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Abstract

In this paper, we give a very simple and purely topological condition for two surfaces to be
isotopic. This work is motivated by the problem of surface approximation. Applications to
implicit surfaces are given, as well as connections with the well-known concepts of skeleton
and local feature size.
� 2005 Elsevier Inc. All rights reserved.
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E1. Introduction and related works

Finding approximations of given surfaces certainly is one of the core problems in
the processing of 3-dimensional geometry. When seeking for an approximation S0 of
a surface S, in addition to geometric closeness, one usually requires that S0 should be
topologically equivalent to S. While much work has been done on homeomorphic
approximation, in particular in the context of surface reconstruction [1], only a
few recent articles tackle the more difficult problem of ensuring isotopic approxima-
tion [2,17,3]. Let us recall that two surfaces are isotopic whenever they can be con-
tinuously deformed one into the other without introducing self-intersections. Isotopy
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is thus a finer relation than homeomorphy, since for instance a knotted torus is not
isotopic to an unknotted one, though both are homeomorphic. Rather than home-
omorphy, isotopy is what one should look for, since it completely captures the topo-
logical aspects of surface approximation.

The main result of [17] is that S and S0 are isotopic whenever the projection on S

defines a homeomorphism from S0 to S, the projection on S being defined as the map
that associates to each point its nearest neighbour on S (when it is uniquely defined).
In [2], it is shown that a specific piecewise linear approximation of S is isotopic to S,
using indirectly the same condition as the one considered in [17]. Note that this con-
dition involves not only the topology of the surfaces, but also their geometry, as the
projection on S is involved. In particular, it cannot be met when S is not smoothly
embedded, as the projection is then undefined in the vicinity of singular areas. Also,
checking this condition usually requires to bound the angle between the normals to S

and S0 carefully, which is useful for other purposes, but may seem irrelevant for
strictly topological purposes. In [3], some technical conditions are given to ensure
isotopy between curvilinear objects in R3, i.e., geometric objects made up of properly
joined patches defined in terms of control points.

In this work, we show that if S0 and S are homeomorphic, then a simple and
purely topological condition is sufficient to ensure the existence of an isotopy be-
tween them. When S is connected, the condition is merely that S0 is contained in
some topological thickening of S and separates the two boundary components of
that thickening. We also show that if in addition S separates the boundary compo-
nents of some topological thickening of S0, then the homeomorphy condition can be
dropped with the same conclusion.

Note that the smoothness of S is not required any more. Tedious analysis of the
deviation between normals is also avoided. Finally, the condition is easy to check,
and as we will see, various interesting corollaries can be obtained according to the
kind of thickenings considered. The proof of our theorem is based on several results
of 3-manifold topology. To begin with, we state the theorem precisely (Section 2),
and give some applications (Section 3), including a quantitative version of an existen-
tial result proved in [17] about interval solids. Furthermore, an isotopy criterion
involving skeleta is derived, and the case of implicitly defined surfaces is discussed.
Before proving our result (Section 5), we give some mathematical preliminaries (Sec-
tion 4).
 R
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N
C
O2. Main results

Throughout the paper we use the following notations. For any set X, X , Xc, and
oX denote, respectively, the closure of X, the complement of X, and the boundary of
X. Also, S and S0 denote two compact orientable surfaces embedded in R3.

Definition 2.1 (Isotopy and ambient isotopy). An isotopy between S and S0 is a
continuous map F :S · [0, 1]fi R3 such that F (.,0) is the identity of S, F (S, 1) = S0,
and for each t 2 [0, 1], F (., t) is a homeomorphism onto its image. An ambient
isotopy between S and S0 is a continuous map F :R3 · [0,1] fi R3 such that F (., 0) is



67
68

69
70
71
72
73
74
75

76
77
78

79
80
81
82

83

84
85
86

87

88
89
90
91

92

93
94
95
96

97

98

99

F. Chazal, D. Cohen-Steiner / Graphical Models xxx (2005) xxx–xxx 3

YGMOD 651 No. of Pages 15, DTD=5.0.1

24 February 2005 Disk Used Jaya (CE) / Jayanthi (TE)
ARTICLE IN PRESS
C
O
R
R
E
C
T
E
D
P
R
O
O
F

the identity of R3, F (S, 1) = S0, and for each t 2 [0,1], F (., t) is a homeomorphism
of R3.

Restricting an ambient isotopy between S and S0 to S · [0, 1] thus yields an isot-
opy between them. It is actually true that if there exists an isotopy between S and S0,
then there is an ambient isotopy between them [7], so that both notions are equiva-
lent in our case. If X � R3, we will say that S and S0 are isotopic in X if there exists an
isotopy between S and S0 whose image is included in X. Isotopies between sub-sur-
faces of other 3-manifolds than R3, which we will consider in the proof of the theo-
rem, are defined in the same way.

Definition 2.2 (Topological thickening). A topological thickening of S is a set
M � R3 such that there exists a homeomorphism U :S · [0,1] fi M satisfying
U (S · {1/2}) = S � M.

Our definition actually is a special case of what is usually called a thickening in the
algebraic topology literature. The boundary of a topological thickening M of S thus
is the union of U (oS · [0,1]) and two surfaces, U (S, 0) and U (S, 1), which will be re-
ferred to as the sides of M. Our main theorem is the following:

Theorem 2.1. Suppose that:

1. S0 is homeomorphic to S.
2. S0 is included in a topological thickening M of S.
3. S0 separates the sides of M.

Then S0 is isotopic to S in M.

Here ‘‘separates’’ means that any continuous path in M from one side of M to the
other one intersects S0. Proving that two surfaces are homeomorphic is not straight-
forward in general. The next theorem shows that if the assumptions 2. and 3. of The-
orem 2.1 also hold when S and S0 are exchanged, then homeomorphy is not needed:

Theorem 2.2. Suppose that:

1. S0 is included in a topological thickening M of S.
2. S is included in a topological thickening M0 of S0.
3. S0 separates the sides of M.
4. S separates the sides of M0.

Then S and S0 are isotopic in M and in M0.
U
N3. Applications

This section gives several applications of Theorems 2.1 and 2.2.
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3.1. Isotopy between implicit surfaces

For implicitly defined surfaces, dedicated topological thickenings are provided by
Morse theory (we refer to [12] for some background on Morse theory). Recall that if
f is a Morse function defined on R3, a real number c is said to be a critical value of f if
there exists a point p 2 R3 such that $f (p) = 0 and f (p) = c. Such a point p is called a
critical point. Recall that f is said to be proper if for any compact set K � R, f�1 (K) is
a compact subset of R3. In particular, if f is proper, any level set f�1 (a) of f is
compact.

Theorem 3.1 (Morse). Let f be a proper Morse function defined on R3 and I a closed
interval containing no critical value of f. Then for any a 2 I, f�1 (I) is diffeomorphic to
f�1 (a) · [0,1].

Let us denote by mf the magnitude of the critical value of f of minimum magni-
tude: mf = min{|f (c)|:c is a critical point of f}. Together with Theorem 2.2, the pre-
vious theorem gives the following:

Theorem 3.2. Let f and g be two proper Morse functions defined on R3. If

sup|f � g| < min (mf,mg), then the zero-sets of f and g are isotopic.

Proof. Set m = min (mf,mg) and take S = f�1 (0), M = f�1 ([�m,m]), S0 = g�1 (0), and
M0 = g�1 ([�m,m]) in Theorem 2.2. h

To approximate the level-sets of a function f by the ones of a function g in a topo-
logically correct way, it is thus sufficient to control the supremum norm of f � g and
the critical values of g.

3.2. Isotopy criteria involving skeleta

Let us first recall the definitions of tubular neighbourhood and skeleton. In this
section we assume that S is C2-smooth and closed. The skeleton Sk of S is defined
as the closure of the set of points in Sc, the complement of S, which have at least
two closest points on S:

Sk ¼ closurefx 2 Sc : 9y; z 2 S; y 6¼ z; dðx; yÞ ¼ dðx; zÞ ¼ dðx; SÞg:
For e > 0, one denotes by Se = {x 2 R3 :d (x,S) 6 e} the tubular neighbourhood of S,
which is sometimes called the e-offset of S. If Sk is the skeleton of S, lfs (S) denotes
the number lfs (S) = infx 2 Sd(x,Sk). S being C2, one has lfs (S) > 0 (see [20] or [2]). It
can be shown that if e is smaller than lfs (S) then Se is diffeomorphic to S · [�e;+e],
so that tubular neighborhoods are topological thickenings. Also, R3 n Sk is known
to be homeomorphic to S · R.

3.3. Topological criteria

Corollary 3.1. Suppose that S0 is homeomorphic to S, S is connected, and that S0

encloses the bounded connected component of Sk. Then S0 is isotopic to S.
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Proof. This result follows almost immediately from Theorem 2.1. All we need to do
is to shrink R3 n Sk slightly in order to get a topological thickening of S. More
precisely, denote by h :S · Rfi R3 n Sk a homeomorphism. Because S0 is compact,
the Hausdorff distance between S0 and Sk is nonzero. There exists a real K > 0 such
that S0 � h (S · [�K,+K]). Taking M = h (S · [�K,+K]) gives the desired result.
Indeed, S0 separates the sides of M since the components of S0 enclose the inner side
of M but not the outer one. h

Note that it is sufficient to check that S0 is connected and has the same Euler char-
acteristic as S to decide whether it is homeomorphic to S. In particular, if S0 is a tri-
angulated surface, which is an important case in practice, these conditions are
straightforward to check.

If S0 is also C2, closed and connected, and Sk0 denotes the skeleton of S0, the same
argument as above used with Theorem 2.2 yields:

Corollary 3.2. If S0 encloses the bounded component of Sk and S encloses the bounded

component of Sk0, then S and S0 are isotopic.

3.4. Metric criteria

We denote by d (X0|X) the ‘‘half Hausdorff distance’’ from a subset X0 � R3 to an-
other subset X � R3, that is:

dðX 0jX Þ ¼ sup
x2X

inf
x02X 0

dðx; x0Þ:

Note that d (X0|X) is the minimum value of e such that X � X0e. Also,
d (X,X0) = max(d (X|X0),d (X0|X)) denotes the Hausdorff distance between X and X0.
By using offsets as topological thickenings, one obtains the following results:

Corollary 3.3. If S0 is homeomorphic to S and d (S|S0) < min(lfs (S),lfs (S0)), then S0 is
isotopic to S. Moreover, the isotopy F can be chosen in such a way that the half

Hausdorff distance from S to F (S0, t) never exceeds the initial half Hausdorff distance.

Proof. We apply Theorem 2.1 with M = Se, where e = min(lfs (S),lfs (S0)). The only
condition that is not trivially satisfied is that S0 separates the sides of M. We now
prove it by contradiction, in the connected case. Let S1 and S2 be the sides of M.
First remark that for any x 2 S1 there exists a unique point, f (x) 2 S2 such that the
segment [x, f (x)] is included in M and meets S perpendicularly (see Fig. 1). Suppose
that S0 does not separate S1 and S2. Then for any x 2 S1 if the segment [x, f (x)]
intersects S0, then it intersects in at least two points (if it is not the case, one can
construct a path from x to f (x) which does not intersect S0 and the union of this path
with the segment [x, f (x)] is a closed path which meets S0 in only one point: a
contradiction since S0 has no boundary).

Now for any point y 2 S0 there exists a unique point u (y) 2 S1 such that
y 2 [u (y),f(u (y))]. Let y 2 S0 be such that the distance between y and u (y) is the
largest among all the points in S0. Thus the segment [u (y),f(u (y))] is also normal to
S0 at point y. Let now y0 „ y be another intersection point between [u (y), f(u (y))] and
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S0. The ball with diameter [y,y0] is tangent to S0 at y and meets S0 in at least two
points: the segment joining its center and y has to contain a point of Sk0. But such a
point is at distance less than e from S0, which is a contradiction. h

Assuming S0 is closed, the argument used in the preceding proof applied the other
way around leads to:

Theorem 3.3. If d (S,S0) < min(lfs (S),lfs (S0)), then S0 is isotopic to S. Moreover, the
isotopy F can be chosen in such a way that the Hausdorff distance between F (S0,t) and
S never exceeds the initial Hausdorff distance.

3.5. Interval solid models

Another consequence of Theorem 2.1 is related to the notion of Interval Solid
Models studied in [18,17]. Roughly speaking, an interval solid SB associated to a
smooth C2 surface S embedded in R3 is a finite covering of S by rectangular boxes
whose edges are parallel to the co-ordinate axes which satisfy some additional con-
titions (see [18] for precise definition). It is proven in [18] that the two boundary com-
ponents S1 and S2 of this covering are homeomorphic to S. Moreover, [17] recalls the
notion of e-isotopy which is stronger than the notion of isotopy: points cannot move
outside of an e-neighbourhood of their initial position during the isotopy. T. Sakka-
lis and T.J. Peters prove in [17], Section 5, that if the boxes are small enough then S1

and S2 are e-isotopic to S. Note that this result is existential, that is it does not pro-
vide any particular bound on the maximum box size allowed to guarantee that isot-
opy holds. In our setting, one can slightly generalize their result.

Corollary 3.4. If SB does not intersect the skeleton of S, then its two boundary

components are isotopic to S.

So one can relax the hypothesis about the size of the boxes in [17]: here, the diam-
eter of the boxes should merely be smaller than lfs (S). The major drawback is that
one does not obtain that S1 and S2 are e-isotopic to S any more. Indeed, one has that
the boundary components of SB can be isotoped to S within SB, so that the Haus-
dorff distance is controlled, but each particular point may move arbitrarily far from
its initial position during the isotopy.
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4. Mathematical preliminaries

4.1. Surface topology: Euler characteristic and coverings

This section is dedicated to some basic recall about topology of compact orient-
able surfaces which are widely used in the following. Let S be a compact orientable
surface with possibly non empty boundary oS. Denote by b the number of connected
components of oS. If T is a triangulation of S, denote by f the number of its faces,
by e the number of its edges and by s the number of its vertices. The Euler charac-

teristic v (S) of S is defined as

vðSÞ ¼ f � eþ s:

It is well known that such a number does not depend on the choice of the triangu-
lation T (see [11] for example). It is also well known that S always admits a trian-
gulation (see [15] or [13]). So Euler characteristic is well defined for compact surfaces
and two homeomorphic surfaces have the same Euler characteristic. The genus, g (S)
of S is defined as

gðSÞ ¼ 1

2
ð2� vðSÞ � bÞ:

The genus and the number of boundary components (or equivalently the Euler char-
acteristic and the number of boundary components) are sufficient to classify compact
connected orientable surfaces.

Theorem 4.1 (see [11] for a proof). Two connected compact orientable surfaces are
homeomorphic if and only if they have the same genus and the same number of boundary

components.

In the following of this paper, we will also use the notion of topological covering be-
tween surfaces (see [11] for example). A map p :S0 fi S is a topological covering of S if
there exists a non empty discrete set F (finite or infinite denumerable) satisfying the fol-
lowing property: for any pointx 2 S, there exists a neighbourhoodVofx and anhome-
omorpismUbetween p�1 (V) andV · F such that p1 � U = pwhere p1 :V · Ffi V is the
canonical projection. If F is finite, the cardinality of F is known as the number of sheets
of the covering. In other words, a topological covering is a map p :S0 fi S such that
every x 2 S has an open neighborhoodV such that p�1 (V) is a disjoint union of (count-
ably many) open sets, each of which is mapped homeomorphically onto V by p. The
simplest examples of topological coverings are canonical projections p1 :V · F fi V;
such coverings are called trivial. Let us now give a more interesting example: consider
the map from the torus S = S1 · S1 to itself defined by p (h,u) = (2h,u). It is an easy
exercise to prove that p is a 2-sheeted covering of torus S by itself. Important facts
are, that a 1-sheeted covering between two compact surfaces is an homeomorphism
and that if p :S0 fi S is a n-sheeted covering of S, then v (S0) = nv (S).

Finally, in the proofs of our main theorems, we will use an argument resorting to
singular homology theory. This theory is beyond the scope of this paper and we refer
the reader to [5] for an introduction to the subject.
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4.2. 3-Manifold topology

The proof of Theorem 2.1 is based upon the following theorem ([9,19], see [6, p. 16
for a proof]), which we explain below.

Theorem 4.2. Let ~M be a connected compact irreducible Seifert-fibered manifold.
Then any essential surfaceS0 in ~M is isotopic to a surface which is either vertical, i.e., a
union of regular fibers, or horizontal, i.e., transverse to all fibers.

Let us explain the various terms involved in this theorem. A 3-manifold ~M is said
to be irreducible if any 2-sphere embedded in ~M bounds a 3-ball in ~M . A Seifert man-
ifold is a 3-manifold that decomposes into a union of topological circles, the fibers,
satisfying certain properties. The simplest example of Seifert manifold is the carte-
sian product of a surface S and a circle S1, the fibers being the circles {x} · S1,
x 2 S. In what follows, we shall only deal with Seifert manifolds of that kind. We
will not explain what a regular fiber is because in our case all the fibers are regular.
An oriented surface embedded in a 3-manifold ~M is incompressible if none of its com-
ponents is homeomorphic to a 2-dimensional sphere and if for any (topological) disk
D � ~M whose boundary is included in S, there is a disk D0 � S such that oD = oD0.
Any disk D for which there is no such D0 is called a compressing disk for S (see Fig.
2). Intuitively,S is incompressible when it has no extra handle with respect to ~M . An
essential surface in a 3-manifold ~M is an incompressible surface, satisfying certain
additional conditions related to o ~M . In particular, when ~M has no boundary, any
incompressible surface is essential. We will actually see that all the incompressible
surfaces considered in this paper are essential, even in the case with boundary. Final-
ly, two sub-manifolds of ~M are said to be transverse if in any point x where they
intersect, the (vectorial) sum of their tangent space spans the tangent space of ~M
at x. The intersection of two transverse sub-manifolds S1 and S2 is again a sub-
manifold, with codimension the sum of the codimensions of S1 and S2 (see [7]).
In particular, a surface of a Seifert 3-manifold transverse to a fiber meets that fiber
in a discrete set of points. Also, two surfaces in a 3-manifold are transverse if and
only if they are not tangent at any point.
U
N
C
O
R
R

Fig. 2. Surgery along a compressing disk.
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5. Proofs

In Sections 5.1 and 5.2, we prove Theorem 2.1 in the case where S is connected.
Section 5.3 completes the proof of Theorems 2.1 and 2.2 in the case where S has sev-
eral connected components. Let M be a topological thickening of S, and suppose
that S, S0, and M fulfill the assumptions of Theorem 2.1. From now on, we identify
M with S · [0,1], using the map U associated with M (see Definition 2.2). Let ~M be
the Seifert 3-manifold S · S1 obtained from M by identification of its sides S · {0}
and S · {1}. We denote by S the surface corresponding to the sides of M in ~M ,
and by S0 the surface corresponding to S0 in ~M . Note that in ~M , S corresponds to
the surface S · {1/2}. As S · {1/2} and S ¼ S � f0g ¼ S � f1g are obviously isoto-
pic in ~M , it will be sufficient to prove that S0 is isotopic to S in ~M to prove our
result.

By the assumptions of Theorem 2.1, S and S0 are homeomorphic and disjoint.
Also:

Lemma 5.1. ~M nS0 is connected.

Proof. By assumption, the two sides of M lie in two different components of M n S0,
say C1 and C2. To prove that ~M nS0 is connected, it is sufficient to prove that
M n S0 has no other component than C1 and C2, since these two components are
merged upon identification of the two sides of M. The boundary of say C1 intersects
S0 along a closed non empty subset of S0. This subset is also an open subset of S0

for the induced topology. Since S0 is connected, we get that S0 is included in
the boundary of C1. The same is true for C2. Now suppose that M n S0 has another
component C3. By a similar argument, the boundary of C3 would contain S0, so that
a point x 2 S0 would lie in the closure of C1, C2, and C3. But this is not possible
since x has arbitrarily small neighborhoods that S0 separates in only two
components. h

Note that since we do not assume that S is closed (a closed surface is a surface
without boundary component), S, and thus S0 and ~M may have non-empty bound-
aries. Although it is possible to prove directly the proposition in the general case, one
first gives the proof in the case where S is closed to avoid some technical difficulties.
The additional technicalities occuring in the case with boundary are detailed in Sec-
tion 5.2. Any compact topological surface which admits a thickening is isotopic to a
C1 smooth surface. So from now on, we suppose (without loss of generality) that S
and S0 are C1 smooth surfaces.

5.1. The case of a surface without boundary

Note that the case where S ¼ S2 is a 2-dimensional sphere, ~M ¼ S2 � S1 is not
irreducible ([6] prop 1.12, p.18), so it has to be considered separately. Fortunately,
isotopy holds when S ¼ S2 is a sphere, since it follows from Schoenflies theorem
(see [16] P.34 for a statement of it and [4] for a proof) that there is no smooth knotted
2-sphere in R3. From now on, we assume that S is not a sphere.
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We first prove that ~M and S0 fulfill the hypothesis of Theorem 4.2 and then de-
duce that S0 is isotopic to S. Since S is not a sphere, M is an irreducible manifold
([6] prop 1.12, p.18). Hence, we just have to prove the following

Proposition 5.1. S0 is an essential surface in ~M .

Proof. Since ~M has no boundary, it is sufficient to prove that S0 is incompressible.
Suppose S0 is compressible. So one can find a simple curve c on S0 which is not null
homotopic in S0 and which bounds an embedded disc D in ~M . Do the following
surgery: cut S0 along c and glue a disk homotopic to D along each of the two
boundary components of S0 n c (see Fig. 2). In this way, one obtains a new surface
with Euler characteristic greater than vðS0Þ ¼ vðSÞ. The previous surgery does not
change the homology class: the new surface is homologous to S0. The surface S0

(with well-chosen orientation) is homologous to S (S and S0 form the boundary of
an open subset in ~M), and it follows from Künneth formula (see [5], p.198 for
example) that the homology class of S in ~M is not zero. So one of the connected
components ~S

0
of the new surface in ~M is not homologous to zero. Moreover, ~S

0

has a smaller genus than the one of S. Indeed, suppose it is not the case. As the new
surface has a larger Euler characteristic than vðS0Þ and has at most 2 connected
components, the only possibility is that this surface is the disjoint union of ~S

0
and a

sphere. Indeed, the sphere is the only closed orientable connected surface with
positive Euler characteristic. Considering the complement of the compressing disk in
the sphere component shows that oD bounds a disk in S0, which is a
contradiction. h

Lemma 5.2. It is possible to choose D such that D \S ¼ ;.

Proof. Consider the embedded disks having c as boundary and which meet S
transversally. Each of these disks meets S in a union of n closed loops. Take as
D the disk such that this number n is minimum. Suppose that n is not zero.
Among all these curves there is one, denoted by a, which bounds a disk in
D n ðS \ DÞ (when the curves are nested, consider any innermost curve on D, see
Fig. 3 on the right). The surface S is incompressible: indeed, the injection of S
in ~M induces an injection between corresponding fundamental groups (see [6, p.
10]). So a also bounds a disk in S. The 3-manifold ~M being irreducible, the
sphere defined by these 2 disks bounds a 3-ball. One can then make an isotopy to
obtain a disk D0 such that D0 \S ¼ ðD \SÞ n a. This contradicts the minimality
of n (see Fig. 3). h

The previous surgery cannot be iterated an infinite number of times, since the
genus of ~S

0
decreases each time. Upon termination, one obtains a surface, called

~S
0
again, which is incompressible or the sphere S2, and which does not intersect

the surface S because we chose compressing disks that do not meet S. If ~S
0
is a

2-sphere, it does not bound a 3-ball because its homology class in H 2ð ~MÞ is not zero.
This implies that ~M is not irreducible: a contradiction. So ~S

0
is an incompressible

surface. Applying Theorem 4.2, one deduces that ~S
0
is isotopic to either a horizontal

or a vertical surface.
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Fig. 3. Decreasing the number of components of D \S.
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Claim 5.1. ~S
0
is not isotopic to a vertical surface.

Proof. Suppose it is. Then there exists a surface ~S
00
which is an union of fibers of ~M

and which is isotopic to ~S
0
. Choose one fiber u included in ~S

00
. Its intersection

number with S is equal to 1 and has to remain constant during the isotopy. So ~S
0

contains a simple closed curve whose intersection number with S is equal to 1,
namely the image of u under the isotopy. But ~S

0
does not intersectS: contradiction.

Hence ~S
0
is isotopic to a horizontal surface, which is a covering of S under the

canonical projection of ~M . But this is not possible since genusð ~S0Þ < genusðSÞ. So,
S0 is incompressible, which concludes the proof of Proposition 5.1. h

Now, it follows from Theorem 4.2 that S0 is isotopic to either a horizontal or a
vertical surface.S0 does not intersectS, so it cannot be isotopic to a vertical surface,
by the same argument as above. So S0 is isotopic to a horizontal surface. This sur-
face is a covering of S under the canonical projection of ~M . Because ~M nS0 is con-
nected, it follows from [6, pp. 17–18] that the covering is trivial. Hence, S0 is isotopic
to a horizontal surface S00 which meets each fiber in one point. It is now a classical
fact that this horizontal surface can be ‘‘pushed along the fibers’’ to construct an
isotopy to S (see Fig. 4). Note that, using the same argument as the one used pre-
viously to prove that one can construct ~S

0
such that it does not intersect S, the isot-

opy Ft, t 2 [0,1] between S00 and S can be chosen so that F tðS00Þ; t 2�0; 1� never
intersects S. So S0 is isotopic to S in M.

5.2. The case of surfaces with boundary

The proof of Theorem 2.1 for a surface S with nonempty boundary is almost the
same as the previous one. The few changes are outlined in this section. As in the case
whereS ¼ S2, there is no smooth knotted disk in R3 and Theorem 2.1 holds ifS is a
disk. So consider the case where S is not a topological disk. Let us begin with a few
remarks. First, note that if oS 6¼ ;, then ~M is irreducible (see [6, p. 18] or [9, p. 13]).



O
F

385
386
387
388
389
390
391
392

393

394
395
396
397
398
399
400
401
402
403

Fig. 4. Pushing S00 to S along the fibers of ~M .
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of ~M is a finite union of tori T1, . . . ,Tk. Moreover, the boundary components of S
are meridians of T1, . . . ,Tk, respectively. Let c1 2 T1, . . . ,ck 2 Tk be these meridians.

Each torus Ti contains exactly one boundary component c0i of S
0 and ci \ c0i ¼ ;.

Since ~M nS0 is connected, c0i is not null homotopic in Ti. So, c0i is also a meridian of
Ti and it is then isotopic to ci (see Fig. 5).

So, since S is not a topological disk, the boundary components of S0 are not
null-homotopic in ~M . Now, Proposition 5.1 remains valid.

Proposition 5.2. S0 is an essential surface in ~M .

Proof. The framework of the proof is the same as in Proposition 5.1. Each boundary
component of ~M being a torus, it follows from Lemma 1.10 p. 15 in [6] that if S0 is
incompressible, then S0 is essential. So it is sufficient to prove that S0 is
incompressible.

To deal with the boundary of ~M , one has to consider the relative homology of ~M
mod o ~M instead of the homology of ~M .

Suppose that S0 is compressible. One can do the same surgery along a
compressing disk D as in the proof of Proposition 5.1. Such a surgery does not
change the homology class relative to o ~M : the surface obtained after the surgery is
homologous (mod o ~M) to S0 which is itself homologous to S (mod o ~M). Thus, one
U
N
C
O
R

Fig. 5. Torus on the boundary of ~M .
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of the connected component ~S
0
of the new surface is non homologous to 0. Unlike in

the case without boundary, the surgery on S0 may have two different consequences
on the topology of ~S

0
. The genus of ~S

0
either decreases or its number of boundary

components decreases (see Fig. 6). So one has to consider the genus plus the number
of boundary components of ~S

0
as the decreasing quantity during the surgery. As in

above section, the compressing disk D may be chosen so that it does not intersect S.
By iteration one obtains a surface, denoted ~S

0
again, which is incompressible or

the sphere S2 or a disc with boundary on the boundary of ~M . As in previous section,
because ~M is irreducible, ~S

0
cannot be a sphere. The boundary components of ~S

0

are boundary components of S0 so they are not null-homotopic in ~M . It follows that
~S

0
cannot be a disk and then it is incompressible and hence it is isotopic to either a

vertical or an horizontal surface. As in previous section, this surface cannot be
vertical so it is horizontal. It follows that ~S

0
is a topological covering of S: its genus

and its number of boundary components must be at least as large as the one of S.
This is not the case. So, S0 is incompressible and it is then isotopic to an horizontal
or vertical surface. The proof of proposition then concludes in the same way as in the
case of a surface without boundary.

The proof of Theorem 2.1 now ends as in previous section. h

5.3. Case of several connected components

Once we showed Theorem 2.1 in the connected case, the general case follows easily
by repeated application of the pigeonhole principle. Indeed, since S and S0 are homeo-
morphic, they have the same number of connected components. Moreover, as S0 is
included in M and separates its sides, each component C of M contains at least one
component of S0. As a consequence, C \ S0 is a connected surface. Similarly, S and
S0 have the same number of boundary components. Also, for each boundary compo-
nent B of S, B · [0, 1] has to contain at least one boundary component of S0, otherwise
S0 would not separate the sides of M. Thus, B · [0,1] contains exactly one boundary
component of S0, that is C \ S0 and C \ S have the same number of boundary
U
N
C
O
R
R

Fig. 6. The effects of a surgery on S0.
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components. They also have the same genus. Indeed, the proof of Theorem 2.1 in the
connected case shows that the genus of a surface separating the sides of a topological
thickening of a connected surface has to be larger or equal than the one of the surface.
If equality would fail for any component of M, then the genus of S0 would be larger
than the one of S, a contradiction. We thus deduce that C \ S0 and C \ S are homeo-
morphic by the classification of compact connected orientable surfaces, and conclude
by applying the connected case separately to each component of S.

The proof of Theorem 2.2 follows similar lines: for each component C of M,
C \ S0 has at least as many components, boundary component, and handles as
C \ S0. Since the same holds for M0, we deduce that all these inequalities are equal-
ities: S and S0 are thus homeomorphic, and the conclusion follows by Theorem 2.1.
E
D
P
R
O

6. Conclusion

We have presented two general conditions ensuring the existence of an isotopy be-
tween two surfaces embedded in R3, and given several applications of them in some
widely considered particular situations. These conditions are a versatile and easy to
use tool for proving that two surfaces are topologically equivalent, and we hope that
they will prove useful in other applications than the ones mentioned in this paper.
Though the formulation of our conditions directly extend to hypersurfaces of any
dimension, the proof techniques used in this paper are typically 3-dimensional,
and there is little hope that they extend in higher dimensions. It would be interesting
to know which part of our results still hold in arbitrary dimension.
T
C7. Uncited references

[8,10,14].
 E

R
RAcknowledgments

We thank Jean-Daniel Boissonnat for suggesting the assumptions of Theorem 3.3,
as well as Luisa Paoluzzi and John Crisp for sharing their knowledge of 3-dimension-
al topology.
 O

U
N
CReferences

[1] N. Amenta, S. Choi, T. Dey, N. Leekha, A simple algorithm for homeomorphic surface
reconstruction, Int. J. Comput. Geom. Appl. (to appear).

[2] N. Amenta, T.J. Peters, A. Russell, Computational topology: ambient isotopic approximation of 2-
manifolds, Theor. Comput. Sci. (to appear).

[3] L.-E. Andersson, T.J. Peters, N.F. Stewart, Equivalence of topological form for curvilinear geometric
objects, Int. J. Comput. Geom. Appl. 10 (6) (2000) 609–622.



466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

F. Chazal, D. Cohen-Steiner / Graphical Models xxx (2005) xxx–xxx 15

YGMOD 651 No. of Pages 15, DTD=5.0.1

24 February 2005 Disk Used Jaya (CE) / Jayanthi (TE)
ARTICLE IN PRESS
D
P
R
O
O
F

[4] M. Brown, A proof of the generalized Schoenflies theorem, Bull. A.M.S. 66 (1960) 74–76.
[5] M.J. Greenberg, Lectures on Algebraic Topology, W.A. Benjamin, New York, 1967.
[6] A. Hatcher, Notes on basic 3-manifold topology. Available from: <http://www.math.cornell.edu/

hatcher>.
[7] M. Hirsch, Differential Topology, Springer-Verlag, Berlin, 1976.
[8] W. Jaco, in: Lectures on Three-manifold Topology, Reg. Conf. Series in Math., vol. 47, AMS, 1980.
[9] W. Jaco, P.B. Shalen, Seifert fibered spaces in 3-manifolds, Mem. AMS 21 (1979) 220.
[10] A. Lieutier, Any open bounded subset of Rn has the same homotopy type than its medial axis, in:

Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, 2003, pp. 65–75.
[11] W.S. Massey, in: Algebraic Topology: An Introduction, Graduate Texts in Mathematics, vol. 56,

Springer-Verlag, Berlin, 1977.
[12] J. Milnor, in: Morse Theory, Annals of Mathematics Studies, vol. 51, Princeton University Press,

Princeton, NJ, 1963.
[13] J.R. Munkres, in: Elementary Differential Topology, Annals of Math. Studies, vol. 54, Princeton

University Press, Princeton, 1966.
[14] R. Narasimhan, in: Analysis on Real and Complex Manifolds, Adv. Studies in Pure Math., North

Holland, Amsterdam, 1968.
[15] E. Reyssat, in: Quelques aspects des surfaces de Riemann, Progress in Math., Birkhauser, Basel, 1989.
[16] D. Rolfsen, in: Knots and Links, Math. Lecture Series 7, Publish or Perish, 1990.
[17] T. Sakkalis, T.J. Peters, Ambient isotopic approximation for surface reconstruction and interval

solids, in: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, 2003.
[18] T. Sakkalis, G. Shen, N.M. Patrikalakis, Topological and geometric properties of interval solid

models, Graph. Models 63 (2001) 163–175.
[19] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. Math. 87 (1968) 56–88.
[20] E.F. Wolter, Cut locus and medial axis in global shape interrogation and representation, Design

Laboratory Memorandum 92-2, MIT, Department of Ocean Engineering, Cambridge, MA, 1993.
U
N
C
O
R
R
E
C
T
E

http://www.math.cornell.edu/hatcher
http://www.math.cornell.edu/hatcher

	A condition for isotopic approximation
	Introduction and related works
	Main results
	Applications
	Isotopy between implicit surfaces
	Isotopy criteria involving skeleta
	Topological criteria
	Metric criteria
	Interval solid models

	Mathematical preliminaries
	Surface topology: Euler characteristic and coverings
	3-Manifold topology

	Proofs
	The case of a surface without boundary
	The case of surfaces with boundary
	Case of several connected components

	Conclusion
	Uncited references
	Acknowledgments
	References


