particular, when X
is a (finite) union of (closed or open) balls in Rd, it is homotopy equivalent
to the nerve of this union of balls.

2.4 Filtrations of simplicial complexes

Simplicial complexes often come with a specific ordering of their simplices
that plays a fundamental role in geometry inference.

Definition 2.10 A filtration of a finite simplicial complex K is a nested
sequence of sub-complexes ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K such that

Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Equivalently, a filtration of K can be seen as an ordering of the simplices
such that for any i ≥ 0, the collection of the first i simplices is a simplicial
complex. To ensure this later condition, it is sufficient to know that every
simplex σi appears in the filtration after all its faces.

As a filtration of K is just an ordering of the simplices, in some cases, it
might be more natural to index the simplices by an increasing sequence
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(αi)
m
i=1 of real numbers: ∅ = Kα0 ⊂ Kα1 ⊂ · · · ⊂ Kαm = K. In this case, it

is often convenient to extend the filtration to the whole set of real numbers
by defining Kα = Kαi for α ∈ [αi, αi+1), Kα = ∅ for α < α0 and Kα = K
for α ≥ Kαm .

For example, when a function is defined on the vertices of K, on can define
a sublevel set filtration in the following way.

Filtration associated to a function defined on the vertices of a
complex. LetK be a simplicial complex and let f be a real valued function
defined on the vertices of K. For any simplex σ = {v0, · · · vk} one defines
f(σ) by

f(σ) = max
i=0···k

f(vi)

Ordering the simplices of K according to the values of each simplex defines
a filtration of K. Note that different simplices can have the same value. In
this case, they are ordered according to increasing dimension and simplices
of the same dimension with same value can be ordered arbitrarily. The
filtration induced by f is the filtration by the sublevel sets f−1(]−∞; t]) of
f .

2.5 Vietoris-Rips and Čech filtrations

Filtrations are often built on top of finite sets of points to reveal the un-
derlying topological structure of data (see Chapter 11). Let P ⊂ Rd be a
(finite) set of points.

Definition 2.11 Given α > 0, the Čech complex with vertex set P and
parameter α is the nerve Čech(P, α) of the unions of balls centered on P
with radius α. The simplices of Čech(P, α) are characterized by the following
condition:

{x0, x1, . . . , xk} ∈ Čech(P, α) ⇔
k⋂

i=0

B(xi, α) 6= ∅.

As α goes from 0 to +∞, the nested sequence of complexes Čech(P, α) defines
the Čech complex filtration.
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Given a k-dimensional face σ of the simplex of dimension |P |−1, the smallest
α such that σ ∈ Čech(P, α) is the radius of the smallest ball enclosing the
vertices of σ. As a consequence, the k-dimensional skeleton of the Čech
filtration can be computed by computing the O(|P |k) minimum enclosing
balls of all the subsets of at most k points of P . Although the computation
of the minimum ball enclosing a set of k points can be done in time O(k)
(see the bibliographic notes), the computation of the whole Čech filtration
quickly becomes intractable in practice. Given α > 0, the computation of
the k-skeleton of Čech(P, α) can be done by first computing all the cliques
of at most (k + 1) vertices of the 1-skeleton of Čech(P, α) which is a graph,
and second by selecting the cliques whose minimum enclosing ball has its
radius upper bounded by α.

α α

Figure 2.2: The Čech (left) and Vietoris-Rips (right) complexes built on top
of a finite set of points in R2. Note that they both contains a 3-simplex and
are thus not embedded in R2.

A simplicial complex which is closely related to the Čech filtration is the
Vietoris-Rips filtration, Rips(P ).

Definition 2.12 Given α > 0, the Vietoris-Rips complex Rips(P, α) with
vertext set P and parameter α is defined by the following condition

{x0, x1, · · · , xk} ∈ Rips(P, α) ⇔ ‖xi − xj‖ ≤ α for all i, j ∈ {0, . . . , k}.

As α goes from 0 to +∞, the nested sequence of complexes Rips(P, α) defines
the Vietoris-Rips filtration.

The Vietoris-Rips complex is much simpler to compute than the Čech fil-
tration as it just involves distance comparisons. The Vietoris-Rips complex
is the largest simplicial complex that has the same 1-skeleton as the Čech
complex. It is thus completely characterized by its 1-skeleton. The whole
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k-dimensional skeleton of the Vietoris-Rips filtration can be computed by
computing the diameter of all the subsets of at most k points of P .

The Čech and the Vietoris-Rips filtrations are related by the following in-
terleaving property that plays a fundamental role in Chapter 11.

Lemma 2.13 Let P be a finite set of points in Rd. for any α ≥ 0,

Rips(P, α) ⊆ Čech(P, α) ⊆ Rips(P, 2α)

Proof If σ = {x0, x1, · · · , xk} ∈ Rips(P, α) then x0 ∈
⋂k
i=0B(xi, α). So,

σ ∈ Čech(P, α). This proves the first inclusion.

Now, if σ = {x0, x1, · · · , xk} ∈ Čech(P, α), there exists y ∈ Rd such that
y ∈ ∩ki=0B(xi, α), i.e. ‖xi − y‖ ≤ α for any i = 0, · · · k. As a consequence,
for all i, j ∈ {0, . . . , k}, ‖xi − xj‖ ≤ 2α and σ ∈ Rips(P, 2α). �

Remark that the Čech and Vietoris-Rips filtrations can be defined for a set
of points in any metric space and that the above interleaving property still
holds. When the points P are in Rd, the interleaving of Lemma 2.13 is not
tight and can be slightly improved (see Exercise 11.3).

2.6 Combinatorial manifolds triangulations

Definition 2.14 (Star and link) Let K be a simplicial complex with ver-
tex set P . The star of p ∈ P is the set of simplices of K that have p as a
vertex. We denote it star(p,K). The link of p is the set of simplices τ ⊂ σ
such that σ ∈ star(p,K) but τ 6∈ star(p,K). We denote it by link(p,K).

Observe that the star of a simplex is not a complex while the link is. We
will use the name closed star of p in K to denote the subcomplex of K that
consists of the simplices of star(p,K) and their subfaces.

Definition 2.15 (Pure complex) A simplicial k-complex K is pure if ev-
ery simplex in K is the face of a k-simplex.

Definition 2.16 (Boundary complex) Let K be a pure simplicial k-com-
plex. The boundary of K, denoted ∂K is the (k− 1)-subcomplex of K whose
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(k−1)-simplices are the (k−1)-simplices of K that are incident to only one
face of dimension k.

Definition 2.17 (Combinatorial manifold) A simplicial complex K is
a combinatorial k-manifold if

1. K is pure k complex,

2. the link of any vertex of K \ ∂K is a triangulated (k − 1)-sphere

3. the link of any vertex of ∂K is a triangulated (k − 1)-ball.

We define the adjacency graph of a combinatorial k-manifold K as the graph
whose nodes are the k-simplices of K and two nodes are joined by an edge
in the graph if the two simplices associated to the two nodes have a (k− 1)-
simplex in common.

An example of a combinatorial manifold is the boundary complex of a poly-
tope (see Section 3.1).

Definition 2.18 (Triangulation of a point set) A triangulation of a fi-
nite point set P ∈ Rd is a geometric simplicial complex K whose vertex set
is P and whose underlying space is the convex hull of P .

The triangulation of a finite point set P ∈ Rd is a combinatorial mani-
fold whose boundary is the boundary complex of the convex hull of P (see
Exercise 3.9).

Definition 2.19 (Triangulation of a topological space) A triangulation
of a topological space X is a simplicial complex K and a homeomorphism
h : K → |X|.

2.7 Representation of simplicial complexes

To represent a simplicial complex K, we need a data structure that rep-
resents the simplices of the complex and is able to provide efficient imple-
mentations of elementary operations such as face and coface retrieval, and
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maintainance of the data structure upon elementary modifications of the
complex, insertion or removal of a new simplex. In addition, we may want
to attach a filtration to each simplex and iterate over the simplices of a
filtered complex by increasing values of filtration. We present below several
data structures to represent simplicial complexes.

We say that two simplices σ and τ of a simplicial complex are incident if
one is included in the other. We say that σ and τ are adjacent if they are
incident and if their dimensions differ by exactly 1. The Hasse diagram of a
simplicial complex K is a graph whose nodes represent the simplices (of all
dimensions) and two nodes are joined by an arc if the associated simplices
are adjacent.

The Hasse diagram provides an explicit representation of all the simplices
of K. If the dimension of the complex is considered as a constant, it is easy
to see that all elementary operations on K can be performed efficiently.
However the size of the Hasse diagram may be problematic in pratice when
considering big complexes. A more compact data structure that still pro-
vides an explicit representation of all the simplices of K is the so-called
simplex tree which is a minimal spanning tree of the Hasse diagram. The
simplex tree is constructed as a prefix tree of the simplices considered as
words on the alphabet v1, ..., vn where v1, ..., vn are the labels of the vertices
of K (see Figure 2.3 and Exercice 2.1).

Both the Hasse diagram and the simplex tree are convenient to store and
retrieve information attached to a simplex, e.g. a filtration value. Neverthe-
less, in some applications, we may content ourselves with less expressive but
more compact representations. Instead of representing all simplices, one can
represent only the maximal ones, i.e. the simplices that have no coface in
the complex. This may lead to a dramatic saving in memory size as can be
seen from the following simple example : the complex consisting of a unique
simplex has one maximal simplex but 2d simplices in total.

Representating only the maximal simplices is especially well suited for com-
binatorial manifold. A combinatorial manifold K can be represented by
its maximal simplices, together with the adjacency graph of those maximal
simplices. We will simply call this graph the adjacency graph of the combi-
natorial manifold. When K is of dimension d, the adjacency graph of the
maximal simplices is a connected graph of degree d + 1 that be efficiently
traversed. Such a graph will be used in Section 3.4 when constructing convex
hulls.
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1

2

3

4

5

{1,2} {1,3} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

{1} {2} {3} {5}{4}

{2, 3,5}{2, 3,4}{1, 2,3} {2, 4,5} {3, 4,5}

{2, 3, 4,5}

;

Figure 2.3: Simplicial complex and corresponding Hasse diagram.

a filtration on the complex.
The simplex tree data structure that we introduce in this chapter is a

specific spanning tree of the Hasse diagram. Its properties allow us to store
in a node only the biggest vertex of the simplex it represents and reach an
optimal memory complexity of O(1) word per simplex. The biggest labels
are pictured in blue in Figure 2.3.

Before introducing the simplex tree, we mention other data structures
used for representing simplicial complexes. Brisson [21] and Lienhardt [49]
have introduced data structures to represent d-dimensional cell complexes,
most notably subdivided manifolds. While those data structures have nice
algebraic properties, they are very redundant and do not scale to large data
sets or high dimensions. Zomorodian [69] has proposed the tidy set, a com-
pact data structure to simplify a simplicial complex and compute its ho-
mology. The construction of the tidy set requires the computation of the
maximal simplices of the simplicial complex, which is difficult in general
without constructing the whole complex explicitly. In the same spirit, At-
tali et al. [6] have proposed the skeleton-blockers data structure. Again, the
representation is general but it requires to compute blockers, the simplices
which are not contained in the simplicial complex but whose proper faces
are. Computing the blockers is as difficult as computing maximal simplices
in general. These two last data structures are efficient in the special case of
flag complexes, where the maximal simplices are the maximal cliques in the
graph and the set of blockers is empty. None of these data structures are, at
the same time, well-suited to general simplicial complexes and scale to both
dimension and size.
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Figure 2.4: A simplicial complex on 10 vertices and its simplex tree. The deepest
node represents the tetrahedron of the complex. All the positions of a given label
at a given depth are linked in a list, as illustrated in the case of label 5.

start from the root, and follow the path containing successively all labels
`0, · · · , `i, where [`0, · · · , `i] denotes the longest prefix of [�] already stored
in the simplex tree. We then append to the node representing [`0, · · · , `i] a
path consisting of the nodes storing labels `i+1, · · · , `j . It is easy to see that
the three properties above are satisfied. Hence, if K consists of #K simplices,
the associated simplex tree contains exactly #K + 1 nodes, counting the
empty simplex at the root.

We use dictionaries with size linear in the number of elements they store
(like a red-black tree or a hash table) for searching, inserting and removing
elements among a set of sibling nodes. Consequently these additional struc-
tures do not change the asymptotic memory complexity of the simplex tree.
For the top nodes, we simply use an array since the set of vertices Vert is
known and fixed. Let deg(T ) denote the maximal outdegree of a node, in
the simplex tree T , distinct from the root. Remark that deg(T ) is at most
the maximal degree of a vertex in the graph of the simplicial complex. In the
following, we will denote by Dm the maximal number of operations needed
to perform a search, an insertion or a removal in a dictionary of maximal
size deg(T ) (for example, with red-black trees Dm = O(log deg(T )) worst-
case, with hash-tables Dm = O(1) amortized). Some algorithms, that we
describe later, require to intersect and to merge sets of sibling nodes. In
order to compute fast set operations, we will prefer dictionaries which allow
to traverse their elements in sorted order (eg red-black trees). We discuss
the value of Dm at the end of this section in the case where the points have
a geometric structure.

We introduce two new notations for the analysis of the complexity of
the algorithms. Given a simplex � 2 K, we define C� to be the number
of cofaces of �, ie #St�. Note that C� only depends on the combinatorial
structure of the simplicial complex K. Let T be the simplex tree associated
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Figure 2.3: A Hasse diagram and a Simplex Tree with their associated
simplicial complexes.

2.8 Exercises

Exercise 2.1 A simplicial complex C is said to be (path-)connected if for
any pair of points (x, y) ∈ C there exists a continuous path γ : [0, 1] → C
such that γ(0) = x and γ(1) = y. Prove that a simplicial complex C is
connected if and only if its 1-skeleton is connected.

Exercise 2.2 Give examples of simplicial complexes in R3 that are home-
omorphic to a ball, a sphere, and a torus.

Exercise 2.3 Prove that any abstract simplicial complex K of dimension
d can be realized as a geometric simplicial complex in R2d+1. (Hint : map
the vertices of K to points on the moment curve C = {(x, x2, ..., x2d+1) ∈
R2d+1, x ∈ R}. Show that any subset of 2d + 2 points on C are affinely
independent and that the image of K is a realization of K in R2d+1. See
also Exercise 3.12.)

Exercise 2.1 (Simplex Tree) Let K be a d-simplicial complex whose ver-
tices are labelled 1, ..., n. Each simplex is represented by a word which is
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the sorted list of its labels. We then store all simplices of K as a prefix
tree called the simplex tree of K. The simplex tree is characterized by the
following properties:

1. The nodes of the simplex tree are in bijection with the simplices (of all
dimensions) of the complex. The root is associated to the empty face.

2. Each node of the tree, except the root, stores the label of a vertex.
Specifically, a node associated to a simplex σ stores the last label of σ.

3. The vertices whose labels are encountered along a path from the root to
a node associated to a simplex σ are the vertices of σ. Along such a path,
the labels are sorted by increasing order and each label appears no more
than once.

Show that the simplex tree of K is a spanning tree of the Hasse diagram of
K. Let σ be a i-simplex. Show that we can be decide whether σ is in K or
insert σ in K (assuming all its subfaces are in K) in time O(i log n). Show
also how to locate the faces and the cofaces of σ in the simplex tree and how
to remove σ from K.

Exercise 2.2 Show how to compute the Vietoris-Rips filtration of a set of
points P in some metric space using the simplex tree.

2.9 Bibliographical notes

Our presentation of simplicial complexes follows the one in Munkres [112].
The nerve theorem and its variants are classical results in algebraic topology.
A proof is given in Hatcher [97, Section 4G].

The computation of the Čech filtration of a finite set of points relies on the
computation of minimum enclosing balls. Welzl has proposed an elegant
randomized algorithm of linear complexity to compute the minimal ball en-
closing a set of n points. The algorithm can be adapted to compute the
minimal enclosing ellipsoid [133]. The Vietoris-Rips filtration can be ob-
tained by computing the cliques in the 1-skeleton of the Vietoris-Rips com-
plex. This is an NP-complete problem but efficient solutions exist for sparse
graphs [79]. The Vietoris-Rips filtration can be constructed and stored us-
ing a simplex tree, a data structure proposed by Boissonnat and Maria [23].
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The simplex tree is implemented in the gudhi library [106]. More compact
data structures can be found in [5, 15].

The problem of deciding if two abstract complexes are homeomorphic is
undecidable Markov 1958. Deciding if a d-simplicial complex is a homeo-
morphic to a d-sphere is undecidable for d ≥ 5 [Novikov]. It is trivial for
d = 2 and decidable for d = 3. The question remains open d = 4.
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Convex polytopes and convex polyhedra are fundamental structures that
play an essential role in computational geometry, linear programming, op-
timisation and many other fields. In this book, they also play a central
role because of their close relationship with Voronoi diagrams and Delaunay
complexes, introduced in Chapter 4 and used throughout the book. This
chapter presents here the combinatorial and algorithmic aspects of convex
polyhedra to be used in the following chapters. For a more complete treat-
ment of the rich theory of convex polytopes, the reader is referred to classical
textbooks (see the bibliographic notes).

3.1 Definitions

3.1.1 Convex polytopes

Definition 3.1 A convex polytope in Rd is the convex hull of a finite set of
points. In this book, we only consider convex polytopes and the word polytope
is used as a synonym for convex polytope.

Hence, a convex polytope is a closed bounded subset of Rd. The dimension
of a convex polytope is the dimension of the affine subspace spanned by the
polytope. Simplices (see Section 2) are particular cases of polytopes.

3.1.2 Facial structure of polytopes

A hyperplane h of Rd is a subset of Rd defined by a linear equation :

h = {x ∈ Rd : h(x) = a · x+ b = 0},
where a ∈ Rd, b ∈ R. A hyperplane h divides Rd in two half-spaces:

h+ = {x ∈ Rd : h(x) = a · x+ b ≥ 0}
h− = {x ∈ Rd : h(x) = a · x+ b ≤ 0}

Note the half-spaces h+ and h− are defined as closed subsets, so that h, h+

and h− do not form a partition of Rd but h, h+ \ h and h− \ h do.

Definition 3.2 A hyperplane h of Rd is a supporting hyperplane of the
polytope P iff the intersection P ∩ h is non empty and P is included in one
of the two half-spaces defined by h.
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The intersection of P with a supporting hyperplane h is called a face of P.

Lemma 3.3 A face of a polytope is a polytope.

Proof Let P = {p1, . . . , pn} be a finite set of points in Rd and let P =
conv(P ) be the polytope which is the convex hull of P . Any face f of P is
the intersection of P with a supporting hyperplane h. We prove that the
face f = P ∩ h is the convex hull conv(P ∩ h) of the subset of points of
P included in h. The inclusion conv(P ∩ h) ⊂ f comes from the convexity
of f . Indeed, f is convex since it is the intersection of two convex sets.
Furthermore f contains P ∩ h, so it contains the convex hull conv(P ∩ h).
To prove the reverse inclusion, we assume without loss of generality that
P ⊂ h+. Then we have h(pi) ≥ 0 for any pi ∈ P . Any point p included
in P is a convex combination p =

∑n
i=1 λi pi of points in P . If furthermore

p belongs to f , h(pi) =
∑n

i=1 λi h(pi) vanishes and this can happen only if
λi = 0 for all points pi that are not in h. Thus, if p belongs f , it belongs to
conv(P ∩ h). �

The proof of the previous lemma, shows that the faces of the polytope P are
the convex hulls of subsets of P . A polytope has therefore a finite number
of faces. The boundary of the polytope P is the union of its faces. The
faces of dimension 0 are called vertices. The faces of dimension 1 are called
edges. If P has dimension d, the faces of dimension d−1 and d−2 are called
respectively facets and ridges.

The vertices of the polytope P = conv(P ) are points of P . The following
lemma, whose proof is left as an exercise (Exercise 3.1) is a well known result
of the theory of polytopes.

Lemma 3.4 Any polytope is the convex hull of its vertices.

The facial structure of a simplex can be easily described. Indeed, if σ is a
simplex that is the convex hull of the set S = {p1, . . . , pk} of k+ 1 indepen-
dent points, any subset of S is a set of independent points whose convex hull
is a simplex and, except in the case of S itself, this simplex is a face of σ.

Therefore a k-simplex has k+ 1-vertices, and

(
k + 1
j + 1

)
faces of dimension

j, for j = 0 to k − 1.

Another fundamental result of the theory of polytopes is the following lemma
whose proof is also left as an exercise (see Exercises 3.4 and 3.5 ).
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Lemma 3.5 Any polytope is the intersection of a finite number of half-
spaces. Reciprocally, any intersection of a finite number of half-spaces that
is bounded, is a polytope.

Therefore any polytope can be described either as the convex hull of a finite
set of points or as the intersection of a finite number of half-spaces. More
precisely, the proof of Lemma 3.5 shows that the minimal set of half-spaces
whose intersection is identical to the polytope P is the set of half-spaces
bounded by the hyperplanes supporting P along its facets and containing
P.

3.1.3 Convex polyhedra

In the sequel, we extend the notion of polytopes to describe unbounded
intersections of half-spaces as well as polytopes.

Definition 3.6 A convex polyhedron is the intersection of a finite number
of half-spaces.

A convex polyhedron may be bounded or not. From Lemma 3.5, a convex
polytope is just a special case of convex polyhedron. The notion of support-
ing hyperplanes and faces introduced above for convex polytopes extend
naturally to convex polyhedra. The faces of a convex polyhedron are them-
selves convex polyhedra and may be unbounded if the convex polyhedron is
unbounded.

3.1.4 Simplicial polytopes and simple convex polyhedra

A point set P in Rd is said to be in general position when any subset of P
with size at most d + 1 is a set of affinely independent points. When the
points of P are in general position, any hyperplane h includes at most d
points of P and the points in P ∩ h are affinely independent. Therefore all
the faces of the polytope P = conv(P ) are simplices and the polytope P is
called a simplicial polytope.

A set of n hyperplanes in Rd is said to be in general position if the intersec-
tion of any subset of k of them is an affine subspace of dimension d− k. A
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convex polyhedron defined as the intersection of n half-spaces bounded by
hyperplanes in general position is called simple.

3.1.5 The boundary complex

Let P be a convex polyhedron. Any face of a face of P is a face of P and
the intersection of two faces of P is either empty or a common face of both
faces.

Therefore, if P is simplicial polytope, its faces form a geometric simplicial
complex (see Chapter 2). This complex is called the boundary complex of P.
It can be shown (see Exercise 3.9) that the boundary complex of a simplicial
polytope is a combinatorial manifold (see Definition 2.17).

If P is not a simplicial polytope, its faces may not be simplices. Still, they
are convex polyhedra and they form a cell complex as defined now.

Definition 3.7 (Cell complex) A cell complex is a set C of convex poly-
hedra, called the faces of C, that satisfies the two following properties

– Any face of a face of C is a face of C.

– The intersection of any two faces of C is either empty or a common
face of both faces.

The cell complex formed by the faces of a convex polyhedron P is still called
the boundary complex of P. We adapt to cell complexes and therefore to
convex polyhedra the notions of incidency and adjacency defined in Sec-
tion 2.7:

• Two faces of a convex polyhedron are said to be incident if one is
included in the other.

• Two facets of a convex polyhedron are said to be adjacent if they share
a (d− 2)-subface.
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3.2 Duality

3.2.1 Point-hyperplane duality

We introduce a duality between points and hyperplanes that makes use of
the unit paraboloid of Rd and gives a special role to the last coordinate axis,
called the vertical axis. We denote by x(i), i = 1, . . . , d, the coordinates of
a point x ∈ Rd.

The unit paraboloid Q is defined as :

Q =

{
x ∈ Rd : x(d) =

d−1∑

i=1

x(i)2

}
.

In the rest of this section, we write for short
∑′ for

∑d−1
i=1 .

Let p be a point of the paraboloid Q. The duality associates to point p the
hyperplane p∗ tangent to Q at p:

p∗ = {x ∈ Rd : x(d) = 2
∑′p(i)(x(i)− p(i)) + p(d)

= {x ∈ Rd : x(d)− 2
∑′p(i)x(i) + p(d) = 0}.

More generally, duality associates to any point p of Rd the non vertical
hyperplane p∗ defined by:

p∗ = {x ∈ Rd : x(d)− 2
∑′p(i)x(i) + p(d) = 0}.

Conversely, let h be a non vertical hyperplane of Rd. The equation of h can
be written in normal form:

h = {x ∈ Rd : x(d) +
∑′h(i)x(i) + h(d) = 0},

and duality associates to h the point h∗ with coordinates

(−h(1)

2
, . . . ,

−h(d− 1)

2
, h(d)

)
.

Since p∗∗ = p, duality is an involutive bijection between points of Rd and
non vertical hyperplanes of Rd. Duality preserves incidences of points and



3.2. DUALITY 51

hyperplanes: if p and q are two points in Rd with dual hyperplanes p∗ and
q∗ respectively, we have

q ∈ p∗ ⇐⇒ q(d)− 2
∑′p(d)q(d) + p(d) = 0⇐⇒ p ∈ q∗.

Let h be a non vertical hyperplane whose equation in normal form is h(x) =
0. We say that point p is above h or that h is below p if h(p) > 0. We
say that point p is below h or that h is above p if h(p) < 0. For a non
vertical hyperplane h, we call upper half-space and denote by h+ the half-
space bounded by h that is above h. We call lower half-space and denote by
h− the half-space below h:

h+ = {x ∈ Rd : h(x) > 0}
h− = {x ∈ Rd : h(x) < 0}.

Duality reverses the above-below relations between points and hyperplanes :
if p and q are two points in Rd with dual hyperplanes p∗ and q∗ respectively,
we have:

q ∈ p∗+ ⇐⇒ q(d)− 2
∑′p(d)q(d) + p(d) > 0⇐⇒ p ∈ q∗+

q ∈ p∗− ⇐⇒ q(d)− 2
∑′p(d)q(d) + p(d) < 0⇐⇒ p ∈ q∗−.

3.2.2 Lower hulls and upper envelope

Let P = {p1, . . . , pn} be a set of n points in Rd. The lower hull of P , denoted
by lowerhull(P ), is a subcomplex of the boundary complex of the polytope
P = conv(P ). Let H(P ) be the set of hyperplanes supporting the polytope
P. We distinguish the subset H+(P ) of lower supporting hyperplanes where
a hyperplane h of H(P ) is a lower supporting hyperplane if h is a non vertical
hyperplane and P is included in the upper half-space h+. The lower hull of
P is then defined as the subcomplex of the convex hull boundary, formed
by faces of P included in lower supporting hyperplanes:

lowerhull(P ) = {P ∩ h : h ∈ H+(P )}
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Consider now a set H = {h1, . . . , hn} of non vertical hyperplanes in Rd,
and let H+ be the convex polyhedron which is the intersection of the upper
half-spaces bounded by the hyperplanes of H:

H+ = h+
1 ∩ h+

2 . . . ∩ h+
n .

The boundary complex of the convex polyhedron H+ is called the upper
envelope of the set of hyperplanes H.

Two complexes K and K∗ (simplicial or cellular complexes) of dimension d
are said to be dual complexes if there is a bijective correspondance between
the faces of K and the faces of K∗ such that

• the k-faces of K correspond to the (d− k)-faces of K∗

• the correspondance preserves incidences and reverses inclusion rela-
tions, meaning that if if f ⊂ g are incident faces of K, the correspond-
ing faces f∗ and g∗ of K∗ are incident and such that g∗ ⊂ f∗.

Observe that the lower envelope of a set of points in Rd, and the upper
envelope of a set of hyperplanes are both (d − 1)-complexes. The duality
between points and hyperplanes of Rd introduced in Section 3.2.1 yields a
duality between the lower hull of a set of points and the upper envelope of
the set of dual hyperplanes.

Lemma 3.8 (Lower hull - upper enveloppe duality) Let P be a set of
points in Rd and let P ∗ be the set of dual hyperplanes. The lower hull of P
and the upper envelope of P ∗ are dual (d− 1)-complexes.

Proof We assume here for simplicity that the points of P are in general po-
sition and leave the proof for the general case as an exercise (Exercise 3.10).

Let P = conv(P ) be the convex hull of P and by P∗+ be the convex polyhe-
dron which is the intersection of the upper half-spaces bounded by the dual
hyperplanes:

P∗+ = p∗+1 ∩ p∗+2 . . . ∩ p∗+n .

Let f be a k-face of lowerhull(P ). Face f is a k-face of the polytope P and,
since general position is assumed, f includes (k+ 1)-vertices of P which are
points of P . Let us assume, without loss of generality, that {p1, . . . , pk+1} are
included in f . We consider a lower supporting hyperplane h that intersects
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P along f . Hyperplane h includes {p1, . . . , pk+1} and, since it is a lower
supporting hyperplane, the other points of P are included in the upper half-
space h+. Let h∗ be the point dual to h. Then, from the properties of the
point hyperplane duality introduced above, we get:

pi ∈ h+ ⇐⇒ h∗ ∈ p∗+i , ∀i = 1, . . . , n (3.1)

pi ∈ h ⇐⇒ h∗ ∈ p∗i , ∀i = 1, . . . , k + 1 (3.2)

pi 6∈ h ⇐⇒ h∗ 6∈ p∗i , ∀i = k + 2, . . . , n (3.3)

Equations 3.1, 3.2 and 3.3 show that the point h∗ belongs to the (d − 1 −
k)-face f∗ of P∗+ which is the intersection of P∗+ with the k + 1 hy-
perplanes {p∗i , i = 1, . . . k + 1}. Therefore, duality maps the k-face f =
conv({p1, . . . , pk+1}) of lowerhull(P ) to the (d − 1 − k)-face f∗ = p∗1 ∩ p∗2 ∩
. . . ∩ p∗k+1 ∩ P∗+ of P∗+.

In the other way, any (d− 1− k)-face of P∗+ is the intersection of P∗+ with
k+1 hyperplanes in P ∗ (see Exercise 3.6). Let us consider a (d−1−k)-face
f∗ of P∗+ and say that f∗ is the intersection of P∗+ with the k hyperplanes
{p∗i , i = 1, . . . k + 1}. Equations 3.1 , 3.2 and 3.3 show that any point
h∗ in f∗ is the dual of a hyperplane h which supports P along the face
f = conv({p1, . . . , pk+1}). Moreover, h is a lower supporting hyperplane.
Therefore, duality maps back f∗ to f and the correspondance is bijective.
�

3.3 Combinatorial bounds

The following theorem bounds the total number of faces of a convex poly-
hedron in Rd which is known to have either n facets or n vertices. The
theorem is known as the upper bound theorem, though the bound is tight in
the worst case.

Theorem 3.9 (Upper Bound Theorem) The total number of faces of a
convex polyhedron in Rd, defined as the intersection of n half-spaces or as

the convex hull of n points, is Θ
(
nb d2c

)
.

Proof We prove here the upper bound. The lower bound is the topic of
Exercise 3.12.
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Let P be a convex polyhedron defined as the intersection of n half-spaces of
Rd. To prove the upper bound on the number of faces of P, we may assume
that the hyperplanes bounding the half-spaces defining P are in general
position. Indeed, otherwise, we can slightly perturb those hyperplanes to
bring then in general position. During this process, the number of faces of
P can only increase, see Exercise 3.11. Hence, any upper bound that is valid
for hyperplanes in general position holds for any set of hyperplanes. We also
assume that the polyhedron has at least one vertex. Indeed, otherwise the
number of bounding hyperplanes is at most d − 1 and the total number of
faces is at most 2d−1. In addition, we may assume, without loss of generality,
that two vertices of P do not have the same xd coordinate.

We first bound the number of vertices of P and then extend this bound to
faces of any dimension. Let p be one of the vertices of P. Because general
position is assumed, p, as any other vertex of P, is included in exactly d of
the bounding hyperplanes. Therefore p is incident to exactly d facets and d
edges of P. Thus at least dd2e edges incident to p are included in either in
the half-space h+ : xd ≥ xd(p) or in the half-space h− : xd ≤ xd(p). Since
the bounding hyperplanes are in general position, P is simple and the affine
hull of any subset of k < d edges incident to a vertex of P contains a k-face
of P (Exercice 3.7). Therefore, each vertex p of P is a vertex with extremal
xd-coordinate for at least one face of dimension dd2e. Since any face has
at most one vertex of maximal xd coordinate and one vertex of minimal
xd-coordinate, the number of vertices of P is at most twice the number of
dd2e-faces of P.

From the general position assumption, a k-face of P is the intersection of
d − k of the bounding hyperplanes (see Exercise 3.6). We deduce that the

number of k-faces is at most

(
n

d− k

)
= O(nd−k), which is O(nb

d
2
c) for

k = dd2e. From the above discussion, we conclude that the number of vertices

of P is O(nb
d
2
c).

Let us bound now the number of k-faces for k > 0. The number of k-faces

incident to any vertex of P is

(
d

d− k

)
, which is a constant for fixed d.

Hence the upper bound O(nb
d
2
c) holds also for the number of faces of any

dimension.

The duality introduced in Section 3.2 immediately implies that the same
upper bound holds for the lower hull of a set of n points and finally (by
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symmetry) to the number of faces of a polytope defined as the convex hull
of n points. �

3.4 Convex hull algorithms

We present here two algorithms to build the convex hull of a set of points
P . Both algorithms are incremental, meaning that they insert the points
of P one by one, while maintaining the convex hull of the currently subset
of inserted points. Convex hulls are represented by the Hasse diagram of
their boundary complexes (see Section 2.7). Incremental algorithms make
also use of the adjacency graph of convex hull facets which, as noticed in
Section 2.7), is encoded in the Hasse diagram. Both algorithms also work
while maintaining only the adjacency graph of the facets of the convex hull.
To make the description of the algorithms simple and to focus on the main
ideas, we assume here that the input set of points P is in general position.
However this is not a limitation of the presented convex hull algorithms.

3.4.1 An incremental algorithm

Assuming that points in P are added in the order p1, p2, . . . , pn, we denote
by Pi the subset of the first i-points. Before presenting the whole algorithm
and its analysis, we explain how the convex hull is updated when inserting
point pi+1.

From conv(Pi) to conv(Pi+1)

When point pi+1 is considered, the faces of conv(Pi) may be classified in the
following way (see Figure 3.1):

• A facet f of conv(Pi) is red if the hyperplane hf supporting conv(Pi)
along f separates pi+1 from conv(Pi) meaning that pi belongs to the
open half-space h+

f that does not intersect conv(Pi). Otherwise, as

general position is assumed, pi is included in the half-space h−f whose
closure contains conv(Pi), and the facet f is said to be blue.
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pi+1

Figure 3.1: Incremental convex hull algorithm. Top: d = 2. Bottom: d = 3.
The old edges are colored in red and blue and purple. The new edges are in
black.

• A k-face with k < d is said to be red if all its incident facets are red,
blue if all its incident facets are blue, and purple if it is incident to
both red and blue facets.

The incremental algorithm and its analysis relies on the three following facts,
all related to the transformation of conv(Pi) into conv(Pi+1) when adding
point pi+1.

1. The set of red facets induces a connected subgraph of the adjacency
graph of conv(Pi).

2. The set of faces of conv(Pi+1) includes the blue and purple faces of
conv(Pi) together with additionnal new faces which are all incident to
pi+1. Each new face is formed by the convex hull conv(g∪pi+1) where
g is a purple face of conv(Pi). See Figure 3.1.
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pi+1

h

Figure 3.2: When adding point pi+1, the set of purple facets of conv(Pi) is
isomorphic to a (d− 1)-polytope with at most i vertices.

3. The set of purple faces of conv(Pi) with their incidence relation is iso-
morphic to the set of new faces of conv(Pi+1). Both sets are isomorphic
to the set of faces of a (d− 1)-polytope with at most i vertices.

Fact 1 and Fact 2 are illustrated on Figure 3.1. Fact 3 is illustrated on
Figure 3.2 showing that the purple faces of conv(Pi) and the set of faces of
conv(Pi+1) incident to pi+1 are both isomorphic to the set of faces of a (d−1)-
polytope obtained as the intersection of conv(Pi+1) with any hyperplane h
that separates conv(Pi) from pi+1.

In summary, updating conv(Pi) to conv(Pi+1) requires to identify the red
and purple faces of conv(Pi). The Hasse diagram of conv(Pi+1) is then ob-
tained form the Hasse diagram of conv(Pi) by removing red faces of conv(Pi)
and creating a new face conv(g ∪ pi+1) for each purple face g of conv(Pi).
Incidence relations among new faces are deduced from incidence relations
among purple faces in conv(Pi).

The algorithm

The incremental convex hull algorithm is summarized in the pseudo-code of
Algorithm 1.

The incremental algorithm sorts the points in P by lexicographic order of
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Algorithm 1 Incremental convex hull algorithm

Input: A set P of n points in Rd
Sort the points of P by lexicographic order of coordinates
Let p1, p2 . . . pn be the points of P in lexicographic order
Let Pi be the subset of first i points
Build the Hasse diagram of conv(Pd+1)
for i = d+1 to i=n-1 do

Find a red facet of conv(Pi) {with respect to pi+1}
Find all red and purple faces of conv(Pi)
Update the Hasse of conv(Pi) into the Hasse diagram of conv(Pi+1).

Output: The Hasse diagram of the convex hull of P

their coordinates and insert them in that order. Let p1, p2, . . . pn be the
sorted sequence of points in P and let Pi be the subset of first i points.

The lexicographic ordering ensures that when point pi+1 is inserted, at least
one of the facet of conv(Pi) incident to pi is red. Indeed point pi+1 is
separated from conv(Pi) by a hyperplane h through pi. Let h+ be the
half-space bounded by h that does not contain conv(Pi). Let, in addition,
H denote the set of hyperplanes which are the affine hulls of the facets
of conv(Pi) incident to pi. Write H+ for the union of the half-spaces not
containing conv(Pi) that are bounded by the hyperplanes in H. Since h+

is included in H+, pi+1 is separated from conv(Pi) by at least one of the
hyperplanes of H. Thus to find a first red facet, the algorithm walks in the
adjacency graph of the facets of conv(Pi), visiting only facets of conv(Pi)
that are incident to pi, until a red facet is encountered.

Then to find all red and purple faces, the algorithm traverses the adjacency
graph visiting all red facets of conv(Pi) and, from each read facet, it traverses
the Hasse diagram to identify all red and purple faces of conv(Pi). The Hasse
diagram is then updated as explained in the previous paragraph.

Complexity Analysis

Theorem 3.10 The incremental convex hull algorithm computes the convex

hull of n points in Rd in Θ
(
n log n+ nb d+1

2 c
)

time.

Proof First notice that the only numerical predicates involved in Algo-
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rithm 1 are the orientation predicates called to decide if a facet of conv(Pi)
is red or blue when inserting point pi+1. The orientation predicate amounts
to evaluate the sign of a (d+ 1)× (d+ 1) determinant (see Exercise 3.16).

To find the first red facet, the algorithm visits only facets of conv(Pi) incident
to the last inserted point pi. Therefore each facet will be visited only once
for this purpose during the whole algorithm.

Identifying red and purple faces is also clearly proprotionnal to the number
of these faces. As a red face disappears from the convex hull, each face is
visited only once as a red face, and the cost of visiting a purple face g can
be charged on the new face conv(g ∪ pi+1).

Updating the Hasse diagram has a complexity proportional to the number
of new and removed faces which are respectively the number of purple and
red faces of conv(Pi).

In summary, the cost of step i+1 where point pi+1 is inserted is proportional
to the number of new and removed faces. Since a face is created only once
and removed at most once, the total cost of the incremental algorithm,
except for the initial sorting of the points, is proprotionnal to the total
number of created faces.

From Fact 3 above and the upper bound theorem (Theorem 3.9), the number

of faces created when inserting pi+1 is O
(
ib d−1

2 c
)

and the total cost of

updating the Hasse diagram is:

n−1∑

i=d+1

O
(
ib d−1

2 c
)

= O
(
nb d+1

2 c
)
.

Taking into account the initial sorting of the points according to the lexico-
graphic order, the complexity of the incremental algorithm is:

O
(
n log n+ nb d+1

2 c
)

= O(n log n) if d = 2

= O
(
nb d+1

2 c
)

if d > 2

Furthermore, the complexity bound O
(
n log n+ nb d+1

2 c
)

is tight for any

incremental convex hull algorithm. See Exercise 3.14 for examples of points

where the incremental convex hull requires Ω(nb d+1
2 c) times. �

The upper bound theorem gives a lower bound of Ω
(
nb d2c

)
for computing



60 CHAPTER 3. CONVEX POLYTOPES

the convex hull of n points in Rd.

Moreover, Ω(n log n) is also a lower bound of complexity for computing the
convex hull of n points since it is known that sorting n number reduces in
linear time to the computation of the convex hull of n points (See Exer-
cise 3.15).

We deduce that computing the convex hull of n points in Rd has a complexity

which is at least Ω
(
n log n+ nb d2c

)
. The incremental algorithm is therefore

worst-case optimal in even dimensions. However, it is not optimal in odd
dimensions.

3.4.2 A randomized algorithm

The algorithm

The randomized incremental algorithm is quite similar to the above incre-
mental algorithm : points are inserted one by one in the convex hull. At each
insertion the set of red and purple faces of the current hull are identified and
the convex hull is updated accordingly. The main difference with respect to
the incremental algorithm of Section 3.4.1 is that the points are no longer
introduced in lexicographic order but in random order. We will show that
the expected complexity of the random algorithm matches the lower com-
plexity bound for convex hull computation. Expectation here concerns only
the random insertion order and assumes that, for an input set of n points,
all the n! possible insertion sequences occur with the same probability.

In the following, points in P are assumed to be indexed according to their
insertion order. We denote by Pi = {p1, . . . , pi} the subset formed by the i
first inserted points. As in the deterministic algorithm presented before, the
randomized algorithm has to find a first red facet. However, we cannot rely
now on the lexicographic order of the input points and restrict our attention
to the faces incident to the lastly inserted point. To walk around this issue,
we will use an additionnal data structure called the conflict graph.

A facet f of the current convex hull conv(Pi) is said to be in conflict with
the not yet inserted point pj with j > i iff the hyperplane hf supporting
conv(Pi) along f separates pj from conv(Pi). The conflict graph maintained
by the algorithm is a bipartite graph including for each not yet inserted point
pj an edge between this point and a facet of the current hull in conflict with
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pj . Note that when a new point pi+1 is inserted, the current hull is conv(Pi)
and the facets of conv(Pi) in conflict with pi+1 are precisely the red facets
of conv(Pi). Therefore, when inserting point pi+1, the conflict edge incident
to pi+1 gives in constant time access to a red facet of conv(Pi). Then the
algorithm finds all the red and purple faces of conv(Pi) and updates the
Hasse diagram of the convex hull exactly as in the deterministic algorithm.
The only difference is that now, after each insertion, the algorithm needs, in
addition, to update the conflict graph. Before explaining how this is done,
we summarize the randomized algorithm as Algorithm 2.

Algorithm 2 Randomized convex hull algorithm

Input: A set P of n points in Rd
Choose randomly a subset Pd+1 of d+ 1 points in P
Build the Hasse diagram of conv(Pd+1)
Initialize the conflict graph
for i = d+1 to i=n-1 do

Choose randomly pi+1 ∈ P \ Pi
Pi+1 = Pi ∪ {pi+1}
Follow the conflict edge of pi+1 to find a first red facet
Find all red and purple faces of conv(Pi)
Update the Hasse and compute the Hasse diagram of conv(Pi+1).
Update the conflict graph

Output: The Hasse diagram of the convex hull of P

Updating the conflict graph

The algorithm needs to restore conflict edges between the facets of conv(Pi+1)
and the points of P \Pi+1. Nothing needs to be done for the points of P \Pi+1

that were previously in conflict with a blue facet of conv(Pi) since such a
facet is still a facet of conv(Pi+1). Let pj be a point of P \Pi+1 that was pre-
viously in conflict with a red facet fj of conv(Pi). We need to find a facet of
conv(Pi+1) in conflict with pj . Let R denote the set of red facets of conv(Pi)
and let Rj denote the set of facets of conv(Pi) in conflict with pj . As noted
previously, the set R induces a connected subgraph of the adjacency graph
of conv(Pi). The same is true for Rj and for the subset Fj = R ∩Rj of red
facets in conflict with pj . Note that the boundary of Fj includes red ridges
which are on the boundary of Rj but not on the boundary of R and purple
ridges which are on the bounday of R. See Figure 3.3 for an illustration in
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R2.

To find a facet of conv(Pi+1) in conflict with pj , the algorithm starts at fj ,
the facet that was in conflict with pj before the insertion of pi+1, and walk
on the adjacency graph of conv(Pi), visiting the facets of Fj . At each purple
ridge h encountered on the boundary of Fj , the algorithm checks if one of
the two following cases occurs:

Case 1 : the blue facet g of conv(Pi) incident on h is in conflict with pi+1,

Case 2 : the new facet f ′ = conv(h, pi+1) of conv(Pi+1), is in conflict with
pi+1.

In both cases, a facet of conv(Pi+1) in conflict with pi+1 has been found and
the walk stops. If the walk traverses all facets of Fj without encountering
one of the above two cases, pj lies inside conv(Pi+1) and can be discarded.
See Figure 3.3.

Analysis of the randomized algorithm

We insist that the randomized algorithm presented here always computes the
actual convex hull of the set of input points. The random choices performed
by the algorithm concern only the order in which the points are inserted
and the performances of the algorithm. The analysis below will bound the
expected complexity of the algorithm assuming that all insertion sequences
occur with the same probability.

Theorem 3.11 The randomized incremental algorithm computes the con-

vex hull of n points in Rd in expected time O
(
n log n+ nb d2c

)
.

Before we give the proof of the theorem, we recall an important result of
Clarkson and Shor [59], known as the random sampling theorem.

The random sampling theorem. We call configuration a subset of d
independent points in Rd. A configuration σ is said to be defined on a set of
points P if the points in σ belong to P . Let us choose as the origin a point
o in conv(P ). A configuration is said to be in conflict with a point p if the
hyperplane which is the affine hull of σ separates o from p. A configuration
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o o

o o

pi+1

pi+1 pi+1

pi+1

pj

pj

pj

Figure 3.3: Randomized construction of the convex hull: updating the con-
flicting graph. The up left picture show the set of red facets when inserting
pi+1, the three other pictures show, in three different cases, the set of facets
of conv(Pi) in conflict with pi+1 and pj . In upper right picture, pj is internal
to conv(Pi+1), in lower left picture, case 1 and case 2 both occur, in llower
right picture only case 2 occurs.
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is said to have j conflicts on P if it is in conflict with j points of P . We
denote by C(P ) the set of configurations defined on P and by Cj(P ) (resp.
C≤k(P )), the set of configurations defined on P and with j conflicts (resp.
at most k conflicts) on P .

In the following, we consider random samples S of P and we denote by
Γ0(s, P ) the expected number of configurations defined on S and without
conflict on S, where S is a random sample of size s of P .

Theorem 3.12 (The random sampling theorem) Let P be a set of n
points. The number |C≤k(P )| of configurations defined on P and with at
most k-conflicts on P is bounded as follows :

|C≤k(P )| ≤ 4(d+ 1)d kd Γ0

(⌊n
k

⌋
, P
)
. (3.4)

In our context, a configuration that is defined on P and without conflict on
P , is just the vertex set of a facet of conv(P ) so that there is a bijection
between C0(P ) and the facets of conv(P ). We then deduce from the upper
bound theorem (Theorem 3.9) that the number of configurations defined and

without conflict on a sample of size s of P is at most O
(
sb d2c

)
. Therefore:

Γ0(s, P ) = O
(
sb d2c

)
. (3.5)

Plugging Equation 3.5 into Equation 3.4, we get that for any set P of n
points the number of configurations defined and with at most k conflicts
over P is at most :

|C≤k(P )| = O
(
kd d2enb d2c

)
. (3.6)

Proof of Theorem 3.11. We can now analyze the cost of updating the
Hasse diagram of the convex hull and the cost of maintaining the conflict
graph.

Cost of updating the Hasse diagram. As in the case of the incremental
algorithm, the cost of updating the Hasse diagram is proportional to the
total number of convex hull facets that are created by the algorithm.

Let us bound the expected number n(i+1) of facets that are created at Step
i + 1 when point pi+1 is inserted. Since the algorithm inserts the points of
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P in random order, Pi+1 is a random subset of P of size i+ 1. Notice that a
facet created at step i+1 corresponds to a configuration of C0(Pi+1). Given
Pi+1, a configuration σ of C0(Pi+1) corresponds to a facet created at step
i+ 1 iff one of the points in this configuration is the point Pi+1 inserted at
step i, which happens with probability d

i+1 . Thus, we have

n(i+ 1) =
∑

σ∈C(P )

proba (σ ∈ C0(Pi+1))× d

i+ 1

=
d

i+ 1
Γ0(i+ 1, P )

= O
(

(i+ 1)b d2c−1
)
.

By summing over all steps i and using linearity of expectation, we bound
the expected total number of facets created by the algorithm and therefore
the expected cost of updating the Hasse diagram by :

n∑

i

n(i) = O(nb d2c). (3.7)

Cost of updating the conflict graph. We now bound the cost of up-
dating the conflict graph. As explained above, when inserting pi+1 at step
i + 1, the algorithm has to restore a conflict edge for each point pj with
j > i+ 1. This is done by traversing the incidence graph of conv(Pi), visit-
ing the facets in conflict with both pi+1 and pj . The cost of this procedure
is proportional to the number of visited facets which we analyse now.

For any pj ∈ P \ Pi+1, the subset S = Pi+1 ∪ {pj} is a random sample of
P of size i+ 2. The facets visited to restore the conflict for pj at step i+ 1
correspond to configurations in C2(S). Assume that a subset S of P of size
i+ 2 is given and that S = Pi+1 ∪{pj}. Then, any configuration σ in C2(S)
is a facet of conv(Pi) in conflict with pi+1 and pj iff pi+1 and pj are the two
elements of S in conflict with σ, which happens with probability 2

(i+1)(i+2) .

Given S, the expected number n(i + 1, j, S) of facets visited to restore the
conflict for pj at step i+ 1 is

n(i+ 1, j, S) =
∑

σ∈C(P )

proba (σ ∈ C2(S))× 2

(i+ 1)(i+ 2)

≤ 2

(i+ 1)(i+ 2)
|C≤2(S)| .



66 CHAPTER 3. CONVEX POLYTOPES

Then, using Equation 3.6,

n(i+ 1, j, S) ≤ O
(

(i+ 1)b d2c−2
)
.

Since this is true for any subset S of P of size i+2, we get that the expected
number n(i + 1, j) of facets visited to restore a conflict edge for pj at step

i + 1 is also O
(

(i+ 1)b d2c−2
)

. Then, the expected total cost for updating

the conflict graph is

n∑

i=1

n∑

j=i+1

n(i, j) =
n∑

i=1

(n− i)O
(
ib d2c−2

)
= O

(
n log n+ nb d2c

)
. (3.8)

At each insertion, finding a first red facet takes constant time using the
conflict graph. Finding all the red and purple faces then takes a time pro-
portional to the number of red and purple faces and the total cost of this
operation is thus also given by Equation 3.7. In summary, the expected
combinatorial complexity of the randomized incremental construction of the
convex hull is given by Equations 3.7 and 3.8, which achieves the proof of
Theorem 3.11. �

The randomized version of the incremental construction of a convex hull
has therefore an expected complexity which is better than the complexity
of the deterministic incremental construction. Since this expected complex-
ity matches the complexity of the convex hull, the randomized incremental
construction of a convex hull is optimal.

3.5 Exercises

Exercise 3.1 Show that a convex polytope P is the convex hull ot its ver-
tices.

Hint: one of the inclusion is trivial. To prove the other one, consider the
minimal subset P ′ ⊆ P such that P = conv(P ) = conv(P ′) and prove that
each point in P ′ is a vertex of P.

Exercise 3.2 Show that the intersection of any finite set of faces of a poly-
tope is also a face of the polytope.



3.5. EXERCISES 67

Exercise 3.3 Show that any face of a convex polytope P is the intersection
of facets of P.

Show that a (d− 2)-face of a polytope P is the intersection of two facets of
P.

Exercise 3.4 Let P be a convex polytope and let H be the set of hy-
perplanes that support P along its facets. To each hyperplane h ∈ H,
we associate the half-space h+ bounded by h that contains P. Show that
P = ∩h∈Hh+.

Exercise 3.5 (Polytopes and intersection of half-spaces) Show that,
if it is bounded, the intersection of a finite set of half-spaces is a polytope.

Exercise 3.6 (Faces of a convex polyhedron) Let H be a set of n hy-
perplanes h1, ..., hn and P be the polyhedron defined as the intersection of
the n half-spaces h+

1 , ..., h
+
n where h+

i is the half-space bounded by hi that
contains a given point o. Let I be any subset of the indices 1, ..., n and
Fl = ∩i∈Ihi. Show that, if it is non empty, the intersection and P ∩ Fl is a
face of P and that all the faces of P can be obtained this way, i.e. as the
intersection with P of the hyperplanes of a subset of H. Show, in addition,
that, if H is in general position, P ∩Fl is a face of dimension d−k if |I| = k.

Exercise 3.7 (Faces of a simple convex polyhedron) Prove that if P
is a simple convex polyhedron and p is a vertex of P, the affine hull of any
subset of k < d edges incident to p contains a face of P of dimension d− k.
Hint: use Exercise 3.2 and duality.

Exercise 3.8 (General position and duality) Show that n hyperplanes
are in general position iff their dual points are in general position.

Exercise 3.9 Show that the boundary complex of a polytope is a combi-
natorial manifold.

Hint: Let p be a vertex of the d-polytope P. We show that the link of p
in the boundary complex of P is a (d − 2)-topological sphere. Indeed, any
hyperplane h that separates p from the other vertices of P (see Figure 3.2)
intersects P along a polytope of dimension (d−1) whose boundary complex
is isomorphic to the link of p in the boundary complex of P.
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Exercise 3.10 Prove Lemma 3.8 in the general case.

Hint : Proves that if k′ points in Rd span an affine hull of dimension k < k′,
their dual hyperplanes intersect along a (k − d)-dimensional affine space.

Exercise 3.11 Let P be a convex polyhedron. Prove that perturbing the
hyperplanes bounding the half-spaces that define P can only increase the
number of faces of P.

Exercise 3.12 (Cyclic polytopes) A cyclic polytope is a polytope in Rd
that is the convex hull of points lying on the moment curve Md defined by
the parametric representation

Md = {x(t, t2, . . . td), t ∈ R}

Show that a cyclic polytope of Rd with n vertices has

(
n
k

)
(k − 1)-faces

for any k such that 0 ≤ k ≤ d/2.

Exercise 3.13 (Polarity) Polarity has been introduced with the paraboloid
Q. A sphere could have been used instead as shown in this exercise. Let
o be a point of Rd. Polarity associates to any point p of Rd distinct of o
the hyperplane p∗ = {x : (x − o) · (p − o) = 1}. Show that polarity is
a bijection between points of Rd distinct de o and hyperplanes not pass-
ing through o. Let P be a set of point of Rd whose convex hull includes
o. Show that polarity induces a duality between the boundary complex
of the polytope (P ) = conv(P ) and the boundary complex of the polytope
(P ∗+) =

⋂
p∈P p

∗+ where p∗+ is the half-space bounded by p∗ not containing
o.

Exercise 3.14 (Lower bound for incremetal convex hull computation)
Show that any incremental algorithm that constructs the convex hull of n

points of Rd takes Ω(nb d+1
2 c) time in the worst-case.

Hint : take the points on the moment curve Md (see Exercise 3.12) and
insert them by increasing values of their first coordinate.

Exercise 3.15 (Lower bound for convex hull computation ) Show that
sorting n number reduces in linear time to the computation of the convex
hull of n points in R2.
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Hint: Take n real numbers x1, . . . , xn. We associate to each xi the point
pi = (xi, x

2
i ) on the unit parabola. If we know the convex hull of the pi, we

can deduce in linear time the list of the xi sorted by increasing values.

Exercise 3.16 (Orientation predicate) Show that the numerical opera-
tion required to decide if a facet f = {pi1 , ..., pid} of conv(Pi) is red or blue
when inserting point pi+1 amounts to evaluate the sign of a (d+1)× (d+1)-
determinant ∣∣∣∣

1 · · · 1 1
pi1 · · · pid pi+1

∣∣∣∣ .

Exercise 3.17 (Vertical projection of a lower hull) Let P be a set of
point in general position in Rd. We call vertical projection the projection Π
onto the hyperplane of equation x(d) = 0. Show that the restriction of the
vertical projection to the lower hull of P is 1 to 1. Show that the vertical
projection naturally embeds the lower hull of P as a triangulation of Π(P ′),
where P ′ is the vertex set of the lower hull of P .

Exercise 3.18 (Minkowski formula) Show that if P is a convex poly-
tope and fj , j ∈ J , are its facets, we have

∑
j∈J vol(fj) nj = 0, where nj is

the unit normal vector to fj oriented towards the outside of P).

Hint : let x ∈ P. Compute the volume of P by summing the volumes of
the pyramids (x, fj). The results follows by observing that the volume of P
does not depend on x.

3.6 Bibliographical notes

A modern introduction to the theory of polytopes can be found in Ziegler’s
book [137]. The original proof of the upper bound theorem has been es-
tablished by McMullen in 1970. The simple asymptotic version given in
Theorem 3.9 is due to Seidel [124].

The incremental convex hull algorithm is due to Seidel [125]. A complete
description of this algorithm handling degenerated cases is given in Edels-
brunner’s book [73]. The random sampling theorem is due to Clarkson and
Shor [59]. The same paper proposes the first randomized algorithm to build
convex hulls. This algorithm solves in fact the dual problem of computing
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the intersection of half-spaces. Chazelle [52] has proposed a deterministic
algorithm to compute the convex hull of a finite point set that is worst case
optimal in any dimension. Obtained through derandomisation of the ran-
domized algorithm this algorithm is however mostly of theoretical interest
and no implementation is known.

The theory of randomized algorithms is well-developed and finds applica-
tions in many areas of computer science. See the book by Motwani and
Raghavan for a broad perspective [110], and the books of Boissonnat and
Yvinec [27] and of Mulmuley [111] for a geometric viewpoint.
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Delaunay complexes are fundamental data structures that have been ex-
tensively studied in computational geometry and used in many application
areas.

The Delaunay complex of a finite set of points P ∈ Rd is defined as the nerve
of the Voronoi diagram of P which we define first. We prove Delaunay’s
theorem that states that, when the points of P are in general position, the
Delaunay complex of P has a natural embedding in Rd called the Delaunay
triangulation of P .

The proof relies on the so-called lifting map that associates to each point
of Rd a point in Rd+1. We show that the Delaunay complex of P is the
projection onto Rd of the lower hull of the lifted points. Using then the re-
sults of Chapter 3, we will bound the combinatorial complexity of Delaunay
complexes and Voronoi diagrams, and obtain optimal algorithms for their
construction.

Voronoi diagrams and Delaunay complexes are a special case of more general
structures called weighted Voronoi diagrams and Delaunay complexes. The
class of weighted Voronoi diagrams include the class of Euclidean Voronoi
diagrams and, as we will see, most of the properties of Voronoi diagrams still
hold for weighted diagrams. Weighted Voronoi diagrams can be found under
various disguises in various applications and the dual weighted Delaunay
complexes will play an important role in Chapters 5 and 8.

4.1 Lower envelopes and minimization diagrams

Let F = {f1, . . . , fn} be a set of d-variate continuous functions defined over
Rd. The lower envelope of F is defined as

F− = min
1≤i≤n

fi.

From F and F−, we define a partition of Rd called the minimization diagram
of F . For a point x ∈ Rd, we define the index set I(x) of x as the set of
all indices i such that F−(x) = fi(x). An equivalence relation noted ≡ can
then be defined on the points of Rd: two points are equivalent if they have
the same index set:

x ≡ y ⇔ I(x) = I(y).

The equivalence classes are relatively open sets that cover Rd. Their closures
are called the faces of the minimization diagram of F and the collection of



4.2. VORONOI DIAGRAMS 73

1 2 3 4

1 2 1 3 4

Figure 4.1: The lower envelope of a set of univariate functions. The min-
imization diagram is drawn on the horizontal line with the corresponding
indices. The face of index {1} consists of two components.

all those faces constitutes the minimization diagram of F (see Figure 4.1).
The index set of a face is defined as the largest subset of indices common to
all the points of the face. Conversely, the face of index set I is the set of all
points x such that I ⊂ I(x).

Upper envelopes and maximization diagrams can be defined analogously.
Upper envelopes have been defined in a geometric way in Section 3.2.2 for
sets of non vertical hyperplanes. The two notions are in fact closely related.
Let H = {h1, . . . , hn} be a set of non vertical hyperplanes in Rd+1. Each
hyperplane hi in H has an equation which in normal form reads x(d+ 1) =
fi(x) where x(d+ 1) is the last coordinate of a point in Rd+1 and fi(x) is an
affine function of the d first coordinates. Therefore hi can be regarded as
the graph of the affine function fi(x). Let F be the set of affine functions
{f1, . . . , fn}. The upper envelope defined in Section 3.2.2 for the set H is
the graph of the upper envelope of the set F , F+ = max1≤i≤n fi.

4.2 Voronoi diagrams

Let P = {p1, . . . , pn} be a set of points of Rd. To each pi, we associate its
Voronoi cell V (pi, P ), or simply V (pi) when there is no ambiguity on the
set P :

V (pi, P ) = {x ∈ Rd : ‖x− pi‖ ≤ ‖x− pj‖, ∀pj ∈ P}.
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Figure 4.2: The Voronoi diagram of a set of 9 points.

The cell V (pi) is the intersection of the n − 1 half-spaces bounded by the
bisecting hyperplanes of pi and each of the other points of P . V (pi) is
therefore a convex polyhedron, possibly unbounded, that contains pi. The
Voronoi cells of P have disjoint interiors and, since any point of Rd belongs
to at least one Voronoi cell, they cover the entire space Rd. The collection of
the Voronoi cells and their faces constitute a cell complex called the Voronoi
diagram of P and denoted by Vor(P ).

The Voronoi diagram of P is the minimization diagram of the set of distance
functions {δi, . . . , δn}, where

δi(x) = ‖x− pi‖.

Since minimizing ‖x − pi‖ over i is the same as minimizing (x − pi)2, the
Voronoi diagram of P can alternatively be defined as the minimization dia-
gram of the smooth functions (x − pi)2. The graphs of those functions are
translated copies of the vertical paraboloid of revolution of Rd+1 of equation
x(d+ 1) = x2.

Observing further that, for any x, arg mini(x− pi)2 = arg maxi(2pi ·x− p2
i ),

we obtain that the Voronoi diagram of P is the maximization diagram of a
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Figure 4.3: V(P ), with one of its faces projected onto Rd.

set of affine functions, namely the functions

fi(x) = 2pi · x− p2
i .

We can rewrite this construction in more geometric terms and establish a
link with convex polyhedra. For i = 1, ..., n, let hi be the hyperplane of
Rd+1 that is the graph of the affine function fi(x) :

hi = {(x, x(d+ 1)) ∈ Rd × R, x(d+ 1) = 2pi · x− p2
i }.

Let H = {h1, . . . , hn} and denote by V(P ) the upper envelope of hyperplanes
in H. By definition (see Section 3.2.2), the upper envelope V(P ) is the
boundary complex of the convex polyhedra h+

1 ∩ h+
2 . . . ∩ h+

n which is the
intersection of the upper half-spaces bounded by the hyperplanes in H.
Since the Voronoi diagram Vor(P ) is the maximization diagram of the set of
functions {f1, . . . , fn}, it is the projection onto the space Rd = {x, x(d+1) =
0} of the upper envelope V(P ), see Figure 4.3.

We deduce that the combinatorial complexity of the Voronoi diagram of n
points of Rd is at most the combinatorial complexity of a polyhedron defined

as the intersection of n half-spaces of Rd+1, which is O
(
nd d2e

)
as shown in

Section 3.3. This bound is tight (Exercise 4.3). Moreover, we can construct
Vor(P ) by constructing V(P ) ⊂ Rd+1 and then projecting its faces onto Rd.
Thanks to Theorem 3.11, we conclude that Vor(P ) can be constructed in

time Θ
(
n log n+ nd d2e

)
.
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Figure 4.4: The Delaunay triangulation of a point set (in bold) and its dual
Voronoi diagram (thin lines).

4.3 Delaunay complexes

Let P be a finite set of points in Rd and write as before Vor(P ) for its Voronoi
diagram. The collection of all Voronoi cells of Vor(P ) form a cover of Rd
by closed convex sets, and the nerve of this cover is an abstract simplicial
complex called the Delaunay complex of P . Specifically, let f be a face of
dimension k of Vor(P ) and let intf be the set of points of f that do not
belong to any proper subface of f . All the points of intf have the same
subset σ of closest points in P and f is the intersection of the Voronoi cells
of the points in σ. Accordingly, σ is a simplex in the Delaunay complex.
See Figure 4.4. We denote by Del(P ) the Delaunay complex of the set P .

This definition can be rephrased in terms of empty balls. A ball B ∈ Rd
is said to be empty of points of P if the interior of B includes no points of
P . We say that a d-ball circumscribes a finite subset of points if the sphere
bounding B passes through all the points of the subset. The following lemma
is just another view of the definition of the Delaunay complex.

Lemma 4.1 (The empty ball property) Any subset σ ⊂ P is a simplex
of the Delaunay complex of P iff it has a circumscribing (open) ball empty
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of points of P . Such a ball is called a Delaunay ball.

The Delaunay complex cannot always be embedded in Rd. Consider, for
example, the case of a set P consisting of m > d+ 1 points lying on a same
hypersphere. The center of the hypersphere belongs to the Voronoi cells
of all the m points, which implies that the Delaunay complex contains the
(m − 1)-simplex whose vertex set is P . This simplex cannot be embedded
in Rd since its dimension m− 1 is greater than d.

However, as shown below, the Delaunay complex can be embedded in Rd
when the points of P are in general position wrt spheres.

Definition 4.2 (General position wrt spheres) We say that a finite set
of points P is in general position wrt spheres if no subset of d+ 2 points of
P lie on a same hypersphere.

We can now state Delaunay’s fundamental result.

Theorem 4.3 (Delaunay triangulation) If a finite set of points P ∈ Rd
is in general position wrt spheres, then the Delaunay complex Del(P ) has a
natural embedding1 in Rd. This embedding is a triangulation of P called the
Delaunay triangulation of P .

Proof We identify Rd with the hyperplane of Rd+1 of equation x(d+1) = 0
and introduce a lifting map φ that maps points and balls of Rd to points
of Rd+1. We then consider the lower hull of the set of lifted points φ(P )
and show that the projection onto Rd embeds this lower hull as a geometric
simplicial complex of Rd. We will see that this complex is identical to the
natural embedding of the Delaunay complex Del(P ). Further, we will prove
that it is a triangulation of P .

Let b = b(c, r) be a d-ball of Rd with center c and radius r. The lifting
map φ associates to b the point φ(b) = (c, c2 − r2) of Rd+1. A point x of
Rd can be considered as a ball with null radius and is mapped to the point
φ(x) = (x, x2) of Rd+1. Observe that the lift of a point lies on the paraboloid
of revolution Q = {x ∈ Rd+1 : x(d + 1) = x2}. We then use in Rd+1 the

1Defined in Section 2.2.
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Figure 4.5: The empty ball property.

point hyperplane duality defined in Section 3.2.1 and denote by φ(b)∗ the
hyperplane of Rd+1 that is the dual of φ(b):

φ(b)∗ = {x ∈ Rd+1 : x(d+ 1)− 2cx+ c2 − r2 = 0}.

The sphere ∂b bounding b(c, r) is the projection onto Rd of the intersection
of Q with the hyperplan φ(b)∗ (see Figure 4.6). Furthermore, the point x
belongs to the (open) ball b iff φ(x) belongs to the halfspace φ(b)∗− below
φ(b)∗. Therefore, we have:

x ∈ ∂b ⇐⇒ φ(x) ∈ φ(b)∗ (4.1)

x ∈ b ⇐⇒ φ(x) ∈ φ(b)∗−. (4.2)

Consider now a set P of n points in general position wrt spheres and let σ
be a subset of d+ 1 points of P . We write b for the ball that circumscribes
σ. According to Lemma 4.1, σ is a Delaunay simplex iff the ball b is empty
of points of P . Then, from Equations 4.1 and 4.2, the hyperplane φ(b)∗

contains φ(σ) and the halfspace φ(b)∗− does not contain any point of φ(P ).
We conclude that σ is a Delaunay simplex iff the convex hull of φ(σ) is a
facet of the lower hull D(P ) of the lifted points φ(P ).

Since P is in general position wrt spheres, φ(P ) is in general position wrt
hyperplanes (i.e., in the usual sense). It follows that D(P ) is a simplicial
complex embedded in Rd+1. Consider now the projection onto Rd, called
the vertical projection. The restriction of the vertical projection to D(P )
is 1-1 (see Exercise 3.17), and therefore the vertical projection of D(P ) is
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σ

h(σ)

P

Figure 4.6: The polar hyperplane of a ball.

a simplicial complex embedded in Rd. From the previous paragraph, the
facets of D(P ) are in bijective correspondence with the Delaunay simplices
of Del(P ). Furthermore, for each simplex σ of Del(P ), the corresponding
facet of D(P ) is the convex hull of the lift φ(σ) of σ so that its vertical
projection is the convex hull of σ. It follows that the projection of the lower
hull D(P ) is the natural embedding of the Delaunay complex Del(P ).

Let us further show that the natural embedding of Del(P ) is a triangulation
of P . By definition, the set of vertices of Del(P ) is P . Furthermore, since
D(P ) is the lower hull of φ(P ), its vertical projection coincides with the
vertical projection of the convex hull of φ(P ) which is just the convex hull
of P . It follows that the natural embedding of Del(P ) is a triangulation of
P . This concludes the proof of Delaunay triangulation theorem. �

Since the Delaunay complex Del(P ) is defined as the nerve of the cell com-
plex Vor(P ), there is a dual correspondence between the faces of these two
complexes, i.e. a bijective correspondence between their faces that pre-
serves incidences and reverses inclusions. The duality between lower hulls
and upper envelopes introduced in Section 3.2 yields another dual corre-
spondence between Vor(P ) and Del(P ). Indeed, notice that the set of hy-
perplanes {h1, h2, . . . hn} defining the upper envelope V(P ) are the duals
{φ(p1)∗, φ(p2)∗, . . . φ(pn)∗} of the lifted points φ(P ). Therefore, by the re-
sults of Section 3.2, the upper envelope V(P ) and the lower hull D(P ) are
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dual complexes. Since the vertical projection induces a bijection between
the cellular complexes V(P ) and Vor(P ), and since the lifting map induces
another bijection between the complexes D(P ) and Del(P ), we get a dual
correspondance between Vor(P ) and Del(P ) through the duality between
V(P ) and D(P ). In fact the proof of the Delaunay triangulation theorem
shows that the two correspondences between Vor(P ) and Del(P ) coincide,
so that the following diagram commutes:

V(P )
duality−→ D(P )

↑ ↓
Voronoi Diagram Vor(P )

nerve−→ Delaunay Complex Del(P )

It follows that the combinatorial complexity of the Delaunay complex of
n points is the same as the combinatorial complexity of its dual Voronoi
diagram. Moreover, the Delaunay complex of n points of Rd can be deduced
from the dual Voronoi diagram and vice versa in time proportional to their
size. We also deduce from what precedes that computing the Delaunay
complex of n points of Rd reduces to constructing the convex hull of n points
of Rd+1. The following theorem is then a direct consequence of Theorems 3.9
and 3.11.

Theorem 4.4 The combinatorial complexity of the Voronoi diagram of a

set of n points of Rd and of its Delaunay complex is Θ
(
nd d2e

)
. Both struc-

tures can be computed in optimal time Θ
(
n log n+ nd d2e

)
.

The bounds in this theorem are tight in the worst case. In particular, the
Voronoi diagram of n points of R3 may be quadratic (see Exercise 4.3).
However, under some assumptions on the point distribution, better bounds
can be obtained (see Section 5.1).

If the points of P are not in general position wrt spheres, the Delaunay
complex may be of dimension greater than the dimension d of the embedding
space and therefore cannot be embedded in Rd. Accordingly the hyperplane
set φ(P )∗ and the point set φ(P ) are not in general position. Hence V(P ) is
not simple and D(P ) is not simplicial. The diagram above won’t commute.

Nevertheless, the projection of D(P ) will still be a cell complex. Let f be a
j-face of D(P ) that is not a simplex. Its projection is no longer a simplex
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but is still a convex j-polytope we denote by f ′. Moreover, f ′ is still the
convex hull of the vertices of a k-simplex σ of the nerve of Vor(P ) with
k > j. We say that f ′ is the shadow of σ. An embedded triangulation can
then be obtained by triangulating the shadows that are not simplices (see
Exercise 4.6). Any such triangulation is called a Delaunay triangulation.
Since there are several ways of triangulating the faces of a polytope, P
admits several Delaunay triangulations.

4.4 Weighted Delaunay complexes

4.4.1 Weighted points and weighted distance

A weighted point p̂ = (p, w) is an element of Rd×R where the point p ∈ Rd is
called the center of p̂ and w ∈ R is called its weight. A point is identified with
a weighted point of weight 0. When w is non negative, p̂ can be considered
as the ball b(p,

√
w) centered at p and of squared radius w. Since considering

negative weights will cause no problem in our developments, we favour the
name of weighted point.

We define the weighted distance between two weighted points p̂1 = (p1, w1)
and p̂2 = (p2, w2) as

D(p̂1, p̂2) = (p1 − p2)2 − w1 − w2.

Note that the weighted distance is not a distance in the usual sense since it
is not positive and does not satisfy the triangular inequality. Two weighted
points are said to be orthogonal if their distance is zero. The term orthogonal
comes from the observation that, when the weights are non negative, two
weighted points are orthogonal iff the spheres bounding the associated balls
are orthogonal spheres (see Figure 4.7). The weighted distance D(x, p̂) from
an unweighted point x to a weighted point p̂ = (p, w) whose weight w is
non negative is also called the power of point x with respect to the sphere
bounding the ball b(p,

√
w).

4.4.2 Weighted Voronoi diagrams

Let P̂ = {p̂1, . . . , p̂n} be a set of weighted points of Rd × R. To each p̂i =
(pi, wi), we associate the cell V (p̂i) ⊂ Rd consisting of the points x of Rd
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Figure 4.7: The weighted distance: two weighted points with respectively a
negative (left), null (middle) and positive (right) weighted distance.

whose weighted distance to p̂i is not larger than its weighted distance to any
other weighted points of P̂ :

V (p̂i) = {x ∈ Rd : D(x, p̂i) ≤ D(x, p̂j),∀p̂j ∈ P̂}.
The set of points of Rd that are at equal distance from two weighted points
p̂i and p̂j is a hyperplane called the bisecting hyperplane of p̂i and p̂j . This
hyperplane is orthogonal to the line joining the centers of p̂i and p̂j .The cell
V (p̂i) is the intersection of the n − 1 half-spaces bounded by the bisecting
hyperplanes of p̂i and each of the other weighted points of P̂ . If this inter-
section is not empty, it is a convex polyhedron, possibly unbounded. We
call weighted Voronoi cells the non empty cells V (p̂i), i ∈ [1 : n].

We define the weighted Voronoi diagram of P̂ , noted Vor(P̂ ), as the cell
complex whose faces are the weighted Voronoi cells and their faces. Note
that the set of weighted Voronoi diagrams includes Voronoi diagrams. In-
deed, when all weighted points have the same weight, their weighted Voronoi
diagram is identical to the Voronoi diagram of their centers.

Equivalently, the weighted Voronoi diagram of P̂ can be defined as the mini-
mization diagram of the set of functions {D(x, p̂i), . . . , D(x, p̂n)}. Observing
that, for any x, arg miniD(x, p̂i) = arg maxi(2pi · x − p2

i + wi), we obtain
that the weighted Voronoi diagram of P̂ is the maximization diagram of the
set of affine functions F = {f1, . . . , fn}, where

fi(x) = 2pi · x− p2
i + wi.

The graph of fi(x) is a non vertical hyperplane of Rd+1 that we denote by
hi:

hi = {(x, x(d+ 1)) ∈ Rd × R, x(d+ 1) = 2pi · x− p2
i }.

Let H = {h1, . . . , hn} and let us denote by V(P ) the upper envelope of the
hyperplanes of H. The maximization diagram of F is obtained by projecting
vertically the faces of the upper envelope V(P̂ ).
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Figure 4.8: A weighted Voronoi diagram.

Hence, the faces of the weighted Voronoi diagram Vor(P̂ ) are the vertical
projections of the faces of V(P̂ ).

Weighted Voronoi diagrams are very similar to Voronoi diagrams: the main
difference is that some weighted point p̂i in P̂ may have an empty Voronoi
cell in Vor(P̂ ) (see the small circle in the upper left corner of Figure 4.8).
Equivalently, the corresponding hyperplane hi does not contribute to a face
of the upper envelope V(P̂ ). Notice however that if the weights are non
negative and small enough so that the weighted points in P̂ correspond to
disjoint balls, then all the weighted points have a non empty Voronoi cell,
(Exercise 4.13).

4.4.3 Weighted Delaunay complexes

Let P̂ be a finite set of weighted points of Rd and write as before Vor(P̂ )
for its Voronoi diagram. The nerve of the collection of all cells of Vor(P̂ ) is
an abstract simplicial complex denoted by Del(P̂ ) and called the weighted
Delaunay complex of P̂ . Specifically, let f be a face of dimension k of Vor(P̂ )
and let intf be the set of points of f that do not belong to any proper subface
of f . All the points of intf have the same subset σ̂ of closest weighted points
in P̂ (for the weighted distance), and f is the intersection of the weighted
Voronoi cells of the weighted points in σ̂. Accordingly, σ̂ is a simplex in the
weighted Delaunay complex.

Recall that two weighted points are said to be orthogonal if their weighted
distance is zero. A weighted point x̂ is said to be orthogonal to a finite set
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Figure 4.9: The weighted delaunay triangulation associated to the weighted
Voronoi diagram of Figure 4.8.

σ̂ of weighted points if x̂ is orthogonal to all the weighted points of σ̂.

We say that the set P̂ of weighted points is in general position when no
weighted point of Rd×R is at equal weighted distance from more than d+1
weighted points of P̂ . In the following, we assume that the set P̂ of weighted
points is in general position.

Then, if σ̂ = {p̂0, ..., p̂d} is a subset of d + 1 weighted points in P̂ , there
exists a unique weighted point ĉ in Rd×R orthogonal to σ̂. The center c(σ)
of b̂ is called the weighted center of σ̂, and the square root of the weight
of ĉ, denoted by r(σ̂), is called the weighted radius of σ̂. Observe that the
weighted radius may be imaginary which causes no problem.

A weighted point x̂ is said to be free of weighted points of P̂ if no point
of P̂ has a negative weighted distance to x̂. Observe that the notion of
free weighted points generalizes the notion of empty balls (see Lemma 4.1).
Indeed, when the weights of points in P̂ are 0 and the weight of x̂ is positive,
the ball corresponding to x̂ is an empty ball for P .

Let v be a vertex of Vor(P̂ ). The weighted Delaunay simplex σ̂ associated
to v is a d-simplex. The vertex v is at equal weighted distance w from all the
weighted points of σ̂, and this distance is smaller than the weighted distance
from v to all other weighted points in P̂ \ σ̂. Therefore the weighted point
(v, w) is orthogonal to σ̂ and free of points of P̂ . This property generalizes
to faces of Vor(P̂ ) of any dimension and the following lemma is just another
view of the definition of the weighted Delaunay complex.

Lemma 4.5 (The free weighted point property) Any subset σ̂ ⊂ P̂ is
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a simplex of the weighted Delaunay complex Del(P̂ ) iff there is a weighted
point orthogonal to σ̂ and free of weighted points of P̂ .

We proceed now as in Section 4.3 and prove the weighted version of De-
launay’s triangulation theorem. With a slight abuse of language, we call
natural embedding of Del(P̂ ) in Rd, a geometric realization of Del(P̂ ) in
which each simplex σ̂ of Del(P̂ ) is embedded as the convex hull of the set σ
of the centers of the weighted points in σ̂.

Theorem 4.6 (Weighted Delaunay triangulation) If a finite set of wei-
ghted points P̂ ∈ Rd × R is in general position, then the weighted Delaunay
complex Del(P̂ ) has a natural embedding in Rd which is a triangulation of
a subset P ′ of P . P ′ is the set of centers of the weighted points in P̂ that
have a non empty cell in Vor(P̂ ).

Proof We first define the lifting map for weighted points as follows: to a
weighted point p̂ = (p, w) of Rd, we associate the point φ(p̂) = (p, p2−w) of
Rd+1. Then we consider the lower hull of points of φ(P̂ ), denoted by D(P̂ ).
Arguing as in Section 4.3, we get that the lower hull D(P̂ ) is a geometric
simplicial complex embedded in Rd+1 whose vertical projection onto Rd is
the natural embedding of Del(P̂ ). Let P̂ ′ be the subset of weighted points
in P̂ that have non empty cells in Vor(P̂ ). The vertex set of D(P̂ ) is the set
φ(P̂ ′) ⊆ φ(P̂ ) and the vertical projection of D(P̂ ) is a triangulation of P ′,
the set of centers of the weighted points of P̂ ′. �

Observe that the hyperplanes hi, i = 1, . . . , n defined in Subsection 4.4.2 are
the hyperplanes dual to the points in φ(P̂ ). Therefore, by the results of
Section 3.2, the upper envelope V(P ) and the lower hull D(P ) are dual com-
plexes. Arguing once more as in Section 4.3, we get the following diagram
which commutes when the weighted points are in general position :

V(P̂ )
duality−→ D(P̂ )

↑ ↓
Vor(P̂ )

nerve−→ Del(P̂ )

If the weighted points are not in general position, we can triangulate the non
simplicial faces D(P̂ ) as described in Section 4.3. The vertical projection of
D(P̂ ) will then be a triangulation of P ′.
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4.4.4 Complexity of weighted Delaunay complexes

The following theorem states that computing the weighted Voronoi diagram
of n weighted points of Rd × R (or equivalently its dual weighted Delaunay
triangulation) has the same asymptotic complexity as computing the Eu-
clidean Voronoi diagram or the Delaunay triangulation of n points of Rd.
The theorem is a direct consequence of Section 4.4.3 and of results on convex
hulls (Theorems 3.9 and 3.11).

Theorem 4.7 The combinatorial complexity of the weighted Voronoi dia-
gram of n weigthed points of Rd × R and of its dual weighted Delaunay

triangulation are Θ
(
nd d2e

)
. Both structures can be computed in optimal

time Θ
(
n log n+ nd d2e

)
.

4.5 Examples of weighted Voronoi diagrams

We have seen that the weighted Voronoi diagram of n weighted points is the
maximization diagram of n affine functions. The converse is also true (see
Exercise 4.14). We give in this section two examples of weighted Voronoi
diagrams that are of interest in the context of data analysis.

4.5.1 k-order Voronoi diagrams

Let P be a set of n points of Rd and let Pk be the set of all subsets of k
points of P for some fixed k ∈ [1 : n − 1]. We define the Voronoi cell of a
subset K ∈ Pk as the set of points of Rd that are closer to all the sites in K
than to any other site in P \K:

Vk(K) = {x ∈ Rd : ∀pi ∈ K,∀pj ∈ P \K, ‖x− pi‖ ≤ ‖x− pj‖}.

Let us consider the subsets of Pk whose Voronoi cells are not empty. These
cells are convex polyhedra and form a cell complex whose domain is Rd
called the k-order diagram of P (see Figure 4.10). For k = 1, we obtain the
usual Voronoi diagram.
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Figure 4.10: The 2-order Voronoi diagram of a set of points (in bold line)
and the corresponding 1-order Voronoi diagram (in thin line).

Theorem 4.8 The k-order diagram of P is the weighted Voronoi diagram

of a set of

(
n
k

)
weighted points of Rd.

Proof Let K1, . . . ,Ks be the s =

(
n
k

)
subsets of k points of P . For any

point x ∈ Rd , we have

x ∈ Vk(Ki) ⇐⇒
1

k

∑

p∈Ki
(x− p)2 ≤ 1

k

∑

q∈Kj
(x− q)2 ∀j, 1 ≤ j ≤ s

⇐⇒ x2 − 2


1

k

∑

p∈Ki
p


 · x+

1

k

∑

p∈Ki
p2

≤ x2 − 2


1

k

∑

q∈Kj
q


 · x+

1

k

∑

q∈Kj
q2

⇐⇒ D(x, p̂i) ≤ D(x, p̂j)

where p̂i = (ci, wi) is the weighted point centered at the center of mass
ci = 1

k

∑
p∈Ki p of Ki of weight wi = c2

i − ρ2
i with ρ2

i = 1
k

∑
p∈Kk

i
p2. Hence,
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x ∈ Vk(Ki) iff x lies in the weighted Voronoi cell of p̂i. �

It follows that the k-order Voronoi diagram of a finite set of points P of Rd
is a cell complex of Rd whose nerve is a triangulation of Rd under a general
position assumption.

The k-order Voronoi diagram of P can be used as a data structure to com-
pute in sublinear time the k points of P that are closest to a query point
x. The query can be answered by identifying the cell of the k-order Voronoi
diagram that contains x and reading the associated k-nearest points of P .

4.5.2 Bregman diagrams

Let Ω be a convex domain of Rd and F a strictly convex and differentiable
function F (called the generator function of the divergence) defined over Ω.
For any two points p = (p(1), . . . , p(d)) and q = (q(1), . . . , q(d)) of Ω, the
Bregman divergence DF (p||q) : Ω× Ω 7→ R associated to F is defined as

DF (p||q) = F (p)− F (q)−∇F (q) · (p− q) (4.3)

where ∇F = [ ∂F∂x1 ...
∂F
∂xd

]T denotes the gradient operator.

Informally speaking, Bregman divergence DF is the tail of the Taylor ex-
pansion of F . Geometrically, the Bregman divergence DF (p||q) is measured
as the vertical distance (i.e. along the (d + 1)-axis) between p̂ = (p, F (p))
and the hyperplane Hq tangent to the graph F of F at point q̂: DF (p||q) =
F (p)−Hq(p). See Figure 4.11.

We now give some basic properties of Bregman divergences. First, observe
that, for most functions F , the associated Bregman divergence is not sym-
metric, i.e. DF (p||q) 6= DF (q||p) (the symbol || is put to emphasize this
point). Hence, it is not a distance. Nevertheless, the strict convexity of the
generator function F implies that, for any p and q in Ω, DF (p||q) ≥ 0, with
DF (p||q) = 0 if and only if p = q.

Examples of Bregman divergences

Examples of Bregman divergences are the squared Euclidean distance (ob-
tained with F (x) = x2) and the quadratic distance function F (x) = xTQx
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Figure 4.11: The Bregman divergence.

where Q is a symmetric positive definite matrix.

The notion of Bregman divergence encapsulates various information mea-
sures based on entropic functions such as the Kullback-Leibler divergence
based on the Shannon entropy which is widely used in information the-
ory, image processing and various fields. Let p be a discrete probability
distribution so that

∑d
i=1 p(i) = 1. The Shannon entropy is defined as

F (p) =
∑

i p(i) log2 p(i). F is a convex function and the associated Breg-
man divergence between two probability distributions p and q is easily shown
to be

DF (p||q) =

d∑

i=1

p(i) log2 p(i)−
d∑

i=1

q(i) log2 q(i)− (p− q) · ∇F (q)

=

d∑

i=1

p(i) log2

(
p(i)

q(i)

)
(since

d∑

i=1

p(i) =

d∑

i=1

q(i) = 1)

def
= KL(p||q).

KL(p||q) is called the Kullback-Leibler divergence or the relative entropy of
the two probability distributions p and q.
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Bregman diagrams

Let P = {p1, ..., pn} be a finite point set of Ω ⊂ Rd. We associate to each
site pi the distance function, Di(x) = DF (x||pi). The minimization diagram
of the Di, i = 1, . . . , n, is called the Bregman Voronoi diagram of P , which
we denote by VorF (P ). The d-dimensional cells of this diagram are in 1-1
correspondence with the sites pi and the d-dimensional cell of pi is defined
as

VF (pi)
def
= {x ∈ Ω | DF (x||pi) ≤ DF (x||pj) ∀pj ∈ P}.

It is easy to see that the minimization diagram of the n functions DF (x||pi)
i = 1, . . . , n, is the maximization of the n affine functions

hi(x) = (x− pi) · ∇F (pi) + F (pi), i = 1, . . . , n.

Hence, Bregman diagrams are weighted Voronoi diagrams. More precisely,
we have

Theorem 4.9 The Bregman Voronoi diagram of n sites is identical to the
restriction to Ω of the weighted Voronoi diagram of the n weighted points
(p′i, wi), i = 1, ..., n, where p′i = ∇F (pi) and wi = p′2i + 2(F (pi)− pi · p′i).

Proof DF (x||pi) ≤ DF (x||pj) iff

−F (pi)− (x− pi) · p′i ≤ −F (pj)− (x− pj) · p′j .

Multiplying by 2 the two sides of the inequality and adding x2 to both sides
yields

x2 − 2x · p′i − 2F (pi) + 2pi · p′i ≤ x2 − 2x · p′j − 2F (pj) + 2pj · p′j
⇐⇒ (x− p′i) · (x− p′i)− wi ≤ (x− p′j) · (x− p′j)− wj ,

where wi = p′2i + 2(F (pi) − pi · p′i) and wj = p′2j + 2(F (pj) − pj · p′j). The
last inequality means that the weighted distance of x to the weighted point
(p′i, wi) is no more than its weighted distance to the weighted point (p′j , wj).
�

It is to be observed that not all weighted Voronoi diagrams are Bregman
Voronoi diagrams. Indeed, in weighted Voronoi diagrams, some weighted
points may have empty cells while each site has necessarily a non empty cell
in a Bregman Voronoi diagram.
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Bregman complexes

We define the Bregman complex of P as the nerve of the Bregman diagram
of P , VorF (P ). We denote it by DelF (P ). An analogue of Delaunay’s
triangulation theorem also exists in this context.

Let P̂ be the lifted image of P on the graph F of F , i.e. P̂ = {(p, F (p)), p ∈
P} ∈ Rd+1. Write T for the lower hull of P̂ . We assume in this section
that P is in general position, meaning that there is no point x ∈ Ω whose
divergences to d + 2 points of P are equal. Equivalently, P is in general
position if P̂ contains no subset of d+ 2 points on a same hyperplane.

Assume that P is in general position. Then, for the same reasons as for
Delaunay triangulations (see Section 4.3), T is a simplicial complex and the
vertical projection of T onto Rd is a triangulation that is equal to DelF (P )
of P by the lifting map argument given in the beginning of Section 4.5.2
(see Figurefig:bregman-lift). In other words, DelF (P ) naturally embeds in
Ω ⊆ Rd. We call DelF (P ) the Bregman triangulation of P . When F (x) = x2

and Ω = Rd, DelF (P ) is the Delaunay triangulation of P .

We now show that the empty ball property of Delaunay triangulations
(Lemma 4.1) naturally extends to Bregman triangulations. We define the
Bregman ball centered at c and of radius r as

bF (c, r) = {x ∈ Ω | DF (x||c) < r}.

It is easy to see that any Bregman ball bF is obtained as the vertical projec-
tion of the intersection of F with a halfspace below a non-vertical hyperplane
(see Figure 4.6 for the case where F = x2).

A Bregman ball is said to be empty if it does not contain any point of P .
Let σ = [p0, . . . , pd] be a (geometric) d-simplex of BregF (P ). The affine hull
of the lifted points p̂0, . . . , p̂d is a hyperplane hσ of Rd+1 whose intersection
with F projects vertically onto the boundary of the (unique) Bregman ball
bσ that circumscribes σ. Since, by construction, conv(p̂0, . . . , p̂d) ∈ hσ is a
facet of the lower hull of P̂ , bσ must be empty.

It also follows from the discussion that, under the general position assump-
tion, Bregman complexes naturally embeds in Rd. This is another extension
of Delaunay’s triangulation theorem.
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Bregman diagrams and complexes of the second type

We have defined Bregman diagrams as the minimization diagram of the
functions DF (x||pi). A symmetric definition can be given when exchanging
the variable x and the site pi and considering DF (pi||x). The bisectors are
no longer hyperplanes and the diagram is no longer a weighted Voronoi
diagram. Still, Legendre duality, an essential notion in convex analysis,
allows to transform a diagram of the second type into a diagram of the first
type as explained next (Lemma 4.11).

Legendre duality

Let F be a strictly convex and differentiable real-valued function on Ω.
The gradient of F , ∇F , is well defined as well as its inverse ∇−1F , and
∇F ◦ ∇−1F = ∇−1F ◦ ∇F are identity maps. We write x′ for ∇F (x) and
Ω′ for the gradient space {∇F (x)|x ∈ Ω}.

The Legendre transformation associates to F a convex conjugate function
F ∗ : Ω′ 7→ R given by [122]:

F ∗(x′) = x · x′ − F (x). (4.4)

Taking the derivative of Equation 4.4, we get

∇F ∗(x′) · dx′ = x · dx′ + x′ · dx−∇F (x) · dx = x · dx′ = ∇−1F (x′) · dx′,

from which we deduce that ∇F ∗ = ∇−1F .

Figure 4.12 gives a geometric interpretation of the Legendre transformation.
Consider the hyperplane hx tangent to the graph of F at x̂. This hyperplane
intersects the (d + 1)-axis at the point (0,−F ∗(x′)). Indeed, the equation
of hx is y(d+ 1) = x′ · (y − x) + F (x) = x′ · y − F ∗(x′). Hence, the (d+ 1)-
axis intercept of hx is equal to −F ∗(x′). Any hyperplane passing through
another point of F and parallel to hx necessarily intersects the z-axis above
−F ∗(x′).

To ensure that DF ∗ is a Bregman divergence, we need Ω′ to be convex. This
is trivial if Ω has no boundary and, in particular, when Ω = Rd. Otherwise,
we will further require that F is a function of Legendre type, i.e. that
the norm of the gradient of F goes to infinity whenever we approach the
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F (x)=〈x′,y〉 − F ∗(x′)

x
(0,−F ∗(x′))

y

F : z = F (y)

x̂

z

Figure 4.12: The z-intercept (0,−F ∗(x′)) of the tangent hyperplane hx of F
at x̂ defines the value of the Legendre transform F ∗ for the dual coordinate
x′.
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boundary of Ω (see [122]). Under the additional assumption that F is of
Legendre type, we can associate to the conjugate function F ∗ a Bregman
divergence DF ∗ . We have the following remarkable result:

Lemma 4.10 DF (p||q) = F (p) + F ∗(q′)− p · q′ = DF ∗(q
′||p′)

Proof By Equation 4.3, DF (p||q) = F (p)−F (q)−(p−q)·q′, and, according
to Equation 4.4, we have F (p) = p′ · p − F ∗(p′) and F (q) = q′ · q − F ∗(q′).
Hence,

DF (p||q) = F (p)− F (q)− (p− q) · q′
= p′ · p− F ∗(p′)− p · q′ + F ∗(q′)

= F ∗(q′)− F ∗(p′)− p · (q′ − p′)
= DF ∗(q

′||p′)

where the last equality holds since p = ∇F−1∇F (p) = ∇F ∗(p′). �

Observe that, when DF is symmetric, DF ∗ is also symmetric.

The Legendre transform of the quadratic form F (x) = 1
2x

TQx, where Q is
a symmetric invertible matrix, is F ∗(x′) = 1

2x
′TQ−1x′. We say that F is

self dual. Observe that the corresponding divergences DF and DF ∗ are both
generalized quadratic distances.

To compute F ∗, we can use the fact that ∇F ∗ = ∇F−1 (see Exercise 4.16).
However, integrating functions symbolically may be difficult or even not
possible, and, in some cases, it will be required to approximate numerically
the inverse gradient ∇−1F (x).

We can now define Bregman diagrams of the second type where the cell of
pi is defined as

ṼF (pi)
def
= {x ∈ Ω | DF (pi||x)) ≤ DF (pj ||x) ∀pj ∈ P}.

In contrast with the diagram of the first-type VorF (P ), the diagram of the

second type Ṽor(P ) has, in general, curved faces. From the Legendre duality
between divergences, we deduce correspondences between the diagrams of
the first and the second types. As usual, F ∗ denotes the convex conjugate
of F .
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Lemma 4.11 We have

ṼorF (P ) = ∇−1F (VorF ∗(P
′)) and VorF (P ) = ∇−1F (ṼorF ∗(P

′)).

Proof By Lemma 4.10, we have DF (x||y) = DF ∗(y
′||x′), which gives

VF (pi) = {x ∈ Ω | DF ∗(p
′
i||x′) ≤ DF ∗(p

′
j ||x′) ∀p′j ∈ P ′} = ∇−1F (ṼF ∗(p

′
i)).

This proves the second part of the lemma. The proof of the first part follows
the same path. �

Hence, constructing ṼorF (P ), the (curved) Bregman diagram of the second-
type, reduces to constructing an affine diagram in the gradient space Ω′

(and mapping the cells by ∇−1F ). The nerve of the Bregman diagram of
the second-type is a simplicial complex called the Bregman triangulation of
the second type. It follows from Lemma 4.11 that the Bregman triangulation
of the second type of P can be realized as the (curved) image by ∇−1F of
the Bregman Delaunay triangulation of the first type of P ′.

4.6 Exercises

Exercise 4.1 (Space of spheres) Let b be a d-ball of Rd of center c and
radius r and let s = c2−r2. We associate to b the point of Rd+1 φ(σ) = (c, s).
Show that the image by φ of a point, considered as a ball of radius 0, is a
point of the paraboloid Q of equation xd+1 = x2.

Show that the image by φ of the balls whose bounding spheres pass through a
given point p of Rd is the hyperplane hp of Rd+1 of equation xd+1 = 2p·x−p2,
which is tangent to Q at φ(p) = (p, p2).

What are the preimages by φ of the points of Rd+1 that lie above Q, on the
boundary of V(P ), in the interior of V(P ), on a line ?

Exercise 4.2 (Farthest point diagram) Consider the diagram obtained
by projecting the faces of h−p1 ∩ · · ·∩h−pn vertically, where the hpi are defined
as in Exercise 4.1. Characterize the points that belong to a face of this
diagram.

Dually, project vertically the faces of the upper convex hull of the φ(pi) =
(pi, p

2
i ), i = 1, ..., n. Show that we obtain a triangulation of the vertices of

conv(P ) such that each ball circumscribing a simplex contains all the points
of P .
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Exercise 4.3 (Upper bound) Contsider first the case of a set of points
P lying on two non coplanar lines of R3. Let n1 + 1 and n2 + 1 be the
numbers of points on each of the lines. Show that the Delaunay complex
of P has n1n2 tetrahedra (or, equivalently, that their Voronoi diagram has
n1n2 vertices).

Show that the moment curve Md ⊂ Rd (defined in Exercise 3.12) can be
drawn on the paraboloid Q of equation xd+1 = x2. Deduce then from
Exercise 3.12 that the bound in Theorem 4.4 is tight.

Exercise 4.4 (Triangulation of linear size) Prove that any set of n points
of Rd in general position admits a triangulation of size O(n).

Exercise 4.5 (in ball predicate) Let B be a ball of Rd whose bounding
sphere S passes through d + 1 points p0, . . . , pd. Show that a point pd+1

of Rd lies on S, in the interior of B or outside B, depending whether the
determinant of the (d+ 2)× (d+ 2) matrix

in sphere(p0, . . . , pd+1) =

∣∣∣∣∣∣

1 · · · 1
p0 · · · pd+1

p2
0 · · · p2

d+1

∣∣∣∣∣∣

is 0, negative or positive. Show that this predicate is the only numerical
operation that is required to check if a triangulation is a Delaunay triangu-
lation.

Show that the only numerical operation that is required to check if a trian-
gulation is the weighted Delaunay triangulation of a set of weighted points
p̂1, ..., p̂n is the evaluation of signs of determinants of (d+2)×(d+2) matrices
of the form

power test(p̂i1 , ..., p̂id+2
) =

∣∣∣∣∣∣

1 · · · 1
pi1 · · · pid+2

p2
i0
− wi0 · · · p2

id+1
− wid+1

∣∣∣∣∣∣

where pi and wi are respectively the center and the weight of p̂i. (Hint : use
the lifting map and Exercise 3.16).

Exercise 4.6 (Triangulation of a convex polytope) Describe an algo-
rithm to triangulate a convex polytope (Hint: proceed by faces of increasing
dimensions).
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Exercise 4.7 (Minimal spanning tree) Let P be a finite set of points
of Rd. A spanning tree of P is a tree whose vertices are the points of P .
A spanning tree is called a minimum spanning tree (MST) if the sum of
the lengths of its edges is minimal among all spanning trees. Show that
MST(P ) ⊂ Del(P ).

Exercise 4.8 (Delaunay complexes contain a triangulation) Let P be
any finite set of points of Rd. Show that there exists a subcomplex K ⊆
Del(P ) that is a triangulation of P .

Exercise 4.9 (Natural coordinates) Let P = {p1, ..., pn} be a finite set
of points of Rd. As usual, or(P ) denotes the Voronoi diagram of P and V (pi)
the cell of pi in or(P ). Given a point x ∈ conv(P ), we write P+ = P ∪ {x},
V +(x) for the Voronoi cell of x in or(P+), V +(x, pi) = V +(x) ∩ V +(pi)
and W (x, pi) = V +(x) ∩ V (pi) = V (pi) \ V +(pi). Now we define vi(x) =
vol(V +(x, pi)), v̄i(x) = vi(x)/‖x − pi‖ and v̄(x) =

∑n
i=1 v̄i(x). In addition,

we define wi(x) = vol(W (x, pi)) and w(x) =
∑n

i=1wi(x).

We call Laplace coordinates the n functions λ1, . . . , λn defined by λi(x) =
v̄i(x)/v̄(x) for x 6∈ P , and λi(pj) = δij otherwise, where δij is the Kro-
necker delta. We call Sibson’s coordinates the n functions arsigmai(x) =
wi(x)/w(x), i = 1, . . . , n. Show that the set of λi is a partition of unity, i.e.
x =

∑
i λi(x) pi. Same question for the set of arsigmai.

(Hint : for Laplace coordinates, apply Exercise 3.18 to V +(x). For Sibson’s
coordinates, apply Exercise 3.18 to the polytope of Rd+1 whose boundary is
V(P+) \ V(P ), where V(P ) is defined in Section 4.3).

Exercise 4.10 (Conservation law) Prove the following conservation law
for flows entering a weighted Voronoi cell L(σi) normally to the facets of the
cell: if fij , j ∈ J , are the facets of L(σi), we have

∑
j∈J ol(fij)

cj−ci
‖cj−ci‖ = 0.

This property makes Voronoi and weighted Voronoi diagrams useful when
applying finite volume methods in fluid dynamics. (Hint : use Exercise 3.18).

Exercise 4.11 (Section of a Voronoi diagram) Let H be a k-dimen-
sional affine space of Rd. Show that the intersection LH of H with the
weighted Voronoi diagram of n weighted points Rd is the weighted Voronoi
diagram of n weighted points of H.
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Exercise 4.12 (Union of balls) Show that the combinatorial complexity
of the union of n balls of Rd is the same as the combinatorial complexity of
their weighted Voronoi diagram. Design a worst-case optimal algorithm to
compute such a union of balls. (Hint : bound first the number of vertices.)

Exercise 4.13 (Centered triangulation) ) Let P̂ be a finite set of wei-
ghted points with non negative weights. Let P be the set of their centers
and let l = minp,q∈P ‖p − q‖ be the minimal distance between two centers.

Prove that, if the weights are less than l
4 , all weighted points of P̂ have a

non empty weighted Voronoi cell and each center belongs to the cell of its
own weighted point.

Exercise 4.14 (Maximization diagrams) Show that the maximization
diagram of n affine functions defined over Rd is the weighted Voronoi diagram
of n weighted points of Rd.

Exercise 4.15 (Complexity of k-order Voronoi diagrams) Use The-
orems 3.12 and 3.9 to show that the combinatorial complexity of all ≤ k-

order Voronoi diagrams is Θ(kd d+1
2 e nb d+1

2 c). Propose an efficient algorithm
to compute all these diagrams.

Exercise 4.16 Show that the Hellinger distance between two distributions

p and q, which is defined as
√∫

(
√
f(x)−

√
g(x)) dx, is a Bregman diver-

gence when setting F (x) = −
√

1− x2. Show that the inverse gradient is
x√

1+x2
and that the conjugate function is

∫
x dx√
1+x2

=
√

1 + x2.

Show that, for the exponential function F (x) = expx, we have F ∗(y) =
y log y−y (the unnormalized Shannon entropy) and, for the dual bit entropy
F (x) = log(1+expx), we have F ∗(y) = y log y

1−y+log(1−y), the bit entropy.

Show that, for the Burg entropy F (x) = − log x, the gradient and inverse
gradient are identical, so that it is self-dual, i.e. F = F ∗.

Exercise 4.17 We define the Bregman ball of the second type centered at
c and of radius r as

b̃F = ‖x ∈ Ω|DF (c||x) < r}.

Show that if, F is of Legendre type, b̃F is contractible.
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Exercise 4.18 Define the α-Bregman complex as the restriction of the
Bregman complex to the union of the Bregman balls of radius α. Con-
sider the two types associated to the two types of balls. Show that, in both
cases, the α-Bregman complex has the same homotopy type as the union of
the Bregman balls.

4.7 Bibliographical notes

Voronoi diagrams are very natural constructions that have discovered sev-
eral times and appear in the literature under various names like Dirichlet
tesselations or Thiessen diagrams. The observation that Voronoi diagrams
of Rd are projections of convex polyhedra of Rd+1 goes back to Voronoi him-
self. Delaunay has defined the triangulations that bear his name and proved
Theorem 4.3 in his seminal paper [64].

Voronoi diagrams and Delaunay triangulations are fundamental geometric
structures that have received a lot a attention. Main results can be found
in most textbooks on discrete and computational geometry [61, 27, 88] and
more comprehensive treatments can be found in the books by Okabe et
al. [116] and Aurenhammer et al. [7].

The space of spheres we referred to in Exercise 4.1 is fully developed in the
books by Pedoe [118] and Berger [9].

Weighted Voronoi diagrams appear also in the literature under the names of
Laguerre diagrams or power diagrams. Weighted Delaunay triangulations
are also named regular triangulations. They were first studied in a sys-
tematic way by Aurenhammer [6] who proved Theorem 4.8. The solution
to Exercise 4.15 is due to Clarkson and Shor [59]. Bregman Voronoi dia-
grams were introduced by Boissonnat, Nielsen and Nock [24]. The fact that
the α-Bregman complex has the same homotopy type as the union of the
Bregman balls (Exercise 4.18) has been first observed by Edelsbrunner and
Wagner [78]. A recent survey on affine and curved Voronoi diagrams can be
found in [26].

Natural coordinates (Exercise 4.9) have been introduced by Sibson [128,
127].

The cgal library [17] (www.cgal.org) offers fully reliable and efficient im-
plementations of algorithms to construct Delaunay and weighted Delaunay

www.cgal.org
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triangulations in arbitrary dimensions.



Chapter 5

Good triangulations
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In this chapter, we are interested in constructing simplicial complexes with
a guaranteed quality. On one hand, we would like to control the density of
their vertices and, on the other hand, we would like to control the shape of
the simplices and avoid simplices that are too flat.

In Section 5.1, we introduce ε-nets in order to capture a notion of good
sample of a bounded subset Ω ⊂ Rd. We will see that, for fixed d, the
complexity of Voronoi diagrams and Delaunay complexes of an ε-net of Ω of

size n is linear in n. This is to be compared with the bound Θ(nd
d
2
e) given

in Chapter 4 which is tight in the worst case.

Although Delaunay triangulations have many beautiful properties, their sim-
plices, in dimension greater than 2, may have an arbitrarily small volume
even if their vertices are well distributed. Avoiding such bad simplices is a
major issue and the importance of thick triangulations, to be introduced in
Section 5.2, has been recognized since the early days of differential topology.
Thick triangulations play a central role in many works on the triangulation
of manifolds (see Part III) and appear to be crucial in scientific computing
to ensure the convergence of numerical methods.

In order to improve the quality of the simplices of a Delaunay complex,
one can perturb the position of the vertices or the metric of the space. We
introduce in Section 5.3 a perturbation scheme that associates to each point
a weight and replaces the Delaunay complex by its weighted version. We
show that the weight assigned to each point can be computed so that the
resulting weighted Delaunay complex has some guaranteed thickness. The
method is an algorithmic application of the Lovász local lemma which is
recalled in Section 5.3.4.

5.1 Nets

5.1.1 Nets in Euclidean space

We consider a bounded subset Ω of Rd and denote by P a finite set of points
in Ω. The Hausdorff distance dH(P,Ω) is called the sampling radius of P
and denoted by ε. We also say that P is an ε-dense sample of Ω. We further
call η = minp,q∈P ‖p − q‖ the separation of P and η̄ = η/ε the separation
ratio of P .



5.1. NETS 103

Any finite point set P of Ω whose sampling radius is ε and whose separation
ratio is η̄ is called an (ε, η̄)-net of Ω. Note that for any finite set of distinct
points P ⊂ Ω, there is some positive ε and η̄ such that P is an (ε, η̄)-net for
Ω. Thus ε and η̄ are simply parameters that describe properties of P in Ω.

In the sequel, we will often consider the subset of (ε, η̄)-samples of Ω where
η̄ is lower bounded by a positive constant. Such point sets will be called
ε-nets for short.

Lemma 5.1 Let P be an (ε, η̄)-net of Ω. If the radius of the smallest ball
enclosing any connected component of Ω is greater than ε, then for any point
p ∈ P , the distance L(p) from p to its nearest neighbor in P \ {p} is at most
2ε. Therefore we must have η̄ ≤ 2.

Proof Since P is ε-dense in Ω, the union of the balls B(p, ε), p ∈ P , covers
Ω. Now let r > ε and assume for a contradiction that there exists a point
p ∈ P such that B(p, 2r) does not contain any point of P other than p.
Then Ω intersects the spherical shell B(p, r) \ B(p, ε) and this intersection
is not covered by any ball B(q, ε), q ∈ P , violating the hypothesis that P is
ε-dense in Ω. �

The next lemma shows that nets exist.

Lemma 5.2 (Existence of ε-nets) Let Ω be a bounded subset of Rd and
ε be any positive real. Then Ω admits an (ε, 1)-net.

Proof We apply the following procedure : while there exists a point p ∈ Ω
at distance at least ε from P , insert p in P . Since the domain is compact
and the algorithm inserts no point at distance less than ε from a previously
inserted point, the algorithm terminates. Upon termination, any point of Ω
is at distance less than ε from P . �

Lemma 5.3 (Size of an ε-net) Let Ω be a bounded domain of Rd. The
number of points of an (ε, η̄)-net satisfies

vold(Ω)

vold(B(ε))
≤ n(ε, η̄) ≤ vold(Ω

η
2 )

vold(B(η2 ))
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where B(r) denotes a d-ball of radius r, η = η̄ε, and

Ω
η
2 =

{
x ∈ Rd, d(x,Ω) ≤ η

2

}
.

If vold(Ω) > 0, then n(ε, η̄) = Θ
(

1
εd

)
where the constant in the Θ depends

on the geometry of Ω and on η̄d.

Proof The ball B(p, ε) of radius ε that are centered at the points p ∈ P
cover Ω. This yields the left inequality. The balls B(p, η2 ) of radius η

2 that
are centered at the points p ∈ P are disjoint and they are all contained in
Ω
η
2 . This leads to the right inequality. �

5.1.2 Delaunay complex of a net

Let Ω be a subset of Rd of positive d-volume and let P a finite set of points
in Ω. The nerve of the covering of Ω by the Voronoi cells of P is called the
restriction of Del(P ) to Ω and denoted by Del|Ω(P ). Equivalently, Del|Ω(P )
is the subcomplex of Del(P ) whose dual Voronoi faces intersect Ω.

We consider now the case where P is an (ε, η̄)-net of Ω. We first observe
that every simplex σ of Del|Ω(P ) must have a circumradius not greater than
ε. Indeed, since σ ∈ Del|Ω(P ), Vor(σ) ∩ Ω 6= ∅, and since P is ε-dense, we
have for any c ∈ Vor(σ) ∩ Ω and any q ∈ σ

‖p− q‖ ≤ ‖p− c‖+ ‖c− q‖ ≤ 2ε.

Observe also that all Delaunay simplices with a vertex at distance greater
than 2ε from the boundary of Ω belong to Del|Ω(P ) (see Exercise 5.1).

Lemma 5.4 (Delaunay complex of a net) Let Ω be a bounded subset of
Rd, P an (ε, η̄)-net of Ω, and assume that d and η̄ are positive constants.
The restriction of the Delaunay complex of P to Ω has size 2O(d2)|P | (i.e.
the size is linear for fixed d).

Proof Let p be a point of P . We first bound the number of neighbors
of p, i.e. the vertices of the link of p in Del|Ω(P ). Let σ be a simplex of
Del|Ω(P ) in the star of p. As observed above, the diameter of σ is at most
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2ε. Moreover, all the open balls B(q, η̄ε2 ), q ∈ P , are disjoint by definition
of the separation. Hence, the number of neighbors of p is at most

np =
vold

(
B(2ε+ η̄ε

2 )
)

vold
(
B( η̄ε2 )

) =

(
1 +

4

η̄

)d

where B(r) denotes a ball of radius r.

Assuming without real loss of generality that np ≥ d + 1, we deduce that
the number of simplices in the star of p is at most

d+1∑

i=1

(
np
i

)
= 2O(d2).

�

We will show now that the randomized incremental construction (see The-
orems 4.4 and 3.11) constructs the Delaunay complex of any net P in time
O(n log n) time where n = |P |. Remarkably, we don’t need to modify the
algorithm whose behaviour will automatically adapt to the fact that the
input point set is a net. To analyze the complexity of the algorithm in this
context, it is sufficient to show that the expected complexity of the Delau-
nay complex of a random sample S of P has linear size O(|S|). Indeed,
the expected number of simplices that appear in the Delaunay complex of a
point set P ∈ Rd during the randomized incremental construction, is

O

(
n∑

i=1

d

i
Γ0(i, P )

)
,

where Γ0(i, P ) is the expected size of the Delaunay complex of a random
sample of size i, drawn from the point set P . It will then immediately follow
from the analysis of the complexity of the randomized algorithm that the
complexity of the algorithm is O(n log n) when P is a net.

Lemma 5.5 A random subsample S of an ε-net P has a Delaunay complex
of expected size 2O(d2)|S| (i.e. the expected size is linear for fixed d).

Proof We first give the proof in the case where S is a Bernoulli sample,
i.e. it is obtained from P by picking every point p ∈ P with probability $.
For convenience, we will write $ = (ε/δ)d.
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Let us fix a point p ∈ P ; we shall upper bound the size of star(p,Del(S)), i.e.
the set of simplices of Del(S) with vertex p. Let Ik = [2k−1δ, 2kδ), k ∈ N.
Consider a d-tuple τ of points of P such that the d-simplex formed by the
points in σ = τ ∪{p}, has circumcentre cσ and circumradius rσ. Then, given
that p ∈ S, the event E(τ) = (σ ∈ Del(S)) could occur only if the following
two events occur:

(i) E
(σ)
1 = (∀p′ ∈ σ, p′ ∈ S)

(ii) E
(σ)
2 = (B(cσ, rσ) ∩ S = ∅), where B(x, r) is the open ball centered at

x with radius r.

Given that p ∈ S, the probability that σ ∈ Del(S) can be therefore upper-
bounded as follows. We write nσ = P ∩ B(p, rσ) ≥ (rσ/ε)

d (by a packing
argument).

proba[E(τ)] = proba[E
(σ)
1 ∧ E(σ)

2 ]

= $d proba[E
(σ)
2 ]

≤ $d (1−$)nσ (5.1)

≤ $d e−$nσ

≤
(ε
δ

)d2
e−(ε/δ)d(rσ/ε)d

≤
(ε
δ

)d2
e−(rσ/δ)d

If σ has circumradius rσ ∈ Ik, we get

proba[E(τ)] ≤ (ε/δ)d
2
e−2(k−1)d

By the triangle inequality, if σ ∈ Del(S) has a circumradius rσ, then all the
points in σ must lie in the ball B(p, 2rσ). Therefore, the number of potential
d-tuples which can contribute to star(p,Del(S)) is at most ((4rσ/ε)

d)d =
(4rσ/ε)

d2 ≤ (2k+2δ/ε)d
2
. Let

Zp(k) :=

{
|{σ ∈ Del(S) : p ∈ σ, rσ ∈ [2k−1δ, 2kδ)}|, p ∈ S,
0, otherwise,

denote the number of Delaunay simplices which contain p ∈ S and have
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circumradius rσ ∈ Ik. Then we get

E[Zp(k)] ≤
∑

τ∈(P∩B(p,2r))d

proba[E(τ)]

≤ (2k+2δ/ε)d
2
(ε/δ)d

2
e−2(k−1)d

= 4d
2
2kd

2
e−2(k−1)d

Define Yp :=
∑∞

k=1 Zp(k) to be the number of Delaunay simplices in star(p,Del(S)).
Summing k over all allowed ranges of r, Summing over all allowed ranges of
r, we get

E[Yp] ≤
∞∑

k=1

4d
2
e−2(k−1)d · 2kd2

= 4d
2
∞∑

k′=1

e−k
′ · k′d · 2d2 (with k′ = 2(k−1)d)

= 8d
2
∞∑

k′=1

e−k
′ · k′d

≤ 8d
2

∫ ∞

x=0
e−x · xddx = 8d

2
Γ(d+ 1)

= 2O(d2).

where Γ(t) :=
∫∞

0 e−xxt−1dx denotes the Gamma function. Therefore, the
expected size of Del(S) is given by

E[|Del(S)|] ≤
∑

p∈P
proba[p ∈ S]E[Yp] ≤ n$ · 2O(d2) = E[|S|] · 2O(d2).

The previous result does not apply directly to the randomized construction
of the Delaunay complex of P . When the points are inserted in a random
order, the i-th point to be inserted is a random point in a uniform sample
of size i of P . We thus consider now the case of a random subset S ⊆ P
of size s. Given that p ∈ S, choosing the rest of the random subsample S
is equivalent to choosing a random sample of s − 1 elements from P \ {p}.
Now from Equation 5.1 and Exercise 5.2, we get:

proba[E(τ)] ≤
(
s− 1

n− 1

)d(
1− s− 1

n− 1

)(rσ/ε)d

≈
( s
n

)d (
1− s

n

)(rσ/ε)d

= $d(1−$)(rσ/ε)d ,
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where $ = s/n is the probability for a point of P to belong to S. The rest
of the computations follows as previously leading to the same asymptotic
bound on E[|Del(S)|]. �

We conclude from the discussion above and Lemma 5.5:

Theorem 5.6 Let P be an ε-net in Rd. The randomized incremental con-
struction of a Delaunay complex of P requires on expectation 2O(d2)|P | mem-
ory space and 2O(d2)|P | log |P | time.

5.1.3 Nets in discrete metric spaces

So far, we have considered nets in subsets of Euclidean spaces. However nets
can be defined in more general metric spaces. In this section, we consider
the case where Ω is a finite set of points that we rename W to emphasize
the distinction. We do not assume that W is embedded in Euclidean space
and the points are not given a location. Instead, we only assume to know
the distance matrix of W , i.e. the |W | × |W | matrix M whose element mi,j

is the distance between the points wi and wj . W together with M defines a
discrete metric space. Nets can be defined in discrete metric spaces in very
much the same way they have been defined in Euclidean space.

Extracting from W a coarser sample that is a net of W will allow to benefit
from the nice properties of nets. It will also allow to represent data at
various resolutions, to cluster data and to construct witness complexes, a
weak variant of Delaunay complexes that can be defined and constructed in
any discrete metric space (Section 6.2).

We first prove the existence of nets in the context of discrete metric spaces
(see Lemma 5.2 for its analog in the Euclidean case).

Lemma 5.7 (Existence of nets) Let W be a finite set of points such that
the distance of any point q ∈W to W \ {q} is at most ε and let λ ≥ ε. One
can extract from W a subsample L that is a (λ, 1)-net of W .

In preparation for Section 6.2, we will often refer to the points of L as
landmarks and to the points of W as witnesses.

Proof We construct the sample L by inserting points of W one by one.
Intially L := ∅ and W ′ := W . At each step, we pick a point of W ′, say p,
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insert it in L, and remove p from W ′ as well as all the points of W ′ whose
distance to p is less than λ. We stop when W ′ is empty. The algorithm
necessarily terminates since W is finite. Upon termination, all the points of
W are at distance at most λ from a point of L (since otherwise it would be
inserted in L) and two points of L are at distance at least λ (since we never
insert a point at distance less than λ from the current set L). It follows that
L is a (λ, 1)-net of W . �

We can improve the algorithm described in the proof of Lemma 5.7 by
inserting, at each step, a point p ∈ W that is farthest from the current set
of landmarks L (see Algorithm 3 (Case 1)).

We maintain for each point w of W ′ its closest point L(w) in L and, at each
step, we select the point w ∈W ′ which is most distant from its closest land-
mark L(w). The algorithm requires O(|W |) storage and its time complexity
is easily seen to be O(|L| × |W |).

Algorithm 3 Farthest point insertion

Input: the distance matrix of a finite point set W and either a positive
constant λ (Case 1) or an integer k (Case 2)
L := ∅
W ′ := W
L(w) := p∞ for all w ∈ W ′ {p∞ is a fake point at infinite distance from
W}
λ∗ := maxw∈W ′ ‖w − L(w)‖
w∗ := a point p ∈W ′ such that ‖p− L(p)‖ = λ∗

while either λ∗ > λ (Case 1) or |L| < k (Case 2) do
add w∗ to L and remove w∗ from W ′

for each point w of W ′ such that ‖w − w∗‖ < ‖w − L(w)‖ do
L(w) := w∗

update λ∗ and w∗

Output : L ⊆ W , a (λ, 1)-net of W (Case 1), an approximate solution
to the k-centers problem (Case 2)

The next lemma shows that this strategy implies that the separation ratio
remains constant over the refinement.

For any i > 0, let Li and λi denote respectively L and λ∗ = maxw∈W ′ ‖w −
L(w)‖ at the end of the i-th iteration of the main loop of the algorithm. If
we label the points by their insertion order, we have Li = {p1, ..., pi} and
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λi = d(pi, Li−1). Since Li grows with i, λi is a decreasing function of i.
Moreover:

Lemma 5.8 At each iteration i > 0, Li is a (λi, 1)-net of W .

Proof The fact that Li is λi-dense in W follows directly from the definition
of λi. Let us show that Li is λi separated. Consider a closest pair of
points papb of Li and assume that pb has been inserted after pa. Then
‖pa − pb‖ = λb ≥ λi. This implies that Li is λi-separated. �

In some applications, we are interested in selecting a given number k of
points. We are then interested in the following k-centers problem : select
from W a subset L of k points that are as far apart from each other as possi-
ble. More precisely, we want to choose a subset L of k points of W in such a
way as to maximize the separation of L, i.e. the minimum pairwise distance
between the points of L. We can use Algorithm 3 (Case 2) for that purpose.
Interestingly, this simple greedy algorithm provides a 2-approximation to
the problem.

Lemma 5.9 (Approximation of the k-centers problem) Algorithm 3
(Case 2) provides an approximation ratio of 2 for the k-centers problem.

Proof Let Lk = l1, ..., lk be the set of the k first selected points by the
algorithm, labelled according to the order they have been selected. Let λk
denote the distance of the k-th point from all previously selected points li,
i = 1, ..., k − 1. Consider the set of balls B(li, λk), i, ..., k − 1. Their union
contains all the points of W and therefore all the points of any optimal
solution Lopt to the k-centers problem. Since |Lopt| = k and there are k− 1
balls, there must be two points of Lopt that fall in the same ball B(li, λk)
for some i ≤ k − 1. It follows that there exists a pair of points in Lopt that
is at distance at most 2λk by the triangular inequality.

On the other hand, the distance between any two points of Lk is at least λk
by Lemma 5.8. It follows that Algorithm 3 (Case 2) provides an approxi-
mation ratio of 2 for the k-centers problem. �
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Figure 5.1: The four vertices of a squared face f of a uniform grid are
cocircular and can be circumscribed by a sphere centered at the center of
the face. This sphere does not enclose any other vertex of the grid. We can
then slightly perturb the vertices of f so that the convex hull of the vertices
of f is now a tetrahedron of positive volume whose circumscribing sphere
does not include any other vertex of the grid. Hence, it is a tetrahedron in
the Delaunay triangulation of the (perturbed) vertices of the grid.

5.2 Thick simplices

For a given set of points P ∈ R2, Del(P ) maximizes, over all possible trian-
gulations of P , the smallest angle of the triangles (Exercise 5.6) and it can
be easily shown that, if P is a net, then the angles of the triangles are lower
bounded by some positive constant (Exercise 5.5). However, the property
does not hold for higher dimensional Delaunay triangulations and one can-
not bound the dihedral angles of higher dimensional simplices as shown in
Figure 5.1.

For any vertex p of a simplex σ, the face opposite p, denoted by σp, is the
convex hull of the other vertices of σ. The altitude of p in σ is the distance
D(p, σ) = d(p, aff(σp)) from p to the affine space aff(σp) spanned by σp.
The altitude D(σ) of σ is the minimum over all vertices p of σ of D(p, σ). A
poorly-shaped simplex can be characterized by the existence of a relatively
small altitude. The thickness of a j-simplex σ is the dimensionless quantity
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Θ(σ) =

{
1 if j = 0
D(σ)
j∆(σ) otherwise,

where ∆(σ) denotes the diameter of σ, i.e. the length of its longest edge.

5.2.1 Thickness and singular value

We will show in the next lemma that the thickness of a simplex is related to
the singular values of a matrix. Before stating the lemma, we recall some well
known results on matrices and their singular values and refer the reader to
the book of Trefethen and Bau [131] for an excellent introduction to singular
values. If A is a d× j matrix with j ≤ d, we assume that the singular values
of A are ordered according to decreasing absolute values and we denote the
ith singular value by si(A). We have s1(A) = ‖A‖ = sup‖x‖=1 ‖Ax‖ and
sj(A) = inf‖x‖=1 ‖Ax‖. We will employ the following standard observation:

Lemma 5.10 If µ > 0 is an upper bound on the norms of the columns of
A, then s1(A) = ‖A‖ ≤ √jµ.

From the given definitions, one can verify that if A is an invertible d×d ma-
trix, then s1(A−1) = sd(A)−1, but it is convenient to also accommodate non-
square matrices, corresponding to simplices that are not full dimensional. If
A is a d× j matrix of rank j ≤ d, then the pseudo-inverse A† = (ATA)−1AT

is the unique left inverse of A whose kernel is the orthogonal complement of
the column space of A. We have the following general observation [131]:

Lemma 5.11 Let A be a d×j matrix of rank j ≤ d and let A† be its pseudo
inverse = (ATA)−1AT. We have

si(A
†) = sj−i+1(A)−1, for i = 1, . . . , j.

In particular, sj(A) = s1(A†)−1.

The columns of A form a basis for the column space of A. The pseudo-
inverse can also be described in terms of the dual basis. If we denote the
columns of A by {ai}, then the ith dual vector, wi, is the unique vector in
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σpi

pi

p0

wi

Figure 5.2: Choosing p0 as the origin, the edges emanating from p0 in σ =
[p0, . . . , pj ] form a basis for aff(σ). The proof of Lemma 5.12 demonstrates
that the dual basis {wi} consists of vectors that are orthogonal to the facets,
and with magnitude equal to the inverse of the corresponding altitude.

the column space of A such that wT
i ai = 1 and wT

i aj = 0 if i 6= j. Then A†

is the j × d matrix whose ith row is wT
i .

By exploiting a close connection between the altitudes of a simplex and the
vectors dual to a basis defined by the simplex, we obtain the following key
lemma that relates the thickness of a simplex to the smallest singular value
of an associated matrix:

Lemma 5.12 (Thickness and singular value) Let σ = conv(p0, . . . , pj)
be a non-degenerate j-simplex in Rd, with j > 0, and let P be the d × j
matrix whose ith column is pi − p0. Then

sj(P) ≥ D(σ)/
√
j =

√
jΘ(σ)∆(σ).

Proof We first show that the ith row of P† is given by wT
i , where wi is

orthogonal to aff(σpi), and

‖wi‖ = D(pi, σ)−1.

Indeed, by the definition of P†, it follows that wi belongs to the column
space of P, and it is orthogonal to all (pi′ − p0) for i′ 6= i. Let ui = wi/‖wi‖.
By the definition of wi, we have wT

i (pi − p0) = 1 = ‖wi‖uTi (pi − p0). By the
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definition of the altitude of a vertex, we have uTi (pi − p0) = D(pi, σ). Thus
‖wi‖ = D(pi, σ)−1. Since

max
1≤i≤j

D(pi, σ)−1 =

(
min

1≤i≤j
D(pi, σ)

)−1

= (jΘ(σ)∆(σ))−1,

Lemma 5.10, yields
s1(P†) ≤ (

√
jΘ(σ)∆(σ))−1.

The stated bound on sj(P) follows from Lemma 5.11. �

The proof of Lemma 5.12 shows that the pseudoinverse of P has a natu-
ral geometric interpretation in terms of the altitudes of σ, and thus the
altitudes provide a convenient lower bound on sj(P). By Lemma 5.10,
s1(P) ≤ √j∆(σ), and thus

Θ(σ) ≤ sj(P)
s1(P) . In other words, Θ(σ)−1 provides a convenient upper bound

on the condition number of P. Roughly speaking, thickness imparts a kind
of stability on the geometric properties of a simplex. This is exactly what
is required when we want to show that a small change in a simplex will not
yield a large change in some geometric quantity of interest.

5.2.2 Whitney’s angle bound

The following lemma is due to Whitney. It shows that, if the vertices of a
simplex σ are at small relative distance from an affine space H, and if the
thickness of the simplex is bounded away from 0, then the angle between the
affine hull of σ and H is small. Before stating the lemma, we define angles
between vector spaces.

Definition 5.13 (Angles between subspaces) If U and V are vector
subspaces of Rd, with dimU ≤ dimV , the angle between them is defined
by

sin∠(U, V ) = sup
u∈U
‖u‖=1

‖u− πV u‖, (5.2)

where πV is the orthogonal projection onto V .

Alternatively, the angle between vector subspaces U and V can be defined as:

∠(U, V ) = max
u∈U
{min
v∈V
∠(u, v)} (5.3)
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The angle between affine subspaces K and H is defined as the angle between
the corresponding parallel vector subspaces.

Lemma 5.14 (Whitney’s angle bound) Suppose σ is a j-simplex of Rd,
j < d, whose vertices all lie within a distance δ from a k-dimensional affine
space h ⊂ Rd with k ≥ j. Then

sin∠(aff(σ), h) ≤ 2j δ

D(σ)
=

2δ

Θ(σ)∆(σ)
.

Proof Suppose σ = conv(p0, . . . , pj). Choose p0 as the origin of Rd and let
Πh : Rd → h be the orthogonal projection onto h. Let u be any unit vector
in aff(σ). Since the vectors vi = (pi − p0), i ∈ {1, . . . , j} form a basis for
aff(σ), we may write u = Pa, where P is the d× j matrix whose ith column
is vi, and a ∈ Rj is the vector of coefficients. Then, defining X = P−ΠhP,
we get

‖u−Πhu‖ = ‖Xa‖ ≤ ‖X‖ ‖a‖.

Since d(pi, h) ≤ h for all 0 ≤ i ≤ j, ‖vi − Πhvi‖ ≤ 2δ. It follows then from
Lemma 5.10 that

‖X‖ ≤ 2
√
jδ.

Observing that 1 = ‖u‖ = ‖Pa‖ ≥ ‖a‖ inf‖x‖=1 ‖Px‖ = ‖a‖ sj(P), we find

‖a‖ ≤ 1

sj(P)
,

and the result follows from Lemma 5.12. �

Whitney’s angle bound will be especially useful in Chapter 8. There, h will
be the tangent space Tp at a point p of a smooth manifold M, and σ will
be a thick simplex whose vertices are close (relatively to the diameter of the
simplex) to Tp. Whitney’s lemma asserts that the affine hull of σ makes
a small angle with Tp. Thickness plays a crucial role here as the following
example shows. The Schwarz lantern is a polyhedral surface inscribed in
a cylinder as shown in Figure 5.3. By increasing the number of vertices
of the lantern, we can make the Hausdorff distance between the lantern
and the cylinder arbitrarily small but increasing the sampling density does
not guarantee that the planes of the facets of the lantern provide a good
approximation of the tangent planes of the cylinder. In fact, the angle
between the normal to a facet and the normal to the cylinder at any of the
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Figure 5.3: The Schwarz lantern.

vertices of the facet can be made arbitrarily close to π/2. Such a situation
cannot happen if the facets have a bounded thickness as stated by Whitney’s
lemma.

5.3 Thick triangulations via weighting

The notion of thickness introduced in Section 5.2 is an important measure of
the shape of a simplex. A simplicial complex is thick when all its simplices
are thick. We have seen (Figure 5.1) that Delaunay triangulations are not
necessarily thick even if the vertices form an (ε, η̄)-net. The goal of this sec-
tion is to show that a thick simplicial complex can nevertheless be obtained
from an (ε, η̄)-net by assigning (relatively small) weights to the points of the
net and considering the weighted Delaunay triangulation of the resulting set
of weighted points.

To keep the exposition simple, we depart from the rest of this book and
will work in this section in the flat torus Td = Rd/Zd instead of Rd. As
a consequence, if P is a finite set of points in Td, the Delaunay complex
and weighted Delaunay complexes of P have no boundary. Boundary issues
obscurate the central properties we want to develop. It is not difficult to
extend the results to the case of a bounded domain of Rd, provided that we
only look sufficiently far away from the boundary of the domain.
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5.3.1 Weighting schemes

We consider a set of points P that is an (ε, η̄)-net in Td. A weighting
scheme on P is a function w from P to R which assigns to each point p ∈ P
a weight w(p) ∈ R. We denote by P̂ the resulting set of weighted points,
i. e. P̂ = {(p, w(p) : p ∈ P}, and by Del(P̂ ) the corresponding weighted
Delaunay triangulation.

We restrict the weighting scheme to non negative weights. The relative
amplitude w̃ of the weighting scheme w is defined as

w̃ = max
p∈P

w(p)

L2(p)
,

where L(p) is the distance from p to its nearest neighbor in P \ p. We
also wish that each point of P appears as a vertex of Del(P̂ ). As shown

in Section 4.4.3, this condition is ensured if, for each p ∈ P , w(p) < L2(p)
4 .

From now on, we will only consider weighting schemes that have a relative
amplitude smaller than 1

4 , that is w̃ ≤ w̃0 where w̃0 is a constant smaller
than 1

4 .

The main result of this section is that, for any (ε, η̄)-net P of Td, given a
small enough constant Θ0, there are weighting schemes with relative ampli-
tude smaller than w̃0 <

1
4 and such that the weighted Delaunay triangulation

Del(P̂ ) has no j-simplex with thickness less than Θj
0, for j = 1, . . . , d. More-

over, as we will see in Section 5.3, such weighting schemes can be computed
by a simple randomized algorithm.

In the rest of this section, we use the same notation σ for a geometric simplex
with vertices in P and for its abstract counterpart which is just the subset
of P formed by the vertices of σ. Given a weighting scheme w defined on P ,
each simplex σ ⊂ P corresponds to a subset σ̂ of P̂ : σ̂ = {(p, w(p) : p ∈ σ}.
Two weighted points are said to be orthogonal if their weighted distance is
zero.

A weighted point orthogonal to all the weighted points of σ̂ is said to be
orthogonal to σ̂. If σ is a simplex of dimension j, the weighted points orthog-
onal to σ̂ are centered on an affine subspace of dimension d− j orthogonal
to the affine subpace aff(σ). The intersection point of these two subspaces
is denoted by c(σ̂). Let (c(σ̂), R2(σ̂)) be the weighted point centered on c(σ̂)
and orthogonal to σ̂. The weighted point (c(σ̂), R2(σ̂)) is the weighted point
with minimal weight among all the weighted points orthogonal to σ̂. The
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point c(σ̂) is called the weighted center of the simplex σ and R(σ̂) is called
the weighted radius of σ.

Note that weighted center c(σ̂) and the weighted radius R(σ̂) depend on
the weights assigned to the vertices of σ and are different from the center
c(σ) and circumradius R(σ) of σ. Still, the two following lemmas provides
upper and lower bounds for the weighted radii. Note the the first one ap-
plies to any simplex with vertices in P when the relative amplitude of the
weighting scheme is small while the second one applies only to simplices in
the weighted Delaunay triangulation but assumes only that the weighting
scheme is positive.

We will also make use of the following lemma that bounds the weighted radii
and the diameters of the simplexes in Del(P̂ ).

Lemma 5.15 (Weighted radii and diameters of simplices in Del(P̂ ))
Let P be an (ε, η̄)-net of Td and assume that a non negative weighting scheme
with relative amplitude smaller than w̃0 <

1
4 has been defined on P . Then,

any simplex σ of Del(P̂ ) has a weighted radius R(σ̂) that is at most ε and a
diameter ∆(τ) that is at most 2

√
2ε.

Proof Let σ be a simplex of Del(P̂ ). The simplex σ being included in some
d-simplex τ of Del(P̂ ), the weighted radius R(σ̂) of σ is at most the weighted
radius R(τ̂) of τ . We now prove that R(τ̂) is at most ε. Indeed otherwise,
since P is ε-dense, the ball B(c(τ̂), R(τ̂)) associated to the weighted center
(c(τ̂), R2(τ̂)) of τ would include a point q of P . Then the weighted distance
from q to (c(τ̂), R2(τ̂)) is negative, and this contradicts the fact that σ
belongs to Del(P̂ ).

Let us consider now the Euclidean distance d(c(σ̂), p) from the weighted
circumcenter c(σ̂) to any vertex p of σ. We have:

d(c(σ̂), p)2 = R(σ̂)2 + w(p)

≤ ε2 + w̃0L(p)2.

where L(p) is the distance from p to its nearest neighbor in P \ {p}. From
Lemma 5.1, we have  L(p) ≤ 2ε and thus d(c(σ̂), p) ≤ ε

√
1 + 4w̃0 ≤

√
2ε.

Since this bound holds for any vertex p of σ, we conclude that the diameter
∆(σ) of σ is at most 2

√
2ε. �
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5.3.2 Θ0-thickness and flakes

A simplex that is not thick has a relatively small altitude. We focus here on
a special class of non-thick simplices, called flakes in which all the altitudes
are relatively small. Let Θ0 be a constant smaller than 1.

Definition 5.16 (Θ0-flakes) A j-simplex σ is Θ0-thick if Θ(σ) ≥ Θj
0. A

Θ0-flake is a simplex that is not Θ0-thick but whose proper faces are all
Θ0-thick.

Observe that a flake must have dimension at least 2, since Θ(σ) = 1 for any
simplex σ with dimension j < 2.

A simplicial complex whose simplices are all Θ0-thick is said to be Θ0-thick.
Observe that a simplicial complex is Θ0-thick iff it includes no Θ0-flake.
Indeed, if σ is not Θ0-thick, then either it is a Θ0-flake or it has a proper
j-face σj ⊂ σ that is not Θ0-thick. By considering such a face with minimal
dimension, we arrive at the following observation:

Lemma 5.17 A simplex is not Θ0-thick if and only if it has a face that is
a Θ0-flake.

We show in Lemma 5.19 below an upper bound on the altitudes of a Θ0-
flake. First, we provide a general relationship between the altitudes of a
simplex:

Lemma 5.18 Let σ be a j-simplex with j ≥ 2. If p and q are two vertices
of σ, we note σp the subface σ \ {p} of σ and σq the subface σ \ {q}. The
altitudes D(p, σ) and D(p, σq) of p within respectively σ and σq and the
altitudes D(q, σ) and D(q, σp) of q within respectively σ and σp satisfy the
following relation

D(p, σ)

D(p, σq)
=

D(q, σ)

D(q, σp)
.

Proof The proof follows from a volume computation. Let volj(σ), volj−1(σp)
and volj−2(σpq) be the volumes of the simplices σ, σp and σpq = σ \ {p, q}
respectively. We have

volj(σ) =
1

j
D(p, σ)volj−1(σp) =

1

j(j − 1)
D(p, σ)D(q, σp)volj−2(σpq).



120 CHAPTER 5. GOOD TRIANGULATIONS

The similar relation, obtained replacing p by q, obviously holds and both
relations together prove the lemma. �

We arrive at the following important observation about flake simplices:

Lemma 5.19 (Flakes have small altitudes) If a k-simplex σ is a Θ0-
flake, then for every vertex p ∈ σ, the altitude D(p, σ) satisfies the bound

D(p, σ) <
k

k − 1

∆2(σ)Θ0

L(σ)
<

∆2(σ)Θ0

L(σ)
,

where ∆(σ) and L(σ) are the lengths of the longest and shortest edges of σ.

Proof Recalling Lemma 5.18, we have

D(p, σ) =
D(q, σ)D(p, σq)

D(q, σp)
, (5.4)

and taking q to be a vertex with minimal altitude in σ, we have

D(q, σ) = kΘ(σ)∆(σ) < kΘk
0∆(σ). (5.5)

Moreover, since σp is Θ0-thick, we have:

D(q, σp) ≥ (k − 1)Θ(σp)∆(σp) ≥ (k − 1)Θk−1
0 L(σ). (5.6)

Furthermore:

D(p, σq) ≤ ∆(σq) ≤ ∆(σ). (5.7)

Plugging Equations 5.5, 5.6 and 5.7 into Equation 5.4 yields the claimed
bound. �

5.3.3 The weight range of a flake with small radius

Let σ be a Θ0 flake of dimension j. If we assign weights to the vertices of
σ, the weighted radius R(σ̂) of σ depends on the weights of its vertices. We
show here that to keep the weighted radius R(σ̂) smaller than a given ε we
have to choose the weight of each vertex of σ within a small interval whose
measure is linear in Θ0.
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Lemma 5.20 Let σ be a Θ0-flake and assume that we are given a weighting
scheme with non negative weights on the vertices of σ. If the weighted radius
R(σ̂) of σ is smaller than ε, the weight w(p) of any vertex p of σ belongs to
an interval I(σ, p) whose measure |I(σ, p)| satisfies:

|I(σ, p)| ≤ 4
∆(σ)2

L(σ)
Θ0ε.

If furthermore the vertices of σ belongs to an (ε, η̄)-net, and the weighting
scheme has a relative amplitude smaller than w̃0 <

1
4 , the measure of I(σ, p)

satisfies:

|I(σ, p)| ≤ |I| def
= 32 Θ0

ε2

η̄
.

Proof Let c(σ̂) and R(σ̂) be respectively the weighted center and weighted
radius of σ. Likewise, we use c(σ̂p) and R(σ̂p) for respectively the weighted
center and the weighted radius of σp, where σp is the subface σ \ p of σ.
Referring to Figure 5.4, we get :

R2(σ̂) = d2(c(σ̂), c(σ̂p)) +R2(σ̂p), (5.8)

The set of points of Rd with equal weighted distances to the vertices of σp is
an affine subspace we denote by N(σ̂p). Writing d(p,N(σ̂p)) for the distance
from p to N(σ̂p), we have:

R2(σ̂) + w(p) = d2(p, c(σ̂)) = d2(p,N(σ̂p)) + (D(p, σ)−H(p, σ̂))2 (5.9)

where D(p, σ) is the altitude of p in σ and H(p, σ̂) = d(c(σ̂), c(σ̂p)) if p and
c(σ̂) are on the same side of aff(σp) and H(p, σ̂) = −d(c(σ̂), c(σ̂p)) otherwise.

Using Equations 5.8 and 5.9 together, we get:

w(p) = d2(p,N(σ̂p)) + (D(p, σ)−H(p, σ̂))2 −R2(σ̂)

= d2(p,N(σ̂p)) +D2(p, σ)−R2(σ̂p)− 2D(p, σ)H(p, σ̂).

Writing F (p, σ̂) = d2(p,N(σ̂p)) +D2(p, σ)−R2(σ̂p), we get:

w(p) = F (p, σ̂)− 2D(p, σ)H(p, σ̂).

Hence,

|w(p)− F (p, σ̂)| = 2D(p, σ) d(c(σ̂), c(σ̂p)). (5.10)
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R(σ̂) √

w(p)

R(σ̂p) aff(σp)

c(σ̂)

D(p, σ)

p

c(σ̂p)

N(σ̂p)

Figure 5.4: For the proof of Lemma 5.20.

Observe that F (p, σ̂) depends on the locations of the vertices of σ and on
the weights of the vertices of σp but does not depend on the weight w(p) of
p.

From Lemma 5.19, D(p, σ) ≤ Θ0
∆(σ)2

L(σ) , and, from Equation 5.8, we get that

d(c(σ̂), c(σ̂p)) is at most R(σ̂). Therefore, if R(σ̂) ≤ ε, the weight w(p) of p
belongs to the interval I(σ, p), centered at F (p, σ̂), of measure

|I(σ, p)| ≤ 4
∆(σ)2

L(σ)
Θ0ε. (5.11)

In the case where σ belongs to an (ε, η̄)-net, we have L(σ) ≥ η̄ε and, from
Lemma 5.15, ∆(σ) ≤ 2

√
2ε. The weight range |I(σ, p)| then satisfies

|I(σ, p)| ≤ 32 Θ0
ε2

η̄
.

�
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5.3.4 Lovász local lemma

We will see in Section 5.3 how to to compute, for a given input set of points
P , a weighting scheme yielding to a thick weighted Delaunay triangulation.
This construction relies on the constructive proof of the Lovász local lemma
due to Moser and Tardos. In this section, we recall without proof these
important results.

Lovász local lemma [1] is a powerful tool to prove the existence of combinato-
rial objects. Let A be a finite collection of “bad” events in some probability
space. The lemma shows that the probability that none of these events oc-
cur is positive provided that the individual events occur with a sufficiently
small probability and there is limited dependence among them. Here is the
lemma in a simple form that will be sufficient for our purposes.

Theorem 5.21 (Lovász local lemma) Let A = {A1, . . . , AN} be a fi-
nite set of events in some probability space. Suppose that each event Ai is
independent of all but at most Γ of the other events and that Pr [Ai] ≤ $
for all 1 ≤ i ≤ N . If

$ ≤ 1

e(Γ + 1)
(5.12)

where e denotes the base of the natural logarithm, then the probability that
none of the events in A occurs is strictly positive.

Assume that the events are determined by a set of independent random
variables. Each event is determined by a subset of those random variables.
Two events are independent if the subsets of random variables determining
each of them do not overlap. In such a case, Moser and Tardos gave a
constructive proof of the Lovász lemma [109, 129]. The proof leads to a
simple and natural algorithm that repeatidely checks whether some event
in A occurs. In the affirmative, the algorithm picks an arbitrary occuring
event, say A, and resamples A, where we call resampling of an event A
the operation that consits in choosing new random values for the variables
determining A.

Moser and Tardos proved that this simple algorithm quickly terminates,
providing an assignment of the random variables that avoids all of the events
in A. It is important to note that the selection mechanism for picking
an occuring event in the while loop is arbitrary and does not affect the
correctness of the algorithm.
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Algorithm 4 Moser Tardos algorithm

Input: a finite set A of events determined by a finite set P of independent
random variables
for all P ∈ P do
vP ← a random evaluation of P
while some event of A occurs do

pick any such event A ∈ A
resample A

return {vP , P ∈ P}

Theorem 5.22 (Moser Tardos) Assume that the same conditions as in
Theorem 5.21 hold. Assume, in addition, that the events are determined
by a set P of n independent random variables. Moser Tardos randomized
algorithm computes an assignment of values for the variables in P such
that no event in A occurs. The algorithm resamples each event at most 1

Γ
expected times and the expected total number of resampling steps is at most
O(n).

5.3.5 Applying the Lovász local lemma to remove flakes

Let P be an (ε, η̄)-net of Rd and w̃0 a constant less than 1/4. Now we take
for the weights of the points in P independent random variables and we pick
the weight of each point p uniformly at random in the interval [0, w̃0L

2(p)].
An event occurs when there exists a Θ0-flake σ ⊂ P that has a weighted
radius R(σ̂) not greater than ε. Since we know from Lemma 5.15, that
all simplices in Del(P̂ ) have a weighted radius R(σ̂) not greater than ε,
removing all events will lead to a Θ0-thick complex. For convenience, we
will often identify an event and the associated flake.

Lemma 5.23 The probability that an event occurs is $ ≤ 32 Θ0
w̃0η̄3

.

Proof Let σ be a Θ0-flake included in P and assume that the weights of
all the vertices of σ except one, say p, have already been assigned. We know
from Lemma 5.20 that if the weighted radius R(σ̂) is not greater than ε, the

weight w(p) belongs to an interval of measure less than |I| = 32 Θ0
ε2

η̄ . It
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follows that the probability that an event occurs is at most

|I|
w̃0L2(p)

≤ 32
Θ0

w̃0η̄3
,

which implies the same bound on the probability of the event σ. �

Lemma 5.24 Each event overlaps at most Γ other events, where

Γ + 1 ≤
(

13

η̄

)d(d+1)

.

Proof Let σ be a Θ0-flake with weighted center c(σ̂) and weighted radius
R(σ̂) ≤ ε. An event that overlaps σ is a Θ0-flake σ′ with a weighted radius
at most ε that shares a vertex p with σ. Let q be a vertex of σ′. We have:

d(c(σ̂), q) ≤ d(c(σ̂), p) + d(p, q)

≤
√
R(σ̂)2 + w(p) + ∆(σ′)

Since R(σ̂) ≤ ε, w(p) ≤ w̃0L(p)2 ≤ 4w̃0ε
2 by Lemma 5.1, and ∆(σ) ≤ 2

√
2ε

by Lemma 5.15, we get:

d(c(σ̂), q) ≤ 3
√

2ε.

Therefore, any vertex of an event that overlap σ lies in the ball B(c(σ̂), r)
of radius r = r̄ε = 3

√
2ε. Since P is η-separated, this ball contains at most

J(r) points of P , with

J(r) =
(r + η

2 )d

(η2 )d
=

(
1 +

2r̄

η̄

)d
≤
(

1 +
6
√

2

η̄

)d

≤
(

11

η̄

)d
.

where the last inequality uses the fact that η̄ ≤ 2.

Since the Θ0-flake σ also has its vertices within the ball B(c(σ̂), r), we can
bound Γ + 1 by the number of simplices with vertices within B(c(σ̂), r), i.e.

Γ + 1 ≤ Σd+1
i=2

(
J(r)
i

)
≤ (1 + J(r))d+1 ≤

(
1 +

(
11

η̄

)d)d+1

.



126 CHAPTER 5. GOOD TRIANGULATIONS

Using η̄ ≤ 2 and the fact that, for all a ∈ R+ and b ∈ R+, ad+ bd ≤ (a+ b)d,
we get:

Γ + 1 ≤
(

13

η̄

)d(d+1)

.

�

We are now ready to apply the Lovász local lemma. We will assume that

(
13

η̄

)d(d+1)

32
Θ0

w̃0η̄3
≤ 1

e
. (5.13)

In view of Lemmas 5.23 and 5.24, this condition ensures that we have $ ≤
1

e(Γ+1) , and therefore there exists a weight assignment on P with relative
amplitude less than w̃0, such that P includes no Θ0-flakes with a weighted
radius less than ε. Since any simplex in the weighted Delaunay triangulation
Del(P̂ ) has a weighted radius less than ε (Lemma 5.15), we conclude that
such an assignment yields a weighted Delaunay triangulation Del(P̂ ) that
has no Θ0-flakes.

Theorem 5.25 Let P be an (ε, η̄)-net of Td and w̃0 ≤ 1
4 . If Equation 5.13

is satisfied, there is a weight assignment on P with relative amplitude less
than w̃0 such that the weighted Delaunay triangulation Del(P̂ ) is Θ0-thick.

Observe that the thickness Θ0 that we can guarantee is bounded by Equa-
tion 5.13 that constrains Θ0 to be small enough with respect to η̄ and w̃0.
Note that the bound is very small and depends as 2−d

2
on d. Still it does

not depend on the sampling density ε.

5.3.6 Algorithm

Based on the results of the previous subsections, we will apply Moser Tardos
algorithm to our context so as to obtain a weighted Delaunay triangulation
that is Θ0-thick. Algorithm 5 takes as input an (ε, η̄)-net P of Td, a con-
stant w̃0 < 1/4 and a constant Θ0 small enough to satisfy Equation 5.13. As
proved below, the algorithm outputs a weighting scheme on P whose relative
amplitude is smaller than w̃0 and such that the weighted Delaunay triangu-
lation Del(P̂ ) is Θ0-thick. The algorithm maintains the weighted Delaunay
triangulation Del(P̂ ) while resampling the Θ0-flakes that occur in Del(P̂ )
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until they all disappear. Resampling a simplex σ consists in reassigned ran-
dom weights to the vertices of σ. As already mentionned, the weights of the
different vertices are picked independently and the weight w(p) of vertex p
is taken uniformly at random in the interval [0, w̃0L

2(p)].

Algorithm 5 Thick weighted Delaunay triangulation

Input: P , w̃0, Θ0

Initialize all weights to 0 and compute Del(P̂ ) = Del(P )
while there are Θ0-flakes in Del(P̂ ) do

choose a Θ0-flake σ in Del(P̂ )
resample σ
update Del(P̂ )

Output: A weighting scheme on P and the corresponding weighted De-
launay triangulation which is granted to be Θ0-thick.

Theorem 5.26 If P is an (ε, η̄)-net of Td, w̃0 a constant less than 1/4 and
Θ0 a constant such that Equation 5.13 holds, Algorithm 5 outputs a weighting
scheme P̂ on P whose relative amplitude is smaller than w̃0 and such that the
weighted Delaunay triangulation Del(P̂ ) is Θ0-thick. Its expected complexity
is linear with respect to the size of P .

Proof Algorithm 5 resamples the Θ0-flakes that occur in the weighted De-
launay triangulation Del(P̂ ). Since the Θ0-flakes in Del(P̂ ) have weighted
radii at most ε, they are events as defined in Section 5.3.5. Therefore Algo-
rithm 5 is a variant of Moser Tardos algorithm applied to the Θ0-flakes with
small weighted radii. The main difference is that Algorithm 5 keeps only
track of Θ0-flakes in the current Del(P̂ ) and not of all possible Θ0-flakes
with small weighted radii included in P . According to Theorem 5.22, Con-
dition 5.13 ensures that Moser Tardos algorithm terminates whatever may
be the order in which the events are resampled. Therefore the condition, a
fortiori, guarantees the termination of Algorithm 5.

Each resampling involves the reweighting of at most d+ 1 vertices. Since P
is an (ε, η̄)-net, and the weighting scheme has bounded relative amplitude,
the weighted Delaunay complex Del(P̂ ) can be updated in constant time.
Thus the expected complexity of Agorithm 5 is proportional to the number
of resampling which is O(|P |) by Theorem 5.22. �
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5.4 Protection

We introduce now the notion of protection of a simplex. The notion of
protection is stronger than the notion of thickness (see Lemma 5.27) and
some positive protection can be obtained by perturbing the position of the
points of P . This is another mean to ensure Delaunay triangulations to
have positive thickness (other than weight assignment as discussed in the
previous section). Protection will also be used in Section 6.2.

We say that a simplex σ ⊂ Del(P ) is δ-protected if there exists a point cσ,
called a δ-protection center of σ such that

‖cσ − q‖ > ‖cσ − p‖+ δ ∀p ∈ σ and ∀q ∈ P \ σ. (5.14)

We will write δ̄ = δ
ε . Note that Equation 5.14 implies the following inequality

‖cσ − q‖2 > ‖cσ − p‖2 + δ2 ∀p ∈ σ and ∀q ∈ P \ σ. (5.15)

Lemma 5.27 (Separation and thickness from protection) Let P be an
(ε, η̄)-net of a bounded domain Ω ⊂ Rd. Assume that |P | > d + 1 and that
every d-simplex in Del(P ) is δ-protected. Then the separation ratio of P
satisfies

η̄ ≥ δ̄,
and the thickness of any simplex σ (of any dimension) of Del(P ) is at least

Θ(σ) ≥ δ̄2

8d
.

Before we prove the lemma, we state and prove two easy claims that will be
useful to prove the second part of the lemma.

Claim 5.28 Let B = B(c,R) and B′ = B(c′, R′) be two n-balls whose
bounding spheres ∂B and ∂B′ intersect, and let H be the bisecting hyper-
plane of B and B′, i.e. the hyperplane that contains the (n− 2)-sphere
S = ∂B ∩ ∂B′. Let θ be the angle of the cone (c, S). Writing ρ = R′

R and
‖c− c′‖ = λR, we have

cos(θ) =
1 + λ2 − ρ2

2λ
. (5.16)

If R ≥ R′, we have cos(θ) ≥ λ
2 .
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Proof Let q ∈ S; applying the cosine rule to the triangle [cc′q] gives

λ2R2 +R2 − 2λR2 cos(θ) = R′2, (5.17)

which proves Equation 5.16. If R ≥ R′, then ρ ≤ 1, and cos(θ) ≥ λ/2
immediately follows from Equation 5.16. �

c c′
θ θ̃

B

B′
B′+δ

q
q̃

H

˜H

Figure 5.5: Construction used in Claims 5.28 and 5.29.

If B = B(c,R) is a d-ball, we denote by B+δ the ball B(c,
√
R2 + δ2).

Claim 5.29 Let B = B(c,R) and B′ = B(c′, R′) be two n-balls whose
bounding spheres ∂B and ∂B′ intersect, and let θ̃ be the angle of the cone
(c, S̃) where S̃ = ∂B ∩ ∂B′+δ. Writing ‖c− c′‖ = λR, we have

cos(θ̃) = cos(θ)− δ2

2R2λ

Proof Let q̃ ∈ S̃, applying the cosine rule to the triangle [cc′q̃] gives

λ2R2 +R2 − 2λR2 cos(θ̃) = R′2 + δ2.

Subtracting Equation 5.17 from the previous equality yields δ2 = 2λR2(cos(θ)−
cos(θ̃)), which proves the lemma. �

Proof of Lemma 5.27 1. Let p and q be two closest points of P . The
edge [pq] is an edge of Del(P ). We denote by σ a d-simplex of Del(P ) that
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contains [pq] and by σ′ a d-simplex of Del(P ) that contains one of the two
vertices of [pq] but not the other. Since σ′ is δ-protected, we must have
|e| ≥ δ.

2. Since Θ(τ) ≥ Θ(σ) for any simplex τ ⊆ σ, it is sufficient to consider the
case of a d-simplex σ. Since |P | > d + 1, there exists at least one other
d-simplex σ′ of Del(P ) that share a facet τ with σ. Let B(σ) = B(c,R) and
B(σ′) = B(c′, R′) be the circumscribing balls of σ and σ′ respectively. The
spheres ∂B and ∂B′+δ intersect in a (n− 2)-sphere S̃ which is contained in
a hyperplane H̃ parallel to the hyperplane H = aff(τ). For any q̃ ∈ S̃ we
have

d(H̃,H) = d(q̃, H) = R(cos(θ)− cos(θ̃)) =
δ2

2‖c− c′‖ ,

where the last equality follows from Claim 5.29 and d(H̃,H) denotes the
distance between the two parallel hyperplanes. See Figure 5.5 for an illus-
tration. Since p ∈ ∂B, p belongs to B(σ′)+δ if and only if p lies in the strip
bounded by H and H̃, which is equivalent to

d(p,H) = D(p, σ) <
δ2

2‖c− c′‖ .

We conclude that, if σ is δ-protected, the ball

B(σ)+δ = B(cσ,
√
R2
σ + δ2) ⊆ B(cσ, Rσ + δ)

does not contain points of P \ σ, which implies from the inequality above
that

d(p,H) = D(p, σ) ≥ δ2

2‖c− c′‖ .

For any simplex σ, we have D(p, σ) ≤ 2R(σ) for all p ∈ σ, where R(σ)
denotes the radius of the circumsphere of σ. For any σ in the triangulation
of an ε-net, we have R(σ) ≤ ε. Thus D(p, σ) ≤ 2ε, and the inequality above

yields ‖c− c′‖ ≥ δ2

4ε .

We further obtain

Θ(σ) =
minp∈σD(p, σ)

d∆(σ)
≥ δ2

8d ε2
=
δ̄2

8d
.

2

In Section 5.3.5, we have used a variant of Moser Tardos algorithm to ob-
tain a thick weighted Delaunay complex. Instead of weighting the points, we
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can perturb their positions so that the Delaunay triangulation of the per-
turbed point set P ′ is δ-protected for some small enough δ > 0. Thanks to
Lemma 5.27, the Delaunay triangulation of the perturbed points will have
some positive thickness (see Exercise 5.12).

5.5 Exercises

Exercise 5.1 Let Ω be a subset of Rd and P a finite ε-dense set of points in
Ω. Show that all Delaunay simplices of P with a vertex at distance greater
than 2ε from the boundary of Ω belong to Del|Ω(P ).

Exercise 5.2 (Hypergeometric distribution) Suppose a, b, c are posi-
tive integers, with max{a, b} ≤ c. The hypergeometric distribution with
parameters a, b, c is the distribution of the random variable X = |A ∩ B|,
where A is a random sample of size a, from a universe C of size c, which
has a subset B of size b. Prove that given b ≤ a, the probability that the
random sample A contains B, and is disjoint from another fixed set T with

cardinality t, T ∩B = ∅, is at most
(
a
c

)b (
1− a

c

)t
, for a, c� b2.

Exercise 5.3 (Delaunay refinement) Adapt Algorithm 3 to add sample
points in Td so that the sample P is an ε-net of Td.

Exercise 5.4 (k-center clustering) Given is a set of points P and an in-
teger k. The k-clustering problem consists in partitionning P into k clusters
so as to minimize the maximum diameter of a cluster. Propose an algorithm
that gives an approximation ratio of 2 for the k-clustering problem.

Exercise 5.5 Let Ω be an open subset of R2 and P an (ε, η̄)-net of Ω in
general position wrt circles. Show that all triangles of Del|Ω(P ) have all

their angles greater or equal to arcsin( η̄2 ).

Exercise 5.6 (Max-min) Let P be a finite set of points in general position
in the plane. To any triangulation T of P we attach the vector V (T ) =
(α1, ..., α3t) where the αi ∈ [0, π] are the angles of the t triangles of T ,
sorted by increasing values. Show that Del(P ) is, among all triangulations
of P , the one that maximizes V (T ) for the lexicographic order. In particular,
Del(P ) maximizes the smallest angle.
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Exercise 5.7 Let U and V be two vector spaces of Rd with dimU ≤ dimV .
Show that ∠(U, V ) = ∠(V ⊥, U⊥) where U⊥ (resp., V ⊥) denotes the vector
space normal to U (resp., V ).

Exercise 5.8 Let h and h′ be two affine spaces of the same dimension
embedded in Rd, and let u be a vector of Rd. Show that ∠(u, h′) ≤ ∠(u, h)+
∠(h, h′).

Exercise 5.9 Let τ be a j-simplex. Show that L(τ) ≥ D(p, τ) ≥ j! Θ(τ) ∆(τ)
(see Lemma 5.19 for the notations).

Exercise 5.10 Bound from below the dihedral angles of a d-simplex of Rd
as a function of its thickness.

Exercise 5.11 (Inheritance of protection) Let P be an (ε, η̄)-net of a
bounded domain Ω ⊂ Rd. We say that a simplex is δ-power protected if
Equation 5.15 is satisfied, i.e. there exists a point cσ such that

‖cσ − q‖2 > ‖cσ − p‖2 + δ2 ∀p ∈ σ and ∀q ∈ L \ σ.
Show that if every d-simplex in Del(P ) is δ-power protected, then all sim-
plices (of all dimensions) in Del(P ) are at least δ′-power protected where
δ′ = δ

d . deduce a similar result if one replaces the power protection by the
protection as defined in Section 5.4. (Hint : use the lifting map introduced
in the proofs of Theorems 4.3 and 4.6)

Exercise 5.12 (Protection via perturbation) Let P be an (ε, η̄)-net P
of the flat torus Td = Rd/Zd. Propose an algorithm that perturbs the
points of P so that the Delaunay triangulation of the perturbed point set
P ′ is δ-protected for some a small enough δ > 0 (and thus has some positive
thickness by Lemma 5.27). If p is a point of P , the associated perturbed
point is picked at random in the ball B(p, ρ) for some ρ > 0. Use a variant
of Moser Tardos algorithm .

5.6 Bibliographical notes

The farthest point insertion algorithm (Algorithm 3) has been popularized
by Gonzales in the context of clustering data sets [92] and has found numer-
ous applications in many fields. Gonzales proved Lemma 5.9 and Feder and
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Greene [81] showed that no polynomial-time algorithm exists with a con-
stant approximation ratio close to 2 unless P = NP . They also improved
the O(n2) time complexity of Algorithm 3 to O(n log k) when the points live
in Euclidean space. See also the paper by Har-Peled and Mendel [96] that
contains further improvements and extensions, and, in particular, shows how
to construct a hierarchical representation of a point set, called the net-tree,
from the sequence of points provided by the farthest point insertion. The
proof of the complexity of the incremental randomized construction of nets
(Theorem 5.6) is due to Boissonnat, Devillers,

Dutta and Glisse [16]. Their paper contains also solutions to Exercises 5.2
and ??.

The notion of thick triangulations goes back to the early work on differential
topology by Cairns [32], Whitehead [134], Whitney [135], Munkres [112]
and others. Thick triangulations also play a central role in the work of
Cheeger et al. [54] and Fu [85] on curvature measures. Since this notion
appeared in different places and contexts, various names have been used, e.g.
thickness, fullness or relative thickness. Our presentation follows the work
of Boissonnat, Dyer and Ghosh [20]. Lemma 5.14 is due to Whitney [135].

More recently, thick triangulations have been found important in mesh gen-
eration where numerical simulations require meshes to be thick [74]. The
notion of flake simplex introduced in this chapter is an extension of the no-
tion of sliver introduced by Cheng et al. in the context of 3-dimensional
mesh generation [55, 74] : a sliver is a flake with an upper bound on the
ratio of its cicumradius to the length of its shortest edge. Sliver removal in
higher dimensions has been discussed in [100, 56].

Our weighting mechanism to remove flakes is inspired from the one used by
Cheng et al. to remove slivers from 3-dimensional Delaunay triangulations.
The weighting mechanism can be seen as a perturbation of the Euclidean
metric. It is also possible to remove flakes and inconsistencies by perturbing
the position of the points. This kind of perturbation may be prefered to the
weighting mechanism in the context of mesh generation [101, 14, 77].

The notion of protection has been introduced by Boissonnat, Dyer and
Ghosh to study the stability of Delaunay triangulations and the construc-
tion of Delaunay triangulations of manifolds [20, 19, 18]. A solution to
Exercise 5.12 can be deduced from results in [19] and [21].

The Lovász local lemma, proved initially by Lovász and Erdös [1], is a cel-
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ebrated result with a long history. The constructive proof of Moser and
Tardos has been a breakthrough which is still the subject of intense re-
search [109]. Its first introduction in Computational Geometry appears
in [21].
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In this chapter, we introduce two simplicial complexes which have strong
ties with Delaunay complexes. Their common point is that they allow to
define filtrations. Filtrations, defined in Chapter 2, are sequences of nested
complexes that allow to represent a set of points at various scales. They
play an important role in persistent homology, a central tool in Topological
Data Analysis, as will be demonstrated in Chapter 11.

We first define the alpha-complex, or α-complex, of a finite set of points P ,
which is a subcomplex of the Delaunay complex. Here α is a real parameter
and varying α will lead to a filtration of the Delaunay complex. The defi-
nition extends to sets of weighted points : the weighted α-complex of a set
of weighted points P̂ is a subcomplex of the weighted Delaunay triangula-
tion of P̂ , and varying α will lead to a filtration of the weighted Delaunay
complex.

The α-complex of P is a combinatorial representation of the union of the
balls B(p, α) of radius α centered at the points of P . It is thus closely related
to the Čech complex introduced in Section 2.3. In fact, the α-complex shares
with the Čech complex the property of having the same homotopy type as
the union of the balls. A major difference between the two complexes is
related to their size: the α-complex is usually much smaller than the Čech
complex and can be computed more efficiently.

Owing to their capacity of representing union of balls and their topology, α-
complexes play an important role in the description of proteins and macro
molecules, and in drug design. In Geometric Inference, α-complexes also
play an important role and we will see in Section 8.1 that they capture the
homotopy type of well sampled manifolds.

Alpha shapes are constructed from the Delaunay complex and are therefore
difficult to compute in high dimensions. In Section 6.2, we will introduce
another complex, the so-called witness complex. The witness complex is
defined from two point sets : L, which is the vertex set of the complex,
and W that can be seen as an approximation of the space that contains
L. In applications, L is usually a crude subset of W that can be extracted
from W using, for example, the algorithms of Section 5.1. The witness com-
plex can be defined and constructed in any discrete metric space and does
not require the points to be embedded in a specific ambient metric space:
we only need to know the pairwise distances between the points of L and
W . This is a critical advantage in high dimensions over the Delaunay com-
plex whose construction requires to evaluate the in ball predicate whose
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algebraic complexity depends on the dimension d of the ambient space (Ex-
ercise 4.5). In the case where the points live in Euclidean space, we will
see that, under appropriate conditions, witness complexes and Delaunay
complexes are identical. We will also introduce a variant called the relaxed
witness which offers another filtration.

6.1 Alpha complexes

6.1.1 Definitions

Alpha complexes. Let P be a set of points in Rd. From Lemma 4.1, we
know that the simplices in the Delaunay complex Del(P ) are characterized
by the empty ball property meaning that a simplex with vertices in P belong
to Del(P ) iff it admits an empty circumscribing ball i.e. a circumscribing ball
whose interior includes no point of P . We are interested here in sorting the
simplices of Del(P ) according to the squared radius of their smallest empty
circumscribing ball. For a simplex τ , we call this quantity the filtration
value of τ and write it α(τ).

Now, for any α ∈ R, we consider the subset A(P, α) of the simplices in
Del(P ) that have a filtration value at most α. Because a ball circumscribing
a simplex circumscribes any face of this simplex, A(P, α) is a subcomplex
of Del(P ). It is called the α-complex of P .

Since the α-complex of P is a subcomplex of the Delaunay complex of P ,
it has a natural embedding if P is in general position wrt spheres (The-
orem 4.3). The underlying space of the α-complex A(P, α) is called the
α-shape of P .

If P is in general position wrt spheres, the dimension of the α-complex
A(P, α) is at most the dimension d of the embedding space. It should be
noted that the dimension of the α-complex may be strictly less that d and
that the complex may not be pure, having some simplices which are not
faces of simplices of maximal dimension.

The Delaunay filtration. The α-complex evolves when α increases, from
the empty set for α < 0, to the set of vertices of Del(P ) when α = 0, and
finally to the whole Delaunay triangulation Del(P ) when α is large enough.
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Figure 6.1: The α-complex of a set of points in R2 for increasing value of
the parameter α.

The parameter α defines an order on the simplices. This order is not total
and some simplices may have the same value of the parameter. We define
a total order by first sorting the simplices with a same α by increasing
dimensions and then breaking ties arbitrarily. The total order we then obtain
yields a filtration of the Delaunay complex.

We recall that a filtration of a simplicial complexK, as defined in Section 2.4,
is a sequence of nested subcomplexes of K such that each subcomplex is
obtained from the previous one by adding a simplex of K. The filtration
of Del(P ) obtained by inserting the simplices in the order defined above is
called a Delaunay filtration of P .
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6.1.2 Computing alpha complexes and filtrations

Let P be a set of points in Rd and let Del(P ) be the corresponding Delaunay
complex. For a d-simplex τ in Rd, there is a unique ball of Rd circumscribing
τ . We denote by c(τ) and r(τ) respectively the center and the radius of this
ball. According to the definition, a d-simplex τ of Del(P ) belongs to the
α-complex A(P, α) iff α ≥ r(τ)2.

Things are a bit more complicated for simplices of dimension strictly less
than d. Let τ be a simplex of dimension k < d. The centers of the d-balls
circumscribing τ form a (d− k)-flat of Rd we denote by h(τ). Consider the
circumscribing ball of τ that has the smallest radius. The center of this
smallest circumscribing ball, c(τ), is called the center of τ and its radius,
r(τ)), is called the circumradius of τ . The center c(τ) is the point where
h(τ) intersects the k-flat aff(τ) spanned by τ .

Given a set of points P , we say that τ is a Gabriel simplex if its smallest
circumball contains no point of P in its interior. Plainly, a Gabriel simplex
is a simplex of Del(P ) but the converse is not necessarily true: a k-simplex
τ of Del(P ) is a Gabriel simplex iff c(τ) belongs to the face V (τ) of the
Voronoi diagram Vor(P ) dual to τ .

We conclude from the discussion that, if τ is a Gabriel simplex, its smallest
enclosing ball is empty and it belongs to all α-complexes A(P, α) for α ≥
r(τ)2. If τ a Delaunay simplex that is not Gabriel, the smallest empty ball
that circumscribes τ circumscribes a coface of τ and therefore τ will have
the same filtration value α as one of its cofaces. To prove this, consider the
function w(x) that associates to each point x in h(τ) its squared distance
to the vertices in τ . Finding the filtration value α(τ) of τ amounts to
minimizing w(x) under the condition that x ∈ V (τ). Since w(x) is a convex
fonction and V (τ) is a convex polyhedron, the minimum of w(x) on V (τ)
is reached at c(τ) iff c(τ) ∈ V (τ) or on the boundary of V (τ) otherwise. In
the first case, the simplex is a Gabriel simplex. In the last case, if we call
σ the coface of higher dimension of τ whose dual Voronoi face contains c(τ)
in its interior, we have α(τ) = α(σ).

For any τ ∈ Del(P ) with dimension k < d, we denote by U(τ) the set of
cofaces of τ in Del(P ) with dimension k+ 1. Algorithm 6 computes for each
simplex τ in Del(P ), the critical value α(τ) at which τ enters the α- complex
A(P, α).
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Algorithm 6 Computing Delaunay filtrations

Input: the set of points P in Rd
Compute the Delaunay complex Del(P )
for each d-simplex τ ∈ Del(P ) do

set α(τ) = r(τ)2 (the squared circumradius of τ)
for k = d− 1, ..., 0 do

for each d-simplex τ ∈ Del(P ) do
if τ is a Gabriel simplex then
α(τ) = r(τ)2 (the squared smallest circumradius of τ)

else
α(τ) = minσ∈U(τ) α(σ)

Output: The critical α-value of each simplex in Del(P ) has been com-
puted

6.1.3 Weighted alpha complex

The definition of α-complexes and α-shapes extend to the weighted case. Let
P̂ be a set of weighted points and let τ be a simplex with vertex set P̂τ ⊂ P̂ .
Let us recall that two weighted points are said to be orthogonal when their
weighted distance is zero. A weighted point is said to be orthogonal to
P̂τ when it is orthogonal to all weighted points in P̂τ and it is said to be
free of any weighted point in P̂ when it has a positive or null distance to
any weighted point of P̂ . From Lemma 4.5, a simplex τ with vertex set
P̂τ ⊂ P̂ belongs to the weighted Delaunay triangulation Del(P̂ ) iff there is a
weighted point orthogonal to P̂τ and free of weighted points in P̂ . For any
value of α ∈ R, we consider the subset A(P̂ , α) of simplices in Del(P̂ ) for
which there is a weighted point with weight at most α, orthogonal to P̂τ and
free of weighted points in P̂ . The simplices in A(P̂ , α) form a subcomplex
of Del(P̂ ) which is called the weighted α-complex of P̂ . Under the usual
general position assumption, this complex naturally embeds in Rd and the
underlying space of A(P̂ , α) is called the weigthed α-shape of the set P̂ for
the parameter value α. Notice that α-complexes and α-shapes are special
cases of respectively weighted α-complexes and weighted α-shapes, obtained
when all the weights of the considered weighted points are equal.

As before, we associate to each simplex τ of Del(P̂ ) a filtration value α(τ)
that corresponds to the first time τ enters the filtration.

Algorithm 6 extends almost verbatim to the case of weighted points, pro-
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vided that we replace circumballs by orthogonal weighted points and empty
balls by free weighted points. Let P̂ be a set of weighted points in Rd, τ a
simplex of Del(P̂ ) and P̂τ the subset of P̂ associated to the vertices of τ . We
now say that τ is a Gabriel simplex iff the ball with smallest radius that is
orthogonal to P̂τ is free of weighted points in P̂ . Likewise, the function w(x)
used to prove the correctness of Algorithm 6 is now the weighted distance
to the vertices of τ , i. e. w(x) = D(x, p̂) = d(x, p)2 − wp, if p̂ = (p, wp) is
the weighted point associated to the vertex p of τ .

6.1.4 Application to union of balls

Lemma 6.1 Let B be a finite set of balls in Rd. The union U(B) of balls
in B is homotopy equivalent to the α-complex A(B, 0).

See Figure 6.2 for an illustration of this fact.

Proof Each ball b in B may be regarded as a weighted point (c(b), r2(b))
where c(b) and r2(b) are respectively the center and the squared radius of
b. We denote by Del(B), Vor(B) and A(B,α) respectively the Delaunay
complex, Voronoi diagram and α-shape of the balls in B. Let V (b) be the
cell of b in Vor(B). We claim that {b ∩ V (b), b ∈ B} forms a finite convex
cover of U(B) as defined in Section 2.3. First, because b and V (b) are both
convex subsets of Rd, each subset b ∩ V (b) is convex. We show next that
{b ∩ V (b), b ∈ B} is a cover of U(B), i.e.:

U(B) =
⋃

b∈B
b ∩ V (b).

The inclusion
⋃
b∈B b∩V (b) ⊂ U(B) is trivial. To show the reverse inclusion,

let us consider a point p in U(B). Point p belongs to at least one ball b1
of B and let b(p) be the ball in B whose Voronoi cell contains p. Since
p ∈ b1, the weighted distance D(p, b1) is negative and, since b(p) minimizes
the weighted distance to p, we have:

D(p, b(p)) ≤ D(p, b1) ≤ 0,

which means that p belongs to b(p) and therefore to b(p) ∩ V (b(p)) and to⋃
b∈B b ∩ V (b). The claim is proved.

It follows from the claim and the Nerve theorem (Theorem 2.8) that the
union U(B) of balls in B is homotopy equivalent to the nerve of the cover
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⋃
b∈B b ∩ V (b). We now show that the nerve of this cover is just the α-

complex A(B, 0). Let B′ ⊂ B be a subset of B. The subset B′ belongs to
the nerve of the cover {b∩ V (b), b ∈ B} iff the intersection

⋂
b∈B′ b∩ V (b) is

non empty. This in turn is equivalent to say that that there exists a point x
in
⋂
b∈B′ b ∩ V (b). Such a point x is at an equal negative weighted distance

w(x) to the balls in B′ and at a greater weighted distance to any ball of
B \ B′. In other words, the weighted point x̂ = (x,w(x)) is orthogonal to
any ball in B′ and has a positive weighted distance to any ball in B \ B′.
Therefore B′ belongs to Del(B) and, since w(x) ≤ 0, to the α-complex
A(B, 0). �

Let us consider the special case where all the balls in B have the same ra-
dius. Let B(P, r) be the set of balls with radius r, centered at points of the
set P . The union U(B(P, r)) of these balls is homotopy equivalent to the
Čech complex Čech(P, r) defined (in Section 2.5) as the nerve of the cover
of U(B(P, r)) by balls in B(P, r). Therefore, the Čech complex Čech(P, r)
and the α-complex A(B(P, r), 0) have the same homotopy type and capture
both the homotopy type of the union of balls U(B(P, r)). However, the Čech
complex Čech(P, r) is often much bigger than the α-complex A(B(P, r), 0).
In particular, the dimension of the Čech complex Čech(P, r) may be larger
than d, in fact it may be as large as the number of balls in B(P, r)). Ac-
cordingly the Čech complex Čech(P, r) usually does not embed naturally in
Rd. Differently, the α-complex A(B(P, r), 0), being a subcomplex of Del(B),
embeds naturally in Rd under general position assumption.

6.2 Witness complexes

In this section, we introduce the witness complex, a variant of the Delaunay
complex that can be defined using only distances (and not empty spheres).
Hence the witness complex can be defined in any finite metric space where
the input consists of the distance matrix of the data points that stores
the pairwise distances (Section 5.1.3). Not every finite metric space can
be isometrically embedded in a Euclidean space but if it is the case, we
provide conditions under which the witness and the Delaunay complexes
are identical. A practical situation, encountered for example in the context
of sensor networks, is when the points come from some Euclidean space but
their actual locations are not known.

The witness complex is defined from two sets of points L and W . The first
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Figure 6.2: Homotopy between union of balls and α-shapes. The union U(B)
of balls in the set B is colored red, the weighted Voronoi diagran Vor(B) is
drawn in black, and the α-complex A(B, 0) is shown in blue.

one, called the set of landmarks, is finite. The other one, called the set
of witnesses, serves as an approximation of the ambient space. A typical
situation is when L is a subset of W , possibly a net of W extracted using
one of the algorithms of Section 5.1.3. The witness complex Wit(L,W )
can be seen as a weak notion of Delaunay triangulation which is easy to
compute, even in high dimensions, since it only involves comparisons of
distances between input points.

Definition 6.2 (Witness of a simplex) Let σ be a simplex with vertices
in L ⊂ Rd, and let w be a point of W ⊆ Rd. We say that w is a witness of
σ if

‖w − p‖ ≤ ‖w − q‖ ∀p ∈ σ and ∀q ∈ L \ σ.

Definition 6.3 (Witness complex) The witness complex Wit(L,W ) is
the complex consisting of all simplexes σ such that any simplex τ ⊆ σ has a
witness in W . In other words, Wit(L,W ) is the maximal simplicial complex
with the property that all its simplices have a witness in W .
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The Witness Complex
Wit(L, W )

�
w

Definition

� 2Wit(L, W )
()

8⌧  � 9w 2W with
d(w, p)  d(w, q)
8p 2 � 8q 2 L \ �

L : Landmarks (black dots); the vertices of the complex
W : Witnesses (blue dots)

R. Dyer (INRIA) Del(L, M) = Wit(L, W ) Assisi, EuroCG 2012 2 / 10

Figure 6.3: A simplex and one of its witnesses.

In this section, we use the Euclidean distance to define witness complexes
but the definition is general and extend to more general metric spaces and,
in particular, to finite metric spaces where the only information we have
about the input points is the distances between any two of them. In Eu-
clidean space, the only predicates involved in the construction of Wit(L,W )
are (squared) distance comparisons, i.e. polynomials of degree 2 in the coor-
dinates of the points. This is to be compared with the predicate that decides
whether a point lies inside the ball circumscribing a d-simplex, whose degree
depends on d (see Exercise 4.5).

6.2.1 Identity of witness and Delaunay complexes

When the points W and L live in Euclidean space, the witness complex
can be seen as a weak Delaunay complex. The results below make this
connection more precise. We first make the following easy observation.

Lemma 6.4 If W ′ ⊆W , then Wit(L,W ′) ⊆Wit(L,W ).

Let Ω be a subset of Rd. As before (see Section 5.1.2), we write Del|Ω(L) for
the restriction of Del(L) to Ω, i.e. the subcomplex of Del(L) whose simplices
have a circumcenter in Ω.

Lemma 6.5 Let Ω be a subset of Rd. Del|Ω(L) ⊆Wit(L,Ω).
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Proof By definition, any simplex σ of Del|Ω(L) has an empty circumscrib-
ing ball whose center c belongs to Ω. This center is a witness of σ, and it is
also a witness for all the faces of σ. �

The following remarkable result provides a weak characterization of Delau-
nay complexes. It shows that Delaunay and witness complexes are identical
when the set of witnesses cover the whole space Rd.

Theorem 6.6 (Weak characterization) For any convex Ω ⊆ Rd and
any finite point set L ⊂ Ω, we have Wit(L,Ω) = Del|Ω(L).

Proof We have already proved that Del|Ω(L) ⊆ Wit(L,Ω) (Lemma 6.5).
We prove now the converse inclusion by an induction on the dimension k of
the simplices. The claim holds for k = 0 since any vertex of Wit(L,Ω) is a
point of L and thus a vertex of Del|Ω(L).

Bσ

c

w

Bτ

τ

σ

z

Figure 6.4: Proof of Lemma 6.6.

Assume now that any simplex of Wit(L,Ω) of dimension up to k − 1 is
a simplex of Del|Ω(L) and let τ = [p0, ..., pk] be a k-simplex of Wit(L,Ω)
witnessed by a point w. We will say for convenience that a ball B witnesses
τ if B ∩ L = τ . We denote by Bτ be the smallest ball centered at w that
witnesses τ and by Sτ the sphere bounding Bτ .

If all the vertices of τ belong to Sτ , τ is a Delaunay simplex and we are
done. Otherwise, we will show that one can find a new ball that witnesses τ
such that its bounding sphere contains one more vertex of τ than Sτ . Refer
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Figure 6.5: Two triangles that have a witness but not their common edge,
even if W = Rd. These two triangles are not Delaunay triangles.

to Figure 6.4. Write σ = Sτ ∩τ . By the induction hypothesis, σ is a simplex
of Del|Ω(L) and therefore there exists an empty ball Bσ centered in Ω that
circumscribes σ. Write c for its center. Consider the set of balls F centered
on the line segment s = [wc] ⊂ Ω and circumscribing σ. Any ball in F is
included in Bτ ∪ Bσ and it circumscribes σ. Hence its interior contains no
point of L \ τ . Moreover, since the interior of Bσ is empty but the interior
of Bτ is not, there exists a point z on s such that the ball of F centered at
z, witnesses τ and contains |σ| + 1 points of τ on its boundary. Call this
new ball Bτ . We can then carry on the induction and obtain a witness ball
Bτ whose bounding sphere contains all the vertices of τ . Such a ball is thus
a Delaunay ball and τ is a Delaunay simplex. �

It is worth noticing that, for a simplex σ to belong to the witness complex,
we required all the faces of σ to have a witness. As illustrated in Figure 6.5,
this is mandatory for the theorem to hold.

We deduce from Lemma 6.4 and Theorem 6.6 the following corollary

Corollary 6.7 Let Ω be a convex subset of Rd and let W ⊆ Ω. We have
Wit(L,W ) ⊆ Del|Ω(L) ⊆ Del(L).

If the points L are in general position with respect to spheres, we know that
Del(L) is embedded in Rd by Delaunay’s theorem 4.3. It therefore follows
from Corollary 6.7 that the same is true for Wit(L,W ). In particular, the
dimension of Wit(L,W ) is at most d. When W is not the whole space Rd but
a finite set of points, Theorem 6.6 no longer holds. However, the following
lemma shows that both complexes are identical provided that W is dense
enough and L is protected enough (refer to Section 5.4 for a definition of
protection).

Lemma 6.8 (Identity from protection) Let Ω be a convex subset of Rd
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and let W and L be two finite sets of points in Ω. If W is ε-dense in Ω and
if all simplices (of all dimensions) of Del|Ω(L) are δ-protected with δ ≥ 2ε,
then Wit(L,W )) = Del|Ω(L).

Proof By Corollary 6.7, we have Wit(L,W ) ⊆ Del|Ω(L). We now prove
the other inclusion. Let σ be a simplex in Del|Ω(L). By hypothesis, σ is
δ-protected. Then there exists a point c ∈ Ω such that

∀p ∈ σ, ∀q ∈ L \ σ, ‖c− p‖ ≤ ‖c− q‖ − δ.

Since W is ε-dense in Ω, there exists a point w ∈W such that ‖w− c‖ ≤ ε.
Using the triangular inequality, we have for any p ∈ σ and q ∈ L \ σ

‖w − p‖ ≤ ‖w − c‖+ (‖c− q‖ − δ)
≤ ‖w − q‖+ 2‖w − c‖ − δ
≤ ‖w − q‖+ 2ε− δ

Hence, when δ ≥ 2ε, w is a witness for σ. �

The above lemma requires the simplices of all dimensions to be δ-protected.
In fact it is sufficient to check d-simplices only. Indeed, it can be proved that
if the d-dimensional simplices are δ′-protected, for δ′ slightly bigger than δ,
then all simplices of all dimensions are also protected. See Exercise 5.11.

6.2.2 Computing witness complexes

Let L and W be two finite sets of points and Wit(L,W ) their witness com-
plex. We assume, for convenience, that no two points of L are at the same
distance from a point in W . We describe how to compute the k-skeleton of
Wit(L,W ), denoted by Witk(L,W ), for any fixed k.

Let M be a matrix of size |W | × k. The lines in M are associated to the
elements of W and the line M(w) associated to w ∈W stores the list of the
k landmarks that are closest to w, sorted by increasing distance from w (M
can be trivially computed in time O(|W |× |L| log |L|) and, with more clever
algorithms, in time O(|W | (log |W |+ k) time) (see the bibliographical notes
in Section 6.4). We write M(w) = (M1(w), ...,Mk(w)). Algorithm 7 below
computes Witk(L,W ) from M . We assume without real loss of generality
that L ⊂W .
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Under the general position assumption above, the number of i-simplices of
Wit(L,W ) is at most |W | for any i ≤ k. Hence the total number of simplices
of Witk(L,W ) is at most k |W | = O(|W |).

Algorithm 7 Construction of the k-skeleton of a witness complex

Input: W a finite point set, L ⊂W , k, M
Witk(L,W ) := ∅
W ′ := W {a set of active witnesses}
for i = 0, ..., k − 1 do

for each w ∈W ′ do
if the i-simplex σ(w) = [M1(w), ...,Mi+1(w)] 6∈Witk(L,W ) then

if all the (i− 1)-faces of σ(w) are in Witk(L,W ) then
add σ(w) to Witk(L,W )

else
W ′ := W ′ \ {w}

Output: Witk(L,W )

The total number of for loops that are executed is |Witk(L,W )| + |W | =
O(|W |). Indeed, each loop either constructs a new simplex or removes a
point from the set of active witnesses W ′. A loop has to decide if a i-
simplex as well as its i facets belong to the current complex Witk(L,W ).
Each of these tests can be done in time O(log |L|) in one uses for example
the simplex tree described in Exercise 2.1. Since i ≤ k, the cost of a single
loop is thus O(k log |L|) The overall complexity of the algorithm is therefore
O(k |W | log |L|).

The algorithm is general and applies to any distance matrix M . In the case
where L and W belong to Rd, and if the points of L are in general position
with respect to spheres, we know that Wit(L,W ) is a subcomplex of Del(L)
and thus embedded in Rd and of dimension at most d. Hence the entire
witness complex is computed if one takes k = d.

6.2.3 Relaxed witness complexes

As before, W and L denote two sets of points in some subset Ω ⊂ Rd. L is
finite.

Definition 6.9 (Relaxed witness) Let σ be a simplex with vertices in L.
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We say that a point w ∈W is an α-witness of σ if

‖w − p‖ ≤ ‖w − q‖+ α ∀p ∈ σ and ∀q ∈ L \ σ.

Definition 6.10 (Relaxed witness complex) The α-relaxed witness com-
plex Witα(L,W ) is the maximal simplicial complex with vertex set L whose
simplices have an α-witness in W .

For α = 0, the relaxed witness complex is the standard witness complex.
The parameter α defines a filtration on the witness complex, which can be
used to compute persistent homology (Chapter 11.5).

Construction

We adapt Algorithm 7 above. At each step j, we insert, for each witness w,
the j-dimensional simplices which are α-witnessed by w. Differently from
the standard witness complex, there may be more than one j-simplex that
is witnessed by a given witness w ∈ W . Consequently, we do not maintain
a pointer from each active witness to the last inserted simplex it witnesses.
We use simple top-down insertions from the root of the simplex tree 2.7.

Given a witness w and a dimension j, we generate all the j-dimensional sim-
plices which are α-witnessed by w. For the ease of exposition, we suppose we
are given the sorted list of nearest neighbors of w in L, noted {z0 · · · z|L|−1},
and their distance to w, noted mi = d(w, zi), with m0 ≤ · · · ≤ m|L|−1,
breaking ties arbitrarily. Note that if one wants to construct only the k-
skeleton of the complex, it is sufficient to know the list of neighbors of w
that are at distance at most mk + α from w. We preprocess this list of
neighbors for all witnesses. For i ∈ {0, · · · , |L| − 1}, we define the set Ai of
landmarks z such that mi ≤ d(w, z) ≤ mi + α. For i ≤ j + 1, w α-witnesses
all the j-simplices that contain {z0, · · · , zi−1} and a (j+ 1− i)-subset of Ai,
provided |Ai| ≥ j + 1 − i. We see that all j-simplices that are α-witnessed
by w are obtained this way, and exactly once, when i ranges from 0 to j+1.

For all i ∈ {0, · · · , j + 1}, we compute Ai and generate all the simplices
which contain {z0, · · · , zi−1} and a subset of Ai of size (j + 1− i). In order
to easily update Ai when i is incremented, we maintain two pointers to the
list of neighbors, one to zi and the other to the end of Ai. We check in
constant time if Ai contains more than j + 1 − i vertices, and compute all
the subsets of Ai of cardinality j + 1− i accordingly. See Figure 6.6.
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m5z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

(
{z4, z5, z6, z7, z8}

3

)
w

m3 m3 + ρ

A3

Figure 6.6: Computation of the α-witnessed simplices σ of dimension 5. If
z3 is the first neighbor of w not in σ, then σ contains in particular {z0, z1, z2}
and any 3-uplet of A3 = {z4, · · · , z8}.

Restricted Delaunay complex and relaxed witness complex

We consider now the case where Ω ⊆ Rd is not necessarily convex and extend
Lemma 6.8. Specifically, we will show that, for a large enough relaxation,
Del|Ω(L) is contained in the relaxed witness complex.

Lemma 6.11 Let Ω be a subset of Rd (not necessarily convex). Assume that
W is ε-dense in Ω and that all the simplices of Del|Ω(L) are δ-protected. If
α ≥ max(0, 2ε− δ), then Del|Ω(L) ⊆Witα(L,W ).

Proof Let σ be a d-simplex of Del|Ω(L) and write cσ for its circumcenter.
Since W is ε-dense in Ω, there exists a point w in W such that ‖cσ−w‖ ≤ ε.
For any p ∈ σ and q ∈ L \ σ, we then have

‖w − p‖ ≤ ‖cσ − p‖+ ‖cσ − w‖
≤ ‖cσ − q‖ − δ + ‖cσ − w‖
≤ ‖w − q‖+ 2‖cσ − w‖ − δ
≤ ‖w − q‖+ 2ε− δ

which proves the lemma. �

Note that if δ ≥ 2ε, the lemma gives Del|Ω(L) ⊆Wit(L,W ) (as in Lemma 6.8).

6.3 Exercises

Exercise 6.1 (Computing regularized α-complexes. ) Let P̂ be a set
of weighted points in Rd. Slightly modify Algorithm 6 so that it computes,
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for each simplex τ of the Delaunay triangulation Del(P̂ ), the value of the
parameter α at which the simplex τ becomes part of the regularized α-
complex Ar(P̂ , α).

Exercise 6.2 (Full classification with respect to the α-complex.) Let
P̂ be a set of weighted points in Rd. Each simplex τ of the Delaunay trian-
gulation Del(P̂ ) can be classified with respect to the α-complex A(P̂ , α) as
external if it does not belong to A(P̂ , α), singular if it belongs to A(P̂ , α)
but none of its coface in Del(P̂ ) does, boundary if it belongs to the boundary
of α-complex and is not singular, which means that some of its cofaces be-
long to A(P̂ , α) while others do not, and at last internal if it belongs to the
interior of the α-complex, meaning that all its cofaces belong to A(P̂ , α).

Modify Algorithm 6 so that it computes for any simplex τ of Del(P̂ ), the
at most three values of the parameter α where the status of the simplex
changes from external to singular and then to boundary and interior.

Exercise 6.3 (Weighted witness complex) Show that the witness com-
plex can be extended to weighted points and the weighted distance. Show
that the identity results of Section 6.2.1 still hold when the Delaunay com-
plex is replaced by its weighted counterpart.

Exercise 6.4 Show that, if L is a λ-sample of Rd, the circumradius Rσ of
any simplex σ in Wit(L,W ) is at most λ. (Hint : use Corollary 6.7).

Exercise 6.5 (Relaxed Delaunay complex) Let W and L be two finite
sets of points in Ω ⊂ Rd. Let σ be a simplex with vertices in L. We say that
a point w ∈W is an α-center of σ if

‖w − p‖ ≤ ‖w − q‖+ α ∀p ∈ σ and ∀q ∈ L.

The α-relaxed Delaunay complex Delα(L,W ) is the maximal simplicial com-
plex with vertex set L whose d-simplices have an α-center in W . Show how
to construct Delα(L,W ). Prove that Del(L) ⊆ Delα(L,W ) for α ≥ 2ε if W
is an ε-sample of Ω.
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6.4 Bibliographical notes

Alpha-shapes were introduced by Edelsbrunner, Kirkpatrick and Seidel [76,
72]. Alpha-shapes are also widely used to represent union of balls [67] and
to study the structure of macro molecules and various related problems like
the docking of two molecules, see e.g [70, 102, 69]

Witness complexes and relaxed Delaunay triangulations have been intro-
duced in the seminal work of de Silva [63] who first proved Theorem 6.6 and
several of its variants including the case of weighted points (Exercise 6.3).
The proof presented in Section 6.2 is due to Attali et al. [4]. The 1-skeleton
of the witness complex has been introduced earlier by Martinez and Schul-
ten [107]. They showed that Del(L) and Wit(L,Rd) have the same 1-skeleton
and they proposed a dynamic algorithm for approximating the topology of
a region of space, by a graph represented as a neural network.

The identity of witness and Delaunay complexes when the number of wit-
nesses is finite is taken from [21]. The paper describes an algorithm to obtain
Del(L) from Wit(L,W ) using the algorithmic version of the local Lovász
lemma (see Exercise 5.12 and Section 5.3.4). The paper also describes an
algorithm to compute the relaxed Delaunay complex in time sublinear in
the number of witnesses (Exercise 6.5).

Given a set of n points P ⊂ Rd, one can construct a data structure called a
well-separated pair decomposition. This data structure has many applica-
tions and can be used, in particular, to compute the k-nearest neighbors of
all the points in P in time O(n log n + kn) [8]. See the book of Har-Peled
for a recent account on well-separated decompositions [95].
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Triangulating an objectM entails computing a simplicial complex K which
is homeomorphic toM. This is a demanding quest and, in this part, we will
make the strong assumption that M is a smooth submanifold of Rd. We
defer to the last part of the book other compromises between the generality
of the shapes to be approximated and the quality of the approximation.

This part consists of three chapters. The first one provides conditions under
which a simplicial complex is homeomorphic to a submanifoldM of Rd and
thus is a triangulation of M (Theorem 7.16). Prior to stating and proving
the main theorem, we introduce the central notions of reach and ε-net on a
manifold.

In Chapter 6.1, we introduce the alpha complex of a finite point set P and
show how it can be constructed from the Delaunay triangulation of P . In
the case where P is a dense enough sample of a submanifold M ⊂ Rd, the
alpha complex has the same homotopy type as M. However, the alpha
complex of P is usually not homeomorphic to M.

In Chapter 8, we study the manifold reconstruction problem. Given a finite
set of points P on an unknown manifold M, the goal is to compute a sim-
plicial complex M̂ with vertex set P that triangulates M. This problem is
of primary importance when M is a surface of R3 (it is then known as the
surface reconstruction problem). It also has applications in higher dimen-
sions in the context of Data Analysis where data are considered as points in
some Euclidean space, of usually high dimension.

A major difficulty, when considering higher dimensional manifolds, comes
from the fact that triangulating high dimensional spaces requires exponential
time and space (this phenomenon is called the curse of dimensionality). We
therefore cannot afford to triangulate the ambient space as is commonly
done when considering surface of R3. However, if the intrinsic dimension k
of M is much smaller than the dimension d of the ambient space, we will
see in Chapter 8 that we can walk around the curse of dimensionality and
present an efficient algorithm that reconstructs a submanifold M from a
finite sample P under appropriate conditions on P . The assumption that k
is small even if d is large is common in Manifold Learning and Data Analysis.
It reflects the fact that the data points which may live in a space of very
high dimension are usually produced by a system with a limited number
of degrees of freedom, and therefore lie on or close to a structure of small
intrinsic dimension.
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Triangulating an object M entails computing a simplicial complex which
is homeomorphic to M. This is a demanding quest and, in this chapter,
we will assume that M is a smooth and compact submanifold of Rd with-
out boudary. The main goal of the chapter is to prove Theorem 7.16 that
provides sufficient conditions under which a simplicial complex M̂ is a trian-
gulation of a submanifold M of Rd. These conditions require the simplices
to be sufficiently small and thick and rely on the concepts of reach and of
ε-net on a manifold. To prove the theorem, we will prove that the projection
map that associates to a point of M̂ its closest point onM is a homeomor-
phism. The results of this chapter will be used in Chapter 8 to triangulate
a submanifold M given only a finite point set on M.

7.1 Reach and ε-nets on submanifolds

7.1.1 Submanifolds

Given an open set U ⊆ Rd and a non negative integer c, a map φ : U → Rd
is said to be c-differentiable, or of class Cc on U if its successive derivatives
up to order c are well-defined and continuous on U . In particular, a 0-
differentiable map is a continuous map. If moreover, φ : U → V = φ(U) is
a bijection and φ−1 : V → U is also c-differentiable, then φ is said to be a
c-differentiable diffeomorphism.

Definition 7.1 (Submanifold) A compact subsetM⊂ Rd is a c-differen-
tiable submanifold of dimension k ≤ d, if for any p ∈M there exist an open
set U ⊂ Rd containing p, a c-differentiable diffeomorphism φ from U to an
open set V ⊂ Rd, and an affine k-dimensional subspace A ⊂ Rd such that

φ(U ∩M) = A ∩ V.

Intuitively, a submanifold of dimension k is a subset of Rd that is locally
homeomorphic to an affine space of dimension k (see figure 7.1). A curve
is a 1-dimensional submanifold of Rd, and a surface is a 2-dimensional sub-
manifold of Rd. The submanifolds we will consider are differentiable and
have no boundary, even if not explicitly mentionned.

The tangent space TpM of a c-differentiable (c > 0) submanifold M at
a point p ∈ M is the vector space spanned by the tangent vectors γ′(0)
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M

p

U

V

φ(p)

φ

A

Figure 7.1: A k-dimensional submanifold M of Rd (here k = 1 and d = 2) is
a subset of Rd that is locally diffeomorphic to an open set of a k-dimensional
affine subspace.

where γ : (−1, 1) → M ⊂ Rd belongs to the set of differentiable curves
contained in M such that γ(0) = p. If M is of dimension k, then TpM is a
k-dimensional vector space. By an abuse of notation, we will also denote by
TpM the affine subspace spanned by TpM and passing through p and we
will denote by NpM the (d − k)-dimensional affine subspace orthogonal to
TpM (see Figure 7.2). In the sequel, to avoid heavy notation, when there is
no ambiguity, we will drop the reference to M and denote TpM and NpM
by Tp and Np respectively.

In this chapter, we focus on submanifolds and do not consider manifolds
defined in an intrinsic way, independently of any embedding in Rd. However,
the main results of the chapter and in particular the triangulation theorem
(Theorem 7.16) can be extended to intrinsic smooth manifolds. See the
bibliographical notes.

7.1.2 Projection map, medial axis and reach

Let M be a submanifold of Rd. The medial axis of M is defined as the
closure of the set of points x ∈ Rd that have more than one closest point on
M (see Figure 7.3). We denote it by ax(M).

We can associate to each point of ax(M) a ball that is centered at that point,
whose interior does not intersectM and that is maximal for inclusion. Such
a ball will be called a medial ball.
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TpM γ(t)

γ′(0)

p

NpM

Figure 7.2: The tangent and normal spaces to a 2-dimensional submanifold
M of R3 at a point p ∈M.

Figure 7.3: The medial axis of a closed curve. We only show the component
of the medial axis that is contained in the domain bounded by the curve.
Various offsets of the curve are also shown as thin curves.



7.1. REACH AND ε-NETS ON SUBMANIFOLDS 161

We define the projection onto M as the mapping

Π : Rd \ ax(M)→M

that maps a point x to its (unique) closest point on M.

The reach of M, written rch(M), is the infimum of the distance from a
point of M to the medial axis ax(M). As we will see, the reach encodes
both local curvature considerations as well as global ones.

In this chapter, we will restrict our attention to the class of submanifolds
of Rd with positive reach introduced by Federer [82]. This class includes
all submanifolds of class C2 and also some submanifolds whose principal
curvatures may be discontinuous on subsets of measure 0. An example of
such a submanifold is the r-offset of a solid cube, i.e. the set of points at
distance at most r from the cube.

We now state some properties of submanifolds with positive reach.

Lemma 7.2 (Tubular neighborhood) Let M be a manifold with posi-
tive reach rch(M) and let BNp(r) be the intersection of B(p, r) with the
normal space at p. If r < rch(M), then, for every point x ∈ BNp(r),
Π(x) = p.

The proof of this lemma for C2 submanifolds follows from rather standard
arguments in differential geometry. The result for submanifolds of positive
reach is due to Federer [82]. From Lemma 7.2, we easily deduce the following
lemma.

Lemma 7.3 LetM be a submanifold of positive reach, and let x ∈M. Any
open ball that is tangent toM at x and whose radius is at most rch(M) does
not intersect M.

Proof Let B(c, r) be a ball tangent to M at x and assume that r <
rch(M). If the intersection of M and the open ball B(c, r) is not empty,
then Π(c) 6= x, contradicting Lemma 7.2. The result for r = rch(M) now
follows by taking the limit. �

Lemma 7.4 Let B be a closed ball that intersects M. If B ∩M is not a
topological ball, then B contains a point of the medial axis of M.
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c

y

z

B

M

Bz

By
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Figure 7.4: For the proof of Lemma 7.4.

Proof Write c for the center of B. The result is trivial when c belongs to
the medial axis of M. Therefore assume that c 6∈ ax(M).

Let y be the (unique) point of M closest to c. We denote by By the closed
ball centered at c with radius ‖c−y‖ (see Figure 7.4). Plainly, the interior of
By does not intersectM and By∩M = {y}, otherwise c would be a point of
the medial axis. Hence y is an isolated critical point of the distance function
from c, i.e. the function dc : Rd → R, dc(x) = ‖x − c‖. dc is minimal at y
and, for a small enough radius r strictly larger than ‖y − c‖, B(c, r) ∩M
is a topological ball of the same dimension as M. Since B ∩M is not a
topological ball, it follows from a basic result in Differential Topology [108,
Theorem 3.1]1 that there exists another critical point of dc, say z ∈M, z 6= y,
such that rc = ‖c − z‖ > ‖c − y‖ and the ball B(c, rc) is tangent to M at
z. Consider the set Bz of closed balls that are tangent to M at z and are
centered on the line segment [zc]. Note that B(c, rc) is the ball of Bz centered
at c. Since the interior of B(c, rc) contains y and therefore intersects M,
there must exist a ball Bz ∈ Bz maximal for the inclusion whose interior
does not intersect M. The center of Bz belongs to ax(M) and also to B
since Bz ⊂ B(c, rc) ⊂ B. The lemma is proved. �

If x ∈M, B(x, r) cannot intersect the medial axis ofM for any r < rch(x).
Lemma 7.4 thus implies

1Let a = dc(y) and b = r and suppose that the set d−1
c (a, b), consisting of all p ∈M with

a ≤ dc(p) ≤ b, contains no critical points of dc (i.e. no point q ofM where B(c, ‖c− q‖) is
tangent toM). Then Ma = {x ∈M, dc ≤ a} is homeomorphic toMb = {x ∈M, dc ≤ b}.
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Corollary 7.5 For any x ofM, and any r < rch(x), the intersection ofM
with the ball B(x, r) centered at x of radius r is a topological ball.

Assume that we are given a finite set of points P on M and let Vor(P ) be
the Voronoi diagram of P in the ambient space Rd. The following lemma
shows that the Voronoi cell of any p ∈ P has a large extent in the normal
space Np at p.

Lemma 7.6 Let p ∈ P ⊂ M and write Np for the normal space of M
at p. Then the ambient Voronoi cell V (p) of p has a large extent in Np.
Specifically, B(p, rch(M))∩Np ⊂ V (p), where B(c, r) denotes, as usual, the
open ball centered at c of radius r.

Proof Suppose w ∈ (B(p, rch(M)) ∩ Np) \ V (p). Then the line segment
[pw] crosses the boundary of V (p) at some point z and there exists some
u ∈ P ⊂ M, distinct from p, such that ‖z − u‖ = ‖z − p‖. Since z ∈ Np,
p is the closest point to z on M, and we have reached a contradiction with
the definition of the reach. �

7.1.3 ε-nets on a submanifold

We give a variant of the definition of ε-nets introduced in Section 5.1. This
new definition is better adapted to the case of point samples on a submani-
fold and is sensitive to the reach of the manifold.

Definition 7.7 ((ε, η̄)-net) LetM be a submanifold of Rd of positive reach.
A finite point set P ⊂M is called an (ε, η̄)-net of M if it is

1. ε-dense: any point x of M is at distance at most ε rch(M) from a
point of P (the distance is the Euclidean distance in Rd),

2. η-separated: for any two points p, q of P , ‖p−q‖ ≥ η rch(M), where
η = η̄ ε.

We call ε the sampling radius of P and η̄ the separation ratio of P . Note
that, differently from Section 5.1, ε here is a dimensionless quantity.
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This definition does not allow the sampling radius to vary over the sub-
manifold. Hence, we are confined to uniform samples, which may be quite
restrictive in practice. The results of this chapter can be extended to non-
uniform ε-nets but, in order to keep the exposition simple and better outline
the key ideas, we will restrict our attention to uniform ε-nets. We leave the
extension to non-uniform ε-nets as an exercise (Exercise 7.4). See also the
bibliographical notes.

7.2 Projection maps

In the rest of this chapter,M denotes a submanifold of Rd of positive reach
rch(M). The tangent space at x ∈M is denoted by Tx. The angle between
two vector subspaces U and V of Rd is denoted by ∠(U, V ) (see Section 5.2.2
for a definition).

If σ is a simplex, we denote by ∆(σ) its diameter (i.e. the length of its
longest edge) and Θ(σ) its thickness. We further write for convenience
∆(σ) = δ(σ) rch(M).

Lemma 7.8 Let p and q be two points of M. We have

1. sin∠(pq, Tp) ≤ ‖p−q‖
2 rch(M) ;

2. the distance from q to Tp is at most ‖p−q‖2
2 rch(M) .

Proof 1. Let q′ be the orthogonal projection of q onto Tp and let H be the
plane (pqq′). Let in addition D be the open disk of H of radius rch(M) that
is tangent to M at p and whose center c is on the same side of Tp ∩H as
q (Refer to Figure 7.5). Since D is tangent to M and its radius is rch(M),
it follows from Lemma 7.3 that d(c,M) = ‖c − p‖ and that D does not
intersect M. Hence q does not belong to the interior of D (Lemma 7.3).
Assume that the line segment [pq] intersects the boundary of D in a point
q′′ distinct from p. We have

‖p− q‖ ≥ ‖p− q′′‖ = 2 rch(M) sin∠(pq, Tp)

which proves the first statement.
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p

qD

q′′θ

Tp

M

2θ

q′

rch(S)

Figure 7.5: An illustration of the proof of Lemma 7.8 in the case where M
is a curve of R2. θ = ∠(pq, Tp).

2. We have ‖q − q′‖ = ‖p− q‖ sin∠(pq, Tp) ≤ ‖p−q‖2
2 rch(M) . �

The previous lemma allows us to bound the Hausdorff distance betweenM
and a simplex which has its vertices on M.

Lemma 7.9 Let σ be a simplex with its vertices on M and assume that
δ(σ) < 1. Then, for any point x ∈ σ, we have d(x,M) ≤ 2δ2(σ) rch(M).

Proof Write x′ the point of M closest to x and note that ‖x − x′‖ =
d(x,M) = d(x, Tx′). For any vertex p of σ, we have

‖p− x′‖ ≤ ‖p− x‖+ ‖x− x′‖ ≤ 2‖p− x‖ ≤ 2∆(σ) = 2δ(σ) rch(M).

Applying Lemma 7.8, we then get d(p, Tx′) ≤ 2δ2(σ) rch(M). This is true
for all vertices p of σ and, since the function d(., Tx′) is affine on σ, it is also
true for x and we have d(x, Tx′) = ‖x− x′‖ ≤ 2δ2(σ) rch(M). �

The following lemma bounds the angle between two tangent spaces. Its
proof relies on notions of differential geometry that go beyond the scope of
this book. See the bibliographic notes (Section 7.5) for references.

Lemma 7.10 (Angle between tangent spaces) Let p, q ∈ M. Then
sin∠(Tp, Tq) ≤ ‖p− q‖/rch(M).
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We now introduce the important notion of distortion of a map.

Definition 7.11 (ξ-distortion map) A map F : U ⊂ Rd → Rd is a ξ-
distortion map if for all x, y ∈ U we have

|‖F (x)− F (y)‖ − ‖x− y‖| ≤ ξ ‖x− y‖,

or equivalently if

(1− ξ) ‖x− y‖ ≤ ‖F (x)− F (y)‖ ≤ (1 + ξ) ‖x− y‖.

We will need the next lemma.

Lemma 7.12 Let U be a subset of Rd. A ξ-distortion map F : U → Rd
is an embedding (i.e. a homeomorphism onto its image) if ξ < 1. If it is
smooth, then we have |‖J u‖ − 1| ≤ ξ, where J denotes the Jacobian matrix
of F and u is any unit vector of Rd.

Proof Continuity and injectivity directly follow from Definition 7.11. The
continuity of the inverse follows from Exercise 7.9. This proves that F is an
embedding. The second part of the lemma follows from Definition 7.11. �

We now study two maps that will play a crucial role in proving the main
theorem of this chapter (Theorem 7.16). The first map has already been
defined. It is the projection Π : Rd \ ax(M)→M that maps a point to its
closest point on M.

We show now that Π is Lipschitz continuous in a neighboorhood ofM, and
that its restriction to a simplex with vertices on M has a distortion that is
bounded as a function of the diameter and of the thickness of the simplex.

Lemma 7.13 (Distortion of Π) 1. Let x and y be two points of Rd \
ax(M). Write x′ = Π(x) and y′ = Π(y) for their (unique) projections onto
M. If ‖x − x′‖ ≤ α rch(M) and ‖y − y′‖ ≤ α rch(M) with α < 1, then
‖x′ − y′‖ ≤ 1

1−α ‖x− y‖.

2. Let σ be a simplex with its vertices on M, and assume that δ(σ) ≤ 1
2 and

Θ(σ) ≥ 5δ(σ). Then the restriction of Π to σ is a ξ-distortion map where

ξ = 4δ2(σ) + 16δ2(σ)
Θ2(σ)

< 1 and thus embeds σ in M
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x
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ψxx′′
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Figure 7.6: For the proof of Lemma 7.13 (1).

Proof Refer to Figure 7.6. Let θx = ∠(y′−x′, Tx′) and θy = ∠(y′−x′, Ty′).
From Lemma 7.8, both sin θx and sin θy are bounded by

‖y′ − x′‖
2 rch(M)

. (7.1)

1. Let x′′ and y′′ be the orthogonal projections of x and y onto the line
(x′y′). Let Hx be the hyperplane passing through x′ and orthogonal to xx′,
and write ψx = ∠(x′−y′, Hx) and observe that ψx = π

2 −∠(x′−y′, x−x′) =
∠(x′ − x, x − x′′). By definition of angles, ψx ≤ θx since Tx′ ⊆ Hx. Using
(7.1), we have

‖x′−x′′‖ = ‖x−x′‖ sinψx ≤ ‖x−x′‖ sin θx ≤ α rch(M) sin θx ≤
α

2
‖y′−x′‖.

Likewise : ‖y′ − y′′‖ =≤ α
2 ‖y′ − x′‖. So

‖x− y‖ ≥ ‖x′′ − y′′‖ ≥ ‖y′ − x′‖ − ‖x′ − x′′‖ − ‖y′ − y′′‖ ≥ (1− α) ‖y′ − x′‖.

The first part of the lemma follows.

2. Refer to Figure 7.7. Let x and y be two points of σ, x′ = Π(x) and
y′ = Π(y). By Lemma 7.9, we know that ‖x− x′‖ and ‖y − y′‖ are at most
α rch(M) where α = 2δ2(σ) ≤ 1/2.
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Figure 7.7: For the proof of Lemma 7.13 (2).

From the first part of the lemma, we have

‖x′ − y′‖ ≤ 1

1− α ‖x− y‖ ≤ (1 + 2α) ‖x− y‖ ≤ 2 ‖x− y‖ (7.2)

We now prove a lower bound on ‖x′ − y′‖/‖x− y‖.

Let, as before, Hx denote the hyperplane passing through x′ and orthogonal
to xx′. Let z be the projection of y onto Hx, z′ the projection of y′ onto
Hx and write φ = ∠(x− y, x′− z)= ∠(x− y,Hx) (See Figure 7.7). We have

‖x′− y′‖ ≥ ‖x′− z′‖ ≥ ‖x′− z‖− ‖z′− z‖ = ‖x− y‖ cosφ−‖z′− z‖ (7.3)

Let us bound cosφ and ‖z′ − z‖. We have

φ = ∠(x− y, x′ − z) = min
v∈Hx

∠(x− y, v)

≤ min
v∈Tx′

∠(x− y, v)

≤ max
u∈aff(σ)

min
v∈Tx′

∠(u, v)

= ∠(aff(σ), Tx′).

By the proof of Lemma 7.9, the vertices of σ are at distance at most
α rch(M) from Tx′ . We then deduce from Lemma 5.14

sinφ ≤ 2α

δ(σ) Θ(σ)
=

4δ(σ)

Θ(σ)
and so cosφ ≥ 1− 16 δ2(σ)

Θ2(σ)
(7.4)
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Write χ = ∠(Ty′ , Hx) ≤ ∠(Ty′ , Tx′). By Lemma 7.10, we have

sinχ ≤ ‖x
′ − y′‖

rch(M)
.

With ‖y − y′‖ ≤ α rch(M) and (7.2), we deduce

‖z′ − z‖ = ‖y − y′‖ sin t ≤ α ‖x′ − y′‖ ≤ 2α ‖x− y‖. (7.5)

Using (7.3), (7.4) and (7.5) and α = 2δ2(σ), we get

‖x′ − y′‖ ≥
(

1− 4δ2(σ)− 16δ2(σ)

Θ2(σ)

)
‖x− y‖ = (1− ξ) ‖x− y‖.

From (7.2) and α = 2δ2(σ) ≤ 1/2, we also have

‖x′ − y′‖ ≤ (1 + 4δ2(σ)) ‖x− y‖ ≤ (1 + ξ) ‖x− y‖.

We conclude that

(1− ξ) ‖x− y‖ ≤ ‖x′ − y′‖ ≤ (1 + ξ) ‖x− y‖.

Hence the restriction of Π to σ is a ξ-distortion map. It then follows from
Lemma 7.12 that Π embeds σ in M if ξ < 1.

If Θ(σ) ≥ 5δ(σ), we have since Θ(σ) ≤ 1

ξ = 4δ2(σ) +
16 δ2(σ)

Θ2(σ)
≤ 20

25
< 1.

�

We introduce now a second map Πp : Rd → Tp that maps points of Rd to its
closest point on the tangent space Tp at p. We now bound the distortion of
the restriction of Πp to a neighbourhood of a p on M and of the restriction
of Πp to a simplex.

Lemma 7.14 (Distortion of Πp) Let p ∈ M, and write B(p, r) for the
ball of Rd centered at p of radius r and BM(p, r) for B(p, r) ∩M.

1. Let ρ be a positive scalar such that ρ < 1
2 and let r = ρ rch(M). The

restriction of Πp to BM(p, r) is a 4ρ2-distortion map.
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2. Let σ be a simplex incident to p with its vertices onM. If Θ(σ) > δ(σ),

then the restriction of Πp to σ is a δ2(σ)
Θ2(σ)

-distortion map which embeds
σ in Tp.

Proof 1. For all x and y ∈ BM(p, r), we have from Lemmas 7.8 and 7.10

sin∠(xy, Tp) ≤ sin∠(xy, Tx) + sin∠(Tx, Tp) ≤ 2ρ < 1. (7.6)

Write x′ = Πp(x), y′ = Πp(y) and θ = ∠(xy, Tp). Using (7.6), we get

‖x− y‖ − ‖x′ − y′‖ = ‖x− y‖ (1− cos θ)

≤ ‖x− y‖ (1−
√

1− 4ρ2)

≤ 4ρ2 ‖x− y‖.
Adding the fact that ‖x′ − y′‖ ≤ ‖x− y‖, this shows that the restriction of
Πp to BM(p, r) is a 4ρ2-distortion map. It then follows from Lemma 7.12
that Πp embeds BM(p, r) in Tp. This ends the proof of the first part of the
lemma.

2. Let x, y ∈ σ, x′ = Πp(x), y′ = Πp(y), and φ = ∠(x − y, x′ − y′) ≤
∠(aff(σ), Tp). By Lemma 7.8, the vertices of σ are at distance at most

h rch(M) from Tp, where h = δ2(σ)
2 . It then follows from Lemma 5.14 that

sinφ ≤ 2h

δ(σ)Θ(σ)
=

δ(σ)

Θ(σ)
. (7.7)

Using (7.7), we get

‖x′ − y′‖ = ‖x− y‖ cosφ

≥ ‖x− y‖
√

1− δ2(σ)

Θ2(σ)

≥ ‖x− y‖
(

1− δ2(σ)

Θ2(σ)

)
.

We deduce
(

1− δ2(σ)

Θ2(σ)

)
‖x− y‖ ≤ ‖x′ − y′‖ ≤ ‖x− y‖ ≤

(
1 +

δ2(σ)

Θ2(σ)

)
‖x− y‖

The restriction of Πp to σ is thus a δ2(σ)
Θ2(σ)

-distortion map and Lemma 7.12

ensures that Πp embeds σ in Tp. This completes the proof of the lemma. �
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7.3 Triangulation of submanifolds

Definition 7.15 (Triangulation of a topological space) A triangulation
of a topological space X is a simplicial complex K and a homeomorphism
h : |K| → X.

The following theorem provides sufficient conditions for a simplicial complex
M̂ to be a triangulation of a submanifoldM embedded in Rd. This theorem
will be used in Chapter 8 to reconstruct submanifolds from finite point sets.
We recall that Π denotes the projection onto M and Πp the orthogonal
projection onto the tangent space Tp at p ∈M.

Theorem 7.16 (Triangulation of submanifolds) LetM be a closed2 k-
submanifold of Rd of positive reach rch(M) and let M̂ be a combinatorial
k-manifold without boundary embedded in Rd that satisfies the following as-
sumptions :

(a) The vertices of M̂ belong to M and each connected component of M
contains some vertices of M,

(b) The diameter of any k-simplex of M̂ is less than ∆0 = δ0 rch(M)
where δ0 ≤ 1/5,

(c) The thickness of the k-simplices of M̂ is at least Θ0 ≥ 9 δ2
0/λ0, where

L0 = λ0rch(M) is a lower bound on the edge lengths of the simplices,

(d) For any vertex p ∈ M̂, Πp embeds star(p,M̂).

(e) Let r = 7
5 δ0 rch(M). Any vertex q of M̂ that belongs to B(p, r) and

is mapped by Πp onto a point q′ ∈ Πp(star(p)) has to be a vertex of
star(p).

Then the following facts hold :

1. The restriction of Π to M̂ is a homeomorphism and thus M̂ is a
triangulation of M.

2. The Hausdorff distance between M̂ and M is at most 2δ2
0 rch(M).

2i.e. compact and without boundary.
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3. If σ is a k-simplex of M̂ and p one of its vertices, we have

sin∠(aff(σ), Tp) ≤
δ0

Θ0
.

The proof is given in the following sections. A more general version of the
theorem holds. Indeed, we can remove the assumption that the simplicial
complex M̂ is embedded in Rd. The fact that the complex is naturally
embedded in Rd is a consequence of this more general version of the theorem
(see Exercise 7.12). In the sequel, we will denote by P the set of vertices of
M̂.

7.3.1 Proof of statement 1

Write as before Π for the projection onto M and consider Π|M̂ : M̂ →M,

the restriction of Π to M̂. Note that Π|M̂ is well defined since M̂ does
not intersect the medial axis of M as δ0 < 1. We will prove that Π|M̂ is a

homeomorphism, which implies that M̂ is a triangulation of M.

Here is an overview of the proof. We have already seen that Π embeds any
simplex of M̂ into M (Lemma 7.13 (2)). We will extend this result and
prove that Π|M̂ is a local homeomorphism (Lemma 7.23). More specifically,

we define an open cover of M̂ as follows. We attach to each vertex p of M̂
an open set Vp such that the union of the Vp, for all vertices p of M̂, covers
M̂. Specifically Wp is defined as the set of points of star(p) ⊂ M̂ whose
barycentric coordinate with respect to p is at least 1

k+1 , and Vp is an open
set that contains Wp and is arbitrarily close to Wp. Since the barycentric
coordinates in each k-simplex sum to 1, this ensures that the sets Vp cover
M̂. We will show that Π embeds each Vp, which will prove that Π|M̂ is a
local homeomorphism.

We will then prove that Π|M̂ is injective (Lemma 7.24) and surjective (Lem-

ma 7.25). Furthermore, Π|M̂ is continuous by Lemma 7.13(1) and its inverse

is also continuous since M̂ and M are both k-manifolds without boundary
(see Section 1.2.1). It will follow that Π|M̂ is a homeomorphism and that

M̂ and M are homeomorphic.
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Figure 7.8: For the proof of Lemma 7.23.

7.3.2 Whitney’s lemma

We write star′(p) for Πp(star(p)) and V ′p for Πp(Vp), With a slight abuse
of notation, in the rest of the proof of Theorem 7.16, we write Π−1

p for
the inverse of the restriction of Πp to star′(p), which is well defined since Πp

embeds star(p) by Hypothesis (d). We further define the map Fp : star′(p) ⊂
Tp → Tp as Fp = Πp ◦ Π ◦ Π−1

p . See Figure 7.8. By construction, Fp leaves
the vertices of star′(p) fixed: if q is a vertex of star′(p), then Fp(q) = q.
Our goal is to show that Fp embeds V ′p = Πp(Vp). To do so, we will use the
following result due to Whitney3 that we state without proof [135, App. II,
Lemma 15a].

Definition 7.17 Let C be a k-simplicial complex embedded in Rk. We say
that a map F : C → Rk is simplexwise positive if it is smooth and 1-1 on
each k-simplex of C, and if the Jacobian of F is positive there.

Lemma 7.18 (Whitney’s lemma) Assume C is a combinatorial k-mani-
fold with boundary embedded in Rk. Let F : C → Rk be simplexwise positive
in C. Then for any connected open subset Ω of Rk \ F (∂C), any two points
of Ω not in the image of the (k − 1)-skeleton of C are covered the same
number of times. If this number is 1, then F , considered in the open subset
F−1(Ω) of C only, is one to one onto Ω.

3Whitney proved a more general result which does not assume that C is embedded in
Rk.
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7.3.3 Satisfying the conditions of Whitney’s lemma

We will apply Whitney’s lemma to C = star′(p) = Πp(star(p)) and to F =
Fp. This section contains the geometric arguments needed to prove that the
conditions of Whitney’s lemma are satisfied. After recalling that star(p) is an
oriented combinatorial k-manifold (Point 1), we show that Fp is simplexwise
positive (Point 2). We then exhibit a point in Fp(Vp) \ Fp(∂star(p)) that is
covered only once (Point 3) and finally prove that Fp(Vp) is included in a
single component of Fp(star(p)) \ Fp(∂star(p)) (Point 4). The proofs use
extensively the bounds on the distortion of the two maps Π and Πp of
Section 7.2.

1. Since M̂ is a combinatorial k-manifold and Πp embeds star(p) (Hypoth-
esis (d)), star′(p) is a combinatorial k-manifold embedded in Tp. We can
then assume that it is oriented.

2. We now prove that Fp = Πp ◦Π ◦Π−1
p is simplexwise positive.

Lemma 7.19 (Distortion of Fp on a simplex) Under the hypotheses of
Theorem 7.16, the distortion of the restriction of Fp to any simplex of M̂ is

less than
33δ20
Θ2

0
≤ 1.

Proof Rename, for convenience, Π−1
p as f1, the restriction of Π to star(p)

as f2, and the restriction of Πp to Up = Π(star(p)) as f3. We have Fp =
f3◦f2◦f1. Write ξi for the distortion of fi, i = 1, 2, 3, and ξ for the distortion
of Fp.

By hypothesis, the diameter of any simplex in star(p) is at most δ0 and its
thickness is at least Θ0. Moreover, Up is contained in a ball centered at p of
radius r = δ0rch(M) (1 + 2δ0) < rch(M)/3 (Lemma 7.9).

Using the assumptions of Theorem 7.16 and Lemmas 7.14 and 7.13, we get

ξ1 ≤
δ20
Θ2

0

1− δ20
Θ2

0

≤ 64

63

δ2
0

Θ2
0

(Exercise 7.9, Lemma 7.14(2) and Θ0 ≥ 8δ0)

ξ2 ≤ 4δ2
0 +

16δ2
0

Θ2
0

≤ 20
δ2

0

Θ2
0

(Lemma 7.13 (2) and Θ0 ≤ 1)

ξ3 ≤ 4δ2
0(1 + 2δ0)2 < 8δ2

0 ≤ 8
δ2

0

Θ2
0

(Lemma 7.14(1) and δ0 ≤
1

5
)
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Using Exercise 7.10 and Θ0 > 9δ0, we obtain

ξ ≤ ξ1 + ξ2 + ξ3 + ξ1ξ2 + ξ2ξ3 + ξ3ξ1 + ξ1ξ2ξ3

<
33δ2

0

Θ2
0

< 1.

�

It follows from Lemma 7.19 that Fp embeds any simplex σ of star′(p) and
that the Jacobian of Fp does not vanish on σ. To prove the last claim, let
σ ∈ M̂ and, for x ∈ σ and v ∈ aff(σ) with ‖v‖ = 1, let α(t) = x+ tv. Since
the restriction of Fp to σ is a ξ-distortion map (Lemma 7.19), and rewriting
Fp = F for convenience, we have

(1− ξ)‖(x+ tv)− x‖ ≤ ‖F (x+ tv)− F (x)‖ ≤ (1 + ξ)‖(x+ tv)− x‖,
so for all t 6= 0,

1− ξ ≤ ‖F (x+ tv)− F (x)‖
|t| ≤ 1 + ξ.

Since F is differentiable,

lim
t→0

‖F (x+ tv)− F (x)‖
|t| = ‖ lim

t→0

F (x+ tv)− F (x)

t
‖ = ‖dFx(v)‖,

so
1− ξ ≤ ‖dFx(v)‖ ≤ 1 + ξ,

which yields the claimed result.

We have shown that the Jacobian of Fp does not vanish on σ. It remains
to prove that it is positive. To do so, observe that the differential of the
restriction of Fp to σ at the point p ∈ σ is the identity. This follows from
the observation that the differential of Π at p restricted to Tp is the identity,
since p lies on the manifold.

3. We will now prove that there is a point in Fp(Vp) \ Fp(∂star(p)) and not
in the image of the (k − 1)-skeleton that is covered once. For this purpose,
we choose the image of the barycenter of a k-simplex of star′(p).

Lemma 7.20 Assume that the conditions of Theorem 7.16 hold and let b′

be the barycenter of a k-simplex σ in star′(p). Then the image of b′, Fp(b′),
is covered once, i.e. F−1

p (Fp(b
′)) = {b′}.
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Proof We denote as usual by ∆(σ) = δ(σ) rch(M) the diameter of σ and
by D(p, σ) the altitude of p in σ. The distance from the barycenter b′ to the
boundary of σ is

min
p∈vert(σ)

D(p, σ)

k + 1
=
kΘ(σ) ∆(σ)

k + 1
≥ Θ0 ∆0

2
(7.8)

using k ≥ 1. Since the distortion of the restriction of Fp to σ is less than
1 (Lemma 7.19), it is an embedding (Lemma 7.12) and therefore no point
z′ ∈ σ can verify Fp(z

′) = Fp(b
′). Let us consider now the case of a point z′

of star′(p) \ σ. Write b = Π−1
p (b′) and z = Π−1

p (z′), and observe that

‖Fp(b′)− b′‖ = ‖Πp (Π(b)− b) ‖ ≤ 2δ2
0 rch(M) (By Lemma 7.9)

and similarly for ‖Fp(z′)− z′‖.

Hence,

‖Fp(b′)− Fp(z′)‖ ≥ ‖b′ − z′‖ − ‖Fp(b′)− b′‖ − ‖Fp(z′)− z′‖
≥ d(b′, ∂σ)− 4δ2

0 rch(M)

≥ Θ0 δ0rch(M)

2
− 4δ2

0 rch(M) (By Equation 7.8)

It follows that Fp(b
′) 6= Fp(z

′) since we assumed Θ0 > 8δ0. �

Since b′ ∈ V ′p , the previous lemma implies that there exists a point in Fp(V
′
p)

that is covered exactly once.

4. The next lemma shows that Fp(V
′
p) ∩ Fp(∂star′(p)) = ∅.

Lemma 7.21 Assume that the conditions of Theorem 7.16 hold and let
x ∈ σ ⊂ star′(p) and y ∈ Tp \ star′(p). If the barycentric coordinate of x
with respect to p is at least 1

k+1 , then Fp(x) 6= Fp(y).

Proof Arguing as in the proof of Lemma 7.20, we get

‖Fp(x)− Fp(y)‖ ≥ ‖x− y‖ − ‖Fp(x)− x‖ − ‖Fp(y)− y‖
≥ d(x, ∂star′(p))− 4δ2

0 rch(M)

≥ k

k + 1
λ0Θ0rch(M)− 4δ2

0 rch(M) (By Lemma 7.22)

≥ 1

2
λ0Θ0rch(M)− 4δ2

0 rch(M) (k > 1)
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Hence, Fp(x) 6= Fp(y) if Θ0 > 8δ2
0/λ0. �

Lemma 7.22 Let σ be a k-simplex of star′(p) and let x be a point of σ
whose barycentric coordinate that is associated to p in σ satisfies λp(x) ≥ α.
Then d(x, ∂star′(p)) ≥ αkL0Θ0, where L0 = λ0rch(M) is a lower bound on
the edge lengths of the simplices and Θ0 is a lower bound on their thickness.

Proof Let γσ be a line segment joining two points xσ and yσ of σ and
denote by λp(xσ) and λp(yσ) respectively their p-th barycentric coordinates.
Then |γσ| ≥ |λp(xσ)−λp(yσ)|D(p, σ), where D(p, σ) denotes the altitude of
p in σ and we indicate the length of a curve by | · |.

Let star′α(p) = {z ∈ star(p), λp(z) ≥ α}. Equivalently, star′α(p) is the image
of star′(p) by the homothety of center p and ratio 1− α. Consider a short-
est line segment γ connecting a point of ∂star′(p) to a point of ∂star′α(p).
Plainly, γ intersects star′(p) and star′α(p) only at its endpoints and the in-
tersection of γ with any simplex σ of star′(p), if non empty, is a line segment
we denote by γσ. If we now note that the barycentric coordinates coincide
on a face that is shared by two simplices we see that:

|γ| =
∑

σ

|γσ| ≥
∑

σ

|λp(xσ)− λp(yσ)|D(p, σ)

≥
∑

σ

|λp(xσ)− λp(yσ)| k∆(σ) Θ0

≥ αk L0 Θ0

where xσ is the point where γ enters σ and yσ where it leaves. This yields
dH(∂star′(p), ∂star′α(p)) ≥ αkL0Θ0, where dH denotes the Hausdorff dis-
tance. �

7.3.4 Local homeomorphism

Lemma 7.23 (Π|M̂ is a local homeomorphism) Assume that the con-
ditions of Theorem 7.16 and that the conditions of Whitney’s lemma are
fulfilled. Then Π embeds Vp in M. The restriction of Π to M̂ is thus a local
homeomorphism.
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Proof Since the conditions of Whitney’s lemma are fulfilled, Fp embeds
V ′p in Tp. Consequently, since Fp = Πp ◦ Π ◦ Π−1

p , Π must embed Vp into

M. Moreover, since the set of all Vp for all vertices of M̂ cover M̂, we have
proved that the map Π restricted to M̂ is a local homeomorphism on M.
This completes the proof of Lemma 7.23. �

7.3.5 The restriction of Π to M̂ is injective

Lemma 7.24 (Injectivity of Π|M̂) Under the conditions of Theorem 7.16,

Π is injective on M̂.

Proof Let x be a point of Π(M̂). Π−1

|M̂(x) is non empty and finite since Π

embeds each simplex of M̂ (Lemma 7.13) and there are only finitely many
simplexes in M̂. For each point y ∈ Π−1(x) ∩ M̂, we choose a sufficiently
small open neighborhood U(y) of y such that U(y) is homeomorphic to a
k-ball and U(y) is contained in some Vp. This is possible since the Vp, p ∈ P ,
constitute an open cover of M̂. Since, as already noticed, Π embeds any
Vp on M, it also embeds each U(y) in M. Hence the preimage under Π|M̂
of any sufficiently small open neighborhood U(x) of a point x of M is a
union of disjoint open sets, each of which is contained in some Vp ⊂ M̂ and
mapped homeomorphically onto U(x) by Π. (In topological terms, (M̂,Π)
is a covering space of Π(M̂).)

We now show that the cardinality of Π−1

|M̂(x) is constant over each connected

component ofM. Indeed, consider the function G that associates to a point
x of M the cardinality of Π−1

M(x). From the above discussion, G is locally
constant, which implies that it is constant on each connected component of
M. Hence Π|M̂ covers all the points of a connected component of its image

Π(M̂) the same number of times. This number is 1 as is shown next.

Assume, for a contradiction, that there exists a vertex q and a simplex σ
of M̂ such that q belongs to the image Π(σ) but q is not a vertex of σ.
Specifically, let x ∈ σ be such that Π(x) = q. Recall that Fp = Πp ◦Π ◦Π−1

p

and observe that Fp(x) = Fp(q) for any vertex p of σ. In the rest of the
proof, we denote by p a vertex of σ such that the associated barycentric
coordinate of x satisfies λp(x) ≥ 1

k+1 (which must exist).
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We write for convenience x′ = Πp(x) and q′ = Πp(q). Plainly, x′ belongs to
Πp(σ) but q′ does not belong to star′(p) = Πp(star(p)) by Hypothesis (e).
We conclude that Fp(x

′) 6= Fp(q
′) from Lemma 7.21. �

7.3.6 The restriction of Π to M̂ is surjective

Lastly we prove that the restriction of Π to M̂ is surjective.

Lemma 7.25 (Surjectivity of Π|M̂) Under the conditions of Theorem 7.16,
Π|M̂ is surjective on M.

Proof Since M̂ has no boundary, the same is true for Π(M̂) by the in-
variance of domain theorem,4. Hence any connected component of M that
intersects Π(M̂) has to be totally included in Π(M̂). Since by Hypothesis
1 of Theorem 7.16, every connected component of M intersects Π(M̂), M
is included in Π(M̂). �

7.3.7 End of proof of statement 1

We have shown that Π|M̂ is a bijection from M̂ to M. Furthermore, Π|M̂
is continuous by Lemma 7.13(1) and its inverse is also continuous since M̂
is compact andM is a metric space (see Section 1.2.1). It follows that Π|M̂
is a homeomorphism and that M̂ and M are homeomorphic, which is the
first statement in Theorem 7.16.

7.3.8 Proof of statements 2 and 3, and of Theorem 7.16

To prove the second statement, let x be a point ofM and let y be the point
of M̂ such that y = Π(x). Such a point y exists by the first statement. It
then follows from Lemma 7.9 that ‖x− y‖ ≤ 2δ2

0 rch(M).

The third statement of the theorem follows from Lemma 5.14 as in the proof
of Lemma 7.14 (Equation (7.7)).

4 The invariance of domain theorem states that, given an open subset U ⊆ Rd and an
injective and continuous function f : U → Rd then f is a homeomorphism between U and
f(U). The theorem and its proof are due to L. E. J. Brouwer [113, Theorem 36.5].
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We have thus proved the three statements of Theorem 7.16.

7.4 Exercises

Exercise 7.1 (ε-nets on submanifolds) Let P be an ε-dense sample of
a submanifold M. Let P ′ := ∅ and apply the following procedure : while
there exists a point p of P \ P ′ whose distance to the current set P ′ is
greater than εrch(M), insert p in P ′. Show that P ′ is an (εrch(M), 1)-net
of P and a (2ε, 1

2)-net of M. Adapt the algorithms of Section 5.1 to the
case of submanifolds.

Exercise 7.2 (Size of nets) Show that the size of an (ε, η̄)-net of a k-
submanifold with a bounded sampling ratio η̄ depends exponentially on k.

Exercise 7.3 (Computing rch(M)) LetM be a smooth submanifold and
write ax(M) for the medial axis of M. Show that rch(M) is the radius of
a ball B(m) centered at a point m ∈ ax(M) and tangent to M. Show that
if B(m) has only one contact point, B(m) is osculating M at the contact
point. If B(m) has two distinct contact points, the two contact points are
the endpoints of a diameter of B(m). Propose an algorithm to compute
rch(M) when M is a hypersurface of Rd implicitly defined as f(x) = 0
where f is a differentiable function defined over Rd for which 0 is a regular
value.

Exercise 7.4 (Non uniform nets) We define the local feature size lfs(x)
of a point x of a submanifold M as the distance from x to the medial axis
of M, ax(M). We say that a finite set of points P ⊂ M is a non uniform
(ε, η̄)-net if it satisfies the following two properties:

1. Any point x of M is at distance at most ε lfs(x) from a point of P .

2. For any two points p, q of P , ‖p− q‖ ≥ η min(lfs(p), lfs(q)).

Show that lfs is a 1-Lipschitz function, and, using this fact, extend the results
of this chapter to sufficiently dense non uniform ε-nets.
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Exercise 7.5 (Size of non-uniform nets) Provide upper and lower bounds
on the size of a non-uniform (ε, η̄)-net of a k-submanifold as a function of k
and the integral over M of lfs(x), the local feature size of M at x.

Exercise 7.6 (Geodesic distance) Let any two points x and y be two
points on M such that ‖x − y‖ ≤ α rch(M), α < 1. Show that the length

of a shortest path on M joining x to y is at most ‖x−y‖1−α .

Exercise 7.7 (Angle between tangent spaces) Prove Lemma 7.10 (with
possibly a bigger constant) using elementary arguments.

Exercise 7.8 Let x be a point of BM = B(p, r) ∩M where r = ρ rch(M),
ρ < 1. Show that there exists a point y ∈ Tp such that Π(y) = x, where Π
denotes the projection on M, and ‖x− y‖ ≤ r

1−ρ .

Exercise 7.9 (Distortion) Let F : U ⊆ Rd → Rd be a ξ-distortion map.
Show that F−1 is well defined and that it is a ξ

1−ξ -distortion map.

Exercise 7.10 If F1 is a ξ1-distortion map and F2 is a ξ2-distortion map,
then F1 ◦ F2 is a (ξ1 + ξ2 + ξ1ξ2)-distortion map.

Exercise 7.11 (Ambient isotopy) Assume that the conditions of Theo-
rem 7.16 are satisfied. Show that the restriction of Π to M̂ induces an
ambient isotopy

Φ∗ : Rd × [0, 1] −→ Rd

such that the map Φ∗(·, 0) restricted to M̂ is the identity map on M̂ and
Φ∗(M̂, 1) = M. The isotopy does not move the points by more than
O(δ2

0 rch(M)).

Hint: Let

Φ : M̂ × [0, 1] −→ R3, (x, t) 7→ x+ t (Π(x)− x)

Note that Φ(·, 0) is an identity map on M̂ and Φ(·, 1) = Π|M̂. The map Φ
is an isotopy because the maps

Φt : M̂ −→ Rd, x 7→ Φ(x, t)
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are homeomorphisms between M̂ and Φt(M̂).

Isotopy Φ can be extended to an ambient isotopy Φ∗ : Rd × [0, 1] −→ R3

such that Φ∗(·, 0) |M̂ = Φ(·, 0) and Φ∗(·, 1) |M̂ = Φ(·, 1)

Exercise 7.12 (Extension of Theorem 7.16) Remove in Theorem 7.16
the assumption that the simplicial complex is embedded in Rd and assume
instead that we are given an abstract finite simplicial complex K without
boundary. We then consider the piecewise linear map ι : K ↪→ Rd defined
by the coordinates of the vertices of K and define M̂ as ι(K). Using es-
sentially the same proof as in Sections 7.3.1-7.3.8, prove that Π ◦ ι(K) is
homeomorphic to the underlying space of |K| and that M̂ is embedded in
Rd.

7.5 Bibliographical notes

The medial axis was introduced as a tool in image analysis. It is by now
widely used to represent and analyze shapes. For mathematical and algo-
rithmic properties, we refer the reader to the work of Lieutier [104] and to
the survey paper [3]. Lieutier proved that any bounded open subset of Rd
is homotopy equivalent to its medial axis [104]. The notion of local feature
size (Exercise 7.4) was introduced by Amenta and Bern in their seminal
paper on surface reconstruction [2]. See also [25, 91]. The related notion of
reach has been introduced earlier by Federer [82] who proved Lemmas 7.2,
7.8 and the first part of Lemma 7.13. Many other results on sets of positive
reach can also be found in this paper. The link between the reach and the
principal curvatures of a submanifold has been established by Niyogi, Smale
and Weinberger [115] who also proved a weaker form of Lemma 7.10. The
improved bound is due to M. Wintraecken [136]

Proving that any smooth manifold can be triangulated has been the sub-
ject of many important developments in the mathematical community by
Cairns [32], Whitehead [134], Whitney [135], Munkres [112] and others. Our
proof uses Lemma 7.18 which is due to Whitney. More recently, the Delau-
nay triangulation turned out to be a useful tool in this context leading to
efficient algorithms. Variants of Theorem 7.16 have been proved by Cheng
and al. [57], Boissonnat and Ghosh [22] and Dyer et al. [66]. The proof pre-
sented here is based on M. Wintraecken’s Ph.D. thesis and on unpublished
notes by R. Dyer. A proof of Exercise 7.11 can be found in [98].
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LetM be an unknown manifoldM and let P ⊂M be a known finite sample.
The reconstruction problem is to recover from P alone the topological type
of M (manifold reconstruction) or the homotopy type of M (homotopy
reconstruction). More concretely, we look for a simplicial complex M̂ which
approximatesM, and, in particular, is provably homeomorphic or homotopy
equivalent to M.

In Section 8.1, we will see that, under appropriate conditions on P , M has
the same homotopy type as the union of balls centered on the points of P .
It follows that the alpha-shape of M, for an appropriate value of α has the
same homotopy type asM. This method however has some limitations. The
complex captures the homotopy type but is not in general a triangulation
of M and computing the alpha-shape is limited to low dimensional spaces.

In the following sections, we overcome these limitations and show how to
reconstruct a simplicial complex with vertex set P that is homeomorphic
to M. We have to face two main difficulties. First, even when a point set
is a dense and sparse sampling on a manifold M, the Delaunay simplexes
of dimension higher than 2 are not guaranteed to be thick (see Section 5.2)
and therefore not guaranteed to approximate the tangent bundle ofM (see
Lemma 5.14). This is an issue since the main theorem of Chapter 7, The-
orem 7.16, that provides conditions to triangulate a submanifold, requires
simplices to be thick. To be able to reconstruct manifolds of dimension
greater than 2, we will need to explicitly take care of non-thick simplices us-
ing techniques similar to what has been done in Chapter 5 in the Euclidean
case.

The second major difficulty comes from the so-called curse of dimension-
ality. We have seen (Theorems 4.4 and 5.4) that the size of the Delaunay
triangulation of n points grows exponentially with the dimension d of the
embedding space. As a consequence, when d is large, we cannot afford to
compute the d-dimensional Delaunay triangulation Del(P ) or any other sub-
division of Rd. Instead, we will introduce a subcomplex of Del(P ), called
the tangential Delaunay complex, whose complexity depends on the intrin-
sic dimension of M and not on the ambient dimension d. This complex is
defined locally and the various local triangulations are glued together so as
to constitute a manifold complex that is embedded in Rd and triangulates
M.



8.1. HOMOTOPY RECONSTRUCTION USING ALPHA-SHAPES 185

8.1 Homotopy reconstruction using alpha-shapes

Unions of balls play a central role in manifold reconstruction. Indeed, while
Chapter 6 shows how to capture the homotopy type of a union of balls with a
simplicial complex, this section shows that the homotopy type of a sampled
manifold can be obtained from the homotopy type of a union of balls. More
precisely, we show here that the homotopy type, hence the homology groups,
of a manifold M with positive reach can be obtained from union of balls
centered at the points of a sample of M provided that the sample is dense
enough with respect to the reach.

Theorem 8.1 Let M be a manifold with positive reach rch(M), and P ⊂
M be a point sample of M with sampling radius ε

2rch(M), meaning that
any point x of M is at distance less than ε

2rch(M) from the closest sample

point. If ε <
√

3
5 , the union of balls with radius ε rch(M) centered on P , is

homotopy equivalent to M.

Proof In the following, we denote by B(p, r) the ball with radius r centered
on p and write for short U for the union of balls with radius εrch(M) centered
on points of P :

U =
⋃

p∈P
B(p, εrch(M)).

Obviously,M is included in U . To prove the homotopy equivalence we prove
below that U deformation retracts to M. For all x ∈ U and t ∈ [0, 1], we
define

F (x, t) = (1− t)x+ tΠ(x),

where Π(x) is the projection onM. F is continuous from Lemma 7.13. For
all x ∈ U , F (x, 0) = x, and F (x, 1) = Π(x) is in M, and for all x ∈ M and
t ∈ [0, 1], F (x, t) = x. Therefore F is a deformation retracts from U to M,
provided that F (x, t) belongs to U for any (x, t) ∈ U× [0, 1], which is proved
now.

Let us consider ΠU , the restriction of Π to U . The preimage Π−1
U (y) of a

point y ∈M is

Π−1
U (y) = Ny ∩ U ∩B(y, rch(M)), (8.1)

where Ny is the normal subspace of M at y. The ball with radius rch(M)
centered at y, B(y, rch(M)), appears in Equation 8.1 to remove orphan
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components of Ny ∩ U , i. e. components which do not contain y, and may
arise from the fact that M is curved. Therefore,

Π−1
U (y) =

⋃

p∈P
B(p, εrch(M)) ∩Ny ∩B(y, rch(M)).

We also consider the subset st(y) defined as

st(y) =
⋃

p∈P∩B(y,εrch(M))

B(p, εrch(M)) ∩Ny ∩B(y, rch(M)).

Obviously, st(y) ⊂ Π−1
U (y). Then Lemma 8.2 below proves that st(y) is star

shaped with respect to y and Lemma 8.3 proves that st(y) = Π−1
U (y). It

follows that for any y ∈ M, Π−1
U (y) is star shaped with respect to y and

that for any (x, t) ∈ U × [0, 1], F (x, t) belongs to U . �

Lemma 8.2 The subset st(y) is star shaped with respect to y.

Proof Let z be an arbitrary point in st(y). Then z ∈ B(p, εrch(M))∩Ny∩
B(y, rch(M)) for some p ∈ P ∩ B(y, εrch(M)). Since p ∈ B(y, εrch(M)),
y ∈ B(p, εrch(M)). Since z and y are both in B(p, εrch(M)), the segment
zy is entirely contained in B(p, εrch(M)). At the same time, zy is entirely
contained in Ny and in B(y, rch(M)) and therefore in st(y). �

Lemma 8.3 The subset st(y) coincides with the preimage Π−1
U (y).

Proof We are left to show that Π−1
U (y) ⊂ st(y). Let z be a point in

B(p, εrch(M)) ∩ Ny ∩ B(y, rch(M)) where p is a point of P such that p 6∈
B(y, εrch(M)). Lemma 8.4 shows that the distance from z to y is at most
ε2rch(M) and Lemma 8.5 shows that if P is ( ε2rch(M))-dense inM with ε <
3
5 , there is some point q ∈ P ∩ B(y, εrch(M)) such that z ∈ B(q, εrch(M))
which achieves the proof. �

Lemma 8.4 Let z be a point in B(p, εrch(M))∩Ny ∩B(y, rch(M)) where
p is a point of P such that p 6∈ B(y, εrch(M)). The distance d(y, z) from z
to y is at most ε2rch(M).
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y

p
θp

hy

2θp

z

ny

Figure 8.1: For the proof of Lemma 8.3.

Proof Let us consider the plane H through y, z and p. See Figure 8.1. In
the plane H, we call ny the line H∩Ny, and hy the line orthogonal to ny that
passes through y. Point z belongs to ny and point p lies anywhere outside
of the two balls with radius rch(M) tangent to hy at y. Since the distance
d(y, z) is constrained by the fact that d(p, z) ≤ εrch(M), the maximum of
the distance d(y, z) occurs in the configuration where points p and z lie on
the same side of hy, as shown in Figure 8.1. We denote by rp the radius
of the circle tangent to M in y and going through p, and by θp the angle
∠(hy, yp) between hy and yp.

We have rp ≥ rch(M) and d(y, p) = 2rp sin θp. Furthermore we have (see
Figure 8.1) :

d(y, z) = d(y, p) sin θp +
√
d(z, p)2 − d(y, p)2 cos2 θp

= 2rp sin2 θp +
√
d(z, p)2 − r2

p sin2 2θp

≤ 2rp sin2 θp +
√
ε2rch(M)2 − r2

p sin2 2θp

def
= f(rp, θp) (8.2)
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yθqh′y

z

n′y

q

Figure 8.2: For the proof of Lemma 8.4.

We have:

df

dθp
= 2rp sin 2θp −

2r2
p sin 2θp cos 2θp√

ε2rch(M)2 − r2
p sin2 2θp

= 2rp sin 2θp


1− rp cos 2θp√

ε2rch(M)2 − r2
p sin2 2θp


 .

Since ε <
√

3
5 < 1 and rch(M) ≤ rp, the function f is monotonically

decreasing with respect to θp and reaches its maximum when θp is minimum,
i.e. when d(y, p) = 2rp sin θp = εrch(M). We have then

f(rp, θp) = εrch(M) sin θp +
√
ε2rch(M)2 − ε2rch(M)2 cos2 θp

= 2εrch(M) sin θp =
ε2rch(M)2

rp
≤ ε2rch(M),

which, together with Equation 8.2, achieves the proof. �

Lemma 8.5 Let z be a point in B(p, εrch(M))∩Ny∩brch(M)(y) where p is a
point of P such that p 6∈ B(y, εrch(M)). If P is ( ε2rch(M))-dense inM with

ε <
√

3
5rch(M), there is some point q ∈ P ∩ bε(y) such that z ∈ bε(q) ∩Ny.
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Proof Because P is ( ε2rch(M))-dense in M, there is a point q ∈ P at
distance at most ε

2rch(M) from y. We prove that z ∈ B(q, ε). We consider
now the plane H ′ through y, z and q and write n′y for the line H ′ ∩Ny, and
h′y for the line orthogonal to H ′ that passes through y. Figure 8.2, drawn in
the plane H ′, shows the worst situation for the distance d(z, q). Denoting
now by θq the angle ∠(h′y, yq) between h′y and yq, we have

d(z, q)2 ≤ d(y, q)2 cos2 θq + (d(y, q) sin θq + d(y, z))2

≤ d(y, q)2 + 2d(y, q)d(y, z) sin θq + d(y, z)2.

Since d(y, q) ≤ ε
2rch(M) and d(y, z) ≤ ε2rch(M) (Lemma 8.4), we get

d(z, q)2 ≤ ε2

4
rch(M)2 + ε3rch(M)2 sin θq + ε4rch(M)2.

We have d(y, q) = 2rq sin θq ≤ ε
2rch(M) where rq is the radius of the circle

tangent to M at y and going through q. Since point q lies outside the
two balls with radii rch(M) that are tangent to Ty at y, rq is greater than
rch(M) and therefore sin θq ≤ ε

4 . Thus,

d(z, q)2 ≤ ε2

4
rch(M)2 +

ε4

4
rch(M)2 + ε4rch(M)2

≤ ε2rch(M)2

(
1

4
+

5

4
ε2

)
,

which is not greater than ε2rch(M)2 if ε2 ≤ 3
5 . �

8.2 Tangential Delaunay complex

We introduce in this section a data structure, named the tangential Delaunay
complex. LetM be a k-submanifold of Rd. The only knowledge we have on
M is a finite set of points P ∈M and the tangent spaces at each point of P .
The tangential Delaunay complex DelTM(P ) is a k-dimensional subcomplex
of the d-dimensional Delaunay complex Del(P ). An important property is
that DelTM(P ) can be constructed without computing any data structure
of dimension higher than k, and in particular without computing the full
Delaunay complex. We will see in Section 8.3 that DelTM(P ) can be used
to reconstruct a triangulation of M.
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8.2.1 Definition

Let P be a finite set of n > k+ 1 points onM. Let Del(P ) be the Delaunay
complex of P , i.e. the collection of all the simplices with vertices in P
that admit an empty circumscribing d-dimensional ball. A ball of Rd is
called empty if its interior contains no point of P . For p ∈ P , we denote
by Delp(P ) the Delaunay complex of P restricted to the tangent space Tp,
i.e. the subcomplex of Del(P ) formed by all the simplices with vertices in P
that admit an empty circumscribing ball centered on Tp. Equivalently, the
simplices of Delp(P ) are the simplices of Del(P ) whose Voronoi dual face
intersect Tp.

In the rest of this chapter, we assume that the points of P are in general
position wrt spheres so that the Delaunay complex Del(P ) naturally embeds
in Rd as a triangulation of P (see Section 4.3). We will further assume that
P satisfies the following transversality condition : Tp contains no point that is
equidistant from more than k + 1 points of P . The transversality condition
implies that the restricted Delaunay complex Delp(P ) is a subcomplex of
dimension at most k. Furthermore, if Tp intersects a (d − k)-face f of
Vor(P ), the intersection consists of a single point c. The unique point c
is the center of an empty ball circumscribing the k-simplex of Del(P ) dual
to f . It is easy to see that applying an infinitesimal perturbation to P is
sufficient to ensure the transversality condition.

We write star(p) for the closed star of p in Delp(P ), i.e. the subcomplex of
Delp(P ) consisting of the simplices of Delp(P ) that are incident to p together
with their faces (see Figure 8.3). In the following, we will simply call star
a closed star. For a k-simplex σ in star(p), we write Bp(σ) for the ball
centered on Tp that circumscribes σ, cp(σ) for its center and Rp(σ) for its
radius. Observe that Rp(σ) ≥ R(σ), where R(σ) is the radius of the smallest
ball circumscribing σ.

Definition 8.6 (Tangential Delaunay complex) We call tangential De-
launay complex, or tangential complex for short, the simplicial complex
DelTM(P ) = {σ, σ ∈ star(p), p ∈ P}.

Plainly, DelTM(P ) is a subcomplex of Del(P ) and is therefore a simplicial
complex embedded in Rd if the points of P are in general position wrt
spheres (see Section 4.3). The following lemma is crucial since it shows
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p
Tp

M

Figure 8.3: M is in red. The sample P is the set of blue circles. The green
line is the tangent space Tp at p. The Voronoi diagram of the sample is in
black. The Delaunay triangulation Del(P ) is drawn in blue with, in bold,
star(p).

that computing the tangential complex reduces to computing n weighted
Delaunay triangulations in the k-dimensional flats Tp, p ∈ P .

We define a map Ψp : P → Tp × R that associates to each point pi ∈ P a
weighted point in Tp. Specifically, Ψp(pi) = (p′i, p

′′
i ) ∈ Tp × R, where p′i is

the orthogonal projection of pi onto Tp and p′′i = −‖pi− p′i‖2. Observe that,
under the transversality assumption, Ψp is 1-1.

It is known that the d-dimensional Voronoi diagram Vor(P ) intersects Tp
along the weighted k-dimensional Voronoi diagram Vor(Ψp(P )) (see Exer-
cise 4.11). Accordingly Delp(P ), the restriction of the d-dimensional Delau-
nay complex Del(P ) to Tp, is isomorphic to the weighted Delaunay complex
Del(Ψp(P )). Note that the transversality condition implies the fact that
the set (Ψp(P )) is in general position wrt to spheres in Tp. Therefore, the
simplicial complex Del(Ψp(P )) is naturally embedded in Tp. Moreover, the
simplices of Del(Ψp(P )) are obtained by projecting onto Tp the simplices of
Delp(P ). Conversely, the simplices of Delp(P ) can be deduced from the sim-
plices of Del(Ψp(P )) by a piecewise linear map that we call the lifting map.
Specifically, the lifting map lifts each weighted point (p′, p′′) associated to a
vertex of Del(Ψp(P )) to the unique point p ∈ P such that (p′, p′′) = Ψp(p).
The lift of a simplex σp of Delp(P ) is then the geometric simplex σ whose
vertices are the lifts of the vertices of σp. Delp(P ) is then the image of
Del(Ψp(P )) by the lifting map. We summarize our discussion in the follow-
ing lemma :



192 CHAPTER 8. RECONSTRUCTION OF SUBMANIFOLDS

Lemma 8.7 If the points of P are in general position and satisfy the transver-
sality condition, Delp(P ) is the lift of Del(Ψp(P )), the k-dimensional weighted
Delaunay triangulation of Ψp(P ) in Tp.

We deduce from the lemma an efficient algorithm to compute star(p) =
star(p,Delp(P )) : project P onto Tp, compute starTp(p) = star(p,Del(Ψp(P ))),
the star of p in Del(Ψp(P )), and then lift starTp(p) to star(p). Apart from
the projection of the points onto Tp, this algorithm involves only operations
in the k-dimensional flat Tp. If P is an (ε, η̄)-net of M, we can even re-
strict our attention to the subset of P inside the ball of radius 2ε centered
at p. The transversality condition with respect to the tangent plane Tp is
therefore only required for points in that ball.

8.2.2 Inconsistent simplices

In general, the tangential complex is not a combinatorial manifold (see Def-
inition 2.17). This is due to the presence of so-called inconsistent simplices.

Definition 8.8 (Inconsistent simplex) A simplex σ ∈ DelTM(P ) is cal-
led inconsistent if σ does not belong to the stars of all its vertices. Let σ
be an inconsistent simplex and let pi and pj be two vertices of σ so that σ
is in star(pi) but not in star(pj), We say that the pair of vertices (pi, pj)
witnesses the inconsistent simplex σ.

Refer to Figure 8.4. Let σ be an inconsistent k-simplex witnessed by the pair
of vertices (pi, pj). The simplex σ belongs to the star of pi but not to the
star of pj . Equivalently, the Voronoi (d−k)-dimensional face Vor(σ) dual to
σ intersects Tpi (at a point cpi(σ)) but does not intersect Tpj . Observe that
cpi(σ) is the center of an empty d-dimensional ball Bpi(σ) circumscribing σ.
Let cpj (σ) denote the intersection of aff(Vor(σ)) with Tpj . Differently from
Bpi(σ), the d-dimensional ball Bpj (σ) centered at cpj (σ) that circumscribes
σ contains a subset Pj(σ) of points of P in its interior. Therefore, the line
segment [cpi(σ) cpj (σ)] intersects the interior of some Voronoi cells (among
which are the cells of the points of Pj(σ)). Let pl be the point of P \ σ
whose Voronoi cell is hit first by the segment [cpi(σ) cpj (σ)], when oriented
from cpi(σ) to cpj (σ). We write σI for the (k + 1)-simplex conv(σ, pl) and
i(σI) for the first point of the oriented segment [cpi(σ) cpj (σ)] that belongs
to Vor(pl). Observe that since the point i(σI) belongs Vor(σ)∩Vor(pl), σ

I is
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pi

pj
τ

Bpj(τ )

Bpi(τ )

p

Tpi

∈ Vor(pipj)

∈ aff(Vor(pipj))

cpi

Tpj

cpj

M

iφ

Figure 8.4: The figure shows an example of an inconsistent simplex σ =
[pi, pj ] that belongs to star(pi) and does not belong to star(pj). The solid
black line segment belongs to Vor(σ) and the dashed black line segment
belongs to aff(Vor(σ)) but not to Vor(σ).

a (k+ 1)-simplex of Del(P ). We say that the simplex σI is an inconsistency
trigger of σ. Note that an inconsistent simplex σ may have several pairs of
witnesses and several inconsistency triggers, but at most one inconsistency
trigger for each pair of witnesses. Considering all pairs of witnesses of an
inconsistent simplex σ, we obtain the set of inconsistency triggers of σ.

Definition 8.9 (Inconsistency trigger) An inconsistency trigger of a k-
simplex σ of DelTM(P ) is a (k + 1)-simplex of Del(P ) that is the inconsis-
tency trigger of σ for some ordered pair of vertices of σ that witnesses the
inconsistency.

Since we assumed that the points satisfy the transversality condition, the
tangential complex does not contain faces of dimension greater than k. It
follows that no inconsistency trigger can belong to the tangential complex.
Observe also that some of the subfaces of a inconsistency trigger may not
belong to the tangential complex.

Since an inconsistency trigger σI is a (k+ 1)-simplex of Del(P ), we will use
the same notations for σI as for any other simplex, e.g. R(σI) for the radius
of the smallest circumscribing ball or Θ(σI) for its thickness. We write Inc(p)
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(a) DelTM(P) (b) C(P)

p

q

r

p
q

r

s
t

s

t

Figure 8.5: In Figure (a), M is in red, the sample P is the set of blue
points, green lines denote tangent spaces, the Voronoi diagram of the sample
is in black, and DelTM(P ) is drawn in blue. The dashed lines indicate the
inconsistent edges. In Figure (b), the blue lines denote DelTM(P ) and the
grey triangles denote the inconsistency triggers.

for the set of inconsistency triggers incident to p and Inc(P ) = ∪p∈P Inc(p).
We also define the completed tangential complex Del+ITM(P ) = DelTM(P ) ∪
Inc(P ). See Figure 8.5.

Calculating Del+ITM(P ) is easy once we know Del(P ). Indeed, it suffices to
detect the inconsistent k-simplices that do not appear in the stars of all their
vertices. Let σ be an inconsistent simplex witnessed by the pair (pi, pj). To
compute the associated inconsistency trigger, we need to identify the point
pl. This can be done by computing the restriction of Vor(P ) to the line
Lij = (cpi(σ), cpj (σ)). This in turn can be done by projecting the points of
P onto Lij and computing a 1-dimensional weighted Voronoi diagram (see
Exercise 4.11).

8.2.3 Geometric properties of inconsistency triggers

We give some simple geometric lemmas that, in particular, bound the thick-
ness of the inconsistency triggers. We will use angles between affine spaces
as defined in Section 5.2.2.
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Lemma 8.10 Let P be an ε-dense sample1 of a submanifold M. Let α0 =
1
8 (1 + 2ε−

√
1− 12ε+ 4ε2) ≈ ε and assume that α0 < 1/4. Then

1. Vor(p) ∩ Tp ⊆ B(p, α0 rch(M)).

2. for any k-simplex σ ∈ star(p), R(σ) ≤ Rp(σ) ≤ α0 rch(M) (recall that
and Rp(σ) is the radius of the circumscribing ball of σ centered on Tp.)

3. for any σ ∈ DelTM(P ), ∆(σ) ≤ 2α0 rch(M).

Proof We prove (i). The other statements easily follow. Let x ∈ Vor(p)∩Tp
and write ‖p−x‖ = α rch(M). Let x′ be the point ofM closest to x and let
x′′ = Πp(x

′). We have ‖x− x′‖ ≤ ‖x− p‖ and by the triangular inequality,
‖p− x′‖ ≤ 2‖x− p‖ = 2α rch(M) . It then follows from Lemma 7.8 that

‖x′ − x′′‖ ≤ ‖p− x
′‖2

2rch(M)
≤ 2α2 rch(M).

Now observe that ‖x′ − x′′‖ = ‖x − x′‖ cosφ, where φ = ∠(Tx′ , Tp). As-
suming α ≤ 1

4 , we have, by Lemma 7.10, cosφ ≥ 1 − 8α2. We conclude
that

‖x− x′‖ ≤ 2α2 rch(M)

1− 8α2
.

Since P is ε-dense in M, there exists a point q ∈ P , such that ‖x′ − q‖ ≤
ε rch(M). Together with x ∈ Vor(p), this implies

‖x− p‖ ≤ ‖x− q‖ ≤ ‖x− x′‖+ ‖x′ − q‖ ≤
(

2α2

1− 8α2
+ ε

)
rch(M) (8.3)

We thus have

α ≤ 2α2

1− 8α2
+ ε ≤ 2α2

1− 2α
+ ε, (8.4)

where the last inequality is obtained by taking α ≤ 1/4.

Let α0 = 1
8 (1 + 2ε−

√
1− 12ε+ 4ε2) and α1 = 1

8 (1 + 2ε+
√

1− 12ε+ 4ε2)
and note that α0 ≈ ε and ε ≤ α0 < 1

4 ≤ α1. The inequality above is
satisfied either when α ≤ α0 or when α ≥ α1. Hence Vor(p) is contained in
the union of B(p, α0) and Rd \B(p, α1). However, since Vor(p) is connected
and contains p, Vor(p) must be entirely contained in B(p, α0rch(M)). �

1See Definition 7.7.
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The following lemmas bound the size and shape of inconsistency triggers.

In particular the lemmas state that if an inconsistent simplex is small, thick
and has a small circumradius, its inconsistency triggers have small circum-
radii (Lemma 8.11) and cannot be thick (Lemma 8.12).

Lemma 8.11 Let σ be an inconsistent k-simplex and let σI be a (k + 1)-
simplex that triggers the inconsistency of σ. Writing θ = maxp∈σ(∠(aff(σ), Tp)),
we have

sin θ ≤ ∆(σ)

Θ(σ) rch(M)
and R(σI) ≤ R(σ)

cos θ
.

Proof We assume that the vertex pair (pi, pj) is the witness pair of σ as-
sociated to the trigger σI and use the same notations as in Subsection 8.2.2.
Therefore σ belongs to Delpi(P ) but not to Delpj (P ), and the vertices of σI

lie in the closure of Bij = Bpj (σ) \ Bpi(σ). Observe also that cpi , cpj and
i(σI) lie in the (d−k)-flat that contains c(σ) and is perpendicular to aff(σ).
Hence the orthogonal projection of these four points onto aff(σ) is c(σ).

We now bound θ = ∠(aff(σ), Tp) for any p ∈ σ. By Lemma 7.8 (2), we have

for any p, q ∈ σ, d(q, Tp) ≤ ∆2(σ)
2rch(M) and by Lemma 5.14

sin θ ≤
2 ∆2(σ)

2rch(M)

Θ(σ) ∆(σ)
=

∆(σ)

Θ(σ) rch(M)
.

Since the orthogonal projection of cpi onto aff(σ) is c(σ), ω = ∠(pi−cpi , pi−
c(σ)) = minu∈aff(σ) ∠(pi − cpi , u) ≤ θ. We thus have

Rpi(σ) = ‖pi − cpi‖ =
R(σ)

cosω
≤ R(σ)

cos θ
.

and we get the same bound if pi is replaced by pj or by any other vertex
p in the above inequality. Since i(σI) ∈ [cpicpj ], we also have R(σI) ≤
‖i(σI)− pi‖ ≤ R(σ)/ cos θ. �

We deduce from the lemma a bound on the thickness of inconsistency trig-
gers. This is a crucial property to be used later to remove inconsistencies.
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Lemma 8.12 The thickness of the (k + 1)-simplex σI that triggers the in-
consistency of a k-simplex σ satisfies :

Θ(σI) ≤ ∆(σI)

2(k + 1)rch(M)

(
1 +

2

Θ(σ)

)

Proof Let pl be the vertex of σI that is not a vertex of σ. We bound the
altitude D(pl, σ

I) of σI . Let q ∈ σ. We deduce

D(pl, σ
I) = ‖pl − q‖ sin∠(pl − q, aff(σ))

≤ ∆(σI) (sin∠(pl − q, Tq) + sin∠(Tq, aff(σ)))

≤ ∆(σI)

(
∆(σI)

2rch(M)
+

∆(σ)

Θ(σ) rch(M)

)
(Lemmas 7.8 & 8.11)

≤ ∆2(σI)

2rch(M)

(
1 +

2

Θ(σ)

)

The bound on the thickness then follows from the definition of thickness
(see Section 5.2). �

Corollary 8.13 Let P be an ε-dense sample of M and let σI be a (k+ 1)-
simplex that triggers the inconsistency of a k-simplex σ. Assume that σ is
Θ0-thick and that Θ0 satisfies

Θk+1
0 >

α0

k + 1

(
cos arcsin

2α0

Θk
0

)−1 (
1 +

2

Θk
0

)
(8.5)

where α0 is defined in Lemma 8.10. Then σI is not Θ0-thick.

Proof We need to prove that Θ(σI) < Θk+1
0 . From Lemma 8.12 we have

Θ(σI) ≤ ∆(σI)

2(k + 1)rch(M)

(
1 +

2

Θ(σ)

)
≤ ∆(σI)

2(k + 1)rch(M)

(
1 +

2

Θk
0

)
.

We now bound ∆(σI) :

∆(σI) ≤ 2R(σI)

≤ 2R(σ)

(
cos arcsin

∆(σ)

Θ(σ) rch(M)

)−1

(Lemma 8.11)

≤ 2α0 rch(M)

(
cos arcsin

2α0

Θk
0

)−1

(Lemma 8.10)
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Hence

Θ(σI) ≤ α0

k + 1

(
cos arcsin

2α0

Θk
0

)−1 (
1 +

2

Θk
0

)
.

It follows that if Equation 8.5 holds, Θ(σI) < Θk+1
0 , which means that σI is

not Θ0-good. �

Note that the condition in the corollary is satisfied when the thickness of
the inconsistent simplexes satisfy Θ(σ) > Θk

0 = Ω(ε1/(k+1)).

8.3 Submanifold reconstruction

Let M denote a submanifold of Rd that is compact, closed, differentiable,
and whose reach is positive. The only knowledge we have about M is its
dimension k together with a finite point sample P ⊂ M and the tangent
spaces at those points. From that knowledge, we want to construct a trian-
gulation ofM. We assume that P is an (ε, η̄)-net ofM (See Definition 7.7).
The parameters ε and η̄ need not to be known but must satisfy some con-
ditions to be made explicit in the analysis of the algorithm. In particular,
we need ε to be sufficiently small.

The main idea of the proposed reconstruction algorithm is to rely on the
tangential complex DelTM(P ). However, we know from the previous section
that DelTM(P ) may not be a combinatorial manifold, and our first goal is to
obtain a complex that is a k-combinatorial manifold. This will be achieved
by assigning weights to the points of P and resorting to the weighted tangen-
tial complex DelTM(P̂ ) which is the natural counterpart of the tangential
complex when the point set P is replaced by a set P̂ of weighted points.
Properties of tangential complexes extend to weighted tangential complexes
and, in particular, we will show that the occurence of inconsistencies in
DelTM(P̂ ) is triggered by the existence of non-thick simplices of dimension

at most k + 1 in Del(P̂ ). Then, since it is possible to assign weights to the
points of P to get a thick weighted Delaunay complex (Section 5.3), it is

a fortiori possible to get a weighted tangential complex DelTM(P̂ ) with no
inconsistency. Finally, an algorithm is derived from Moser Tardos algorithm
(Section 5.2). The algorithm uses data structures of dimension at most k.
Its output is a k-dimensional combinatorial manifold that we will show to
be homeomorphic to M and close to M.
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8.3.1 Weight assignment

We recall the definition of a weighting scheme introduced in Section 5.3.
Given a point set P = {p1, . . . , pn} ⊆ Rd, a weighting scheme on P is a
function w that assigns to each point pi ∈ P a non-negative real weight
w(pi). We write p̂i = (pi, w(pi)) and P̂ = {p̂1, . . . , p̂n}.

We recall the definition of the relative amplitude of w as w̃ = maxp∈P
w(p)
L2(p)

where L(p) = minq∈P\{p} ||p−q||. Note that 2εrch(M) ≥ L(p) ≥ η̄ε rch(M)
since P is an (ε, η̄)-net.

From this point onwards, we assume that all weights are non negative and
that w̃ ≤ w̃0, for some constant w̃0 < 1/4. Hence, for any point p ∈ P ,
w(p) ∈ [0, w̃0 L

2(p)] ⊂ [0, 4w̃0 ε
2rch2(M)].

The condition on w̃ implies in particular that the weighted points in P̂
have pairwise positive weighted distances which ensures that any point in
P appears as a vertex of the weighted Delaunay complex Del(P̂ ) (see Sec-
tion 4.4.3).

We can extend the definition of the tangential complex to the case of a
set P̂ of weighted points. We simply need to replace in Definition 8.6 the
Delaunay complex Del(P ) by the weighted Delaunay complex Del(P̂ ). The
role played above by Delaunay balls will be played by Delaunay weighted
points, i.e. weighted points orthogonal to weighted Delaunay simplices and
free of weighted points in P̂ . Lemma 8.7 remains valid provided that the
mapping Ψp is extended to weighted points as follows. If p̂i = (pi, wi) ∈
Rd × R is a weighted point, we define Ψp(p̂i) = (pi, wi − ‖pi − p′i‖2), where
p′i is the orthogonal projection of pi on the tangent space Tp.

We now extend to the weighted case the properties of the inconsistency
triggers shown in Section 8.2.

Let P be an ε-dense sample of a submanifoldM and assume that the weight-
ing scheme on P has a relative amplitude w̃ ≤ w̃0 < 1/4. We denote by
Delp(P̂ ) the weighted Delaunay complex restricted to Tp and by star(p̂)
the star of p in Delp(P̂ ). We further write Vor(p̂) for the cell of p in the
weighted Voronoi diagram Vor(P̂ ). For any k-simplex σ in Delp(P̂ ), we de-
note respectively by R(σ) and R(σ̂) the circumradius and weighted radius
of σ, by Rp(σ) the radius of the ball centered on Tp that circumscribes σ
and by Rp(σ̂) the radius of the ball centered on Tp that is orthogonal to σ̂.
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Lemma 8.14 Let

ε̂ = ε(1 + 2
√
w̃0),

α̂0 =
1

8
(1 + 2ε̂−

√
1− 12ε̂+ 4ε̂2) ≈ ε(1 + 2

√
w̃0),

α̂1 = α̂0 + 2ε
√
w̃0 ≈ ε(1 + 4

√
w̃0)

and assume α̂0 ≤ 1
4 . Then we have:

(i) Vor(p̂) ∩ Tp ⊆ B(p, α̂0 rch(M)),

(ii) for any k-simplex σ ∈ star(p̂), R(σ̂) ≤ Rp(σ̂) ≤ α̂0 rch(M).

(iii) for any σ ∈ DelTM(P̂ ), ∆(σ) ≤ 2α̂1 rch(M).

Proof The proof of (i) is an easy adaptation of the proof of Lemma 8.10.
We define x, x′ and x′′ and α as in the proof of Lemma 8.10 and still get

‖x− x′‖ ≤ 2α2 rch(M)

1− 8α2
.

Since P is ε-dense in M, there exists a point q ∈ P , such that ‖x′ − q‖ ≤
ε rch(M). Since x is in Vor(p̂), this implies that

‖x− p‖2 + w(p) ≤ ‖x− q‖2 + w(q)

‖x− p‖2 ≤ (‖x− x′‖+ ‖x′ − q‖)2 + w(q),

which yields

α2 ≤
(

2α2

1− 8α2
+ ε

)2

+ 4w̃0ε
2

Hence,

α ≤ 2α2

1− 8α2
+ ε

(
1 + 2

√
w̃0

)
.

which is just Equation 8.4 where ε has been replaced by ε̂ so that we can
end the proof as in Lemma 8.10.

¡Let cp(σ̂) be the point of Tp that is orthogonal to σ. Property (ii) follows
easily since cp(σ̂) belongs to Vor(p̂) ∩ Tp and d(cp(σ̂), p)2 = Rp(σ̂)2 +w(p) .
Hence Rp(σ̂) ≤ d(cp(σ̂), p) ≤ α̂0 rch(M).
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To prove Property (iii), we bound the Euclidean distance d(cp(σ̂), q) between
cp(σ̂) and a vertex q of σ as follows:

d(cp(σ̂), q)2 = Rp(σ̂)2 + w(q)

≤ α̂2
0 rch(M)2 + 4w̃0ε

2rch(M)2.

Hence,

d(cp(σ̂), q) ≤
(
α̂0 + 2ε

√
w̃0

)
rch(M) = α̂1 rch(M)

Since this bound holds for any vertex q of σ, the bound given in (iii) for the
diameter ∆(σ) follows. �

Lemma 8.15 Let σ be an inconsistent k-simplex of DelTM(P̂ ) and let σI

be a (k + 1)-simplex that triggers the inconsistency of σ. If θ is defined by
θ = maxp∈σ(∠(aff(σ), Tp), we have

sin θ ≤ ∆(σ)

Θ(σ) rch(M)
and R(σ̂I) ≤ R(σ̂)

cos θ
.

Proof The proof is the same as the proof of Lemma 8.11 �

Lemma 8.12 applies verbatim to the weighted case and finally an easy adap-
tation of the proof of Corollary 8.13 yields the following weighted version.

Corollary 8.16 Let P be an ε-dense sample of M and let w be a weighting
scheme on P with a relative amplitude w̃ ≤ w̃0 < 1/4. Let σ be an inconsis-
tent k-simplex and let σI be a (k+1)-simplex that triggers the inconsistency
of a σ. Assume that σ is Θ0-thick and that Θ0 satisfies

Θk+1
0 >

α̂1

k + 1

(
cos arcsin

2α̂0

Θk
0

)−1 (
1 +

2

Θk
0

)
(8.6)

where α̂0 and α̂1 are defined in Lemma 8.14. Then σI is not Θ0-thick.

Proof We need to prove that Θ(σI) < Θk+1
0 . From Lemma 8.12 we have

Θ(σI) ≤ ∆(σI)

2(k + 1)rch(M)

(
1 +

2

Θ(τ)

)
(8.7)
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We now bound ∆(σI). Let c(σ̂I) be the weighted center of σI and let q be
any vertex of σI . We have

d(c(σ̂I), q)2 = R(σ̂I)2 + w(q)

≤ R(σ̂)2

cos θ2
+ 4w̃0ε

2rch(M)2

≤ α̂2
0 + 4w̃0ε

2

cos θ2
rch(M)2 ≤ α̂2

1

cos θ2
rch(M)2

where θ is given by Lemma 8.15 and α̂1 is defined in Lemma 8.14. Since this
is true for any vertex q of σI , ∆(σI) can be bound by 2 α̂1

cos θ rch(M). Plugging

this bound in Equation 8.7 yields that Θ(σI) < Θk+1
0 if σ is Θ0-thick and

Θ0 satisfies Equation 8.6. �

Note that Equation 8.6 in Corollary 8.16 is satisfied if Θ0 = Ω(ε
1

k(k+1) ).

8.3.2 Reconstruction algorithm

We conclude from the previous section that if P is an (ε, η̄)-net of M, the
occurence of inconsistencies in the tangential complex DelTM(P ) is due to
the occurence of non-thick simplices of dimension up to k+1 in the Delaunay
complex Del(P ). This property still holds in the weighted case provided
that the weighting scheme has a small relative amplitude. We can thus
proceed in a way similar to what has been done in Section 5.3 to remove non-
thick simplices from Delaunay complexes using a variant of Moser-Tardos
algorithm. Here we want to find a weighting scheme on P such that the
simplices of the tangential complex as well as the inconsistency triggers (all

are simplices of Del(P̂ )) are thick. As a consequence, the tangential complex

DelTM(P̂ ) won’t contain any inconsistency.

The algorithm depends on two parameters w̃0 and Θ0. Here as in Section 5.3,
we call resampling the operation which consists in reassigning the weights of
the vertices of a simplex. The weights are taken independently. The weight
of a vertex p is taken uniformly at random in [0, w̃0L

2(p)]. The algorithm

maintains the weighted tangential complex DelTM(P̂ ) and resamples the

Θ0-flakes that may appear in DelTM(P̂ ) or in the (k + 1) simplices that
trigger an inconsistency. Note that the algorithm does not compute the full
weighted Delaunay complex Del(P̂ ) but only a subcomplex of dimension
k + 1.
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Algorithm 8 Tangential complex with no inconsistency

Input: P , {Tp, p ∈ P}, w̃0, Θ0

Initialize all weights to 0 and compute DelTM(P̂ )

while there are Θ0-flakes or inconsistencies in DelTM(P̂ ) do

while there is a Θ0-flake σ in DelTM(P̂ ) do
resample σ
update DelTM(P̂ )

if there is an inconsistent simplex σ in DelTM(P̂ ) then
compute a trigger simplex σI associated to σ
resample the flake σ ⊂ σI
update DelTM(P̂ )

Output: A weighting scheme on P and the corresponding weighted tan-
gential Delaunay complex DelTM(P̂ ) which is granted to be Θ0-thick and
to have no inconsistency.

Theorem 8.17 Let M be a submanifold of positive reach and let P be an
(ε, η̄)-net of M for a sufficiently small ε. Let in addition w̃0 < 1/4 and Θ0

be two constants satisfying Equation 8.6 and the following Equation

[
6

η̄

(1 + 4
√
w̃0)

cos θ

]d(d+1
16Θ0

w̃0η̄3

(1 + 2
√
w̃0)(1 + 4

√
w̃0)2

cos3 θ
≤ 1

e
(8.8)

where

θ = arcsin
2α̂1

Θk
0

≈ arcsin
2ε(1 + 4

√
w̃0)

Θk
0

.

Then Algorithm 8 terminates and outputs a weight assignment on the points
of P such that the weighted tangential complex DelTM(P̂ ) is free of incon-
sistencies. The expected time complexity of the algorithm is O(|P |).

Proof First note that the algorithm removed inconsistencies only when
there are no Θ0-flakes in DelTM(P̂ ). Then Equation 8.6 ensures that the
trigger of an inconsistency is not Θ0-thick (Lemma 8.16) and therefore in-
cludes a Θ0-flake that can be resampled.

The resampled simplices are Θ0-flakes of Del(P̂ ) that either belong to DelTM(P̂ )
or are included in an inconsistency trigger. Let σ be any resampled flake.
From Lemmas 8.14 and 8.15, the weighted radius R(σ̂) is at most

R(σ̂) ≤ α̂0

cos θ
rch(M),
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and, from Lemma 8.14 and the proof of Corollary 8.16, its diameter is
bounded by

∆(σ) ≤ 2α̂1

cos θ
rch(M).

Therefore Algorithm 8 is a variant of Moser-Tardos algorithm similar to the
algorithm of Section 5.3.5 that removes from Del(P̂ ) all Θ0-flakes with small
weighted radii. Then, arguing as in Section 5.3.5, we show that Algorithm 8
terminates provided that the condition expressed in Equation 8.8 (similar
to Equation 5.13) is satisfied. See Exercise 8.3 for details. The expected
number of resampled simplices is O(|P |). Since each resampling can be
performed in constant time, the expected complexity of Algorithm 8 is also
O(|P |).

Assume that η̄ and w̃0 <
1
4 are fixed. Then Equation 8.6 is satisfied if Θ0

is sufficiently large with respect to ε and Algorithm 8 terminates provided
that Θ0 is sufficiently small with respect to η̄ and w̃0 and is sufficiently large
with respect to ε. Those conditions can be satisfied if the sampling radius
ε is sufficiently small. �

8.3.3 Guarantees on the reconstruction

The simplicial complex M̂ = DelTM(P̂ ) output by the algorithm is free of
inconsistencies. In addition, it is a good approximation of M as stated in
the following theorem.

Theorem 8.18 (Guarantees) Under the same hypotheses as in Theorem 8.17,
the Delaunay tangential complex M̂ = DelTM(P̂ ) output by the algorithm
satisfies the following properties:

1. All the simplices in M̂ are Θ0-thick.

2. M̂ is a piecewise linear k-submanifold without boundary;

3. M̂ is homeomorphic to M;

4. The Hausdorff distance between M̂ and M is at most 4ε2rch(M);

5. If σ is a k-simplex of M̂ and p is a vertex of σ, we have

sin∠(aff(σ), Tp) ≤
2ε

Θ0
.
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Proof The first statement directly follows from the algorithm. Proving
the second statement reduces to proving that the link of any vertex of M̂
is a topological (k − 1)-sphere. We first observe that, since M̂ contains no
inconsistencies, the star of any vertex p in M̂ is identical to star(p̂), the star
of p in Delp(P̂ ). Hence, to prove the second statement, it is enough to prove
that the link of p in Delp(P̂ ) is a topological (k − 1)-sphere, which is done
in the next lemma.

Lemma 8.19 M̂ is a simplicial combinatorial manifold.

Proof It is sufficient to prove that, for any p ∈ P , the link of p in M̂ is a
topological (k− 1)-sphere. By Lemma 8.7, star(p̂) is isomorphic to starp(p̂),
the star of p in Del(Ψp(P̂ )). Since starp(p̂) is a k-dimensional triangulated
topological ball under the general position and transversality assumptions,
the same is true for star(p̂). To prove the lemma, it is then sufficient to
show that p cannot belong to the boundary of starp(p̂). Consider the dual
cell V of p = Ψp(p) in the weighted Voronoi diagram Vor(Ψp(P̂ )). V is
the intersection of the Voronoi cell of p with Tp, i.e. V = Vor(p) ∩ Tp.
By Lemma 8.10, V is bounded, which implies that p cannot belong to the
boundary of starp(p̂). It follows that p cannot belong to the boundary of
star(p̂). �

Statements 3− 5 in Theorem 8.18 then follow from Theorem 7.16. We need
to check that the five hypotheses of Theorem 7.16 are satisfied.

Hypotheses (a) − (c) of the theorem are satisfied provided that ε is small
enough (see Exercises 8.2 and 8.3). Hypothesis (d) is satisfied thanks to
Lemma 8.7. We now prove that Hypothesis (e) holds also.

Lemma 8.20 Hypothesis (e) of Theorem 7.16 is satisfied.

Proof Let q be a vertex of M̂ that q belongs to Up = B(p, r) ∩M where
r = ε rch(M) (1+2ε). We write q′ = Πp(q) for the projection of q onto Tp and
star′(p) = Πp(star(p)) for the projection of star(p) onto Tp. To prove that
Hypothesis (e) is satisfied, it is sufficient to prove that q′ is a vertex of the k-
dimensional weighted Delaunay triangulation Del(Ψp(P )) (see Lemma 8.7),
which is equivalent to proving the following claim.

Claim The Voronoi cell of q intersects Tp.
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Proof of the claim. To prove the claim, we will make use of Lemma 7.6
that states that V (q) has a large extent in Nq and therefore intersects Tp.
Denote by q′′ the (unique) intersection point of Nq and Tp, and by q′ the
projection of q onto Tp. Since q ∈ Up, we have ‖p− q‖ < ε(1+2ε) rch(M) =

ε′ rch(M), and it follows from Lemma 7.8 that ‖q − q′‖ < ε′2 rch(M)
2 . Write

now θ = ∠(Tp, Tq) and recall that θ < 2ε′ (Lemma 7.10). It follows that

‖q − q′′‖ < ‖q − q
′‖

cos θ
< rch(M)

by our assumption on ε. It then follows from Lemma 7.6 that q′′ ∈ V (q)∩Tp,
which proves the claim. �

The claim implies that q′ has a non empty cell in the weighted Voronoi
diagram Vor(Ψp(P )) embedded in Tp (see Section 8.7). Equivalently, q is
a vertex of Delp(P ) and q′ is a vertex of Del(Ψp(P )). Since Del(Ψp(P ))
is a triangulation embedded in Tp (under the transversality condition of
Section 8.2.1), q′ cannot belong to star′(p) without being a vertex of star′(p)
and, accordingly, q must be a vertex of star(P ). Therefore, Hypothesis 4′

holds and the lemma is proved. �

This ends the proof of Lemma 8.20. All hypotheses of Theorem 7.16 are
satisfied. This ends the proof of Theorem 8.18. �

8.4 Exercises

Exercise 8.1 Given is an (ε, η̄)-net P of a differentiable (unknown) sub-
manifold M ∈ Rd. Propose a method to approximate the tangent space Tp
of M at p ∈ P .

Exercise 8.2 (Distance between components) Let P be an ε-dense sam-
ple of a submanifoldM of positive reach rch(M). Prove that each connected
component ofM contains at least one point of P and therefore at least one
vertex of DelTM(P ). (Hint : show that the distance between any two con-
nected components of M is at least 2rch(M)).

Exercise 8.3 Show that Algorithm 8 terminates if the condition expressed
as Equation 8.8 is satisfied. Observe that, for given values of η̄ and w̃0,
the condition is satisfied if Θ0 is sufficiently small and ε is sufficiently small
compared to Θk

0.
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Sketch of the proof. Equation 8.8 is the same as Equation 5.12 of The-
orem 5.21 applied to the case of Algorithm 8. We use the notations of
Section 8.3.2.

Using the bounds on the weighted radius and the diameter of a resampled
flake σ (Lemma 8.14), we first bound, as in Section 5.3, the measure of the
weight range I(σ, p) of a vertex p of σ:

|I(σ, p)| ≤ 4Θ0
∆(σ)2

L(σ)
R(σ̂)

≤ 4Θ0

εη̄

4α̂2
1α̂0

cos3 θ
rch(M)2

≤ 16Θ0

η̄

(1 + 2
√
w̃0)(1 + 4

√
w̃0)2

cos3 θ
ε2rch(M)2.

Then, the probability$ that such a flake occurs is at most |I(σ,p)|
w̃0L(p)2

(Lemma 5.23),

where L(p) is the length of the shortest edge incident to p in Del(P̂ ). Thus

$ ≤ 16Θ0

w̃0η̄3

(1 + 2
√
w̃0)(1 + 4

√
w̃0)2

cos3 θ
.

We then bound Γ + 1 where Γ is the number of events overlapping a given
flake σ. Overlapping events are flakes that share at least one vertex. Since
resampled flakes have their diameter bounded by ∆m = 2α̂1rch(M)

cos3 θ
, flakes

overlapping a given flake σ have their vertices within the ball B(c(σ), 3
2∆m)

where c(σ) is the circumcenter of σ. Using then the fact that two vertiuces
are at least η̄εrch(M) apart, we bound the number of vertices in this ball
and then Γ + 1 using a by now standard volume argument:

Γ + 1 ≤
(

3
2∆m

1
2 η̄εrch(M)

)d(d+1)

≤
(

6α̂1

η̄ cos θ

)d(d+1)

≈
(

6(1 + 4
√
w̃0)

η̄ cos θ

)d(d+1)

The condition for the termination of Algorithm 8 is then obtained by plug-
ging the bounds on $ and Γ + 1 into Equation 5.12 of Theorem 5.21.
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8.5 Bibliographical notes

Alpha-shapes and weighted alpha-shapes are among the first tools intro-
duced in the area of shape reconstruction where one seeks to construct an
approximation of the shape of a three-dimensional object from a set of points
measured on the boundary of the object. References are provided in the bib-
liographical notes of Chapter 6. Theorem 8.1 that states that an α-complex
of a finite sample of a manifold has the same homotopy type as the manifold
is due to Niyogi, Smale and Weinberger [115].

The tangential complex has been independently defined by Freedman [83]
and by Boissonnat and Flottoto [12]. Boissonnat and Ghosh later showed
how to remove inconsistencies in the tangential complex by star stitching [13]
and proved Theorems 8.17 and 7.16. The tangential complex can be seen as
a light variant of the cocone introduced by Cheng, Dey and Ramos [56].

The approach followed in this chapter that defines local triangulations and
remove inconsistencies among the local triangulations has been pioneered by
Shewchuk to maintain triangulations of moving points [126] and by Boisson-
nat, Wormser and Yvinec to generate anisotropic meshes [14]. The central
question behind this approach is the stability of Delaunay triangulations
and the existence and construction of Delaunay triangulations on mani-
folds [20, 19, 18].

In this chapter, we have assumed that the dimension of the submanifold
is known and that the tangent space can be computed at any data point.
Giesen and Wagner have shown how to estimate the dimension [91]. Esti-
mating the tangent space can be done using principal component analysis
(PCA) [99].

An implementation of the tangential complex can be found in the Gudhi
library [130]. Fig. 8.6 shows a projection in R3 of the reconstruction of a
Riemann surface embedded in R8.
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Figure 8.6: A Riemann surface embedded in R8 reconstructed using the
tangential Delaunay complex. For visualization purposes, the surface has
been projected in R3.
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In the sequel, all the considered shapes and their approximations are repre-
sented by compact subsets of an Euclidean space Rd. We use indifferently
the words shape and compact set. In this chapter, we address the general
problem consisting in recovering the topology of a shape from an approxi-
mation.

In general, the topological and geometric invariants of a shape cannot be
directly extracted from the corresponding invariants of an approximating
shape. In particular this is always the case for a (continuous) shape K, e.g.
a surface in R3, approximated by a finite point cloud data set K ′: point
clouds in themselves do not carry any non trivial topological or geometric
structure. Moreover, the occurence of some features may depend on a “scale”
at which the data and the shape are considered: for example, viewed with
human eyes, the surface of a real world object may look very regular but
at a microscopic scale it appears as a much more complicated surface with
many holes and tunnels. It is thus necessary to “build” some scale-dependant
geometric structure on top of such point clouds to recover informations about
the shapes they approximate. For that purpose, the approach we adopt in
this chapter consists in considering the distance functions to compact sets
and to compare the topology of the sublevel sets (i.e. the offsets) of close
compact sets. The underlying intuition is that “at some scales” (i.e. for
some range values of the offsets), two close compact sets should have the
same offset topology as illustrated on figure 9.1. The goal of this chapter
is to turn this intuition into a formal framework with rigorous statements.
This requires to proceed in two steps. First, one needs to understand how
the topology of the offsets Kr of a given compact set K evolve with the
parameter r. The answer to this question is given by the theory of critical
points for distance functions. Second, it is necessary to compare the topology
of the offsets of two close (for the Hausdorff distance) compact sets. This
leads to stability results and sampling conditions necessary to ensure correct
geometric inference.

The general mathematical framework introduced in this chapter allows to
generalize and extend the results of Chapter 6, Section 8.1 and Chapter 8
to a wide class of non smooth shapes encountered in practical applications.
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9.1 Distance function and Hausdorff distance

Given a compact subset K ⊂ Rd, the distance function dK to K is the
non-negative function defined by

dK(x) = inf
y∈K

d(x, y) for all x ∈ Rd

where d(x, y) = ‖x−y‖ is the euclidean distance between x and y in Rd. The
distance function to K is continuous and indeed 1-Lipschitz: for all x, x′ ∈
Rd, |dK(x) − dK(x′)| ≤ ‖x − x′‖. Moreover, K is completely characterized
by dK since K = d−1

K (0).

For any non-negative real number r, the r-offset Kr of K is the r-sublevel
set of dK defined by

Kr = d−1
K ([0, r]) = {x ∈ Rd : dK(x) ≤ r}.

Recall from Section 1.2.2 that if K and K ′ are two compact subset of Rd,
then the Hausdorff distance dH(K,K ′) is the infimum of the sets of non
negative numbers r ≥ 0 such that K ′ ⊂ Kr and K ⊂ K ′r. Indeed, the
Hausdorff distance can be expressed in various equivalent ways in terms of
distance functions:

Proposition 9.1 Let K,K ′ ⊂ Rd be two compact sets. The Hausdorff dis-
tance dH(K,K ′) between K and K ′ is defined by any of the following equiv-
alent assertions:

• dH(K,K ′) is the smallest number r such that K ⊂ K ′r and K ′ ⊂ Kr.

• dH(K,K ′) = max (supx∈K dK′(x), supx∈K′ dK(x)).

• dH(K,K ′) = ‖dK − dK′‖ := supx∈Rd |dK(x)− dK′(x)|.

9.2 Critical points of distance functions

Given a compact set K ⊂ Rd, the distance function dK is usually not dif-
ferentiable. For example, if K is the union of the four sides of a square in
the plane, dK is not differentiable along the diagonals of K. Nevertheless,
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Figure 9.1: Various offsets of a point cloud data set sampled around a torus
in R3.

it is possible to define a generalized gradient vector field ∇K : Rd → Rd
for dK that coincides with the classical gradient at the points where dK is
differentiable.

For any point x ∈ Rd we denote by ΓK(x) the set of points in K closest to
x:

ΓK(x) = {y ∈ K : d(x, y) = dK(x)} ⊂ Rd.

This is a non empty compact subset of K.

Let BK(x) be the smallest closed ball enclosing ΓK(x) and let cK(x) be its
center and FK(x) its radius (see figure 9.2). For x ∈ Rd \K, the generalized
gradient ∇dK(x) is defined by

∇dK(x) =
x− cK(x)

dK(x)

and for x ∈ K, ∇dK(x) = 0.

The norm of the gradient is given by

‖∇dK(x)‖2 = 1− F 2
K(x)

d2
K(x)

. (9.1)
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K

x

ΓK(x)

BK(x)

cK(x)

∇dK(x)

FK(x)

Figure 9.2: The gradient of the distance function.

Equivalently, the norm of ∇dK(x) is the cosine of the half angle of the
smallest circular cone with apex x that contains ΓK(x). Intuitively, the
direction of ∇dK(x) is the one along which the directional derivative of dK
is the largest or, in other words, the one in which the slope of the graph
{(y, dK(y)) : y ∈ Rd} ⊂ Rd+1 is the largest at the point (x, dK(x)) (see
Figure 9.3).

The map x ∈ Rd → ∇dK(x) ∈ Rd is in general not continuous. In other
words, ∇dK is a discontinuous vector field. Nevertheless it is possible to
show [103, 120] that x→ ‖∇dK(x)‖ is a lower semi-continuous function, i.e.
for any a ∈ R, ‖∇dK‖−1((−∞, a]) is a closed subset of Rd. Moreover, ∇dK
is integrable in the following sense.

Proposition 9.2 There exists a continuous map C : R+ × Rd → Rd such
that for any x ∈ Rd, the map t → C(t, x), called a trajectory of ∇dK is a
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Figure 9.3: The graph of the distance to a square (in red) in the plane.
Along the diagonal of the square, the direction of the gradient is given by
the diagonals and its norm is the slope of the edges of the graph above the
diagonals.

solution of the differential equation

dX

dt
= ∇dK(X(t))

satisfying X(0) = x. Moreover this continuous trajectory can be parametrized
by arc length s→ C(t(s), x) and one has

dK (C(t(l), x)) = dK(x) +

∫ l

0
‖∇dK(C(t(s), x))‖ds. (9.2)

The above equation implies that dK is non decreasing along the trajectories
of ∇dK . It can also be shown [103] that FK is also non decreasing along the
trajectories of ∇dK .

The gradient ∇dK allows to define the notion of critical point for dK in the
same way as for differentiable functions.

Definition 9.3 (Critical point) A point x is a critical point of dK if
∇dK(x) = 0. A real c ≥ 0 is a critical value of dK if there exists a critical
point x ∈ Rd such that dK(x) = c. A regular value of dK is a value which is
not critical.
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When there is no risk of confusion, we make the small abuse of language
consisting in calling a critical (resp. regular) point of dK a critical (resp.
regular) point of K.

9.3 Topology of the offsets

Using the notion of critical point defined in the previous section, it appears
that some properties of distance functions are similar to the ones of dif-
ferentiable functions. In particular, the sublevel sets of dK are topological
submanifolds of Rd and their topology can change only at critical points.
These properties are formalized in the following two theorems.

Theorem 9.4 Let K ⊂ Rd be a compact set and let r be a regular value of
dK . The level set d−1

K (r) is a (d− 1)-dimensional topological submanifold of
Rd.

Theorem 9.5 (Isotopy Lemma) Let K ⊂ Rd be a compact set and let
r1 < r2 be two real numbers such that [r1, r2] does not contain any critical
value of dK . Then all the level sets d−1

K (r), r ∈ [r1, r2] are homeomorphic
(and even isotopic) and the set A(r1, r2) = {x ∈ Rd : r1 ≤ dK(x) ≤ r2} is
homeomorphic to d−1

K (r1)× [r1, r2].

An immediate consequence of these two results is that the topology of the
offsets of K can only change at critical values and for any regular value r of
dK , the offset Kr is a d-dimensional topological manifold with boundary. In
particular, the topology of the small offsets Kr, r > 0, cannot change while
r is smaller than the smallest positive critical value of dK (if it exists). This
leads to the notion of weak feature size.

Definition 9.6 (Weak feature size) Let K ⊂ Rd be a compact set. The
weak feature size wfs(K) of K is the infimum of the positive critical values
of dK . If dK does not have critical values, wfs(K) = +∞.

It follows from the Isotopy Lemma 9.5 that if 0 < α ≤ β < wfs(K), then
Kα and Kβ are isotopic. In a more intuitive way, the knowledge of K at
precision, or scale, α gives the same information for any choice of 0 < α <
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wfs(K). Moreover, the following result allows to compare the topology of
the offsets of two close compact sets with positive weak feature sizes.

Theorem 9.7 Let K,K ′ ⊂ Rd and ε > 0 be such that dH(K,K ′) < ε,
wfs(K) > 2ε and wfs(K ′) > 2ε. Then for any 0 < α ≤ 2ε, Kα and K ′α are
homotopy equivalent.

Proof Let δ > 0 be such that wfs(K) > 2ε + δ and wfs(K ′) > 2ε + δ. It
is enough to prove that Kδ+2ε and K ′δ+ε are homotopy equivalent. Since
dH(K,K ′) < ε, the following diagram, where each map is an inclusion, is
commutative.

Kδ a0 //
d0

''

Kδ+ε
d1

((

a1 // Kδ+2ε

K ′δ

c0

77

b0 // K ′δ+ε

c1

66

b1 // K ′δ+2ε

The Isotopy Lemma 9.5 implies that the inclusions a0, a1, b0 and b1 are
homotopy equivalences. Let s0, s1, r0 and r1 be the homotopic inverses of
a0, a1, b0 and b1 respectively.

The following computation, where ∼= denotes the homotopy equivalence re-
lation, shows that c1 is an homotopy equivalence between K ′δ+ε and Kδ+2ε

with homotopic inverse r1 ◦ d1 ◦ s1:

c1 ◦ r1 ◦ d1 ◦ s1
∼= c1 ◦ (r1 ◦ b1) ◦ d0 ◦ s0 ◦ s1

∼= (c1 ◦ d0) ◦ s0 ◦ s1

∼= a1 ◦ a0 ◦ s0 ◦ s1
∼= idKδ+2ε

Similarly, we get r1 ◦ d1 ◦ s1 ◦ c1
∼= idK′δ+ε

�

The previous theorem shows that the compact sets with positive weak fea-
ture size provide a class of compact sets with interesting topological stability
properties. Moreover, it is possible to show that this class is large enough to
include most of the shapes encountered in practical applications. In particu-
lar, smooth manifolds, polyhedra, polyhyedral sets, semi-algebraic sets and
more generally the so-called subanalytic compact sets (i.e. obtained from
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analytic equations and inequalities) all have positive weak feature size.
Nevertheless, the previous theorem suffers from a weakness that prevents
it to be really useful in practice. Indeed, the assumption involving both
wfs(K) and wfs(K ′) is hardly satisfied in practical situations. For example
if K is a continuous shape approximated by a finite point cloud K ′, wfs(K ′)
is equal to half of the distance between the two closest points of K ′ which
is usually smaller than 2dH(K,K ′) as illustrated on figure 9.4. As a conse-
quence, even if the weak feature size of K is large, whatever the quality of
the approximation of K by K ′ the assumptions of the theorem 9.7 may not
be satisfied. This phenomenon can also be interpreted as a lack of continuity
of the map K → wfs(K) or as an instability property of the critical points
of distance functions.

2 wfs(K ′) dH(K,K ′)

K

Figure 9.4: A segment K approximated by a point cloud K ′ (in red). The
weak feature size of K ′ is obviously smaller than two times the Hausdorff
distance between K and K ′.

9.4 Stability of critical points

Since the topology of the offsets of a compact set can only change for critical
values of dK , it is natural to study the stability of these critical points when
K is replaced by a close compact set K ′. Unfortunately, it appears that the
critical points are unstable, as illustrated on figure 9.5.

To overcome this stability problem we introduce a parametrized notion of
critical point.

Definition 9.8 (µ-critical points) Let K ⊂ Rd be a compact set and let
0 ≤ µ ≤ 1. A point x ∈ Rd is µ-critical for dK if ‖∇dK(x)‖ ≤ µ.

Note that the notion of 0-critical point coincide with the notion of critical
point of Definition 9.3 . The family of µ-critical points satisfies the following
fundamental stability property.
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K
K ′

A

B

A′

Figure 9.5: When K is a rectangle, the set of critical points of dK is the
whole segment [AB]. This segment collapses to a single critical point A′ as
one stretches the bottom side of K to obtain K ′. Nevertheless, along the
previously critical segment, the norm of the gradient of dK′ remains small.

Theorem 9.9 (Critical point stability theorem) Let K and K ′ be two
compact subsets of Rd and dH(K,K ′) ≤ ε. For any µ-critical point x of K,
there is a (2

√
ε/dK(x)+µ)-critical point of K ′ at distance at most 2

√
εdK(x)

from x.

The proof of this theorem follows from two technical lemmas. The first one
shows that the function dK cannot grow too fast in a neighborhood of a
µ-critical point.

Lemma 9.10 Let K ⊂ Rd be a compact set and x one of its µ-critical
points. For any y ∈ Rd, we have:

d2
K(y) ≤ d2

K(x) + 2µdK(x)||x− y||+ ||x− y||2.

Proof Let Γ = ΓK(x) be the set of points closest to x on K, and let S be
the sphere with center x and radius dK(x). Let also c = cK(x) be the center
of the minimal enclosing ball of Γ, and α = arccos−1(µ) (see Figure 9.6).
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x

K

Γ

c

x′

α

y

Figure 9.6: Proof of lemma 9.10

For any x′ ∈ Γ we have

d2
K(y) ≤ ‖y − x′‖2 = ((y − x) + (x− x′).(y − x) + (x− x′))

= ‖y − x‖2 + ‖x− x′‖2 + 2((y − x).(x− x′))
= d2

K(x) + 2dK(x)‖x− y‖ cos(y − x, x− x′) + ‖x− y‖2

To prove the lemma it is thus sufficient to prove the following claim.
Claim: there exists a point x′ ∈ Γ such that the angle between (y− x) and
(x′ − x) is not smaller than α.
We distinguish between two cases.

Case 1: µ 6= 0
Assume that the claim is not satisfied. Then for any x′ ∈ Γ the angle
between (x′ − x) and (y − x) is smaller than α. Since Γ is compact, there
exists α′ < α such that Γ is contained in the “circular” cone with apex x and
axis the half-line directed by y − x and apex angle α′. This cone intersects
S along a (d− 2)-sphere with center c′ and radius R′ = dK(x) sinα′. Since
Γ is also contained in S, Γ is contained in the ball of center c′ and radius
R′ = dK(x) sinα′ < dK(x) sinα = FK(x): a contradiction.
Case 2: µ = 0



224 CHAPTER 9. STABILITY OF DISTANCE FUNCTIONS

α = π
2 and Γ cannot be enclosed in any hemisphere of S. So there is at least

one point x′ ∈ Γ such that the angle between (y − x) and (x′ − x) is not
smaller than π

2 . �

The next lemma allows to study the behavior of the µ-critical points when
K is replaced by a close approximation K ′.

Lemma 9.11 Let K and K ′ be two compact subsets of Rd and dH(K,K ′) ≤
ε. For any µ-critical point x of K and any ρ > 0, there is a µ′-critical point
of K ′ at distance at most ρ from x, with:

µ′ ≤ ρ

2dK(x)
+

2ε

ρ
+ µ

Proof Let us consider the trajectory s → C(s) of the vector field ∇dK′
parameterized by arc length and starting at x. If C reaches a critical point
of K ′ before s = ρ, the lemma holds. Assume this is not the case. Letting
y = C(ρ), we have:

dK′(y)− dK′(x) =

∫ ρ

0
‖∇dK′(C(s))‖ds

Therefore, there must exist a point p on the curve C between s = 0 and
s = ρ such that:

‖∇dK′(p)‖ ≤
dK′(y)− dK′(x)

ρ
(9.3)

The curve C being parametrized by arc length, note that ||p−x|| ≤ ρ. Now
Lemma 9.10 applied to x, y, and K reads:

dK(y) ≤
√
d2
K(x) + 2µdK(x)||x− y||+ ||x− y||2

Also, since ε = dH(K,K ′), we have that for all z ∈ Rd, |dK(z)−dK′(z)| ≤ ε.
Hence:

dK′(y)− dK′(x) ≤
√
d2
K(x) + 2µdK(x)||x− y||+ ||x− y||2

−dK(x) + 2ε

≤ dK(x)

[√
1 +

2µ||x− y||
dK(x)

+
||x− y||2
d2
K(x)

− 1

]

+ 2ε

≤ µ||x− y||+ ||x− y||
2

2dK(x)
+ 2ε
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the last inequality coming from the fact that
√

1 + u ≤ 1 + u
2 for u ≥ 0.

Noticing that ||x−y|| ≤ ρ, dividing by ρ, and applying equation (9.3) shows
that p satisfies the desired requirements. �

Proof [of Theorem 9.9] The bound of the previous lemma can be optimized
by choosing ρ = 2

√
εdK(x). It then becomes equal to 2

√
ε/dK(x) +µ. The

theorem follows immediately. �

Remark 9.12 Note that since dK′ is increasing along the trajectories of
∇dK′ (see Equation 9.2), the µ′-critical point p for dK′ of Lemma 9.11 can
be chosen such that dK′(p) ≥ dK′(x).

9.5 The critical function of a compact set

The critical point stability Theorem 9.9 plays a fundamental role to get
topological stability results. It allows to introduce a general framework
for inferring the topology and the geometry of a large class of (non-smooth)
compact sets. For that purpose, we first introduce a one variable real-valued
function that encodes the criticality of the level sets of dK .

Definition 9.13 The critical function of a compact set K ⊂ Rd, χK :
(0,+∞)→ R+ is defined by

χK(r) = inf
x∈d−1

K (r)
‖∇dK(x)‖

An example of a critical function is given in Figure 9.7. Note that from
the isotopy Lemma 9.5 the zeros of the critical functions correspond to
the changes in the topology of the offsets of K. As we will see later, the
main interest of the critical function χK is to provide information about
the topological stability of some offsets of the compact sets contained in a
neighborhood of K. In particular, whether a compact set K is a Hausdorff
approximation of a simple compact set or not can be directly read from its
critical function.

Using the critical points stability Theorem 9.9, we easily get the following
stability result for the critical function.
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Figure 9.7: The critical function of a square embedded in R3 with edge
length equal to 50 (top) and the critical function of a point cloud sampling
this square (bottom).

Theorem 9.14 (Critical function stability theorem) Let K and K ′ be
two compact subsets of Rd such that dH(K,K ′) ≤ ε. For all r ≥ 0 , we have:

inf{χK′(u) |u ∈ I(r, ε)} ≤ χK(r) + 2

√
ε

r

where I(r, ε) = [r − ε, r + 2χK(r)
√
εr + 3ε]

This result shows that if the critical function of K ′ is not smaller than some
value α on the interval I(d, ε) then the critical function of K at the point r
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cannot be smaller than α−2
√

ε
r . In particular, if α > 2

√
ε
r then r cannot be

a critical value of dK . Since the topology of the offsets of K can only change
at critical values, it is thus possible to locate intervals on which the topology
of the offsets of K does not change. The Figures 9.7 and 9.8 illustrate this
property.

From an algorithmic point of view, it is not difficult to see that when K is
a finite point cloud, the critical function of K can be easily computed from
the Voronoi diagram of K - see Exercise 9.11.

Proof Let r ≥ 0 and let x ∈ d−1
K (r) be such that ‖∇dK(x)‖ = χK(r). The

existence of such a point x comes from the fact that the infimum involved
in the definition of χK is indeed a minimum. This follows from the lower
semi-continuity of ‖∇dK‖ and the compactness of d−1

K (r). The critical point
stability Theorem 9.9 implies that there exists a point p which is (2

√
ε
r +

χK(r))-critical for dK′ at distance at most 2
√
εr from x. Applying Lemma

9.10 to x, p and K we get

dK(p) ≤
√
r2 + 4χK(r)r

√
εr + 4εr

≤ r

√
1 + 4χK(r)

√
ε/r + 4ε/r

≤ r + 2χK(r)
√
εr + 2ε

Now, according to Remark 9.12, p can be chosen such that dK′(p) ≥ dK′(x).
Using that |dK′(p) − dK(p)| ≤ ε, the theorem follows from the above in-
equality. �

The example of Figure 9.8 illustrates the critical function Theorem 9.14.
The critical function of a point cloud sampling a torus shape reveals three
intervals with stable topology for K: the first one corresponds to offsets
having the topology of a torus (bottom left), the second one corresponds
to solid torus with a hole homeomorphic to a ball inside (bottom middle -
not visible from outside) and the third one is unbounded and correspond to
offsets that have the topology of a ball (bottom right).

9.6 Sampling conditions and µ-reach

In this section we introduce the µ-reach, a stronger regularity condition than
the weak feature size, that allows to give stronger reconstruction results than
Theorem 9.7.
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Figure 9.8: A points set (left) sampled around a torus shape in R3 and its
critical function (the upper curve). The lowest curve represents the lower
bound for the critical function of any shape K at distance less than some
fixed threshold (here 0.001, the diameter of the torus being 10) from the
point cloud.

Definition 9.15 For 0 < µ ≤ 1, the µ-reach rµ(K) of a compact set K ⊂
Rd is defined as

rµ(K) = inf{r > 0 : χK(r) < µ}

By analogy with the wfs, the µ-reach is the infimum of the µ-critical values
of dK . When µ = 1, rµ(K) is known as the reach . When K is a compact
smooth submanifold of Rd, it coincides with the reach defined in Chapter 7.
The function µ→ rµ(K) is non increasing and we have

lim
µ→0+

rµ(K) ≤ wfs(K)

Note that the above inequality can be strict (Exercise 9.10).

It follows from the critical point stability Theorem 9.9 that the positiveness
of the µ-reach of a compact set K ′ implies some constraints on the location
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of the critical points of any close enough approximation K of K ′. More
precisely we have the following result (Exercise 9.12).

Theorem 9.16 (Critical values separation theorem) Let K and K ′ be
two compact subsets of Rd, ε the Hausdorff distance between K and K ′, and
µ a non-negative number. The distance function dK has no critical values
in the interval (4ε/µ2 , rµ(K ′)− 3ε). Besides, for any µ′ < µ, χK is larger
than µ′ on the interval

(
4ε

(µ− µ′)2
, rµ(K ′)− 3

√
εrµ(K ′)).

Note that taking µ too small does not give any information on the critical
values, since the lower bound then exceeds the upper bound. It is also
possible to build examples showing that the bounds of the interval in the
above theorem are tight.

The notion of µ-reach allows to introduce the following sampling condition.

Definition 9.17 Given two positive real numbers κ and µ, one says that a
compact set K ⊂ Rd is a (κ, µ)-approximation of a compact set K ′ ⊂ Rd if

dH(K,K ′) ≤ κrµ(K ′).

The notion of (κ, µ)-approximation generalizes the notion of (ε, η̄)-net in-
troduced for smooth submanifolds in Chapter 7.

9.7 Offset reconstruction

Equipped with the notion of (κ, µ)-approximation and the stability proper-
ties of critical points of distance functions proved in the previous section, we
are now able to get easily offsets reconstruction results from approximations.

Theorem 9.18 (Isotopic reconstruction theorem) Let K ′ ⊂ Rd be a
compact set such that rµ = rµ(K ′) > 0 for some µ > 0. Let K be a (κ, µ)-
approximation of K ′ where

κ < min

(√
5

2
− 1,

µ2

16 + 2µ2

)
.
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Assume that r, r′ are such that

0 < r′ < wfs(K ′) and
4κrµ
µ2
≤ r < rµ(K ′)− 3κrµ.

Then the offset Kr and level set d−1
K (r) are isotopic to K ′r

′
and d−1

K′ (r
′)

respectively.

The proof of the isotopy between the offsets is beyond the scope of this book.
We prove here the following weaker version.

Theorem 9.19 (Homotopic reconstruction theorem) Let K ⊂ Rd be
a (κ, µ)-approximation of a compact set K ′ ⊂ Rd. If

κ <
µ2

5µ2 + 12

then the complement of Kα is homotopy equivalent to the complement of K ′

and Kα is homotopy equivalent to K ′η as soon as

0 < η < wfs(K ′) and
4dH(K,K ′)

µ2
≤ α < rµ(K ′)− 3dH(K,K ′)

Proof The critical values separation Theorem 9.16 applied to K and K ′ en-
sures that dK does not have any critical value in the interval (4ε/µ2, rµ(K ′)−
3ε) where ε = dH(K,K ′). It follows from the isotopy Lemma 9.5 that all
the offsets of K corresponding to the values contained in this interval are
isotopic. It is thus sufficient to prove the theorem for α = 4ε/µ2. Since the
critical functions of K and Kα are related by the relation

χKα(r) = χK(r + α)

(see Exercise 9.9), we have wfs(Kα) ≥ rµ(K ′)− 3ε− 4ε/µ2. We also have

dH(Kα,K ′) ≤ ε+
4ε

µ2

According to Theorem 9.7, the theorem holds as soon as

dH(Kα,K ′) ≤ 1

2
min(wfs(Kα),wfs(K ′))

An easy computation shows that this inequality holds when κ < µ2

5µ2+12
. �
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9.8 Exercises

Exercise 9.1 Prove that dK is 1-Lipschitz.

Exercise 9.2 Prove Proposition 9.1.

Exercise 9.3 Prove that σK(x) the smallest enclosing ball containing ΓK(x)
exists and is unique.

Exercise 9.4 Show that the map from Rd to the space of compact subsets
of Rd is semi-continuous, i.e.

∀x,∀r > 0,∃α > 0, ‖y − x‖ ≤ α⇒ ΓK(y) ⊂ {z : d(z,ΓK(x)) ≤ r}

Exercise 9.5 Show that for any x ∈ Rd, cK(x) is the point on the convex
hull of ΓK(x) closest to x.

Exercise 9.6 Prove that for any x ∈ Rd one has the following equivalence:
(x is a critical point of dK) ⇔ (x lies in the convex hull of ΓK(x)).

Exercise 9.7 Let P be a finite set of points in R2 in general position. Prove
that a point x ∈ R2 is a critical point of dP if and only if it satisfies one of
the following conditions:
- x ∈ P ,
- x is the intersection point between a Voronoi edge and its dual Delaunay
edge,
- x is a Voronoi vertex contained in its dual Delaunay triangle.
How does this result generalize for finite point clouds in higher dimensions?

Exercise 9.8 Let K = {p1, · · · pn} ⊂ Rd be a finite point set. Prove that
wfs(K) = 1

2 mini 6=j ‖pi − pj‖.

Exercise 9.9 Show that for any compact set K ⊂ Rd and any α ≥ 0,

χKα(r) = χK(r + α) for all r ≥ 0.

Hint: first prove the same kind of relation between dKα and dK .
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Exercise 9.10 Give an example of a compact set (e.g. a compact subset
of R2) K such that limµ→0+ rµ(K) 6= wfs(K).

Exercise 9.11 Let P ⊂ Rd be a finite set of points. We denote Vor(P ) and
Del(P ) the Voronoi diagram and Delaunay triangulation of P . We use the
notations of Section 9.2.

1. What can be said about the restriction of FP to a Voronoi cell of
Vor(P )?

2. For each Delaunay simplex τ , let Vτ its dual Voronoi cell and let fτ :
R+ → R+ the function defined by

fτ (r) =

√
1− F 2

P (τ)

r2
if r ∈ dP (Vτ )

and fτ (r) = 1 otherwise. Show that the critical function of P is equal
to the minimum, taken over all the Delaunay simplices of Del(P ), of
the functions fτ .

3. Deduce from the previous question an algorithm that takes Del(P ) as
input and output the critical function of P .

Exercise 9.12 Prove the critical values separation Theorem 9.16. Hint:
this is a consequence of Theorem 9.14 - see also [37].

9.9 Bibliographical notes

The distance functions framework for geometric inference has been intro-
duced in [37] and the proof of the isotopic reconstruction Theorem 9.18 is
given in [47]. It is not restricted to topological inference and shape recon-
struction but has been extended to other geometric inference problems. For
example, it has been used to prove stability results for normals [47] and
curvatures [39] estimation of compact sets with positive µ-reach. It has
also been used to prove that some smoothing operations involving offsets of
shapes in Computer Aided Geometric Design are theoretically well-founded
[38].
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Distance functions have been widely studied and used in Riemannian ge-
ometry [53, 93] and non-smooth analysis [58]. The notion of critical point
introduced in this chapter coincides with the notion of critical point for dis-
tance function used in riemannian geometry and non-smooth analysis where
the notion of Clarke gradient [58] is closely related to the above defined gra-
dient. The general properties of the gradient of dK and of its trajectories
given in Section 9.2, are established in [103] or, in a more general setting, in
[120].
Distance functions are also particular cases of the so-called semiconcave
functions. Many of the results presented in this section can be deduced
from general properties of semiconcave functions [120]. This allows in par-
ticular to extend most of the results given in this section to compact subsets
of Riemannian manifolds.
When K is a finite set of points, several variants of the gradient flow C de-
fined in this chapter have been previously and independently considered in
the litterature [68, 90, 34].

The notion of weak feature size has been introduced in [43, 44, 45]. The
positivness of the weak feature size of large classes of compact sets is dis-
cussed in [86, p. 1045] and [44], proposition 3.6. The notion of reach for
compact subsets of Rd has been introduced by H. Federer [82] in the setting
of geometric measure theory.
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The problem of outliers As we have seen in Chapter 9, the use of dis-
tance functions provides an interesting approach for the robust estimation
of the topological and geometric properties of shapes in Rd from approxi-
mating data. Here, approximation is meant with respect to the Hausdorff
distance that requires all the data points to be located in a close neighbor-
hood of the shape. However, in many practical applications the data come
with outliers, i.e. observations (points) that are not located close to the
approximated shape. For such data the Hausdorff distance is no longer rel-
evant to formalize the notion of approximation: just adding one point p at
distance R from a given data set K makes the Hausdorff distance between
K and K∪{p} equal to R (see Figure 10.1). As a consequence, the distance-
based approach of Chapter 9 fails for data corrupted by noise and outliers
as illustrated on Figure 10.2. To overcome this issue, in this chapter, we
adapt the distance-based framework for geometric inference to the general
framework of data carrying noise and outliers.

p

R

Figure 10.1: Adding just one point at distance R to a point cloud sampling
a circle changes the Hausdorff distance between the shape and the sample
by R.

10.1 Extending the sampling theory for compact
sets

All the inference results of Chapter 9 follow from only three fundamental
properties of distance functions:
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Figure 10.2: In addition to a set of points densely sampled on the surface S of
a tangle cube we consider a single “outlier” located away from S (left). When
considering the offsets, the new added point creates a connected component
that makes the estimation of the topology of S from the offsets of the data
impossible (right): e.g. the estimated number of connected components
(two) is clearly wrong.

• Stability of the map K → dK : for any compact subsets K,K ′ of Rd
we have

‖dK − dK′‖∞ = dH(K,K ′)

where ‖dK − dK′‖∞ = supx∈Rd |dK(x)− dK′(x)|.

• For any compact set K ⊂ Rd, the distance function dK is 1-Lipschitz:
for any x, x′ ∈ Rd, |dK(x)− dK(x′)| ≤ ‖x− x′‖.

• For any compact setK ⊂ Rd, the distance function d2
K is 1-semiconcave:

x→ ‖x‖2 − d2
K(x) is convex (see Exercise 10.1).

The first property is an obvious condition to ensure that the offsets of two
close compact sets are close to each other. The second and third properties
are the fundamental ingredients to prove the existence and integrability of
the gradient of dK (Section 9.2) and the isotopy lemma of Section 9.3. These
results still hold for general proper semiconcave functions, motivating the
following definition of functions that are of particular interest for geometric
inference.



238 CHAPTER 10. DISTANCE TO PROBABILITY MEASURES

Definition 10.1 A non-negative function φ : Rd → R+ is a distance-like if
i) φ is 1-Lipschitz,
ii) φ2 is 1-semiconcave, i.e. x→ ‖x‖2 − φ2(x) is convex
iii) φ is proper i.e., for any compact set K ⊂ R, φ−1(K) is compact.

Let φ : Rd → R be a distance-like function. The 1-semiconcavity of φ2 allows
to define a notion of gradient vector field ∇φ(x) for φ, defined everywhere
and satisfying ‖∇φ(x)‖ ≤ 1. Although not continuous, the vector field
∇φ is sufficiently regular to be integrated in a continuous locally Lipschitz
flow Φt : Rd → Rd, t ≥ 0. The flow Φt integrates the gradient ∇φ in the
sense that for every x ∈ Rd, the curve γ : t 7→ Φt(x) is right-differentiable,

and for every t > 0, dγ
dt

∣∣∣
t−

= ∇φ(γ(t)). Moreover, for any integral curve

γ : [a, b]→ Rd parametrized by arc-length, one has:

φ(γ(b)) = φ(γ(a)) +

∫ b

a
‖∇φ(γ(t))‖dt.

Definition 10.2 Let φ be a distance-like function. We denote by φr =
φ−1([0, r]) the r sublevel set of φ.

1. A point x ∈ Rd will be called α-critical (with α ∈ [0, 1]) if the inequality
φ2(x + h) ≤ φ2(x) + 2α ‖h‖φ(x) + ‖h‖2 is true for all h ∈ Rd. A
0-critical point is simply called a critical point. It follows from the
1-semiconcavity of φ2 that ‖∇φ(x)‖ is the infimum of the α ≥ 0 such
that x is α-critical.

2. The weak feature size of φ at r is the maximum r′ > 0 such that φ
doesn’t have any critical value between r and r + r′. We denote it by
wfsφ(r). For any 0 < α < 1, the α-reach of φ is the maximum r such
that φ−1((0, r]) does not contain any α-critical point.

Notice that the α-reach is always a lower bound for the weak-feature size,
with r = 0.

The Isotopy Lemma 9.5 extends to distance-like functions.

Theorem 10.3 (Extended isotopy lemma) Let φ be a distance-like func-
tion and r1 < r2 be two positive numbers such that φ has no critical points
in the subset φ−1([r1, r2]). Then all the sublevel sets φ−1([0, r]) are isotopic
for r ∈ [r1, r2].
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The proof of the following theorem, showing that the offsets of two uniformly
close distance-like functions with large weak feature size have the same ho-
motopy type, relies on Theorem 10.3 and is almost verbatim the same as
the one of Theorem 9.7.

Proposition 10.4 Let φ and ψ be two distance-like functions, such that
‖φ− ψ‖∞ ≤ ε. Suppose moreover that wfsφ(r) > 2ε and wfsψ(r) > 2ε.
Then, for every 0 < η ≤ 2ε, φr+η and ψr+η have the same homotopy type.

The Critical Point Stability Theorem 9.9 also holds for distance-like func-
tions.

Theorem 10.5 Let φ and ψ be two distance-like functions with ‖φ− ψ‖∞ ≤
ε. For any α-critical point x of φ, there exists a α′-critical point x′ of ψ
with ‖x− x′‖ ≤ 2

√
εφ(x) and α′ ≤ α+ 2

√
ε/φ(x).

Proof The proof is almost verbatim the same as the proof of Theorem 9.9
�

Corollary 10.6 Let φ and ψ be two ε-close distance-like functions, and
suppose that reachα(φ) ≥ R for some α > 0. Then, ψ has no critical value
in the interval

]
4ε/α2, R− 3ε

[
.

Proof The proof is almost verbatim the same as the proof of Theorem
9.16. �

Theorem 10.7 (Extended reconstruction theorem) Let φ, ψ be two ε-
close distance-like functions, with reachα(φ) ≥ R for some positive α. Then,
for any r ∈ [4ε/α2, R− 3ε], and for 0 < η < R, the sublevel sets ψr and φη

are homotopy equivalent, as soon as

ε ≤ R

5 + 4/α2

Proof By the extended isotopy Lemma 10.3, all the sublevel sets ψr have
the same homotopy type, for r in the given range. Let us choose r = 4ε/α2.
We have:

wfsφ(r) ≥ R− 4ε/α2 and wfsψ(r) ≥ R− 3ε− 4ε/α2
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By Proposition 10.4, the sublevel sets φr and ψr have the same homotopy
type as soon as the uniform distance ε between φ and ψ is smaller than
1
2wfsφ(r) and 1

2wfsψ(r). This is true, provided that 2ε ≤ R − ε(3 + 4/α2).
The theorem follows. �

Remark that in the Definition 10.2 the notion of α-reach could be made
dependent on a parameter r, i.e. the (r, α)-reach of φ could be defined as
the maximum r′ such that the set φ−1((r, r + r′]) does not contain any α-
critical value. A reconstruction theorem similar to Theorem 10.7 would still
hold under the weaker condition that the (r, α)-reach of φ is positive.

10.2 Measures and the Wasserstein distance W2

To overcome the problem of outliers, a first idea is to consider geometric
objects as mass distributions, i.e. measures, instead of purely geometric
compact sets. Considering probability measures as the new class of studied
objects leads to a much better adapted framework to cope with noise and
outliers.

10.2.1 Replacing compact sets by measures

The definition of measure relies on the notion of σ-algebra. All the measures
considered in this book will be defined on the so-called Borel σ-algebra whose
definition is given below.

Definition 10.8 A σ-algebra on a set X is a collection Σ of subsets of X
such that:
i) ∅ ∈ Σ,
ii) if A ∈ Σ, then Ac ∈ Σ,
iii) if (An)n∈N is a countable family of elements of σ, then ∪n∈NAn ∈ Σ.
The set of Borel sets of Rd is the smallest σ-algebra containing all the open
sets of Rd (and thus all the closed sets).

Definition 10.9 A Borel measure or, for short in this book, a measure, µ
on Rd is a map from the set of Borel subsets B of Rd to the set of non-
negative real numbers such that whenever (Bi) is a countable family of dis-
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joint Borel subsets of Rd, µ (∪i∈NBi) =
∑

i µ(Bi). A probability measure is
a measure whose total mass µ(Rd) is equal to 1.

Definition 10.10 The support of a measure µ is the smallest, with respect
to inclusion, closed set K on which the mass of µ is concentrated, i.e. such
that µ(Rd \K) = 0.

For some compact sets such as point clouds, submanifolds of Rd or some more
general shapes there exist natural ways to associate probability measures
whose support are these compact sets as shown in the following examples.

Given a point x ∈ Rd the Dirac measure δx at x is defined as δx(B) = 1 if
x ∈ B and δx(B) = 0 otherwise. Given a set of n points C, the empirical or
uniform measure µC , associated to C, is defined as µC(B) = 1

n |B ∩ C|. It
is the sum of n Dirac masses of weight 1/n, centered at each point of C.

Given a compact k-dimensional manifold M ⊆ Rd, let volM be the k-
dimensional volume measure on M . As M is compact, volM (M) is finite
and we define a probability measure µM supported on M by µM (B) =
volM (B ∩M)/volM (M), for any Borel set B ⊆ Rd. For example, if M is
a curve, µM (B) is the fraction of the total length of M that is contained
in B; similarly, if M is a surface, µM (B) is the fraction of the total area
of M that is contained in B. Notice that if M is a finite union of subman-
ifolds M1, · · · ,Mk, then we can define probability measures on M just by
considering weighted sums of the measures µMi .

10.2.2 The Wasserstein distance W2

There exist a whole family of Wasserstein distances Wp (p ≥ 1) between
probability measures in Rd. Their definition relies on the notion of transport
plan between measures. Although some of the results of this chapter can be
stated for any distance Wp, for technical reasons that become clear in the
following we only consider the W2 distance.

A transport plan between two probability measures µ and ν on Rd is a
probability measure π on Rd×Rd such that for every Borel sets A,B ⊆ Rd,
π(A×Rd) = µ(A) and π(Rd×B) = ν(B). Intuitively π(A×B) corresponds
to the amount of mass of µ contained in A that will be transported to B by
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the transport plan. The cost of such a transport plan π is given by

C(π) =

(∫

Rd×Rd
‖x− y‖2dπ(x, y)

)1/2

As an example, consider two probability measures with finite supports µ
and ν:

µ =
m∑

i=1

ciδxi and ν =
n∑

j=1

djδyj

with
∑m

i=1 ci = 1 and
∑n

j=1 dj = 1. A transport plan between µ and ν is
then a n×m matrix Π = (πi,j) with non negative entries such that

n∑

j=1

πi,j = ci and

m∑

i=1

πi,j = dj .

The coefficient πi,j can be seen as the amount of the mass of µ located at
xj that is transported to yi. The cost of such a transport plan is then given
by

C(Π) =




n∑

i=1

m∑

j=1

πi,j‖xj − yi‖2



1/2

.

Definition 10.11 The Wasserstein distance of order 2 between two proba-
bility measures µ and ν on Rd is the minimum cost C(π) of a transport plan
π between µ and ν. It is denoted by W2(µ, ν).

Notice that W2(µ, ν) may be infinite. However, if µ and ν have finite mo-
ment of order 2, i.e.

∫
Rd ‖x‖2dµ(x) < +∞ and

∫
Rd ‖x‖2dν(x) < +∞, then

W2(µ, ν) is finite and the space of probability measures with finite moment
of order 2 endowed with W2 is a metric space [132].

Even for measures with finite support, the computation of the Wasser-
stein distance is very expensive. However, it provides an interesting no-
tion to quantify the resilience to outliers. To illustrate this, consider a set
C = {x1, x2, · · · , xN} of N points in Rd and a noisy version C ′ obtained
by replacing the first n points in C by points yi such that dC(yi) = R > 0
for i = 1, · · · , n. If we denote by µ = 1

N

∑
p∈C δp and ν = 1

N

∑
q∈C′ δq the

empirical measures associated to C and C ′ respectively then one has

W2(µ, ν) =

√
n

N
(R+ diam(C))
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while the Hausdorff distance between C and C ′ is at least R. To prove this
inequality, consider the transport plan Π from ν to µ that moves the outliers
back to their original position and leave the other points fixed. The matrix
Π of this transport plan (see the above example) is defined by πi,j = 1/N
if i = j and 0 otherwise. Since ‖xi − yi‖ ≤ R + diam(C) for i = 0 · · ·n and
xi = yi for i > n, we immediately deduce that the cost of this transport plan
is upper bounded by

√
n/N(R + diam(C)). As a consequence, replacing a

small amount of points (n << N) of C by outliers results in a new measure
that remains close to the original one.

From a geometric inference point of view, since, in practice, we are working
with point sets sampled according to some unknown probability distribution
µ, the question of the convergence of the empirical measure µN to µ with
respect to the Wasserstein distance is of fundamental importance. This
question is beyond the scope of this book but has been a subject of study
in probability and statistics for a long time. For example, if µ is supported
on a compact set, then µN converges almost surely to µ in the W2 distance.
However all the stability and inference results stated in this chapter only
rely on the Wasserstein distance between the considered measures and are
independent of any convergence property of empirical measures.

10.3 Distance function to a probability measure

In this section, we associate to any probability measure in Rd a family of
real valued functions that are both distance-like and robust with respect to
perturbations of the probability measure.

10.3.1 Definition

The distance function to a compact set K evaluated at x ∈ Rd is defined
as the smallest radius r such that the closed ball centered at x of radius r
contains at least a point of K. A natural idea to adapt this definition when
K is replaced by a measure µ is to consider the smallest radius r such that
the ball with center x and radius r contains a given fraction m of the total
mass of µ.

Definition 10.12 Let µ be a probability measure on Rd and 0 ≤ m < 1 a



244 CHAPTER 10. DISTANCE TO PROBABILITY MEASURES

given parameter. We denote by δµ,m the function defined by

δµ,m : x ∈ Rd 7→ inf{r > 0 ; µ(B̄(x, r)) > m}

where B̄(x, r) denotes the closed ball with center x and radius r.

Notice that for m = 0, the definition coincides with the (usual) distance
function to the support of the measure µ. Moreover for any m ∈ [0, 1), δµ,m
is 1-Lipschitz.

Unfortunately δµ,m is not robust with respect to perturbations of the mea-
sure µ. Indeed, the map µ → δµ,m is not continuous as shown by the
following example. Let µε = (1

2 − ε)δ0 + (1
2 + ε)δ1 be the weighted sum of

two Dirac measures at 0 and 1 in R and let m = 1/2. Then, for ε ≥ 0 one
has δµε,1/2(t) = |1− t| for t < 0 while if ε < 0, one obtains δµ0,1/2(t) = |t|
which means that ε 7→ δµε,1/2 is not continuous at ε = 0.

To overcome this issue we define the distance function associated to µ as a
L2 average of the pseudo-distances δµ,m for a range [0,m0] of parameters m:

Definition 10.13 (Distance-to-measure) Let µ be a probability measure
on Rd, and m0 be a positive mass parameter 0 < m0 ≤ 1. The distance
function to µ with parameter m0 is the function dµ,m0 : Rd → R+ defined
by :

d2
µ,m0

: Rn → R+, x 7→ 1

m0

∫ m0

0
δ2
µ,m(x)dm

10.3.2 Distance function to empirical measures

An interesting property of the above defined functions is that they have a
simple expression in terms of nearest neighbors. More precisely, let C be
a point cloud with n points in Rd, and µC be the uniform measure on it:
µC = 1

n

∑
p∈C δp. For 0 < m ≤ 1, the function δµC ,m evaluated at a given

point x ∈ Rd is by definition equal to the distance between x and its k-th
nearest neighbor in C, where k is the smallest integer larger than mn. Hence
the function m 7→ δµC ,m(x) is constant and equal to the distance from x to
its k-th nearest neighbor in C on each interval [k−1

n , kn). Integrating the
square of this piecewise constant functions gives the following expression for
d2
µ,m0

, where m0 = k0/n:
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d2
µ,m0

(x) =
1

m0

∫ m0

0
δ2
µ,m(x)dm =

1

m0

k0∑

k=1

1

n
δ2
µ,k/n(x)

=
1

k0

∑

p∈NN
k0
C (x)

‖p− x‖2

where NNk0
C (x) denote the set of the first k0 nearest neighbors of x in C. As

a consequence the pointwise evaluation of d2
µC ,k0/n

(x) reduces to a k-nearest
neighbor query in C.

x

C

xC(1)

xC(2)

xC(3)

δµ,m

‖x−xC(1)‖

‖x−xC(2)‖
‖x−xC(3)‖

1
n

2
n

3
n · · ·

··
·

· · ·

Figure 10.3: Computation of the distance to the empirical measure associ-
ated to a point set C (xC(k) denotes the k-th nearest neighbor of x.

10.3.3 Equivalent formulation

In this paragraph, we provide another characterization of the distance func-
tion to a measure dµ,m0 showing that it is in fact the distance function to a
closed set, but in the non Euclidean space of probability measures endowed
with the W2 metric (see figure 10.4). This equivalent formulation will be
used to deduce that µ→ dµ,m0 is Lipschitz and x→ d2

µ,m0
(x) is semiconcave.

Definition 10.14 A measure ν is a submeasure of another measure µ if
for every Borel subset B of Rd, ν(B) ≤ µ(B). The set of all submeasures
of a given measure is denoted by Sub(µ), while the set of submeasures of µ
with a prescribed total mass m0 > 0 is denoted by Subm0(µ).
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Rd space of probability
measures on Rd

{
1

m0
µ̃ : µ̃(Rd) = m0 and µ̃ ≤ µ

}
x

Dirac measures

µx,m0

δx

Figure 10.4: The distance function to a measure as a usual distance function
in an infinite dimensional space.

Proposition 10.15 For any probability measure µ on Rd, the distance func-
tion to µ evaluated at x is defined as:

dµ,m0(x) = min {m−1/2
0 W2 (m0δx, ν) ; ν ∈ Subm0(µ)} (10.1)

Moreover, for any measure µx,m0 that realizes the above minimum one has:

dµ,m0(x) =

(
1

m0

∫

Rd
‖x− h‖2 dµx,m0(h)

)1/2

Said otherwise, the distance dµ,m0 evaluated at a point x ∈ Rd is the minimal
Wasserstein distance between the Dirac mass m0δx and the set of submea-
sures of µ with total mass m0.

The set Rµ,m0(x) of submeasures minimizing the above expression corre-
sponds to the nearest neighbors of the Dirac measure m0δx on the set of
submeasures Subm0(µ). It is not empty but it might not be reduced to a
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single element. Indeed, it coincides with the set of submeasures µx,m0 of
total mass m0 whose support is contained in the closed ball B̄(x, δµ,m0(x)),
and whose restriction to the open ball B(x, δµ,m0(x)) coincides with µ.

10.3.4 Stability of the distance function to a measure

The characterization of dµ,m0 given in Proposition 10.15 provides a rather
easy way to prove the stability of µ 7→ dµ,m0 .

Theorem 10.16 (Distance function stability) If µ and µ′ are two prob-
ability measures on Rd and m0 > 0, then

∥∥dµ,m0 − dµ′,m0

∥∥
∞ ≤

1√
m0

W2(µ, µ′).

The proof of theorem 10.16 follows from the following proposition.

Proposition 10.17 Let µ and µ′ be two probability measures on Rd. Then,

dH(Subm0(µ),Subm0(µ′)) ≤W2(µ, µ′)

where dH(., .) is the Hausdorff distance in the space of probability measures
endowed with the W2 metric.

Proof (sketch of) Let ε be the Wasserstein distance of order 2 between µ
and µ′, and π be a corresponding optimal transport plan, i.e. a transport
plan between µ and µ′ such that

∫
Rd×Rd ‖x− y‖

2 dπ(x, y) = ε2. Given a
submeasure ν of µ, one can find a submeasure π′ of π that transports ν to
a submeasure ν ′ of µ′ (notice that this later claim is not completely obvious
and its formal proof is beyond the scope of this book. It can be proven using
the Radon-Nykodim theorem). Then,

W2(ν, ν ′)2 ≤
∫

Rd×Rd
‖x− y‖2 dπ′(x, y) ≤ ε2

This shows that dist(ν, Subm0(µ′)) ≤ ε for every submeasure ν ∈ Subm0(µ).
The same holds by exchanging the roles of µ and µ′, thus proving the bound
on the Hausdorff distance. �

Proof [of Theorem 10.16] The following sequence of equalities and in-
equalities, that follows from Propositions 10.15 and 10.17, proves the theo-
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rem:.

dµ,m0(x) =
1√
m0

distW2(m0δx,Subm0(µ))

≤ 1√
m0

(dH(Subm0(µ), Subm0(µ′)) + distW2(m0δx, Subm0(µ′)))

≤ 1√
m0

W2(µ, µ′) + dµ′,m0(x)

�

10.3.5 The distance to a measure is a distance-like function.

The subdifferential of a function f : Ω ⊆ Rd → R at a point x, is the set
of vectors v of Rd, denoted by ∂xf , such that for all small enough vector h,
f(x+h) ≥ f(x)+h.v. This gives a characterization of convexity: a function
f : Rd → R is convex if and only if its subdifferential ∂xf is non-empty for
every point x. If this is the case, then f admits a derivative at a point x if
and only if the subdifferential ∂xf is a singleton, in which case the gradient
∇xf coincides with its unique element [58].

Proposition 10.18 The function vµ,m0 : x ∈ Rd 7→ ‖x‖2−d2
µ,m0

is convex,

and its subdifferential at a point x ∈ Rd is given by

∂xvµ,m0 =

{
2x− 2

m0

∫

h∈Rd
(x− h) dµx,m0(h) ; µx,m0 ∈ Rµ,m0(x)

}

Proof For any two points x and y of Rd, let µx,m0 and µy,m0 be in Rµ,m0(x)
and Rµ,m0(y) respectively. Thanks to Proposition 10.15, we have the fol-
lowing sequence of equalities and inequalities:

d2
µ,m0

(y) =
1

m0

∫

h∈Rd
‖y − h‖2 dµy,m0(h)

≤ 1

m0

∫

h∈Rd
‖y − h‖2 dµx,m0(h)

≤ 1

m0

∫

h∈Rd
‖x− h‖2 + 2(x− h).(y − x) + ‖y − x‖2 dµx,m0(h)

≤ d2
µ,m0

(x) + ‖y − x‖2 + v.(y − x)
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where v is the vector defined by

v =
2

m0

∫

h∈Rd
(x− h) dµx,m0(h).

The inequality can be rewritten as:

(‖y‖2 − d2
µ,m0

(y))− (‖x‖2 − d2
µ,m0

(x)) ≥ (2x− v).(y − x)

which shows that the vector (2x − v) belongs to the subdifferential of v at
x. By the characterization of convex functions by that we recalled above,
one deduces that vµ,m0 is convex.

The proof of the reverse inclusion is slightly more technical and beyond the
scope of the book. �

Corollary 10.19 The function d2
µ,m0

is 1-semiconcave. Moreover,

(i) d2
µ,m0

is differentiable almost everywhere in Rd, with gradient defined
by

∇xd2
µ,m0

=
2

m0

∫

h∈Rd
[x− h] dµx,m0(h)

where µx,m0 is the only measure in Rµ,m0(x).

(ii) the function x ∈ Rd 7→ dµ,m0(x) is 1-Lipschitz.

Proof (i). It follows from the fact that a convex function is differentiable
at almost every point, at which its gradient is the only element of the sub-
differential at that point.
(ii). The gradient of dµ,m0 can be written as:

∇xdµ,m0 =
∇xd2

µ,m0

2dµ,m0

=
1√
m0

∫
h∈Rd [x− h] dµx,m0(h)

(
∫
h∈Rd ‖x− h‖

2 dµx,m0(h))1/2

Using the Cauchy-Schwartz inequality we find ‖∇xdµ,m0‖ ≤ 1 which proves
the statement. �
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10.4 Applications to geometric inference

Reconstruction from point clouds in presence of outliers was the main mo-
tivation for introducing the distance function to a measure. In this section,
we show how the extended reconstruction Theorem 10.7 can be applied to
distance to measure functions. It is also possible to adapt most of the topo-
logical and geometric inference results of Chapter 9 in a similar way.

10.4.1 Distance to a measure vs. distance to its support

In this section, we compare the distance functions dµ,m0 to a measure µ and
the distance function dS to its support S, and study the convergence prop-
erties of dµ,m0 to dS as the mass parameter m0 converges to zero. Remark
that the function δµ,m0 (and hence the distance dµ,m0) is always larger than
the distance function dS , i.e. for any x ∈ Rd, dS(x) ≤ dµ,m0(x). As a con-
sequence, to obtain a convergence result of dµ,m0 to dS as m0 goes to zero,
we just need to upper bound dµ,m0−dS by a function converging to 0 as m0

goes to 0. It turns out that the convergence speed of dµ,m0 to dS depends
on the way the mass of µ contained within any ball B(p, r) centered at a
point p of the support increases with r. Let us define:

(i) We say that a non-decreasing positive function f : R+ → R+ is a
uniform lower bound on the growth of µ if for every point p in the
support of µ and every ε > 0, µ(B(p, ε)) ≥ f(ε) ;

(ii) The measure µ has dimension at most k if there is a constant C(µ)
such that f(ε) = C(µ)εk is a uniform lower bound on the growth of µ,
for ε small enough.

Lemma 10.20 Let µ be a probability measure and f be a uniform lower
bound on the growth of µ. Then ‖dµ,m0 − dS‖∞ < ε as soon as m0 < f(ε).

Proof Let ε and m0 be such that m0 < f(ε) and let x be a point
in Rd, p a projection of x on S, i.e. a point p such that ‖x − p‖ =
dS(x). By assumption, µ(B(x, dS(x) + ε)) ≥ µ(B(p, ε)) ≥ m0. Hence,
δµ,m0(x) ≤ dS(x) + ε. The function m 7→ δµ,m(x) being non-decreasing, we
get: m0d2

S(x) ≤
∫m0

0 δ2
µ,m(x)dm ≤ m0(dS(x) + ε)2. Taking the square root

of this expression proves the lemma. �
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Corollary 10.21 (i) If the support S of µ is compact, then dS is the
uniform limit of dµ,m0 as m0 converges to 0:

‖dµ,m0 − dS‖∞ = sup
x∈Rd

|dµ,m0(x)− dS(x)| m0→0−→ 0

(ii) If the measure µ has dimension at most k > 0, then

‖dµ,m0 − dS‖∞ ≤ C(µ)−1/km
1/k
0

Proof (i) If S is compact, there exists a sequence x1, x2, · · · of points in
S such that for any ε > 0, S ⊆ ∪ni=1B(xi, ε/2) for some n = n(ε). By
definition of the support of a measure, η(ε) = mini=1···n µ(B(xi, ε/2)) is
positive. Now, for any point x ∈ S, there is a xi such that ‖x− xi‖ ≤ ε/2.
Hence, B(xi, ε/2) ⊆ B(x, ε), which means that µ(B(x, ε)) ≥ η(ε). (ii)
Follows straightforwardly from the lemma. �

For example, the uniform probability measure on a k-dimensional compact
submanifold S has dimension at most k. The following proposition gives a
more precise convergence speed estimate based on curvature.

Proposition 10.22 Let S be a smooth k-dimensional submanifold of Rd
whose curvature radii are lower bounded by R, and µ the uniform probability
measure on S, then

‖dS − dµ,m0‖∞ ≤ C(S)−1/km
1/k
0

for m0 small enough and C(S) = (2/π)kβk/volk(S) where βk is the volume
of the unit ball in Rk.

Notice in particular that the convergence speed of dµ,m0 to dS depends only
on the intrinsic dimension k of the submanifold S, and not on the ambient
dimension d. The proof of this result is beyond the scope of this book and
relies on the so-called Günther-Bishop theorem (cf [89, Section 3.101]).

10.4.2 Shape reconstruction from noisy data

The previous results lead to shape reconstruction theorems that work for
noisy data with outliers. To fit in our framework we consider shapes that
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are defined as supports of probability measures. Let µ be a probability
measure of dimension at most k > 0 with compact support K ⊂ Rd and
let dK : Rd → R+ be the (Euclidean) distance function to K. If µ′ is
another probability measure (e.g. the empirical measure given by a point
cloud sampled according to µ), one has

∥∥dK − dµ′,m0

∥∥
∞ ≤ ‖dK − dµ,m0‖∞ + ‖dµ,m0 − dµ′,m0‖∞ (10.2)

≤ C(µ)−1/km
1/k
0 +

1√
m0

W2(µ, µ′) (10.3)

This inequality insuring the closeness of dµ′,m0 to the distance function dK
for the sup-norm follows immediately from the stability Theorem 10.16 and
Corollary 10.21. As expected, the choice of m0 is a trade-off: small m0

lead to better approximation of the distance function to the support, while
large values of m0 make the distance functions to measures more stable. Eq.
(10.3) leads to the following corollary of Theorem 10.7:

Corollary 10.23 Let µ be a measure and K its support. Suppose that µ
has dimension at most k and that reachα(dK) ≥ R for some R > 0. Let
µ′ be another measure, and ε be an upper bound on the uniform distance
between dK and dµ′,m0. Then, for any r ∈ [4ε/α2, R − 3ε], the r-sublevel
sets of dµ,m0 and the offsets Kη, for 0 < η < R are homotopy equivalent as
soon as:

W2(µ, µ′) ≤ R
√
m0

5 + 4/α2
− C(µ)−1/km

1/k+1/2
0

Figure 10.5 illustrates Theorem 10.7 on a sampled mechanical part with
10% of outliers. In this case µ′ is the normalized sum of the Dirac measures
centered on the data points and the (unknown) measure µ is the uniform
measure on the mechanical part.

10.5 Exercises

Exercise 10.1 Let K ⊂ Rd be a compact set. Show that the map x →
‖x‖2 − d2

K(x) is convex.
Hint: Recall that the supremum of any family of convex functions is convex
and show that x→ ‖x‖2−d2

K(x) is the supremum of a set of affine functions.
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Figure 10.5: On the left, a point cloud sampled on a mechanical part to
which 10% of outliers (uniformly sampled in a box enclosing the model)
have been added. On the right, the reconstruction of an isosurface of the
distance function dµC ,m0 to the uniform probability measure on this point
cloud.

Exercise 10.2 Let µ1, · · · , µk be measures on Rd and let λ1, · · · , λk ∈ R.
Show that if all the λi are non negative then µ =

∑k
i=1 µi is a measure.

Show that the set of probability measures on Rd is convex.

Exercise 10.3 Let µ and ν be two probability measures with finite sup-
ports:

µ =

m∑

j=1

cjδxj and ν =

n∑

i=1

diδyi

where x1, · · · , xm and y1, · · · , yn are points in Rd and
∑m

j=1 cj =
∑n

i=1 di =
1. Show that any transport plan between µ and ν can be represented as a
n×m matrix Π = (πi,j) with non negative entries such that

n∑

i=1

πi,j = cj and

m∑

j=1

πi,j = di.

Exercise 10.4 Let µ be a probability measure on Rd and let m ∈ [0, 1).
Show that δµ,m is 1-Lipschitz:

∀x, y ∈ Rd, |δµ,m(x)− δµ,m(y)| ≤ ‖x− y‖.
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Exercise 10.5 Let µ be a probability measure on Rd and let 0 < m0 < 1
and x ∈ Rd. Recall that we denote by Rµ,m0(x) the set of submeasures
minimizing the right hand term of Equation (10.1). Give an example of a
probability measure µ such that Rµ,m0(x) contains only one element and an
example such that Rµ,m0(x) contains an infinite number of elements.
(Hint: for Rµ,m0(x) to contain more than one submeasure, the measure
µ(S(x, δµ,m0)) of the sphere of center x and radius δµ,m0 must be positive.

10.6 Bibliographical notes

Most of the chapter comes from [40] that introduces and studies stability
properties of distance functions to a probability measure. Approximation
and computation of the distance to measure function and its connections
with power distances has been studied in [94]. Extensions of the distance-
to-measure framework to general metric spaces has been considered in [29].
Statistical aspects of distance-to-measure functions in relation with density
estimation and deconvolution have been considered in [10, 31, 49, 51].

Wasserstein distances are closely related to the theory of optimal transporta-
tion (see e.g. [132]). The distance W1 is also known as the earth-mover
distance, and has been used in various domains such as, e.g., vision [119] or
image retrieval [123].

General results about semiconcave functions can be found in [120, 33].

The convergence properties of empirical measure with respect to the Wasser-
stein metric have been widely studied and quantitative results can be found
in [28].

The complete proofs of Propositions 10.15, 10.18 and 10.4 are given in [40].

The Günther-Bishop Theorem is stated in [89, Section 3.101] and the proof
of Proposition 10.22 can be found in [40].
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Although the distance-based approach introduced in the two previous chap-
ters provides a powerfull mathematical framework for shape reconstruction,
it is not always possible, nor desirable, to fully reconstruct the approximated
shapes from data. This chapter focuses on weaker topological invariants, ho-
mology, Betti numbers and persistent homology, that turn out to be easier
to infer and that are widely used in applied topology and topological data
analysis. The introduction of homology is restrictied to the minimum that is
necessary to understand the basic ideas of homology inference and persistent
homology and its usage in topological data analysis.

11.1 Simplicial homology and Betti numbers

In this section we introduce the basic notions of simplicial homology that
are necessary to define and study topological persistence. To avoid minor
technical discussions about the orientation of simplices, we restrict to the
homology with coefficients in the finite field Z/2Z = {0, 1}. In the sequel of
this chapter, K denotes a finite d-dimensional simplicial complex.

11.1.1 The space of k-chains

For any non negative integer k, the space of k-chains is the vector space of
all the formal sums (with coefficient in Z/2Z) of k-dimensional simplices of
K. More precisely, if {σ1, · · · , σp} is the set of k-simplices of K any k-chain
c can be uniquely written

c =

p∑

i=1

εiσi with εi ∈ Z/2Z

If c′ =
∑p

i=1 ε
′
iσi is another k-chain, the sum of two k-chains and the product

of a chain by a scalar are defined by

c+ c′ =
p∑

i=1

(εi + ε′i)σi and λ.c =

p∑

i=1

(λεi)σi

where the sums εi + ε′i and the products λεi are modulo 2.

Definition 11.1 The space of k-chains is the set Ck(K) of the simplicial
k-chains of K with the two operations defined above. This is a Z/2Z-vector
space whose zero element is the empty chain 0 =

∑p
i=1 0.σi.
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Notice that the set of k-simplices of K is a basis of Ck(K). For example,
for the simplicial complex K of Figure 11.1, C1(K) is the Z/2Z-vector space
generated by the edges e1 = [a, b], e2 = [b, c], e3 = [c, a], e4 = [c, d], i.e.

C1(K) = {0, e1, e2, e3, e4, e1 + e2, e1 + e3, e1 + e4, e2 + e3, e2 + e4, e3 + e4,

e1 + e2 + e3, · · · }

Summing e1 + e2 with e2 + e3 + e4 gives e1 + e3 + e4.

b

a

c

d

Figure 11.1: A very simple simplicial complex made of 4 vertices, 4 edges
and 1 triangle.

Chains with coefficient in Z/2Z have an obvious geometric interpretation:
since any k-chain can be uniquely written as c = σi1 + σi2 + · · ·+ σim where
the σij are k-simplices, c can be considered as the union of the simplices σij .
The sum of two k-chains is equal to their symetric difference.

11.1.2 The boundary operator and homology groups

Definition 11.2 (Boundary of a simplex) The boundary ∂(σ) of a k-
simplex σ is the sum of its (k − 1)-faces. This is a (k − 1)-chain.

If σ = [v0, · · · , vk] is a k-simplex, then

∂(σ) =
k∑

i=0

[v0 · · · v̂i · · · vk]

where [v0 · · · v̂i · · · vk] is the (k − 1)-simplex spanned by the sets of all the
vertices of σ except vi.

Remark 11.3 Notice that in the general case where the coefficient of the
chains are taken in another field than Z/2Z it is important to take into
account the ordering of the vertices in σ and the boundary of σ has to be
defined as ∂(σ) =

∑k
i=0(−1)i[v0 · · · v̂i · · · vk] - see [113].
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The boundary operator, defined on the simplices of K, extends linearly to
Ck(K).

Definition 11.4 The boundary operator is the linear map defined by

∂ : Ck(K) → Ck−1(K)
c → ∂c =

∑
σ∈c ∂(σ)

Notice that one should denote ∂k the above defined operator but to avoid
heavy notations one usually omits the index in the notations.

Proposition 11.5 The boundary of the boundary of a chain is always zero:

∂∂ := ∂ ◦ ∂ = 0.

Proof Since the boundary operator is linear, it is sufficient to check the
property for a simplex. Let σ = [v0 · · · vk] be a k-simplex.

∂∂σ = ∂

(
k∑

i=0

[v0 · · · v̂i · · · vk]
)

=
k∑

i=0

∂[v0 · · · v̂i · · · vk]

=
∑

j<i

[v0 · · · v̂j · · · v̂i · · · vk] +
∑

j>i

[v0 · · · v̂i · · · v̂j · · · vk]

= 0

�

The boundary operator defines a sequence of linear maps between the spaces
of chains.

Definition 11.6 (Chain complex) The chain complex associated to a com-
plex K of dimension d is the following sequence of linear operators

{0} → Cd(K)
∂→ Cd−1(K)

∂→ · · · ∂→ Ck+1(K)
∂→ Ck(K)

∂→ · · · ∂→ C0(K)
∂→ {0}
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For k ∈ {0, · · · , d}, the set Zk(K) of k-cycles of K is the kernel of ∂ : Ck →
Ck−1:

Zk(K) := ker(∂ : Ck → Ck−1) = {c ∈ Ck : ∂c = 0}

The image Bk(K) of ∂ : Ck+1 → Ck is the set of k-chains bounding a
(k + 1)-chain:

Bk(K) := im(∂ : Ck+1 → Ck) = {c ∈ Ck : ∃ c′ ∈ Ck+1, c = ∂c′}

Bk and Zk are subspaces of Ck and according to Proposition 11.5, one has

Bk(K) ⊂ Zk(K) ⊂ Ck(K).

Examples of chains, cycles and boundaries are given in Figure 11.2.

c1

c2

c3

Figure 11.2: Examples of chains, cycles and boundaries: c1 is a cycle which
is not a boundary, c2 is a boundary and c3 is a chain that is not a cycle.

Definition 11.7 (Homology groups) The kth homology group of K is
the quotient vector space

Hk(K) = Zk/Bk

Hk(K) is a vector space and its elements are the homology classes of K.
The dimension βk(K) of Hk(K) is the kth Betti number of K.
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The homology class of a cycle c ∈ Zk(K) is the set c+Bk(K) = {c+ b : b ∈
Bk(K)}. Two cycles c, c′ that are in the same homology class are said to be
homologous.

β0 = 1
β1 = 0
β2 = 0

β0 = 1
β1 = 1
β2 = 0

β0 = 1
β1 = 0
β2 = 0

β0 = 1
β1 = 0
β2 = 1

Figure 11.3: Examples of Betti numbers for simple simplicial complexes:
from left to right, an edge, the boundary of a triangle, a triangle and the
boundary of a tetrahedron.

11.2 An algorithm to compute Betti numbers

Let K be a finite simplicial complex of dimension d and

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K

a filtration of K such that for any i = 0, · · ·m− 1,

Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex.

By considering the evolution of the Betti numbers of the filtration as we add
the simplices σi we get the following algorithm.

To prove the correctness of the algorithm, one has to understand how the
topology of the filtration evolves each time we add a simplex. Let assume
that the Betti numbers of Ki−1 have been computed and add the simplex
σi of dimension k+ 1 to get Ki. Remark that according to the definition of
filtration, σi cannot be part of the boundary of any (k + 2)-simplex of Ki.
As a consequence if σi is contained in a (k+ 1)-cycle in Ki, this cycle is not
the boundary of a (k + 2)-chain in Ki. Let consider the two alternatives of
the algorithm that are illustrated in Figure 11.4:

Case 1: assume that σi is contained in a (k + 1)-cycle c in Ki. Then c
cannot be homologous to any (k+ 1)-cycle in Ki−1. Indeed, otherwise there
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Algorithm 9 Betti numbers computation

Input: A filtration of a d-dimensional simplicial complex K containing m
simplices.
β0 ← 0; β1 ← 0; · · · ;βd ← 0
for i = 1 to m do
k = dimσi − 1
if σi is contained in a (k + 1)-cycle in Ki then
βk+1 ← βk+1 + 1

else
βk ← βk − 1

Output: The Betti numbers β0, β1, · · · , βd of K.

would exist a cycle c′ in Ki−1 such that c+ c′ is the boundary of a (k + 2)-
chain d. But since σi cannot be contained in c′, it has to be contained in
c + c′ = ∂d contradicting the above remark. So, c creates a new homology
class which is linearly independent of the classes created by the cycles in
Ki−1. As a consequence, βk+1(Ki) ≥ βk+1(Ki−1) + 1. To conclude this first
case, it is sufficient to remark that adding the (k + 1)-simplex σi to Ki−1

cannot increase the dimension of the kth homology group by more than one:
if c and c′ are two (k+ 1)-cycles containing σi, then c+ c′ is a (k+ 1)-cycle
in Ki−1 implying that c′ is contained in the linear subspace spanned by
Zk+1(Ki−1) and c. It follows that dimZk+1(Ki) ≤ dimZk+1(Ki−1) + 1 and
since Bk+1(Ki−1) ⊂ Bk+1(Ki), βk+1(Ki) ≤ βk+1(Ki−1) + 1.

Case 2: assume that σi is not contained in any (k + 1)-cycle in Ki. Then
the k-cycle ∂σi is not a boundary in Ki−1. Indeed, otherwise there would
exist a chain c in Ki−1 such that ∂c = ∂σi or equivalently ∂(c + σi) = 0.
Thus c + σi is a (k + 1)-cycle in Ki containing σi: a contradiction. As a
consequence, since the k-cycle ∂σi which is not a boundary in Ki−1 becomes
a boundary in Ki, one has βk(K

i) ≤ βk(K
i−1) − 1. One proves as in Case

1 that this inequality is indeed an equality.

The above discussion suggests to distinguish between the two types of sim-
plices in the filtration of K that will play an important role in the definition
of topological persistence.

Definition 11.8 Let K be a d-dimensional simplicial complex and let

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K
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σi σi

Figure 11.4: Examples of insertion of a 1-simplex σi to a subcomplex Ki−1.
When σi is not contained in a 1-cycle (left), its insertion results in the
connection of two connected components of Ki−1. When σi is contained in
a 1-cycle (right), its insertion create a new 1-cycle that is not homologous
to any previously existing in Ki−1.

be a filtration of K. A simplex σi is called positive if it is contained in a
(k + 1)-cycle in Ki (which is necessarily not a boundary in Ki according to
the remark at the beginning of the proof of the correctness of the algorithm)
and negative otherwise.

With the above definition the kth Betti number of K is equal to the difference
between the number of positive k-simplices (which are creating k-cycles) and
the number of negative (k + 1)-simplices (which are “killing” k-cycles).

As an example, if one considers the simplicial complex K of figure 11.1 with
the filtration defined by the simplices ordering ∅, a, b, c, ab, bc, d, ac, cd,
abc, then the positive simplices are a, b, c, d and ac. The Betti numbers of
K are β0 = 1, β1 = 0 and β2 = 0.

It is important to notice that the above algorithm needs to be able to decide
whether a simplex is positive or negative. This is not, a priori, an obvious
question but an answer will be given in Section 11.5. It is also important
to notice that the algorithm not only computes the Betti numbers of K but
also the Betti numbers of all the subcomplexes Ki of the filtration.
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11.3 Singular homology and topological invariance

The homology groups and Betti numbers are topological invariants: if K and
K ′ are two simplicial complexes with homeomorphic geometric realizations
then their homology groups are isomorphic and their Betti numbers are
equal. This result is still true if the geometric realizations of K and K ′

are just homotopy equivalent. The proof of this invariance property is a
classical, but not obvious, result in algebraic topology. It is beyond the
scope of this book (see [113, 97] for details).

Singular homology is another notion of homology that allows to consider gen-
eral spaces that are not necessarily homeomorphic to simplicial complexes.
The definition of singular homology is similar to the one of simplicial homol-
ogy except that it relies on the notion of singular simplex. Let ∆k be the
standard k-dimensional simplex in Rk+1, i.e. the geometric simplex spanned
by the vertices xi, i = 1, · · · k+ 1, whose all coordinates are 0 except the ith

one which is equal to 1. Given a topological space X, a singular k-simplex σ
is a continuous map σ : ∆k → X. As in the case of simplicial homology, the
space of singular k-chains is the vector space of formal linear combinations
of singular k-simplices. The boundary ∂σ of a singular k-simplex is the sum
of the restriction of σ to each of the (k−1)-faces of ∆k. Proposition 11.5 still
holds for the (singular) boundary operator and the kth singular homology
group of X is defined similarly as the quotient of the space of cycles by the
space of boundaries.

A remarkable fact is that simplicial and singular homology are related in
the following way: if X is a topological space homeomorphic to the support
of a simplicial complex K, then the singular homology groups of X are
isomorphic to the simplicial homology groups of K. For example, if X is
a surface and if K and K ′ are two triangulations of X, then the homology
groups Hk(K) and Hk(K

′) are isomorphic. Thus they have the same Betti
numbers that are, indeed, the ones of X. As a consequence, in the sequel of
the Chapter, we will consider indifferently simplicial or singular homology.

Another important property of singular (and thus simplicial) homology is
that continuous maps between topological spaces canonically induce homo-
morphisms between their homology groups. Indeed, if f : X → Y is a
continuous map between two topological spaces and if σ : ∆k → X is a
singular simplex in X, then f ◦σ : ∆k → Y is a singular simplex in Y . So, f
induces a linear map between the spaces of chains on X and Y that preserves
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cycles and boundaries. As a consequence, f also induces an homomorphism
f? : Hk(X)→ Hk(Y ). Moreover if f is an homeomorphism, f? is an isomor-
phism and (f?)

−1 = (f−1)?. Similarly, if f is an homotopy equivalence with
homotopic inverse g : Y → X, then f? is an isomorphism with inverse g?.
As a consequence, two spaces that are homotopy equivalent have the same
Betti numbers. Notice that, when X is not homotopy equivalent to a finite
simplicial complex, its Betti numbers might not be finite.

11.4 Betti numbers inference

Singular homology allows to consider Betti numbers of compact sets in Rd
and of their offsets. Using its connexion to simplicial homology and the
distance functions framework of Chapter 9, we derive explicit methods to
infer the Betti numbers of compact subsets with positive weak feature size.

Let K ⊂ Rd be a compact set with wfs(K) > 0 and let P ∈ Rd be a finite
set of points such that dH(K,P ) < ε for some given ε > 0. Recall that,
from the isotopy Lemma 9.5, all the r-offsets Kr of K, for 0 < r < wfs(K),
are homeomorphic and thus have isomorphic homology groups. The goal of
this section is to provide an effective method to compute the Betti numbers
βk(K

r), 0 < r < wfs(K), from P .

Theorem 11.9 Let K ⊂ Rd be a compact set with wfs(K) > 0 and let
P ∈ Rd be a finite set of points such that dH(K,P ) < ε for some given
ε > 0. Assume that wfs(K) > 4ε. For α > 0 such that 4ε + α < wfs(K),
let i : Pα+ε ↪→ Pα+3ε be the canonical inclusion. Then for any non negative
integer k and any 0 < r < wfs(K),

Hk(K
r) ∼= im

(
i? : Hk(P

α+ε)→ Hk(P
α+3ε)

)

where im denotes the image of the homomorphism and ∼= means that the
two groups are isomorphic.

Proof Since dH(K,P ) < ε, we have the following sequence of inclusion
maps

Kα ⊆ Pα+ε ⊆ Kα+2ε ⊆ Pα+3ε ⊆ Kα+4ε

that induces the following sequence of homomorphisms (the one induced by
the canonical inclusion maps) at the homology level

Hk(K
α)→ Hk(P

α+ε)→ Hk(K
α+2ε)→ Hk(P

α+3ε)→ Hk(K
α+4ε).
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Since wfs(K) > α+4ε, it follows from the isotopy Lemma 9.5 that the homo-
morphisms Hk(K

α) → Hk(K
α+2ε) and Hk(K

α+2ε) → Hk(K
α+4ε) induced

by the inclusion maps are indeed isomorphisms. Notice that the above se-
quence implies that the rank of these isomorphisms is finite (see Exercise
11.5). It immediately follows that the rank of Hk(P

α+ε) → Hk(P
α+3ε) is

equal to the rank of these isomorphisms which is equal to βk(K
α). �

Theorem 11.9 shows that the Betti numbers of the offsets of K can be
deduced from the offsets of P . However, the direct computation of the
homology groups of a union of balls, which is a continuous object and not a
finite simplicial complex, is not obvious. To overcome this issue, recall that
the Nerve Theorem 2.8 implies that for any r ≥ 0, P r is homotopy equivalent
to Čech(P, r). As a consequence Hk(P

r) and Hk(Čech(P, r)) are isomorphic.
Moreover, one can show that the isomorphisms can be chosen to commute
with the ones induced by inclusions maps [46], making the following diagram
commutative

Hk(P
r) → Hk(P

r′)
↑ ↑

Hk(Čech(P, r)) → Hk(Čech(P, r′))
(11.1)

We immediately obtain the following result.

Proposition 11.10 Assume that wfs(K) > 4ε. For α > 0 such that 4ε +
α < wfs(K), let i : Čech(P, α + ε) ↪→ Čech(P, α + 3ε) be the canonical
inclusion. Then for any non negative integer k and any 0 < r < wfs(K),

Hk(K
r) ∼= im(i? : Hk(Čech(P, α+ ε))→ Hk(Čech(P, α+ 3ε)).

Thanks to the previous proposition, inferring the Betti numbers of Kr now
boils down to homology computation on finite Čech complexes. However,
as already noticed in Chapter 2.5, computing Čech complexes require to
determine if finite sets of balls intersect, which quickly becomes prohibitive
as d and the cardinality of P increase. Using the interleaving property
between Čech and Vietoris-Rips filtrations established in Lemma 2.13, we
obtain the following theorem.

Theorem 11.11 Assume that wfs(K) > 9ε. For any 2ε ≤ α ≤ 1
4(wfs(K)−

ε) and any 0 < r < wfs(K) we have

βk(K
r) = rk(Hk(Rips(P, α)→ Hk(Rips(P, 4α))
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where rk(Hk(Rips(P, α) → Hk(Rips(P, 4α)) denotes the rank of the homo-
morphism induced by the inclusion Rips(P, α) ⊆ Rips(P, 4α).

This last result raises two questions. The first one is about how to compute
the rank of the homomorphisms induced by the inclusion maps between the
homology groups of the subcomplexes of the V ietoris−Rips complex. This
question will be answered in next Section when the persistence algorithm
will be presented. The second, and more tricky, question is about the ef-
fective choice of α when K and wfs(K) are not known. This is an ill-posed
problem because wfs(K) does not depend continuously of K - see Section
9.3. However, it is possible for the user to try to guess a good choice of α
using the following algorithm.

Algorithm 10 Betti numbers inference

Input: P ⊂ Rd a finite set.
Let L := ∅, α := +∞;
while L ( P do

Let p := argmaxw∈P minv∈L ‖w − v‖; // pick arbitrary p if L = ∅
L← L ∪ {p};
α← maxw∈P minv∈L ‖w − v‖;
Update Rips(L, 4α) and Rips(L, 16α);
Compute β16α

k,4α = rk(i? : Hk(Rips(L, 4α))→ Hk(Rips(L, 16α)));
Output: diagram showing the evolution of persistent Betti numbers, i.e.
the ranks of i? versus α.

When applied to a point cloud sampled around a compact subset of Rd
with positive weak feature size, the algorithm provides the diagrams of rank
numbers β16α

k,4α that are constant on some intervals of values α as illustrated
on Figure 11.5. Identifying these intervals allows the user to determine the
scales at which the topological features of Kr can be infered. Notice that
intervals on which the persistent Betti numbers are constant can appear at
different scales, reflecting multiscale topological features of the offsets of K
- see Figure 11.6.

The previous algorithm comes with the following theoretical guarantees jus-
tifying the existence of intervals of constant persistent Betti numbers [46].

Theorem 11.12 Let K ⊂ Rd be a compact set with wfs(K) > 0 and let
P ∈ Rd be a finite set of points such that dH(K,P ) < ε for some given
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1/δ

β16δ
k,4δ

1

10

100

18/wfs(K) 1/ε

k = 0

k = 1

k = 2

Figure 11.5: An example of persistent Betti numbers curves obtained from
a point cloud sampled on a torus. They are plotted as functions of 1/α.
These numbers are constant on an interval containing [18/wfs(K), 1/ε] and
correspond to the three first Betti numbers of the torus: β0 = 1, β1 = 2 and
β2 = 1.

ε > 0. Assume that wfs(K) > 18ε. Then at each iteration of the algorithm
such that ε < α < 1

18wfs(K),

βk(K
r) = β16α

k,4α

for any r ∈ (0,wfs(K)) and any non negative integer k.

The example of Figure 11.6 where P is sampled around a smooth 2-dimensional
torus in R1000 illustrates this property: it would not have been possible to
do the computation if the complexity was exponential in d = 1000.

11.5 Persistent homology

The algorithm of Section 11.2 to compute the Betti numbers of a filtered
simplicial complex also provides the Betti numbers of all the subcomplexes
of the filtration. Intuitively, the goal of persistent homology is to keep track
of all this information and to pair the creation and destruction time of
homology classes appearing during the process.
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Figure 11.6: The persistent Betti numbers curves obtained from a point
cloud sampled on a closed curve spiraling on a torus which was itself non
linearly embedded into R1000. They are plotted as functions of 1/δ. We
distinguish two intervals on which the computed ranks are constant. The
right-most one (corresponding to the smaller range of δ) exhibits the Betti
numbers of a circle (1, 1, 0), while left most one (intuitively corresponding
to a larger scale) exhibits the Betti numbers of the torus (1, 2, 0).

11.5.1 A simple example

Before formally indroducing persistent homology, we first consider a very
simple example. Let f : [0, 1] → R be the function whose graph is repre-
sented on Figure 11.7. We are interested in studying the evolution of the
topology of the sublevel sets f−1((−∞, t]) as t increases. The topology of
the sublevel sets changes when t crosses the critical values a, b, c, d and e.
Passing through the critical value a creates a connected component and for
a ≤ t < b, f−1((−∞, t]) is a connected set (an interval). When t passes
through the critical value b a second connected component appears and for
b ≤ t < c, f−1((−∞, t]) has two connected components. When t reaches the
value c, the two connected components are merged: the most recently cre-
ated component, when t passed through b, is merged into the older one. One
then pairs the two values b and c corresponding to the “birth” and “death”
of the component. In the persistent homology framework, this pairing is
either represented by the interval on the left of the graph of f on Figure
11.7 or by the point with coordinates (b, c) in the plane on the right of Fig-
ure 11.7. The length c − b of the interval (b, c) represents the lifespan of
the component created at b. Intuitively, the larger the interval is, the more
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relevant the corresponding component is. Now, continuying to increase t, a
new connected component is created when one reaches d which is merged
at t = e giving rise to a new persistence interval (d, e). Notice that a is not
paired to any (finite) value since the first created component is never merged
into another one. As a consequence it is paired with +∞ and represented
by the interval (a,+∞). At the end, the pairs are either represented as a
set of intervals (called a barcode) or as a diagram in the plane (called the
persistence diagram - see Figure 11.7 on the right). For technical reasons
that will become clear later in this chapter the diagonal {y = x} is added
to the diagram.

a

a

b

b

c c

d

d

e e

Figure 11.7: The persistence diagram of a real valued function.

When one considers functions f defined over higher dimensional spaces,
passing through critical values may not only change the connectedness of
the sublevel sets but also other topological features: creation/destruction
of cycles, voids, etc... All these events corresponds to a change in the cor-
responding homology groups (H0 for connected components, H1 for cycles,
H2 for voids,...). In the sequel of this section we show that we can define
pairs and persistence diagrams for each dimension.

Now, if we replace the function f by a function g on the Figure 11.8 which
is close to f , we observe that the number of pairs of g is much larger than
the one of f . However most of these pairs correspond to intervals with short
length (points close to the diagonal) while the pairs corresponding to long
interval are close to the ones of f . In other words, the topological features
having a large persistence with respect to the size of the perturbation are
preserved while the topological features created by the perturbation have
a small persistence. We will see that this is a general phenomenon: two
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close functions have close persistence diagrams. The stability properties
of persistence diagrams are of fundamental importance to formalize and
quantify the notion of topological noise and to handle noisy data.

e

b

c

d

Figure 11.8: An approximation g of f and its persistence diagram.

11.5.2 Persistent homology of a filtration

We first define the notion of persistence for a filtration of a simplicial com-
plex. Its goal is to study the evolution of the homology of the subcomplexes
of the filtration.

Let K be a d-dimensional simplicial complex and let

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K

be a filtration of K such that, for any i = 0, · · · ,m − 1, Ki+1 = Ki ∪ σi+1

where σi+1 is a simplex.

For any 0 ≤ n ≤ m, we denote by Cnk the set of k-chains (with coefficients
in Z/2Z) of Kn. Notice that the restriction of the boundary operator to
Cnk has its image contained in Cn−1

k−1 . We denote by Znk and Bn
k the sets of

k-cycles and k-boundaries of Kn respectively. The k-th homology group of
Kn is thus

Hn
k = Znk /B

n
k

With these notations, we have the following inclusions

Z0
k ⊂ Z1

k ⊂ · · · ⊂ Znk · · · ⊂ Zmk = Zk(K)

B0
k ⊂ B1

k ⊂ · · · ⊂ Bn
k · · · ⊂ Bm

k = Bk(K)
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Definition 11.13 (Persistent Betti numbers) For p ∈ {0, · · · ,m} et
l ∈ {0, · · · ,m − p}, the k-th persistent Betti number of K l is the dimen-

sion of the vector space H l,p
k = Z lk/(B

l+p
k ∩ Z lk).

The k-th persistent Betti number of K l represents the number of indepen-
dent homology classes of k-cycles in K l that are not boundaries in K l+p.
Intuitively, a k-cycle in K l generating a non-zero element in H l,p

k is a cycle
that has appeared in the filtration before the step l+ 1 and that is still not
a boundary at step l + p. We have seen in Section 11.2 that a homology
class is created when a positive simplex is added in the filtration and that
a homology class is destroyed when a negative simplex is added. Persistent
homology provides a natural way to pair positive and negative simplices
such that whenever a positive simplex is added to the filtration it creates a
homology class and a corresponding cycle that becomes a boundary when
the negative simplex to which it is paired is added.

Cycle associated to a positive simplex

Lemma 11.14 Let σ = σi be a positive k-simplex in the filtration of K.
There exists a unique k-cycle c that is not a boundary in Ki, that contains
σ and that does not contain any other positive k-simplex.

Proof The lemma is proven by induction on the order of the positive k-
simplices in the filtration. Assume that for any positive k-simplex added
to the filtration before σ there exists a k-cycle, that is not a boundary and
that contains σ but no other positive k-simplex. Since σ is positive, there
exists a k-cycle d that is not a boundary in Ki and that contains σ. Let
σij , j = 1, · · · , p be the positive k-simplices different from σ contained in d
and let cj be the cycles which are not boundaries containing them and not
containing any other positive simplices. Then

c = d+ c1 + · · ·+ cp

is a k-cycle in which σ is the only positive simplex. Since σ = σi is the
last simplex added in Ki there does not exist any (k + 1)-simplex in Ki

containing σ in its boundary. As a consequence, c cannot be a boundary
cycle.

The uniqueness of c is proven in a similar way. �
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Persistent homology basis and persistent pairs

The k-cycles associated to the positive k-simplices in Lemma 11.14 allow to
maintain a basis of the k-dimensional homology groups of the subcomplexes
of the filtration. At the beginning, the basis of Hk(K

0) is empty. Bases
of the Hk(K

i) are built inductively in the following way. Assume that the
basis of H i−1

k has been built and that the i-th simplex σi is positive and of
dimension k. We add to the basis of H i−1

k the homology class of the cycle
ci associated to σi to obtain a basis of H i

k. Indeed, since ci is the sum of
σi and negative simplices, it is not homologous to any linear combination
of cycles defining the basis of H i−1

k . Since dimH i
k = dimH i−1

k + 1 we thus
obtain a basis of H i

k.

Now assume that the basis of Hj−1
k is built and the j-th simplex σj is

negative and of dimension k + 1. Let ci1 , · · · , cip be the cycles associated
to the positive simplices σi1 , · · ·σip whose homology classes form a basis of
Hj−1
k . The boundary d = ∂σj of σj is a k-cycle in Kj−1 which is not a

boundary in Kj−1 but is a boundary in Kj (see the proof of the algorithm
to compute Betti numbers in the previous section). So it can be written in
a unique way as

d = ∂σj =

p∑

k=1

εkc
ik + b

where εk ∈ {0, 1} and b is a boundary. We then denote l(j) = max{ik : εk =
1} and we remove the homology class of cl(j) from the basis of Hj−1

k .

Claim: We obtain a basis of Hj
k.

Since dimHj−1
k = dimHj

k + 1 we just need to prove that cl(j) is, up to a

boundary, a linear combination of the cycles cik in Zjk, ik 6= l(j), which is
equivalent to the above decomposition of d.

Definition 11.15 (Persistent pairs) The pairs of simplices (σl(j), σj) are
called the persistence pairs of the filtration of K.

Intuitively, the homology class created by σl(j) in K l(j) is destroyed by σj in
Kj . The persistence of this pair is j − l(j)− 1. From the above discussion
we deduce a first algorithm to compute the persistent pairs of a filtration of
a simplicial complex K of dimension d with m simplices.
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Algorithm 11 Persistent pairs computation

Input: A filtration of a d-dimensional simplicial complex K containing
m simplices.
L0 = L1 = · · · = Ld−1 = ∅
for j = 0 to m do
k = dimσj − 1
if σj is negative then
l(j) = the largest index of the positive k-simplices associated to ∂σj ;

Lk ← Lk ∪ {(σl(j), σj)};
Output: Return the persistent pairs in each dimension L0, L1, · · · , Ld−1;

Notice that, as for the algorithm to compute the Betti numbers, the main
issue with this algorithm is to determine l(j). We overcome it by considering
a matrix version of the above algorithm.

Persistence algorithm: the matrix version

We now present an easy to implement version of the persistence algorithm.
It relies on a simple reduction of the matrix of the boundary operator.

Let K be a simplicial complex of dimension d and

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K

be a filtration of K such that for any i = 0, · · · ,m− 1,

Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex.

Let M = (mi,j)i,j=1,···m be the matrix with coefficients in Z/2Z of the bound-
ary operator defined by:

mi,j = 1 if σi is a face of σj and mi,j = 0 otherwise.

Hence, if σj is a (k + 1)-simplex the j-th column of M represents the set of
the k-dimensional faces of the boundary of σj . Since the simplices of K are
ordered according to the filtration, the matrix M is upper triangular. For
any column Cj of M , we denote by l(j) the index of the lowest line of M
containing a non-zero term in the column Cj :

(i = l(j))⇔ (mi,j = 1 and mi′,j = 0 ∀i′ > i)
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Notice that l(j) is not defined when the column Cj does not contain any non
zero term. We then have the following very simple algorithm to compute
the persistent pairs.

Algorithm 12 Persistent computation - Matrix version

Input: A filtration of a d-dimensional simplicial complex K containing
m simplices and the matrix M of the boundary operator.
for j = 0 to m do

while there exists j′ < j such that l(j′) == l(j) do
Cj = Cj + Cj′ mod(2);

Output: Return the pairs (l(j), j);

Proposition 11.16 The previous algorithm computes the persistent pairs
of the filtration ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K.

Proof The result immediately follows from a sequence of elementary facts.
Fact 1 : At each step of the algorithm, the column Cj represents a chain
of the following form

∂


σj +

∑

i<j

εiσ
i


 with εi ∈ {0, 1}.

This is proven by an immediate induction.

Fact 2 : At the end of the algorithm, if j is such that l(j) is defined, then
σl(j) is a positive simplex.

Indeed, the column Cj represents a chain of the form

σl(j) +
∑

p<l(j)

ηpσ
p with ηp ∈ {0, 1},

but according to Fact 1, Cj also represents a boundary in Kj . So the
previous chain is a cycle (since ∂ ◦ ∂ = 0) in K l(j) containing σl(j). The
simplex σl(j) is thus positive.

Fact 3 : If at the end of the algorithm the column Cj only contains zero
terms, then σj is positive.
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Indeed, according to Fact 1, we have

∂


σj +

∑

i<j

εiσ
i


 = 0,

so σj is contained in a cycle of Kj .

Fact 4 : If at the end of the algorithm, the column Cj contains non zero
terms, then (σl(j), σj) is a persistence pair.

Combining Facts 1 and 2, the boundary of σj can be written as

∂σj = σl(j) +
∑

p<l(j)

ηpσ
p + ∂


∑

i<j

εiσ
i




Moreover σl(j) is positive and thus was added to the persistent homology
basis at time l(j) and has not been paired before time j. Remarking that at
the end of the algorithm a line of the matrix cannot contain more than one
lowest non-zero term of a column, we deduce that (σl(j), σj) is a persistence
pair. �

Remark 11.17 Notice that the time complexity of the above algorithm
is O(m3) in the worst case. However in practical applications it usually
happens to be much faster (O(m) or O(m logm)).

11.5.3 Persistence diagrams and bottleneck distance

For a fixed k, the persistent pairs of simplices of respective dimensions k and
k + 1 are conveniently represented as a diagram in the plane R2: each pair
(σl(j), σj) is represented by the point of coordinates (l(j), j). For each posi-
tive simplex σi which is not paired to any negative simplex in the filtration,
we associate the pair (σi,+∞). For technical reasons that will become clear
in the next section, we add to this finite set the diagonal {y = x} of R2 to
get the k-dimensional persistence diagram of the filtration. More generally,
if the filtration is indexed by a non decreasing sequence of real numbers, as,
e.g., in the case of a filtration associated to the sublevel sets of a function,

∅ = Kα0 ⊂ Kα1 ⊂ · · · ⊂ Kαm = K with α0 ≤ α1 · · · ≤ αm
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a persistent pair of simplices (σi, σj) is represented in the diagram as the
point of coordinates (αi, αj). In this later case, we have to take care that,
since the sequence (αi) is non decreasing, several pairs can be associated to
the same point in the plane. A persistence diagram is thus a multiset and
the multiplicity of a point is defined as the number of pairs associated to this
point. By convention, the points on the diagonal have infinite multiplicity.
By convention, if a simplex σi is not paired, we then add the point of coor-
dinates (αi,+∞) to the persistence diagram. Notice that, as a consequence,

the persistence diagram is a multiset in R2
where R = R ∪+∞.

Persistence diagrams can be compared using a matching distance called the
bottleneck distance.

Definition 11.18 (Bottleneck distance) Let D1 and D2 be two persis-
tence diagrams The bottleneck distance between D1 and D2 is defined as

dB(D1, D2) = inf
γ

sup
p∈D1

‖p− γ(p)‖∞

where γ is the set of bijections between the multi-sets D1 and D2 (a point with
multiplicity m > 1 is considered as m disjoint copies) and ‖p−q‖∞ = max(|
xp − xq |, | yp − yq |). By convention, if yp = yq = +∞, then ‖p − q‖∞ =|
xp − xq |.

The above definition motivates the inclusion of the diagonal of R2 in the
definition of persistence diagram: it allows to compare diagrams that do not
have the same numbers of off-diagonal points by matching them with points
on the diagonal (see Figure 11.9).

11.5.4 Persistence modules, interleaving and stability

Persistence can be defined in a purely algebraic way that turns out to be
particularly useful and powerful in many settings. The proofs of the results
presented in this section are beyond the scope of this book but the algebraic
framework introduced in this section allows to efficiently prove the results
of the next sections.

The notion of persistence can be extended to more general sequences of
vector spaces in the following way.
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dB

Figure 11.9: The bottleneck distance between two diagrams

Definition 11.19 (Persistence modules) A persistence module V over a
subset I of the real numbers R is an indexed family of vector spaces (Va | a ∈
I) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which
satisfy the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa
is the identity map on Va.

Definition 11.20 (q-tameness) The persistence module V is said to be
q-tame if rk(vba) < +∞ whenever a < b.

The sequence of homology groups of the filtration of K considered in the
previous section together with the homomorphisms induced by the inclusion
maps is a persistence module indexed over the set I = {0, 1, · · · ,m}. It
can be shown that the persistence diagram of a filtration {∅ = Kα0 ⊂
Kα1 ⊂ · · · ⊂ Kαm = K} is completely determined by the rank of the
homomorphisms Hk(K

αi)→ Hk(K
αj ) for any i < j. This property extends

to q-tame modules.
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Theorem 11.21 If a persistence module V is q-tame, then it has a well-

defined persistence diagram dgm(V) ⊂ R2
. When V is the persistence module

defined by a filtration of a finite simplicial complex, this diagram coincides
with the one defined in Section 11.5.3.

To avoid technical difficulties in the sequel of this section, we assume that all
the considered persistence modules are indexed by R. This is not a restrictive
assumption in our setting: if V is a persistence module indexed by a finite
set α1 < α2 < · · · < αm it can be extended to a piecewise constant module
indexed by R by defining Vα = Vαj for α ∈ [αj , αj+1) with the convention
α0 = −∞ and αm+1 = +∞. The linear maps are then defined in an obvious
way by letting vba = Id whenever αj ≤ a ≤ b < αj+1.

Let U,V be persistence modules over R, and let ε be any real number. A
homomorphism of degree ε is a collection Φ of linear maps

(φa : Ua → Va+ε | a ∈ R)

such that vb+εa+ε ◦ φa = φb ◦ uba for all a ≤ b. We write

Homε(U,V) = {homomorphisms U→ V of degree ε},
Endε(V) = {homomorphisms V→ V of degree ε}.

Composition is defined in the obvious way. For ε ≥ 0, the most important
degree-ε endomorphism is the shift map

1εV ∈ Endε(V),

which is the collection of maps (va+ε
a ) from the persistence structure on V.

If Φ is a homomorphism U→ V of any degree, then by definition Φ1εU = 1εVΦ
for all ε ≥ 0.

Definition 11.22 (Interleaving of persistence modules) Two persistence
modules U,V are said to be ε-interleaved if there are maps

Φ ∈ Homε(U,V), Ψ ∈ Homε(V,U)

such that ΨΦ = 12ε
U and ΦΨ = 12ε

V .

The notion of interleaving allows to state the fundamental stability theorem
for persistence diagrams.
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Theorem 11.23 (Stability of persistence diagrams) Let U,V be two
q-tame persistent modules that are ε-interleaved for some ε ≥ 0. Denot-
ing by dgm(U) and dgm(V) their persistence diagrams, we have

dB(dgm(U), dgm(V)) ≤ ε.

In the next sections, we apply the stability to different settings.

11.5.5 Persistence stability for functions

Let f : X → R be a real-valued function defined on a topological space X.
Let consider the sublevel set filtration {Fα = f−1((−∞, α])}α∈R and consider
the (singular) homology groups Hk(Fα) of these sublevel sets. Notice that
the canonical inclusion Fα ⊆ Fβ whenever α ≤ β induces an homeomorphism
Hk(Fα)→ Hk(Fβ). So, the sublevel sets filtration of f induces a persistence
module Fk.

Definition 11.24 A real-valued function f defined on a topological space
X is said to be q-tame if its associated persistence modules Fk are q-tame
for any non negative integer k.

The following result provides sufficient conditions for f and g to be q-tame.

Proposition 11.25 If X is homeomorphic to a finite simplicial complex
and f : X → R is continuous, then f is q-tame. In particular, dgm(Fk) is
well-defined.

Proposition 11.26 Let f, g : X → R be two functions defined on a topo-
logical space X such that ‖f − g‖∞ = supx∈X |f(x) − g(x)| < ε. Then the
persistence modules Fk and Gk induced by the sublevel sets filtrations of f
and g are ε-interleaved.

Proof Since ‖f − g‖∞ < ε, we have, for any α ∈ R, Fα ⊆ Gα+ε ⊆ Fα+2ε ⊆
Gα+3ε ⊆ · · · These inclusions induce homomorphisms Hk(Fα)→ Hk(Gα+ε)
and Hk(Gα) → Hk(Fα+ε) for all α ∈ R. The sets of these homomorphisms
define an ε-interleaving between Fk and Gk. �
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In the sequel, when there is no ambiguity, the notation dgm(f) denotes
the persistence diagram of Fk, for any k. Applying the Persistence Stabil-
ity Theorem 11.23, we immediately obtain the following stability result for
functions.

Theorem 11.27 Let X be a topological space and let f, g : X → R be two
q-tame functions. Then

dB(dgm(Fk), dgm(Gk)) ≤ ‖f − g‖∞.

From a practical point of view, the above theorem provides a rigorous way
to approximate the persistence diagrams of continuous functions defined
on a triangulated space. For example, assume that X is a triangulated
manifold in Rd where the diameter of each simplex is upper bounded by
some δ > 0 and assume f : X → R to be c-Lipschitz for some c > 0, i.e.
|f(x) − f(x′)| ≤ c‖x − x′‖. Then, given a non negative integer k, one can
easily check that the bottleneck distance between the persistence diagram of
f and the persistence diagram of the filtered complex induced by the values
of f at the vertices of the triangulation is upper bounded by cδ (see Exercise
11.8).

11.5.6 Persistence stability for compact sets and complexes
built on top of point clouds

Proposition 11.28 Let X ⊂ Rd be a compact set. The distance function
dX : Rd → R is q-tame.

Proof Given 0 ≤ α < β and a non negative integer k, we just need to prove
that the homomorphism Hk(X

α)→ Hk(X
β) induced by the inclusion of the

offsets, Xα ⊂ Xβ, has finite rank. Denoting ε = (β − α)/2 > 0, since X is
compact, there exists a finite subset P ⊆ X of X such that dH(X,P ) < ε.
As a consequence we have the following inclusion

Xα ⊆ Pα+ε ⊆ Xβ

that induces the following sequence of homomorphisms

Hk(X
α)→ Hk(P

α+ε)→ Hk(X
β).
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Figure 11.10: Comparing the persistence diagrams of two close functions
defined on a segment

Now, it follows from the nerve Lemma that Pα+ε is a finite union of balls
homotopy equivalent to Čech(P, α+ ε) which is a finite simplicial complex.
As a consequence dimHk(P

α+ε) < +∞ and rk(Hk(X
α) → Hk(X

β)) ≤
dimHk(P

α+ε) < +∞. �

The above proposition implies that distance functions to compact subsets
of Rd have well-defined persistence diagrams. Recalling that if X,Y ⊂ Rd
are compact, then dH(X,Y ) = ‖dX − dY ‖∞, we immediately obtain the
following corollary.

Corollary 11.29 Let X,Y ⊂ Rd be compact. Then

dB(dgm(dX), dgm(dY )) ≤ dH(X,Y ).

In particular, if P,Q ⊂ Rd are finite point clouds, then for any non negative
integer k,

dB(dgm(Hk(Čech(P ))), dgm(Hk(Čech(Q)))) ≤ dH(P,Q)
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where Čech(.) denotes the Čech filtration.

The second part of the corollary follows from the nerve Lemma 2.8 and
the paragraph before Proposition 11.10 showing that Pα and Čech(P, α)
are homotopy equivalent for any α and the homotopy equivalences can be
chosen to commute with the inclusion maps at the homology level. As
a consequence the persistence modules induced by the sublevel sets of dP
and the Čech filtration are 0-interleaved. Using that Pα is also homotopy
equivalent to the alpha-complex A(P, α) the same result also holds when
Čech(P ) is replaced by the alpha-complex filtration A(P ).

Application: topological signatures for shapes. The same kind of
result can be also established for the Vietoris-Rips complex and, thanks to
these stability properties, the obtained persistence diagrams can be consid-
ered as robust multiscale topological signatures associated to point clouds.
They can thus be used to compare the topological structure of points clouds
sampled from different shapes. Notice that if the finite point cloud P is
transformed by an isometry of Rd into another point cloud P ′, then the
Čech , the Vietoris-Rips and alpha-shape filtrations of P and P ′ are the
same. However, dH(P ′, Q) can become much larger than dH(P,Q) while the
bottleneck distance between persistence diagrams remains unchanged, mak-
ing the second inequality of Corollary 11.29 less interesting. To overcome
this issue one can consider the Gromov-Hausdorff distance defined in the
following way.

Definition 11.30 Let X,Y ⊂ Rd be two compact sets and let ε ≥ 0. An
ε-correspondence between X and Y is a subset C ⊆ X × Y such that
(i) for any x ∈ X, there exists y ∈ Y such that (x, y) ∈ C;
(ii) for any y ∈ Y , there exists x ∈ X such that (x, y) ∈ C;
(iii) for any (x, y), (x′, y′) ∈ C, |d(x, x′) − d(y, y′)| ≤ ε, where d(x, x′) =
‖x− x′‖ is the Euclidean distance.
The Gromov-Hausdorff distance between X and Y is defined by

dGH(X,Y ) = inf{ε ≥ 0 : there exists an ε-correspondence between X and Y }.

Notice that the above definition can be extended verbatim to any pair of
compact metric spaces. Indeed the Gromov-Hausdorff distance allows to
compare compact metric spaces, up to isometry, independently of any em-
bedding. Coming back to the point clouds P, P ′ and Q where P ′ is the image
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of P by an ambient isometry of Rd, we have that dGH(P,Q) = dGH(P ′, Q).
Moreover, Corollary 11.29 has the following generalization.

Theorem 11.31 Let P,Q ⊂ Rd be finite point clouds and let Filt(.) be any
of the Čech , V ietoris − Rips or alpha-shape filtered complexes. Then for
any non negative integer k,

dB(dgm(Hk(Filt(P ))), dgm(Hk(Filt(Q)))) ≤ dGH(P,Q).

This theorem can be extended to point clouds in non Euclidean metric
spaces, except for the alpha-shape filtration which is no longer defined. In
particular, to define the Vietoris-Rips complex, one just needs to know the
pairwise distances between the points. As the computation of the Gromov-
Hausdorff distance is usually intractable in practice, we can thus use the
persistence diagrams of the Vietoris-Rips filtrations to compare the topolog-
ical structure of finite data sets coming with pairwise distance information.
Thanks to Theorem 11.31, the bottleneck distance provides a discriminative
comparison tool: if the bottleneck distance between the diagrams is large,
the two corresponding sets are far away from each other with respect to
dGH . The reverse is not true.

11.6 Exercises

Exercise 11.1 Let K be a finite simplicial complex. Prove that β0(K) is
equal to the number of connected components of K.
Hint: use the result of Exercise 2.1.

Exercise 11.2 Compute the Betti numbers of the simplicial complexes of
Figure 11.3.

Exercise 11.3 (Difficult) Let P be a finite set of points in R2. Prove that
for any α ≥ 0

Rips(P, α) ⊆ Čech(P, α

√
d

2(d+ 1)
) ⊆ Rips(P, 2α

√
d

2(d+ 1)
)

Hint: see [62], Theorem 2.5.
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Exercise 11.4 Chains with coefficient in Z/2Z have an obvious geometric
interpretation: since any k-chain can be uniquely written as c = σi1 + σi2 +
· · ·σim where the σij are k-simplices, c can be considered as the union of the
simplices σij . Show that the sum of two k-chains is equal to their symetric
difference 1.

Exercise 11.5 Let P ⊂ Rd be a finite set of points. Prove that, for any
r ≥ 0, the Betti numbers βk(P

r) of the r-offset P r are finite.

Hint: use the Nerve theorem.

Exercise 11.6 Let F be a filtration of a simplicial complex K. Prove that
all the vertices of K are positive and that an edge σi is positive if and only if
the two ends (vertices) of σi are in the same connected component of Ki−1.

Exercise 11.7 Let F be a filtration of a simplicial complex K.
1. Prove that any cycle in K contains at least one positive simplex.
2. Prove that the cycle associated to a positive simplex in lemma 11.14 is
uniquely defined.

Exercise 11.8 Let X be a (finitely) triangulated subset of Rd and let f :
X → R be a c-Lipschitz function, c > 0. Let Kf be the filtration induced
by f on the triangulation of X. Denoting by δ > 0 the largest diameter of
the simplices of the triangulation of X, prove that,

dB(dgm(Kf ), dgm(f)) ≤ cδ.

11.7 Bibliographical notes

A detailed introduction to algebraic topology and simplicial and singular
homology can be found [113, 97].

The results of Section 11.4 are derived from [46] where complete proofs are
given.

Persistent homology has been independently introduced by different authors
[71, 84, 121] and has know important developments during the last decade.

1The symetric difference of two sets A and B is defined by A∆B = (A∪B) \ (A∩B).
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The stability of persistence diagrams has been initially proven by [60] for
tame continuous functions defined on triangulable spaces. It was then ex-
tended and generalized by [35] and [41] to a more algebraic framework that
appeared of fundamental importance in topological data analysis. An intro-
ductory course to computational topology is provided in [75] and a recent
and general presentation of persistent homology theory is given in [117].

Theorem 11.31 is a particular case of a result proven in [42] and it has found
various applications in shape classification [36] and in statistical analysis of
data - see, e.g., [50, 80, 11, 48].
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persistent, 271

boundary, 20
boundary operator, 258
Bregman

complex, 91
diagram, 88, 90
divergence, 88

Čech complex, 35
cell complex, 49, 74
chain complex, 258
closure, 20
combinatorial manifold, 38
compact space, 21
connected space, 21
contractible space, 24
convex polyhedron, 48
convex polytope, 46

boundary complex, 49
face, 47
supporting hyperplane, 46

cover, 33
good cover, 34

critical function, 225

critical point

α-critical point, 238

µ-critical point, 221

of distance function, 218

cycle, 259

deformation retract, 25

Delaunay

ball, 77

complex, 76

filtration, 138

tangential complex, 190

triangulation, 77, 81

dense sample, 102

diameter, 112

diffeomorphism, 158

distance

bottleneck, 276

Euclidean distance, 21

Gromov-Hausdorff, 282

Hausdorff, 26

Wasserstein, 242

weighted distance, 81

distance function, 215
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distance-to-measure, 244
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dual complexes, 52
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natural embedding, 33
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general position, 48
general position wrt spheres, 77
geometric realization, 32
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homology group

simplicial, 259
singular, 263
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of simplicial complexes, 32

isotopy
ambient, 23
lemma, 219, 238

Kullback-Leibler
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uniform, 241
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discrete metric space, 108
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Moser Tardos algorithm, 198
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Nerve Theorem, 34
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(ε, η̄)-net, 103

offset, 25, 215

persistence diagram, 275
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interleaving, 278
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protection, 128

δ-protected, 128
δ-protection center, 128
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function, 279
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reconstruction
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submanifold, 198
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sampling radius, 102
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abstract, 32
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dimension of, 31
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singular value, 112
skeleton, 31
space
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invariant, 25
space, 20

topological space
triangulation, 38, 171

topology, 20
induced, 20
metric, 21

transport plan, 241
triangulation

of a point set, 38
of a topological space, 38, 171

tubular neighborhood
see offset, 25

upper bound theorem, 53
upper envelope, 52, 73, 82

vertex, 30
scheme, 32

Vietoris-Rips complex, 36
Voronoi

k-order diagram, 86
cell, 73
diagram, 73

weak feature size, 219, 238
weighted

center, 118
distance, 81
orthogonal weighted points, 117
point, 81
radius, 118

weighted α-complex, 140
weighted α-shape, 140
weighted Delaunay

complex, 83
triangulation, 85

weighted Voronoi
cell, 82
diagram, 82

weighting scheme, 117, 199
witness complex, 143

relaxed witeness complex, 148
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