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Abstract: Recently, Chazal, Cohen-Steiner and Mérigot have defined a
distance function to measures to answer geometric inference problems in a
probabilistic setting. According to their result, the topological properties
of a shape can be recovered by using the distance to a known measure
ν, if ν is close enough to a measure µ concentrated on this shape. Here,
close enough means that the Wasserstein distance W2 between µ and ν
is sufficiently small. Given a point cloud, a natural candidate for ν is the
empirical measure µn. Nevertheless, in many situations the data points are
not located on the geometric shape but in the neighborhood of it, and µn

can be too far from µ. In a deconvolution framework, we consider a slight
modification of the classical kernel deconvolution estimator, and we give a
consistency result and rates of convergence for this estimator. Some simu-
lated experiments illustrate the deconvolution method and its application
to geometric inference on various shapes and with various noise distribu-
tions.
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Infering topological and geometric information from multivariate data is a prob-
lem which is attracting a lot of interest for a couple of decades. Many statistical
methods have been developed to model and estimate geometric features from
point cloud data that are usually considered as independent observations drawn
according to a common distribution µ in an Euclidean space R

d. In low di-
mensions, principal curves and principal surfaces have been early proposed by

1394

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/11-EJS646
mailto:claire.caillerie@inria.fr
mailto:frederic.chazal@inria.fr
mailto:jerome.dedecker@parisdescartes.fr
mailto:bertrand.michel@upmc.fr


Deconvolution for the Wasserstein metric 1395

Hastie and Stuetzle (1989) to study simple manifolds. More elaborated struc-
tures can be also studied with density-based methods. For instance, filament
estimation has been the subject of several works, see Genovese et al. (2009) and
Genovese et al. (2010) for recent contributions. In a more general context, set
estimation deals with problems in the interplay between statistics and geom-
etry. This field includes estimation of supports, boundaries and level sets, see
Cuevas and Fraiman (2010) for a large overview on this topic. Cluster anal-
ysis algorithms also provide geometric information. One popular approach of
clustering proposed by Hartigan (1975) consists in defining clusters as con-
nected components of the levels sets associated to a density f , see for instance
Cuevas, Febrero and Fraiman (2000) and Biau, Cadre and Pelletier (2008). An-
other statistical work by Koltchinskii (2000) propose s estimators of the entropy
dimension of the support of µ and of the number of clusters of the support in
the case of corrupted data. The paper of Cuevas, Fraiman and Rodŕıguez-Casal
(2007) addresses estimation of the surface area of a d-dimensional body, as
defined by the Minkowski measure. These above mentioned works propose effi-
cient statistical methods for geometric inference but they usually do not provide
topological guarantees on the estimated geometric quantities.

On the other hand many non stochastic methods have been proposed in com-
putational geometry to infer the geometry of an unknown object from a set of
data point sampled around it. In this context, distance functions to the data
have shown to be efficient tools to robustly infer precise information about the
geometry of the object. More precisely, Chazal and Lieutier (2008) and Chazal,
Cohen-Steiner and Lieutier (2009) show that the sublevel sets of the distance
function to the data can be used to recover the geometry of the unknown ob-
ject. These methods offer strong geometric and topological guarantees but they
rely on strong sampling assumptions that usually do not apply in a statistical
framework. In particular, they fail when applied on data corrupted by outliers.

Recently, some efforts have been made to bridge the gap between the statis-
tical and geometric approaches. For example, assuming that the observations
are independently drawn from a probability measure that is the convolution of
the uniform measure on a submanifold M with a Gaussian noise measure sup-
ported by the normals to M , Niyogi, Smale and Weinberger (2011) propose an
algorithm to recover the Betti numbers of M . A major limitation of this method
is that the noise should verify a strong variance condition.

In a different perspective Chazal, Cohen-Steiner and Mérigot have general-
ized the approach of Chazal, Cohen-Steiner and Lieutier (2009) by extending
the notion of distance function from compact sets to probability measures. This
new framework allows to robustly infer geometric properties of a distribution µ
using independent observations drawn according to a distribution µ′ “close” to
µ where the closeness between probability distributions is assessed by a Wasser-
stein distance Wp defined by

Wp(µ, µ
′) = inf

π∈Π(µ,µ′)

(∫

Rd×Rd

‖x− y‖pπ(dx, dy)
)

1

p

,
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where Π(µ, µ′) is the set of probability measures on R
d×R

d that have marginals
µ and µ′, ‖.‖ is a norm and p ≥ 1 is a real number (see Rachev and Rüschendorf
(1998) or Villani (2008)).

Given a probability distribution µ in R
d and a real parameter 0 ≤ m ≤

1, Chazal, Cohen-Steiner and Mérigot generalize the notion of distance to the
support of µ by the function δµ,m : x ∈ R

d 7→ inf{r > 0 : µ(B(x, r)) > m}
where B(x, r) is the closed Euclidean ball of center x and radius r. To avoid
issues due to discontinuities of the map µ 7→ δµ,m, the distance function to µ
with parameter m0 ∈ [0, 1] is defined by

dµ,m0
: Rd → R

+, x 7→
√

1

m0

∫ m0

0

(δµ,m(x))2 dm. (1)

The function dµ,m0
shares many properties with classical distance functions

that make it well-suited for geometric inference purposes. In particular, the
map µ 7→ dµ,m0

is 1/
√
m0-Lipschitz, i.e.

sup
x∈Rd

|dµ,m0
(x) − dµ′,m0

(x)| = ‖dµ,m0
− dµ′,m0

‖∞ ≤ 1√
m0

W2(µ, µ
′).

This property ensures that the distance functions associated to close measures
(for the W2 metric) have close sublevel sets. Moreover, the function d2µ,m0

is

semiconcave (i.e. x 7→ ‖x‖2 − d2µ,m0
(x) is convex) ensuring strong regularity

properties on the geometry of its sublevel sets - see Petrunin (2007) for more
informations on the geometric properties of semiconcave functions. Using these
properties Chazal, Cohen-Steiner and Mérigot prove, under some general as-
sumptions, that if µ′ is a probability distribution approximating µ, then the
sublevel sets of dµ′,m0

provide a topologically correct approximation of the sup-
port of µ. In other words, if ones knows a measure ν that is close to µ for
the Wasserstein metric, the level sets of dν,m0

can be used to infer the topol-
ogy of the sublevel sets of the distance function to the support G of µ (see
Corollary 4.11 in Chazal, Cohen-Steiner and Mérigot for a precise statement).
In practice if one observes a set of points independently sampled according to
the distribution µ (resp. to some distribution µ′ that is close to µ), a natu-
ral candidate for ν is the empirical measure of the points cloud µn. Indeed,
E(W 2

2 (µn, µ)) (resp E(W 2
2 (µn, µ

′))) converges to zero as n tends to infinity, as
shown by Horowitz and Karandikar (1994).

However, in many situations the data is contaminated by noise, namely we
observe some points drawn according to the convolution µ ⋆ ν where µ is sup-
ported by the unknown compact set G and ν is the distribution of the noise. In
such a situation, E(W 2

2 (µn, µ)) does not converges to zero anymore, and µn may
be too far from µ to apply the results of Chazal, Cohen-Steiner and Mérigot.
The aim of this article is to propose a deconvolution estimator µ̂n close to µ for
the Wasserstein metric, and then to use the levels sets of dµ̂n,m0

to infer the
topology of the sublevel sets of the distance function to G.

Many papers deal with the convolution model from a statistical point of
view. We focus here on works related to support estimation or geometric in-
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ference. Support estimation in the convolution setting has been the subject
of recent works mostly in the univariate case. In Hall and Simar (2002) and
Delaigle and Gijbels (2006), the boundary of the support is detected via the
large values of the derivate of the density estimator under the assumption that
the density of µ has a discontinuity at the boundary. An alternative method
based on moment estimation is proposed by Meister (2006a) without assuming
that the density is discontinuous at the boundary. For the multivariate case,
Meister (2006b) proposes an estimator of the support based on a resampling
strategy, that satisfy some consistency properties. Still in the convolution set-
ting, Koltchinskii (2000) gives estimates of the entropy dimension of the support
G and of the number of clusters of G.

In this paper, we study the behavior of a deconvolution estimator with re-
spect to the Wassertein metric W2. In the applications we have in mind, µ is
typically supported by a submanifold of Rd with dimension strictly less than
d. Consequently, we shall not assume that µ has a density with respect to the
Lebesgue measure on R

d. In fact, except that it is compactly supported, we shall
make no further assumptions on µ.

Besides the geometric applications we have in mind, studying the properties
of probability estimators for the W2 metric is also interesting in itself. Firstly,
contrary to the Lp-distances between probability densities (except for p = 1,
which conincides with the total variation distance), the distances Wp are true
distances between probability distributions. Secondly, many natural estimators
µ̂n of µ are singular with respect to µ (think of the empirical measure in most
cases), and consequently the total variation distance between µ̂n and µ is equal
to 2 for any n. This is the case of our deconvolution estimator, if the support G
is a submanifold in R

d with dimension srictly less than d. Wasserstein metrics
appear as natural distances to evaluate the performance of such estimators.

The first section of this paper is devoted to the theoretical aspects of the
paper. We first define the deconvolution estimator µ̂n and then we give rates
of convergence for E(W 2

2 (µ̂n, µ)). The second section presents some numerical
experiments with applications to geometric inference. At the end of the paper,
the case of unknown error distribution is briefly addressed in a discussion section.

1. Deconvolution for the Wasserstein metric

We start with some notation. The inner product < ·, · > from R
d × R

d to R

is defined as follows: for x = (x1, . . . , xd)
t and y = (y1, . . . , yd)

t, < x, y >=
x1y1 + · · ·+ xdyd. The euclidean norm of x is denoted by ‖x‖ =

√
< x, x >.

In the following, we denote by µ∗ (respectively f∗) the Fourier transform of
the probability measure µ (respectively of the integrable function f), that is:

µ∗(x) =

∫

Rd

ei<t,x>µ(dt) and f∗(x) =

∫

Rd

ei<t,x>f(t)dt .

For two probability measures µ, ν on R
d, we denote by µ ⋆ ν the convolution

product of µ and ν, that is the image measure of µ ⊗ ν by the application
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(x, y) → x + y from R
d × R

d to R
d. If ν has a density g on R

d, we denote by
µ ⋆ g the density of µ ⋆ ν, that is

µ ⋆ g(x) =

∫

Rd

g(x− z)µ(dz) .

1.1. The multivariate convolution model

Assume that one observes n i.i.d. random vectors (Yi = (Yi,1, . . . , Yi,d)
t)1≤i≤n

with values in R
d in the model

Yi = Xi + εi, (2)

where the random vectorsXi = (Xi,1, . . . , Xi,d)
t are i.i.d and distributed accord-

ing to an unknown probability measure µ supported on an unknown compact
subset G of Rd. The random vectors εi = (εi,1, . . . εi,d)

t’s are also i.i.d. random
and distributed according to a probability measure µε which is supposed to be
known and symmetric (that is −ε1 has the same distribution µε). Hence, the
distribution of the Yi’s is given by ν = µ ⋆ µε.

Since µε is symmetric, its Fourier transform µ∗
ε is a real-valued function. We

also assume that
∫

Rd

‖x‖6µε(dx) < ∞ , (3)

which implies in particular that µ∗
ε is six times continuously differentiable. Fi-

nally, we assume that µ∗
ε is positive on R

d.
Let µn be the empirical measure of the observations, that is

µn =
1

n

n
∑

i=1

δYi
. (4)

Under suitable assumptions, it follows from Horowitz and Karandikar (1994)
that

lim
n→∞

E(W 2
2 (µn, µ)) = W 2

2 (µ ⋆ µε, µ) ,

and the term on right hand is nonzero if µε is not the Dirac measure at 0. Our
aim is to provide an estimator µ̂n of the unknown distribution µ such that

lim
n→∞

E(W 2
2 (µ̂n, µ)) = 0.

1.2. Deconvolution estimators

Let K be a symmetric density probability on R
d such that

∫

Rd

‖x‖2K(x)dx < ∞ .
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Assume moreover that its Fourier transformK∗ is compactly supported and two
times differentiable with Lipschitz second derivatives. We shall give an example
of such a kernel in Section 1.4.

Let H be an invertible matrix from R
d to R

d, Ht be the transpose of H ,
and |H | be the absolute value of the determinant of H . Define the preliminary
estimator

f̂n(x) =
1

n|H |

n
∑

i=1

K̃H(H−1(x− Yi)) , (5)

where

K̃H(x) =
1

(2π)d

∫

Rd

ei<u,x> K∗(u)

µ∗
ε((H

−1)tu)
du . (6)

The kernel K̃H is called the deconvolution kernel. It is well defined since K∗ is
compactly supported and µ∗

ε is continuous and positive. Moreover K̃H belongs
to L

1(Rd): this follows from the fact that the function u → K∗(u)/µ∗
ε((H

−1)tu)
is compactly supported and two times differentiable.

The estimator (5) is the multivariate version of the standard deconvolution
kernel density estimator which was first introduced in Carroll and Hall (1988)
and Stefanski and Carroll (1990). This estimator has been the subject of many
works, in particular in the non-parametric univariate setting. Only few pa-
pers study the multidimensional deconvolution problem, see Comte and Lacour
(2011) for a recent work on this subject.

Note that f̂n is not necessarily a density, since it has no reason to be non
negative. Since our estimator has to be a probability measure, we define

ĝn(x) = αnf̂
+
n (x), where αn =

1
∫

Rd f̂
+
n (x)dx

and f̂+
n = max{0, f̂n} .

The estimator µ̂n of µ is then the probability measure with density ĝn.
The first step is to prove a consistency result for this estimator, and to do

this, we need to specify a loss function. The pointwise (semi-) metric and the L2

metric between probability densities are the most currently used (see for instance
the monograph of Meister (2009)). Mean consistency results with respect to the
L1 loss have also been proved by Devroye (1989). However, these loss functions
are not adapted to our context, since we do not assume that µ has a density.

In this paper we takeW 2
2 as our loss function, and we give rates of convergence

for the quantity E(W 2
2 (µ̂n, µ)).

1.3. A general decomposition

In this section, we shall always assume that
∫

Rd

(1 + ‖x‖2)
√

Var(f̂n(x))dx < ∞ ,

which implies that E(W 2
2 (µ̂n, µ)) is finite. More precisely, we shall prove the

following “bias-variance” decomposition:
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Proposition 1. Let

B(H) =

∫

Rd

‖Hu‖2K(u)du and C(H) = B(H) +

∫

Rd

‖x‖2µ(dx) .

The following upper bound holds:

E(W 2
2 (µ̂n, µ)) ≤ 2B(H) + 4

∫

Rd

(2C(H) + ‖x‖2)
√

Var(f̂n(x))dx .

Proof of Proposition 1. We first define the kernel KH by

KH(x) =
1

|H |K(H−1x) .

As usual in deconvolution problems, the estimator f̂n is build in such a way
that E(f̂n(x)) = µ ⋆ KH(x). Indeed, by Plancherel’s identity

E(f̂n(x)) =
1

|H |

∫

Rd

K̃H(H−1(x− z))µ ⋆ µε(z)dz

=
1

(2π)d

∫

Rd

( 1

|H |K̃H(H−1(x− ·)
)∗

(u)µ∗(u)µ∗
ε(u)du ,

Since KH is symmetric, we have that

( 1

|H |K̃H(H−1(x− ·)
)∗

(u) = ei<u,x>K̃∗
H(−Htu) = ei<u,x>K̃∗

H(Htu) ,

and by definition of K̃H ,

E(f̂n(x)) =
1

(2π)d

∫

Rd

ei<u,x>K∗(Htu)

µ∗
ε(u)

µ∗(u)µ∗
ε(u)du

=
1

(2π)d

∫

Rd

( 1

|H |K(H−1(x− ·)
)∗

(u)µ∗(u)du = µ ⋆ KH(x) .

Now, by the triangle inequality

W 2
2 (µ̂n, µ) ≤ 2W 2

2 (µ ⋆ KH , µ) + 2W 2
2 (µ̂n, µ ⋆ KH) . (7)

The first term on the right hand side of (7) is deterministic, and can be easily
bounded as follows: let YH be a random variable with distribution KH and
independent of X1, in such a way that the distribution of X1 + YH is µ ⋆ KH .
By definition of W2, one has

W 2
2 (µ ⋆ KH , µ) ≤ E(‖X1 + YH −X1‖2) = E(‖YH‖22) = B(H) . (8)

To control the second term of (7), we shall use the following lemma
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Lemma 1 (Villani (2008) Theorem 6.15). Let µ and ν be two probability mea-

sures on R
d, and let |µ− ν| be the total variation measure of µ− ν. Then

W 2
2 (µ, ν) ≤ 2 min

a∈Rd

∫

Rd

‖x− a‖2|µ− ν|(dx) .

In particular, if µ and ν have respective densities f and g with respect to the

Lebesgue measure

W 2
2 (µ, ν) ≤ 2 min

a∈Rd

∫

Rd

‖x− a‖2|f(x)− g(x)|dx . (9)

Remark 1. The inequality (9) has been proved by Zolotarev (1978) with the
constant 4, and by Horowitz and Karandikar (1994) with the constant 3. We
give here a very elementary proof which provides a better constant, that is
slightly different from the proof given in Villani (2008), Theorem 6.15.

Remark 2. If µ has a density fµ with respect to the Lebesgue measure on R
d,

we can use the inequality (9) to obtain the following upper bound for the first
term of (7)

W 2
2 (µ ⋆ KH , µ) ≤ 2

∫

Rd

‖x‖2|fµ(x) − µ ⋆ KH(x)|dx . (10)

Now, as in density deconvolution, if fµ is smooth enough, this upper bound may
be more precise than the simple upper bound W 2

2 (µ⋆KH, µ) ≤ B(H). However,
the fact that fµ exists and is smooth on R

d is a very restrictive assumption in
our context. Indeed, the basic case that we want to recover is that where µ is
uniformly distributed on the compact set G. In that case, the density fµ may
not exist at all, and if it exists, it is not regular at the boundary of G, so that the
upper bound W 2

2 (µ ⋆KH , µ) ≤ B(H) is always better than (10). Note also that
the upper bound W 2

2 (µ ⋆ KH , µ) ≤ B(H) is in fact an equality if µ is a Dirac
measure, and hence it cannot be improved without additional assumptions on µ.

Proof of Lemma 1. Let µ− ν = π+ − π− be the Hahn-Jordan decomposition of
µ− ν. From the proof of Theorem 2.6.1 of Rachev and Rüschendorf (1998), we
know that

W 2
2 (µ, ν) = W 2

2 (π+, π−) .

By the triangle inequality, for any a ∈ R
d,

W 2
2 (π+, π−) ≤ 2W 2

2 (π+(R
d)δa, π+) + 2W 2

2 (π−(R
d)δa, π−) .

Now

W 2
2 (π+(R

d)δa, π+) =

∫

Rd

‖x− a‖2π+(dx)

and

W 2
2 (π−(R

d)δa, π−) =

∫

Rd

‖x− a‖2π−(dx) .
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Finally,

W 2
2 (µ, ν) = W 2

2 (π+, π−) ≤ 2

∫

‖x− a‖2(π+ + π−)(dx) ,

and the result follows.

We continue the proof of Proposition 1. Applying Lemma 1, we have succes-
sively

W 2
2 (µ̂n, µ ⋆ KH) ≤ 2

∫

Rd

‖x‖2|αnf̂
+
n (x) − E(f̂n(x))|dx

≤ 2αn

∫

Rd

‖x‖2|f̂+
n (x)− E(f̂n(x))|dx + 2(1− αn)

∫

Rd

‖x‖2E(f̂n(x))dx

≤ 2

∫

Rd

‖x‖2|f̂n(x)− E(f̂n(x))| + 2(1− αn)

∫

Rd

‖x‖2E(f̂n(x))dx . (11)

Note that
∫

Rd

‖x‖2E(f̂n(x))dx ≤ 2C(H) and (1 − αn) ≤
∫

Rd

(f̂+
n (x) − f̂n(x))dx ,

and consequently

E

(

(1− αn)

∫

Rd

‖x‖2E(f̂n(x))dx
)

≤ 2C(H)E
(

∫

Rd

(f̂+
n (x) − E(f̂n(x)))dx

)

≤ 2C(H)E
(

∫

Rd

|f̂n(x)− E(f̂n(x))|dx
)

. (12)

Since E(|f̂n(x) − E(f̂n(x))|) ≤ (Var(f̂n(x)))
1/2, Proposition 1 follows from (7),

(8), (11) and (12).

1.4. Errors with independent coordinates

In this section, we assume that the random variables (ε1,j)1≤j≤d are indepen-
dent, which means that ε1 has the distribution µε = µ1 ⊗ µ2 ⊗ · · · ⊗ µd.

In this context, we shall use the kernel

K = k⊗n, where k(x) =
3

8π

(

4 sin(x/4)

x

)4

. (13)

Note that k∗(x) = 3g(4|t|)/16, with

g(t) =

(

t3

2
− 2t2 +

16

3

)

1[0,2[(t) +

(−t3

6
+ 2t2 − 8t+

32

3

)

1[2,4[(t) .

The kernel K is a symmetric density, and K∗ is supported over [−1, 1]d. More-
over, since t → g(|t|) is two times differentiable with Lipschitz second derivative,
the kernel K satisfies all the required conditions.
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We choose a diagonal matrix H with positive diagonal terms h1, h2, . . . , hd.
The kernel K̃H defined in (6) is given by

K̃H = k̃1,h1
⊗ k̃2,h2

⊗ · · · ⊗ k̃d,hd
where k̃j,hj

(x) =
1

2π

∫

eiux
k∗(u)

µ∗
j (u/hj)

du .

The preliminary estimator f̂n defined in (5) is then

f̂n(x1, . . . , xd) =
1

n

n
∑

i=1

∏

j=1...d

1

h j
k̃j,hj

(xj − Yi,j

hj

)

, (14)

and the estimator µ̂n of µ is deduced from f̂n as in Section 1.2.
Note that B(H) = β(h2

1 + · · · + h2
d), with β =

∫

u2k(u)du. To ensure the
consistency of the estimator, the bias term B(H) has to tend to zero as n tends
to infinity. Without loss of generality, we assume in the following that H is such
that B(H) ≤ 1. Hence, the variance term

Vn = 4

∫

Rd

(2C(H) + ‖x‖2)
√

Var(f̂n(x))dx

in Proposition 1 is such that

Vn ≤ C

∫

Rd

(

1 +

d
∑

i=1

x2
i

)

√

Var(f̂n(x1, . . . , xn)) dx1 . . . dxd

for some positive constant C that only depends on µ via the quantity M =
sup1≤i≤d |X1,i|∞ where | · |∞ is the essential-supremum norm. Now

√

Var(f̂n(x1, . . . , xn)) ≤
1√
n

√

√

√

√

E

((

d
∏

i=1

1

hi
k̃i,hi

(xi − Y1,i

hi

))2)

.

Applying Cauchy-Schwarz’s inequality d-times, we obtain that
∫

Rd

√

Var(f̂n(x1, . . . , xn)) dx1 . . . dxd

≤ D1√
n

√

√

√

√

E

(

d
∏

i=1

∫

(1 ∨ x2
i )
( 1

hi
k̃i,hi

(xi − Y1,i

hi

))2

dxi

)

≤ D2√
n

√

√

√

√

E

(

d
∏

i=1

(1 ∨ Y 2
1,i)

∫

(1 + u2
ih

2
i )

1

hi
(k̃i,hi

(u))2dui

)

whereD1 andD2 are positive constants depending on d. Now, Y 2
1,i ≤ 2(M2+ε21,i)

and using the independence of the coordinates of ε1, we obtain that

∫

Rd

√

Var(f̂n(x)) dx ≤ D3√
n

√

√

√

√

(

d
∏

i=1

(M2 + E(ε21,i))

∫

(1 + u2
ih

2
i )

1

hi
(k̃i,hi

(u))2dui

)

,

(15)
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It follows that

∫

Rd

√

Var(f̂n(x)) dx ≤ A0√
n

√

√

√

√

d
∏

i=1

∫

(1 + u2
ih

2
i )

1

hi
(k̃i,hi

(u))2dui . (16)

In the same way, we have that

∫

Rd

x2
k

√

Var(f̂n(x)) dx ≤ Ak√
n

√

(M6 + E(ε61,i))

∫

(1 + u6
kh

6
k)

1

hk
(k̃k,hk

(u))2duk

×
√

∏

i6=k

(M + E(ε21,i))

∫

(1 + u2
ih

2
i )

1

hi
(k̃i,hi

(u))2dui. (17)

Note that E(ε21,i) and E(ε61,i) are finished according to (3). Starting from these
computations, one can prove the following Proposition.

Proposition 2. Let ri(x) = 1/µ∗
i (x), and let (h1, . . . , hd) ∈ [0, 1]d. The follow-

ing upper bound holds

E(W 2
2 (µ̂n, µ)) ≤ 2β(h2

1+· · ·+h2
d)+

L√
n





d
∏

i=1

Ii(hi) +

d
∑

k=1

Jk(hk)
(

d
∏

i=1,i6=k

Ii(hi)
)





where L is some positive constant depending on d,M and (E(ε21,i),E(ε
6
1,i))1≤i≤d,

and

Ii(h) ≤
√

∫ 1/h

−1/h

(ri(u))2 + (r′i(u))
2du ,

Ji(h) ≤
√

∫ 1/h

−1/h

(ri(u))2 + (r
′′′

i (u))2du

+ h

√

∫ 1/h

−1/h

(r
′′

i (u))
2du+ h2

√

∫ 1/h

−1/h

(r
′

i(u))
2du .

Remark 3. Note that the upper bound in Proposition 2 depends on the un-
known distribution µ only through the constant M (which appears in (15) and
(17)). Hence the rate of convergence of µ̂ obtained from Proposition 2 does not
depend on µ. Note that in the classical context of L2-density deconvolution, the
variance term is exactly

∫

Rd

Var(f̂n(x))dx ,

which can be bounded independently of µ. This leads to the idea that E(W 2
2 (µ̂n, µ))

depends very poorly of the unknown distribution µ. If this intuition is correct,
a possible way to select the bandwidth parameter h = (h1, . . . , hd) is to choose
by simulation the best possible h in the simple case µ = δ0. This will be done
in Section 2. We shall see that this selected h leads to very good results for
different choices of µ, even when µ has a density (see Section 2.2).
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Proof of Proposition 2. By Plancherel’s identity,

∫

1

h
(k̃i,h(u))

2du =
1

2π

∫

1

h

(k∗(u))2

(µ∗
i (u/h))

2
du =

1

2π

∫

(k∗(hu))2

(µ∗
i (u))

2
du

≤ 1

2π

∫ 1/h

−1/h

r2i (u)du .

the last upper bound being true because k∗ is supported over [−1, 1] and
bounded by 1.

Let C be a positive constant, which may vary from line to line. Let qi,h(u) =
ri(u/h)k

∗(u). Since qi,h is differentiable with compactly supported derivative,
we have that

−iuk̃i,h(u) = (q′i,h)
∗(u) .

Applying Plancherel’s identity again,

∫

hu2(k̃i,h(u))
2du =

1

2π

∫

h(q′i,h(u))
2du

≤ C
(

∫ 1/h

−1/h

(r′i(u))
2du+ h2

∫ 1/h

−1/h

r2i (u)du
)

,

the last inequality being true because k∗ and (k∗)′ are compactly supported
over [−1, 1]. Consequently

√

∫

(1 + u2
ih

2
i )

1

hi
(k̃i,hi

(u))2dui ≤ CIi(hi) .

In the same way

−iu3k̃i,h(u) = (q′′′i,h)
∗(u) and

∫

h5u6(k̃i,h(u))
2du =

1

2π

∫

h5(q′′′i,h(u))
2du ,

Now, since k∗, (k∗)′, (k∗)′′ and (k∗)′′′ are compactly supported over [−1, 1],

∫

h5(q′′′i,h(u))
2du ≤ C

(

∫ 1/h

−1/h

(r′′′i (u))2du + h2

∫ 1/h

−1/h

(r′′i (u))
2du

+ h4

∫ 1/h

−1/h

(r′i(u))
2du+ h6

∫ 1/h

−1/h

(ri(u))
2du

)

.

Consequently

√

∫

(1 + u6
kh

6
k)

1

hk
(k̃k,hk

(u))2duk ≤ CJk(hk) .

The results follows.
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1.5. Linear transform of errors with independent coordinates

In this section, we assume that ε = Aη, where the distribution µη of η is such
that µη = µ1 ⊗ µ2 ⊗ · · · ⊗ µd, and A is some known invertible matrix. Applying
A−1 to the random variables Yi in (2), we obtain the new model

A−1Yi = A−1Xi + ηi ,

that is: a convolution model in which the error has independent coordinates.
To estimate the image measure µA−1

of µ by A−1, we use the preliminary
estimator of Section 1.4, that is

f̂n,A−1(x1, . . . , xd) =
1

n

n
∑

i=1

∏

j=1...d

1

h j
k̃j,hj

(xj − (A−1Yi)j
hj

)

,

and the estimator µ̂n,A−1 of µA−1

is deduced from f̂n,A−1 as in Section 1.2. This
estimator µ̂n,A−1 has the density ĝn,A−1 with respect to the Lebesgue measure.

To estimate µ, we define µ̂n = µ̂A
n,A−1 as the image measure of µ̂n,A−1 by

A. This estimator has the density ĝn = |A|−1ĝn,A−1 ◦ A−1 with respect to the

Lebesgue measure. It can be deduced from the preliminary estimator f̂n =
|A|−1f̂n,A−1 ◦A−1 as in Section 1.2. Now

W 2
2 (µ̂n, µ) = min

λ∈Π(µ̂n,µ)

∫

‖x− y‖2λ(dx, dy)

= min
π∈Π(µ̂

n,A−1 ,µA−1 )

∫

‖A(x− y)‖2π(dx, dy) .

Consequently, if ‖A‖ = sup‖x‖=1 ‖Ax‖, we obtain that

W 2
2 (µ̂n, µ) ≤ ‖A‖W 2

2 (µ̂n,A−1 , µA−1

) ,

which is an equality if A is an unitary matrix. Hence the upper bound given in
Proposition 2 for the quantity E(W 2

2 (µ̂n,A−1 , µA−1

)) is also valid for E(W 2
2 (µ̂n, µ)).

Note that f̂n can be written as in (5), with the kernel K = |A|−1k⊗n ◦ A−1

and the diagonal matrix H with diagonal terms h1, . . . , hd.

1.6. Examples of rates of convergence

In this section we shall always assume that µε = µ1 ⊗ µ2 ⊗ · · · ⊗ µd. According
to the comments of Section 1.5, the rates of convergence are also valid for any
linear invertible transform of such noises.

Case 1: no noise. In that case µ∗
1 = µ∗

2 = . . . = µ∗
d = 1. Taking h1 = h2 =

· · · = hd = h, Proposition 2 gives the upper bound

E(W 2
2 (µ̂n, µ)) ≤ C

(

h2 +
1√
nhd

)

.
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Taking h = n−1/(d+4), we obtain the rate of convergence

E(W 2
2 (µ̂n, µ)) ≤

C

n2/(d+4)
.

Note that this is the same rate as that obtained by Horowitz and Karandikar
(1994) for the empirical measure µn defined in (4). To our knowledge, this rate
of convergence has not been improved without making additional assumptions
on µ. Rachev (1991) proved some upper and lower bounds (Theorem 11.1.6)
for E(W 2

2 (µn, µ)) under entropy conditions on µ. It follows from his estimates
that if µ has a density and d is even, then the rate E(W 2

2 (µn, µ)) ≤ Cn−2/d is
optimal.

Case 2: Rates of convergence for a family of noise distributions. For
α ∈ (0, 2), consider the density on R:

fα(x) =
α

2Γ(1/α)
exp(−|x|α) .

The Fourier transform of this density is proportional to the symetric α-stable
distribution. It has an explicity form for α = 1 and α = 2 only. The case α = 2
corresponds to the Gaussian density, and will be treated in the next paragraph.
The case α = 1 corresponds to the Laplace density, with Fourier transform

f∗
1 (u) =

1

(1 + u2)
.

Clearly, f∗
α is infinitely differentiable. From Lemma 2.2.7 page 44 in Koldobsky

(2005), we know that f∗
α is positive and symmetric on R. Bergström (1952)

has given a precise asymptotic expansion of f∗
α. In particular, it follows from

Bergström’s result that there exists a positive constant C(α) such that, for
x > 0,

f∗
α(x) =

C(α)

xα+1
+R(x)

where |R(x)| = O(x−2α−1) as x → +∞. The residual part R(x) is expressed as
an integral depending on x, which can be differentiated to obtain the following
asymptotic expansions, as x → +∞:

(f∗
α)

′(x) =
−(α+ 1)C(α)

xα+2
+O(x−2α−2)

(f∗
α)

′′(x) =
(α+ 1)(α+ 2)C(α)

xα+3
+O(x−2α−3)

(f∗
α)

′′′(x) =
−(α+ 1)(α+ 2)(α+ 3)C(α)

xα+4
+O(x−2α−4) . (18)

Let k be some nonnegative integer, and let rα,k(x) = 1/(f∗
α(x))

k. It follows
from (18) that, for different constants C1(α, k), C2(α, k), C3(α, k), C4(α, k), as
x → +∞,

rα,k(x) ∼ C1(α, k)x
kα+k , r′α,k(x) ∼ C2(α, k)x

kα+k−1 ,

r′′α,k(x) ∼ C3(α, k)x
kα+k−2 , r′′′α,k(x) ∼ C4(α, k)x

kα+k−3 .
(19)
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In this paragraph, we consider the case where

µ∗
i (u) = (f∗

αi
(u))ki ,

with αi ∈ (0, 2), and ki ∈ N. This corresponds to the case where the density of
ε1,i is the ki-times convolution of the density fαi

.

From (19) and Proposition 2, we obtain the upper bound

E(W 2
2 (µ̂n, µ)) ≤ C

(

h2
1 + · · ·+ h2

d +
1√
n

d
∏

i=1

h
−(2(αi+1)ki+1)/2
i

)

.

This bound is similar to the L2-risk bound obtained by Comte and Lacour
(2011) in the context of multivariate density deconvolution with an ordinary
smooth noise (see Section 3.2.1 in their paper). Their computations show that
one can take

hi = n−1/(d+4+2k1(1+α1)+···+2kd(1+αd)))

and then obtain the rate of convergence

E(W 2
2 (µ̂n, µ)) ≤

C

n2/(d+4+2k1(1+α1)+···+2kd(1+αd)))
.

In particular:

• If ki = 0 for all i (no noise), we obtain the same rate as previously.
• If ki = 1 and αi = α for all i (isotropic noise with marginal density fα),
we obtain the rate

E(W 2
2 (µ̂n, µ)) ≤

C

n2/((3+2α)d+4)
. (20)

• If kℓ = 1 and ki = 0 for i 6= ℓ (noise in the first direction only, with density
fα1

), we obtain the rate

E(W 2
2 (µ̂n, µ)) ≤

C

n2/(d+4+2(1+α1))
.

The index I(d) = k1(1+α1)+ · · ·+ kd(1+αd) can be seen as an index of global
regularity of the error distribution, summing all the regularities ki(1 + αi) of
the marginal distributions. As usual in deconvolution problems, the worst rates
of convergence are obtained for very regular error distributions: more precisely,
the rate of convergence becomes slower as I(d) increases. Note also that a single
marginal distribution with regularity k(1+α) gives the same rates as k marginal
distributions with regularity (1 + α).

Case 3: isotropic Gaussian noise. We consider the case where

µ∗
1(u) = µ∗

2(u) = . . . = µ∗
d(u) = exp(−u2/2).
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Proposition 2 gives the upper bound

E(W 2
2 (µ̂n, µ)) ≤ C

(

h2
1 + · · ·+ h2

d +
1√
n

d
∏

i=1

h
−5/2
i exp(h−2

i /2)
)

.

Following again Comte and Lacour (2011), one can take hi =
√

2/ log(n), and
we obtain the rate of convergence

E(W 2
2 (µ̂n, µ)) ≤

C

log(n)
.

Case 4: Gaussian noise in one direction. We consider the case where
µ∗
1(u) = exp(−u2/2), and µ∗

2 = · · · = µ∗
d = 1. Taking h2 = h3 = · · · = hd = h,

Proposition 2 gives the upper bound

E(W 2
2 (µ̂n, µ)) ≤ C

(

h2
1 + h2 +

1
√

nhd−1h5
1

exp(h−2
1 /2)

)

.

Taking h1 =
√

2/ log(n) and h = n−1/(5d−5), we obtain the rate of convergence

E(W 2
2 (µ̂n, µ)) ≤

C

log(n)
.

Hence, a Gaussian noise in one single direction gives the same rate of convergence
as an isotropic Gaussian noise. This is coherent with the discussion in Section
3.2.2 of Comte and Lacour (2011) about density deconvolution in R

d.

2. Experiments

In this section, we take d = 2 and we consider the case where µε = µ1 ⊗µ2. For
all the following experiments the preliminary estimator f̂n is defined as in (14)
with the bandwidth parameter h = (h1, h2) and the kernel

K = k⊗n, where k(x) =
3

16π

(

8 sin(x/8)

x

)4

. (21)

The only difference with the kernel given in (13) is that K is now supported over

[−1/2, 1/2]d. The estimator µ̂n of µ is then deduced from f̂n as in Section 1.2.
In practice, the deconvolution estimator µ̂n = µ̂n,h is only computed on a

finite set of locations. Let P = {p} be a finite regular grid of points in R
2, a

discrete version µ̃n = µ̃n,h of µ̂n,h is defined by

µ̃n,h =
∑

p∈P

α̂p(h)δp

where

α̂p(h) =
f̂+
n (p)

∑

p∈P f̂+
n (p)

.
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Note that the W2 distance between µ̃n,h and µ̂n,h tends to zero as the grid
resolution tends to zero. In the following, it is assumed that the grid resolution
is chosen small enough, namely it is assumed that

W 2
2 (µ̃n, µ̂n) ≪ W 2

2 (µ, µ̂n).

2.1. Dirac experiment and bandwidth selection

One situation for which the Wasserstein distance W2 is computable is the case
where µ is a Dirac measure. Obviously this framework has no interest in practice
but it allows us to validate the results proved in Section 1. As we shall see, it
is also a way to select a bandwidth which will be a reasonable candidate in a
general context.

Let µ = δ0, which corresponds to the case where Yi = εi in the convolution
model (2). Assume that µ∗

1(u) = µ∗
2(u) = (1 + u2)−1, which means that ε1,1

and ε1,2 have a standard Laplace distribution with variance 2. For this Laplace
isotropic noise, we choose h = (h, h).

For the empirical measure µn defined in (4), one has

E(W 2
2 (µn, δ0)) = E

(

∫

R2

‖x‖2µn(x)dx
)

= Var(ε1,1) + Var(ε1,2) = 4 .

For µ̃n, one has

E(W 2
2 (µ̃n, δ0)) = E

(

∑

p∈P

‖p‖2α̂p(h)
)

.

Let In(h) = W 2
2 (µ̃n, δ0) be the Wasserstein distance between δ0 and µ̃n. For

a given h in a grid H of possible bandwidths, E(In(h)) can be approximated
with an elementary Monte Carlo method by repeating the simulation Ns times.
Figure 1 shows the boxplot of the distribution of In(h) on a rough grid of
bandwidth with n = 20000. For such a sample size, the deconvolution estimator
µ̃n performs better than the empirical measure on a large scale of bandwidth
values.

For each n, an approximation of h∗ = argminE(W 2(µ̂n,h, δ0)) can be com-
puted as follows

ĥ∗(n) = argminh∈HĪn(h) where Īn(h) =
1

Ns

Ns
∑

s=1

In,s(h) .

and In,s(h) is the computation of In(h) corresponding to the s-th simulation.

Table 1 gives the value of ĥ∗(n) computed for different sample sizes and the

corresponding estimation Īn(ĥ∗) of E(In(h∗)). For n = 7500, Īn(ĥ∗) is about
one half of E(W 2(µn, δ0)).

Figure 2 shows a linear relation between log ĥ∗ and logn. A linear regression
leads to an estimation of the slope of −0.067 = −1/14.9, which is close (a little
larger) to the theoretical slope: −1/14 (see (20), with α = 1 and d = 2).
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Fig 1. Boxplots of In(h) for different bandwidth h. These results correspond to Ns = 100
computations of the deconvolution estimator based on samples of size n = 20000.

Table 1

Estimations of ĥ∗ and estimated risks for several values of the sample size n. These results
have been computed thanks to Ns = 100 computations of the deconvolution estimator

n 30 100 500 1000

ĥ∗ 0.172 0.159 0.143 0.137

Īn(ĥ∗) 4.7∓ 0.2 3.8∓ 0.2 3.14∓ 0.05 2.78 ∓ 0.05

n 5000 7500 10000 20000

ĥ∗ 0.123 0.119 0.117 0.111

Īn(ĥ∗) 2.12∓ 0.02 1.98∓ 0.02 1.87∓ 0.02 1.67 ∓ 0.01

As pointed out in Remark 3 of Section 1.4, it seems that h∗ does not strongly
depend on the geometric shape G. Hence, the bandwidth ĥ∗ computed for the
Dirac measure should be a reasonable bandwidth for estimating other distribu-
tions µ when the error distribution is an isotropic Laplace noise. This intuition
is confirmed via the simulations presented in the next section.

2.2. Geometric inference

This section illustrates with some simulations how to take advantage from the
estimator µ̂n and its consistency properties for geometric inference purposes. As
already explained in the introduction, the geometry of the unknown object G
can be inferred thanks to the levels of the distance function to a measure dν,m0

defined by (1) if ν is close enough to µ for the Wasserstein metric. The following
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Fig 2. Estimation of the bandwidths ĥ∗(n) (left) against the sample size in logarithm scales.

The estimated slope for the regression of log ĥ∗(n) by logn is −0.067 ≈ −1/14.9.

simulations compare the geometry recovered from the distance dµn,m0
to the

empirical measure as in Chazal, Cohen-Steiner and Mérigot, and the distance
dµ̂n,m0

to the deconvolution estimator µ̂n. The scale parameter m0 is fixed to
m0 = 0.01 for all the computations of the section. Hence we shall note dν for
dν,m0

in the sequel.

Three disks and Laplace noise

For this first example, we consider the geometric shape in R
2 composed of three

disks of radius one whose centers are at a distance 5
2 of each other. A total

set of 20000 points is sampled uniformly on these disks and observed with an
isotropic Laplace noise, as in Section 2.1. Figure 3 allows us to compare the
distance function to the empirical measure µn and the distance function to the
estimator µ̃n deduced from the deconvolution estimator. For the bandwidth, we
take h = ĥ∗ = 0.11, where ĥ∗ has been computed in Section 2.1 for the Dirac
measure (see Table 1).

The deconvolution allows us to enlarge the numbers of levels which recovers
the three disks: only the levels of dµn

between 0.29 and 0.5 have the correct
topology whereas the levels between 0.16 and 0.57 are valid for dµ̃n

. Further-
more, by drawing and comparing the levels of dµ̃n(h) for different bandwidth h,
it can be checked that h = 0.11 is around the optimal topological bandwidth,
namely it corresponds to the larger scale of levels of correct topology.
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Fig 3. Distance dµn to the empirical measure and distance dµ̃n(0.11) to the estimator for the
three disks experiment with Laplace noise. The three circles delimiting the disks are drawn
in red and the levels of the distance function which have the correct topology are drawn in
blue. The other levels are the black dashed lines. The same grid of levels is used on the two
pictures.
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Two circles and Laplace noise

The geometric shape of this second experiment is composed of two circles of
radius 4 and 7. A total set of 20000 points is sampled uniformly on these two
circles and the sample is observed with an isotropic Laplace noise, as in Section
2.1. The benefit of using a deconvolution estimator is obvious in this context,
since no levels of dµn

can reach the correct topology, whereas the levels of dµ̃n

between 0.56 and 0.63 give the correct topology, see Figure 4. The bandwidth
used here is again h = ĥ∗ = 0.11, as calibrated in Section 2.1.

One Gaussian example

As explained in Section 1.6 a Gaussian noise will give a logarithmic rate of
convergence of the deconvolution estimator µ̂n: this makes the application more
difficult in this framework. Anyway, a Gaussian example is proposed here, but
we use a large sample to be able to observe the topological effects.

The geometric shape to be recovered is composed of two embedded closed
filaments. One set of n = 100000 points are uniformly sampled on these two
filaments and this sample is observed with a standard isotropic Gaussian noise,
which means that ε1,1 and ε1,2 have a standard normal distribution. The two
filaments are drawn on the two pictures of Figure 5. No one of the drawn levels
of dµn

recovers the correct topology. In fact it can be checked by drawing the
contour plot with a thiner resolution that only the levels between 1.04 and 1.06
have the correct topology. We use a bandwidth h = 0.12 for our deconvolution
estimator. A larger scale of levels of dµ̃n

between 0.72 and 0.91 allows us to
recover the correct topology.

One directional measurement error

For this example, we take µ1 = δ0 and µ∗
2(u) = (1 + u2)−1, which means that

ε1,1 = 0 and that ε1,2 has a standard Laplace distribution.
A set of 10000 points is sampled uniformly along an incomplete circle, and

then observed with this one directional Laplace noise. The top picture of Figure 6
shows the sample and the incomplete circle in red, and the bottom picture
shows a sample drawn according to µ̃n,h: the hole is impossible to see on these
contaminated data whereas it is whith the deconvolvedmeasure. However, due to
the oscillations of the deconvolution estimator (which is a well known drawback
of these kind of estimators) a small amount of the mass appears at a large
distance of the circle. Using the distance function dµ̃n,m0

is then particularly
appropriate there, because this distance will ignore these outliers provided m0

is not too small. Figure 7 compares the distance to the empirical measure with
the distance to the estimator: the hole can be recovered only by the levels of
dµ̃n

. The correct levels of dµ̃n
are between 0.31 and 0.57. The estimator µ̃n has

been computed here with the bandwidths h1 = 0.07 and h2 = 0.25, this choice
leading to a correct inference of the geometric shape.
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Fig 4. Distance dµn and distance dµ̃n(0.11) for the two circles experiment with Laplace noise.
See Figure 3 for more details about the legend.
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Fig 5. Distance dµn and distance dµ̃n(0.12) for the two filaments experiment with Gaussian
noise. See Figure 3 for more details about the legend.
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Fig 6. Circle with hole in red and 10000 points sampled on it with an unidirectional Laplace
measurement error (top) and simulation of 10000 points according to µ̃n,h with h1 = 0.07
and h2 = 0.25 (bottom).
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Fig 7. Distance dµn and distance dµ̃n for the circle with hole with unidirectionnal noise. See
Figure 3 for more details about the legend.
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3. Unknown error distribution

In order to define the deconvolution estimator µ̂n, the distribution of the error
needs to be completely known. We briefly discuss this issue in this section. It
may be addressed in more details in future works.

The problem of unknown error has been often advanced against the estimator
of Carroll and Hall (1988) and Stefanski and Carroll (1990) in the context of
density deconvolution. This question has been the subject of many papers, most
of them dealing with the L

2 metric. Whatever the metric considered, two main
questions arise: what is the effect of a misspecified error distribution, and what
can be done if the error distribution is unknown.

The impact of a misspecified error distribution on the convergence of the
devolution estimator (5) has been studied by Meister (2004) for the L

2 metric.
Under suitable conditions, the mean integrated squared error converges to a
particular functional that depends of the true error distribution and of the
wrong distribution used in the estimator. With such a result in mind, it seems
likely that the convergence of µ̂n is also lost for the Wasserstein metric if the
error distribution is not well specified. However, it may not be too catastrophic
if the wrong distribution is not too far from the true one, as illustrated in
the following example. Assume that d = 1, that the true error distribution is
N (0, σ2), and that we use instead the distribution N (0, (1 − η2)σ2), for η < 1.
Following the lines of the proof of Proposition 1, it can be easily shown that
E(f̂n(x)) = µ ⋆ KH ⋆ Gησ where Gησ is a centered Gaussian distribution with
variance η2σ2. By the triangle inequality, for any α > 0,

W 2
2 (µ̂n, µ) ≤ (1+α)W 2

2 (µ ⋆Gησ ⋆KH , µ) +
α+ 1

α
W 2

2 (µ̂n, µ ⋆KH ⋆Gησ) . (22)

Taking h =
√

2/ log(n), the variance term E(W 2
2 (µ̂n, µ ⋆ KH ⋆ Gησ)) tends to

zero, and the bias term W 2
2 (µ ⋆Gησ ⋆KH , µ) converges to W 2

2 (µ ⋆Gησ, µ). The
upper bound (22) being true for any α > 0, we obtain that

lim sup
n→∞

E(W 2
2 (µ̂n, µ)) ≤ W 2

2 (µ ⋆ Gησ, µ) ,

while, for the empirical measure µn defined in (4),

lim
n→∞

E(W 2
2 (µ̂n, µ)) = W 2

2 (µ ⋆ Gσ, µ) .

Hence, as n tends to infinity, the deconvolution estimator becomes closer to µ
than the empirical measure: it is still relevant to use this deconvolution estima-
tor.

For most applications, the error distribution is partially or completely un-
known. If one wants to exhibit a consistent estimator in this context, the first
step is to check that the distributions are identifiable. Many examples of identi-
fiable or non identifiable problems can be found in Section 2.6 of Meister (2009).
For instance, the distributions are identifiable if µ is an ordinary smooth density
and if the error is a centered Gaussian with unknown variance.
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To estimate the error distribution and then use it to recover the distribution
of the signal, some authors assume that an independent sample from the error
distribution is observed (see Neumann (1997) and Comte and Lacour (2011)),
while other authors consider longitudinal data (see Li and Vuong (1998)). An-
other way is to make more hypotheses on the distributions of the signal and
of the error. In Butucea and Matias (2005), the distribution of the error is a s-
stable distribution with s belonging to (0, 2), and the distribution of the signal is
known up to a scale parameter σ. Meister (2007) supposes that the density of the
signal is compactly supported, and that the Fourier transform of the error dis-
tribution is known on a line segment. Schwarz and Van Bellegem (2010) assume
that the error is Gaussian with an unknown variance and that the distribution
of the signal puts no mass on a set of Lebesgue measure zero.

We think that some of the approaches described above in the context of
density deconvolution could be adapted to the W2-metric. However, as we have
seen in Section 1, one needs to be careful when dealing with this particular
metric, and none of these possible extensions seem to be easy.

Appendix A: Kernel performances

The section shortly discusses the kernel choice by comparing the performances of
the deconvolution estimator for the most used kernels. In the density estimation
framework with L2 risk in dimension one, Delaigle and Hall (2006) compare the
performances of four kernels given in Table 2.

Only k3 fulfills all the required conditions (see Section 1.2) to prove the
consistency result. Nevertheless, note that k∗1 , k

∗
2 have a compact support [−1, 1].

k∗2 is also C2 and its second derivate is Lipschitz, so this second kernel nearly
fulfills the required assumptions. On the other hand k∗1 is the less regular, and
concerning the Gaussian kernel, k∗4 has the required regularity but it has not a
compact support.

The four kernels are compared in the simple situation in R for which the
Wasserstein distance can be computed, namely a Dirac mass at 0. For each sim-
ulation, we consider a set of n = 500 independent Laplace variables of variance
2. An accurate grid P of points p over R is fixed, and for each simulation and a
given bandwidth h, let In(h) be the Wasserstein distance between δ0 and µ̃n(h):
In(h) :=

∑

p∈P x2
i α̂i(h). The Wasserstein risk is then estimated by computing

Īn(h) over 100 simulations of this experience.
It appears that the two kernels k1 and k4 have very bad performances. Even

for their estimated minimal bandwidth ĥ∗, the mean risk of their estimator is

Table 2

Four kernels and their Fourier transform

k1(x) := sin(x)/x k∗1(t) = 1[−1,1]

k2(x) := 48(cos x)(1 − 15x−2)(πx4)−1 k∗2(t) = (1 − t2)31[−1,1]

k3(x) := k(x), see (13) k∗3 = k∗, see (13)

k4(x) := (2π)−1/2 exp(−x2/2) k∗4(t) = exp(−x2/2)
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Fig 8. Comparing the performances of the deconvolution estimators defined by the two kernels
k2 and k3.

over 6. This first observation tends to confirm that the kernel assumptions of
Section 1.2 are not too restrictive. On the other hand, Figure 8 shows that k2
and k3 lead to estimators whose performance are quite similar in this context.
This is not surprising since these two kernels have similar regularity properties.
In spite of this observation, note that the consistency result is not proved for k2
since it is not positive, and thus the control of the bias proposed in this paper
is not valid for this kernel.
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