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This work addresses the problem of the approximation of the normals of the offsets of
general compact sets in Euclidean spaces. It is proven that for general sampling conditions,
it is possible to approximate the gradient vector field of the distance to general compact
sets. These conditions involve the μ-reach of the compact set, a recently introduced notion
of feature size. As a consequence, we provide a sampling condition that is sufficient to
ensure the correctness up to isotopy of a reconstruction given by an offset of the sampling.
We also provide a notion of normal cone to general compact sets that is stable under
perturbation.
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1. Introduction

1.1. Motivation

Let K ′ be a finite set of points measured, possibly with some noise, on a physical object K . Given K ′ as input, is it
possible to infer some reliable information on first order properties such as tangent planes or sharp edges, of the boundary
of K ? We consider here the case when the approximation K ′ of K has an error bounded under the Hausdorff distance. In
other words we only assume that dH (K , K ′) < ε which means that any point of K ′ lies within a distance ε of some point of
K and symmetrically, any point of K lies within a distance ε of a point of K ′ . The question is of primary interest in surface
reconstruction applications. More generally, in the context of geometric processing, we would like to be able to extrapolate
to a large class of non-smooth compact sets, including finite points samples and meshes, the usual notions of tangent plane
or normal cones. Our goal here is to explore the notion of tangent plane first through the generalized gradient of the
distance function (Section 3) and second through the Clarke Gradient of the distance function (Section 5), which brings also
informations on concaves sharp edges.

1.2. Previous work on smooth manifolds

When K ′ is sampled exactly: K ′ ⊂ K , on a smooth boundary, it has been proved [2,3], that the normals to K can be
estimated from the poles: for each point sample q ∈ K ′ , its pole is the Voronoi vertex farthest from q on the boundary of
the Voronoi cell of q. In [12] this Voronoi based approach has been extended to the approximation of normals and feature
lines from noisy sampling of a smooth manifold by considering only the poles corresponding to sufficiently large Delaunay
balls.
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1.3. Reconstruction of “sufficiently regular” non-smooth objects from samples

In [5,7], the authors have considered the problem of recovering the topology of a compact set K given a sampling K ′
without any smoothness assumption on K .

In the same manner as the resolution of a microscope constrains the minimal size of observable details, any topological
feature (such as a connected component or a tunnel for example) of a compact set K which would be small with respect
to ε can certainly not be “reliably detected” from the knowledge of a sample K ′ with Hausdorff distance bounded by ε.
A realistic measure of the topology should consider only the “topological information observable at the scale ε”: in the
context of [5,7], this has lead to consider topological features which are stable under sufficiently large offsets. Note that
topological persistence [8] is an algebraic counterpart of this notion of stable topology.

The problem of the reconstruction, from a set of measured points, of a geometric numerical model carrying the same
topology as the sampled object has been addressed previously for smooth manifolds [1,19], for which the sampling condition
is related to the distance to the medial axis of K . The main contribution of [5] is to give a sampling condition for non-
smooth objects, through the notion of critical function which encodes the regularity of the compact set boundary at different
“scales”.

When it is reasonable to assume some regularity conditions on the object’s boundary, which can be formally expressed
through lower bounds on the critical function, it is possible to recover the object’s topology from a sufficiently dense and
accurate sampling. By contrast, if we make no assumption about the regularity of the measured object K , it is still possible
to decide some guaranteed topological information, not about the object K itself of course, but about offsets of K .

1.4. Contributions

The aim of the present work is to apply the previous approach, which has been successful for the retrieval of topological
information, to the determination, beyond the topology, of first order information, which include tangents planes or the
detection of sharp edges. Note that classical “exact” definitions of first order geometric informations such as tangent planes
on surfaces, are not preserved in general by Hausdorff approximations. In other words, they are in general destroyed by
arbitrary small perturbations (small for Hausdorff distance) of the object boundary. For example, a finite set sampled “near”
the boundary of a smooth shape “contains” some information about the shape boundary tangent plane, but has no tangent
plane in the usual sense. Still if one consider a d-offset of the point sample, that is a union of spheres of radius d centered
on the points, the tangent planes to the offset boundary may bring some meaningful tangency informations about the initial
shape. Following this simple idea and using properties of the distance function to compact sets developed in [5] we propose
to introduce “stable” quantities that extend usual exact first order differential quantities. These quantities are preserved by
small Hausdorff distance perturbation of the object: from this perspective, they can be “really observed” and carry more
reality than their classical “exact and ideal” counterpart. These stable quantities are generalization of first order differential
properties of surfaces. They apply to a large class of compact sets, which suggest applications for meshes and point clouds
modeling. For smooth manifolds, our quantities coincide, in the limit, with usual definitions of first order tangent affine
manifold.

The paper follows two complementary approaches. Both are necessary because they bring two distinct stability results,
none being a corollary of the other. The first stability result given in Section 3 applies to the generalized gradient of the
distance function and is necessary to get the isotopy result of Section 4. On the other hand, the second stability result (Sec-
tion 5) applies to the Clarke gradient of the distance function which brings more information than the generalized gradient,
in particular it may allow to recognize concave edges. In some sense, the first stability result uses weaker conditions (this is
why the second stability result can not be used in the proof of isotopy in Section 4). On another hand the second stability
result ensures a better convergence of the estimation of the gradient direction with respect to the Hausdorff distance (error

bounded by O (ε
1
2 ) instead of O (ε

1
4 )) for the gradient estimation near a smooth surfaces).

1.5. Outline

Section 2 gives the necessary background notions on the distance function and its generalized gradient. Section 3 and
in particular Corollary 3.2 gives a first stability property of the generalized gradient with respect to perturbations of the
compact sets bounded in Hausdorff distance. This property bounds the maximal angular deviation between the gradient of
the distance functions to two compact sets K and K ′ . An important consequence of this theorem is Theorem 4.2 which
asserts the isotopy between the offsets of the compact set and its sampling with almost the same sampling conditions as
in the main theorem in [5]. Section 5 introduces a stability theorem on the Clarke Gradient of the distance function. The
stable quantity is a kind of “interval Clarke Gradient”: to be more precise, it is the convex hull of the union of the values
taken by the Clarke gradient in a ball. From this stability theorem, one introduces (Section 6), a normal cone at a given scale,
which is a stable generalization of first order differential properties, defined at any point on or nearby a compact set.
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2. Definitions and background on distance functions

We are using the following notations in the sequel of the paper. Given X ⊂ R
n , one denotes by X the closure of X , by ∂ X

its boundary and by co(X) its convex hull. For a point x ∈ R
n and a number r � 0, B(x, r) = {y ∈ R

n , d(y, x) � r} denotes
the closed ball with center x and radius r.

The distance function R K of a compact subset K of R
n associates to each point x ∈ R

n its distance to K :

x �→ R K (x) = min
y∈K

d(x, y)

where d(x, y) denotes the Euclidean distance between x and y. Conversely, this function characterizes completely the com-
pact set K since K = {x ∈ R

n | R K (x) = 0}. Note that R K is 1-Lipschitz. The Hausdorff distance dH (K , K ′) between two compact
sets K and K ′ in R

n is the minimum number r such that K ⊂ K ′r and K ′ ⊂ K r , where K r denotes the r-offset of K , that is:

K r = R−1
K

([0, r]) = {
x ∈ R

n
∣∣ R K (x) � r

}
It is not difficult to check that the Hausdorff distance between two compact sets is the maximum difference between

the distance functions associated with the compact sets:

dH (K , K ′) = sup
x∈Rn

∣∣R K (x) − R K ′ (x)
∣∣

Given two homeomorphic compact subsets K and K ′ of R
n , let F = { f : K → K ′: f is an homeomorphism} be the set of all

homeomorphisms between K and K ′ . Given such a homeomorphism f , supx∈K d(x, f (x)) is the maximum displacement of
the points of K by f . The Fréchet distance between K and K ′ is the infimum of this maximum displacement among all the
homeomorphisms. It is defined by

dF (K , K ′) = inf
f ∈F

sup
x∈K

d
(
x, f (x)

)
It is a classical exercise to check that the Fréchet distance satisfies the properties defining a distance and that one always
has dH (S, S ′) � dF (S, S ′).

Given a compact subset K of R
n , the medial axis M(K ) of K is the set of points in R

n \ K that have at least two closest
points on K . The minimal distance between K and M(K ) is called, according to Federer [14], the reach of K and is denoted
reach(K ).

2.1. The gradient and its flow

The distance function R K is not differentiable on M(K ). However, it is possible [18] to define a generalized gradient
vector field ∇K : R

n → R
n that coincides with the usual gradient of R K at points where R K is differentiable. For any point

x ∈ R
n \ K , we denote by ΓK (x) the set of points in K closest to x (Fig. 1):

ΓK (x) = {
y ∈ K

∣∣ d(x, y) = d(x, K )
}

Note that ΓK (x) is a non-empty compact set. The function x �→ ΓK (x) is upper semi-continuous (see [18] Lemma 4.6, also
[10] 2.1.4 for the same definition of semi-continuity p. 29):

∀x,∀r > 0, ∃α > 0, ‖y − x‖ � α ⇒ ΓK (y) ⊂ {
z: d

(
z,ΓK (x)

)
� r

}
(1)

There is a unique smallest closed ball σK (x) enclosing ΓK (x) (cf. Fig. 1). We denote by θK (x) the center of σK (x) and by
F K (x) its radius. θK (x) can equivalently be defined as the point on the convex hull of ΓK (x) nearest to x. For x ∈ R

n \ K , the
generalized gradient ∇K (x) is defined as follows:

∇K (x) = x − θK (x)

R K (x)

It is natural to set ∇K (x) = 0 for x ∈ K . For x ∈ R
n \ K , one has the following relation [18]:

∥∥∇K (x)
∥∥2 = 1 − F K (x)2

R K (x)2

Equivalently, ||∇K (x)|| is the cosine of the (half) angle of the smallest cone with apex x that contains ΓK (x). As an immediate
consequence, one has the following lemma.

Lemma 2.1. Let K ⊂ R
n be a compact set. For any x ∈ R

n,

∥∥∇K (x)
∥∥ � inf

y,y′∈ΓK (x)
cos

( xy, xy′)
2
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Fig. 1. A 2-dimensional example with 2 closest points.

The map x �→ ‖∇K (x)‖ is lower semi-continuous [18]. Although ∇K is not continuous, it is shown in [18] that Euler
schemes using ∇K converge uniformly, when the integration step decreases, toward a continuous flow C : R

+ × R
n → R

n .
The integral line of this flow starting at a point x ∈ R

n can be parameterized by arc length s �→ C(t(s), x). It is possible to
express the value of R K at the point C(t(l), x) by integration along the integral line with length l downstream the point x:

R K
(
C
(
t(l), x

)) = R K (x) +
l∫

0

∥∥∇K
(
C
(
t(s), x

))∥∥ds (2)

It is proved in [18] that the functions F K and R K are increasing along the trajectories of the flow. In the particular case
where K is a finite set, various notions of flows related to this one have been independently introduced by H. Edelsbrunner
[13], J. Giesen and al. [15] and R. Chaine [4] using Voronoi diagrams.

2.2. Critical point theory for distance functions

The critical points of R K are defined as the points x for which ∇K (x) = 0. Equivalently, a point x is a critical point if
and only if it lies in the convex hull of ΓK (x). When K is finite, this last definition means that critical points are precisely
the intersections of Delaunay k-dimensional simplices with their dual (n − k)-dimensional Voronoi facets [15]. Note that
this notion of critical point is the same as the one considered in the setting of non-smooth analysis [10] and Riemannian
geometry [9,16].

The topology of the offsets R−1
K (a),a > 0 of a compact set K are closely related to the critical values of R K . The next

proposition shows that it can change only at critical values.

Theorem 2.2 (isotopy lemma). (See [16].) If 0 < a < b are such that R−1
K ([a,b]) does not contain any critical point of R K , then all the

level sets R−1
K (d), d ∈ [a,b], are isotopic topological manifolds and R−1

K ([a,b]) is homeomorphic to R−1
K (a) × [a,b].

Recall that an isotopy between two manifolds S and S ′ is a continuous map F : S × [0,1] → R
n such that F (.,0) is the

identity of S , F (S,1) = S ′ , and for each t ∈ [0,1], F (., t) is a homeomorphism onto its image. An ambient isotopy between S
and S ′ is a continuous map F : R

n × [0,1] → R
n such that F (.,0) is the identity of R

n , F (S,1) = S ′ , and for each t ∈ [0,1],
F (., t) is a homeomorphism of R

n . Restricting an ambient isotopy between S and S ′ to S × [0,1] thus yields an isotopy
between them. It is actually true that if there exists an isotopy between S and S ′ , then there is an ambient isotopy between
them [17].

The weak feature size of K , or wfs(K ), is defined as the infimum of the positive critical values of R K . Equivalently it is
the minimum distance between K and the set of critical points of R K . Notice that wfs(K ) may be equal to 0. Nevertheless,
wfs(K ) is non-zero for a large class of compact sets including polyhedrons and piecewise analytic sets (see [6,7]). As an
immediate consequence of the previous proposition, one deduces that the distance level sets R−1

K (d) are all isotopic for
0 < d < wfs(K ).

2.3. The critical function and the μ-reach

The results of this paper rely strongly on the notions of μ-critical point, critical function and μ-reach, introduced in [5].
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Fig. 2. Critical function of a square embedded in R
3 with side length 50 (left), and of a sampling of that square (right).

Definition 2.3 (μ-critical point). A μ-critical point x of the compact set K is a point at which the norm of the gradient ∇K
does not exceed μ: ‖∇K (x)‖ � μ.

The most important property of μ-critical points is their stability with respect to Hausdorff perturbations of K proved
in [5].

Theorem 2.4 (Critical point stability theorem). Let K and K ′ be two compact subsets of R
n and dH (K , K ′) � ε. For any μ-critical

point x of K , there is a (2
√

ε/R K (x) + μ)-critical point of K ′ at distance at most 2
√

εR K (x) from x.

Definition 2.5 (Critical function). Given a compact set K ⊂ R
n , its critical function χK : (0,+∞) → R+ is the real function

defined by:

χK (d) = inf
R−1

K (d)

‖∇K ‖

Fig. 2 shows the respective critical functions of a square in 3-space and of a sampling of it. We note that the infimum
can be replaced by a minimum since ‖∇K ‖ is lower semi-continuous and R−1

K (d) is compact. It also results from the
compactness of R−1

K (d) that d �→ χK (d) is lower semi-continuous. The critical function is in some sense “stable” with
respect to small (measured by Hausdorff distance) perturbations of a compact set, precisely [5]:

Theorem 2.6 (Critical function stability theorem). Let K and K ′ be two compact subsets of R
n and dH (K , K ′) � ε. We define the

interval I(d, ε) = [d − ε,d + 2χK (d)
√

εd + 3ε]. For all d � 0 , we have:

inf
{
χK ′ (u)

∣∣ u ∈ I(d, ε)
}

� χK (d) + 2

√
ε

d

Theorem 2.6 claim can be read as χK (d) � inf{χK ′ (u) | u ∈ I(d, ε)} − 2
√

ε
d and says that the knowledge of a lower bound

on the critical function of a compact set K ′ gives a lower bound on the critical function of “nearby” (for Hausdorff distance)
compact sets K . In particular, if a set K ′ of measured points is known to lie within some Hausdorff distance of a physical
object represented by the unknown compact set K , the critical function of K ′ gives, by Theorem 2.6, a lower bound on the
critical function of the partially known physical object K . Note that as explained in [5], starting from the Voronoi complex
of the sample, the computation of the critical function of a finite sample is straightforward. This stability of the critical
function with respect to small perturbations of the object in Hausdorff distance makes it particularly relevant in the context
of approximate data.

The μ-reach of a compact set K is the maximal offset value d for which χK (d′) � μ for d′ < d. More precisely, it is
defined by:

rμ(K ) = inf
{

d
∣∣ χK (d) < μ

}
Closely related to the μ-reach and the critical point stability theorem is the following result [5] that will be used in

Section 4.

Theorem 2.7 (Critical values separation theorem). Let K and K ′ be two compact subsets of R
n, ε be the Hausdorff distance between

K and K ′ , and μ be a non-negative number. The distance function R K ′ has no critical values in the interval ]4ε/μ2 , rμ(K ) − 3ε[.

These previous notions allow us to define a sampling condition for compact sets that lead to a reconstruction Theo-
rem [5]. Given two non-negative real numbers κ and μ, we say that a compact set K ⊂ R

n is a (κ,μ)-approximation of a
compact set K ′ ⊂ R

n if the Hausdorff distance between K and K ′ does not exceed κ times the μ-reach of K ′ .
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Theorem 2.8 (Reconstruction theorem). Let K ′ ⊂ R
n be a (κ,μ)-approximation of a compact set K . If

κ <
μ2

5μ2 + 12

then the complement of R−1
K ′ ([0,α]) is homotopy equivalent to the complement of K , and R−1

K ′ ([0,α]) is homotopy equivalent to

R−1
K ([0, η]) for sufficiently small η, provided that

4dH (K , K ′)
μ2

� α < rμ(K ) − 3dH (K , K ′)

In the remainder of the paper, we prove that under a similar condition, one can improve this result by comparing the
topology of the level sets of R K and R K ′ up to isotopy.

3. A first stability property of the gradient

In this section we deduce results on the stability of the gradient of distance functions from the stability theorem for
μ-critical points. In the following, given two compact sets K and K ′ , for any x ∈ R

n , one denotes by Γ̃K ′ (x) the projection
of ΓK ′ (x) on the sphere S(x, R K (x)): ỹ ∈ Γ̃K ′ (x) if and only if there exists y ∈ ΓK ′ (x) such that ỹ is the intersection of the
half-line [xy) with the sphere S(x, R K (x)).

Theorem 3.1. Let K , K ′ ⊂ R
n be two compact sets and let ε > 0 be such that dH (K , K ′) < ε. If x ∈ R

n is a μ-critical point of

K ′′
x = K ∪ Γ̃K ′ (x) then there exists a (μ + 2

√
2ε

R K (x) )-critical point of K at distance at most 2
√

2εR K (x) from x.

Proof. Let x ∈ R
n and let K ′′ := K ′′

x . Since dH (K , K ′) < ε, one has dH (K , K ′′) < 2ε. One obtains immediately from the critical

point stability theorem applied to K , K ′′ and x that there exists a (μ + 2
√

2ε
R K ′′ (x) )-critical point of K at distance at most

2
√

2εR K ′′ (x) from x. It suffices to note that R K (x) = R K ′′ (x) to conclude the proof. �
As a consequence of Theorem 3.1, one obtains a bound on the angle between the vector fields ∇K and ∇K ′ of two nearby

compact sets.

Corollary 3.2. Let K , K ′ ⊂ R
n be two compact sets and let ε > 0 be such that dH (K , K ′) < ε. Given μ > 0, if x ∈ R

n is such that
‖∇K (z)‖ > μ for any z ∈ B(x,2

√
2εR K (x)), then, if K ′′

x = K ∪ Γ̃K ′ (x), then

∥∥∇K ′′
x
(x)

∥∥ � μ − 2

√
2ε

R K (x)
(3)

Moreover, for any y ∈ ΓK (x) and any y′ ∈ ΓK ′(x),

cos
( xy, xy′)

2
� μ − 2

√
2ε

R K (x)
(4)

Proof. The first claim is just a contraposition of Theorem 3.1. The second inequality thus follows from Lemma 2.1
(Fig. 3). �

Recall that the direction of the vector ∇K (x) (resp. ∇K ′ (x)) is contained in the convex hull of the directions defined by the
segments joining x to the points of ΓK (x) (resp. ΓK ′ (x)). So, the previous theorem immediately leads to the following result.

Corollary 3.3. Let K , K ′ ⊂ R
n be two compact sets and let ε > 0 be such that dH (K , K ′) < ε. Given μ > 0, if x ∈ R

n is such that
‖∇K (y)‖ > μ for any y ∈ B(x,2

√
2εR K (x)), then

cos
(∇K (x),∇K ′ (x))

2
� μ − 2

√
2ε

R K (x)
(5)

The bound of the corollary is tight: there are some examples where the cosine of angle between ∇K (x) and ∇K ′ (x) is of
order 1 − O (

√
ε). Let K be the circle of center O ∈ R

2 and radius 1 and let O ′ be a point such that d(O , O ′) = 2
√

ε. The
circle with center O ′ and radius (1 − 2

√
ε + ε) meets K in two points A and B . Let K ′ be the boundary of the union of the

disc of center O and radius 1 with angular area of radius 1 + ε and delimited by the half-lines O A and O B (see Fig. 4). The
vector field ∇K is continuous in a neighborhood of O ′ and ∇K (O ′) is collinear to O ′ O . Along the segment [O ′ A], ∇K ′ is
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Fig. 3. Proof of Corollary 3.2.

Fig. 4. An example showing the tightness of the bound of Corollary 3.3.

collinear to A O ′ and makes an angle β with O O ′ . An easy computation leads to cosβ = 1 − 1
2

√
ε + O (ε). As a consequence,

if x ∈ [O ′ A] is chosen sufficiently close to O ′ , then it satisfies the hypothesis of the previous theorem and

cos
(∇K (x),∇K ′ (x))

2
= 1 − O

(√
ε

R K (x)

)

4. Isotopy between offsets

We are now able to use the stability properties of the gradient established in the previous section to compare the
topology of distance level sets of two nearby compact sets. Let K , K ′ ⊂ R

n be two compact sets and let ε > 0 be such that
dH (K , K ′) < ε.

Lemma 4.1. Let a > 0 be such that for any x ∈ R−1
K ([a − ε,a + ε]), ‖∇K ′′

x
(x)‖ �= 0 where K ′′

x = K ∪ Γ̃K ′ (x). Then R−1
K (a) and R−1

K ′ (a)

are isotopic hypersurfaces. Moreover, if

ν = inf
{∥∥∇K ′′

x
(x)

∥∥: x ∈ R−1
K

([a − ε,a + ε])} > 0

then the Fréchet distance between R−1(a) and R−1
′ (a) is bounded by ε .
K K ν
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Fig. 5. Proof of Lemma 4.1.

Proof. The proof of the lemma is based upon a classical technique in differential geometry: we construct a C∞ vector field
which is “transverse” to the level sets of R K and R K ′ in A := R−1

K ([a − ε,a + ε]) and that allows to realize an isotopy
between R−1

K (a) and R−1
K ′ (a).

Let x ∈ A and let v(x) = ∇K ′′
x
(x) �= 0. Since y → ΓK (y) and y → ΓK ′ (y) are upper semi-continuous (see [10] 2.1.4 for a

definition), there exist δ0 > 0 such that

R K

(
y + t

v(x)

‖v(x)‖
)

� R K (y) + t
‖v(x)‖

2

R K ′
(

y + t
v(x)

‖v(x)‖
)

� R K ′ (y) + t
‖v(x)‖

2

for any y ∈ B(x, δ0) and any t ∈ (−δ0, δ0). Since A is compact, it is covered by a finite set of balls B(xi, δ0(xi)), i = 1, . . . , p.
Using a C∞ partition of unity associated to this covering and the constant vector field v(xi) on each B(xi, δ0(xi)), one
constructs a C∞ vector field X on A such that for any trajectory φ(x, t) of X in A, one has

R K
(
φ(x, t)

)
� R K (x) + t (6)

R K ′
(
φ(x, t)

)
� R K ′ (x) + t (7)

with ν = mini=1,...,p
‖v(xi)‖

2 . It follows immediately that any trajectory t → φ(x, t) issued from R−1
K (a − ε) meets R−1

K (a + ε)

and R K ′ is strictly increasing along this trajectory. Moreover, since ‖v(xi)‖ < 1 for all i = 1, . . . , p, ‖X‖ < 1 and the length
of the trajectory between x and φ(x, t) is bounded by |t|. It follows from inequality (7) that the length of any trajectory
between R−1

K (a) and R−1
K (a − ε) or R−1

K (a + ε) is bounded by ε
ν .

Now, since ‖R K − R K ′ ‖ < ε, R K ′ is smaller than a on R−1
K (a − ε) and bigger than a on R−1

K (a + ε) (see Fig. 5). So, R−1
K ′ (a)

is contained in A and it separates the two boundary components R−1
K (a−ε) and R−1

K (a+ε) of A. As a consequence for each
x ∈ R−1

K (a), the trajectory t → φ(x, t) intersects R−1
K ′ (a) in exactly one point f (x) = φ(x, tx) (note that tx may be negative).

The map x → f (x) defines a continuous bijection between R−1
K (a) and R−1

K ′ (a) and the flow of X allows us to define an
isotopy between these two hypersurfaces. The distance between x and f (x) is bounded by the length of the trajectory
between x and f (x). So, d(x, f (x)) < ε

ν and the Fréchet distance between R−1
K (a) and R−1

K ′ (a) is bounded by ε
ν . �

The following results provide a sufficient condition involving the critical function for two compact sets to have isotopic
offsets.

Theorem 4.2 (Level sets isotopy theorem). Let K , K ′ ⊂ R
n be two compact sets such that dH (K , K ′) < ε for some ε > 0. If a > 0 is

such that χK > γ + 2
√

2ε
a−ε on the interval [a − ε − 2

√
2ε(a + ε),a + ε + 2

√
2ε(a + ε)] for some constant γ > 0 then R−1

K (a) and

R−1
K ′ (a) are isotopic hypersurfaces. Moreover the Fréchet distance between these two hypersurfaces is bounded by ε

γ .

Proof. From Lemma 4.1, one just has to show that x /∈ co(ΓK (x) ∪ Γ̃K ′ (x)) for any x ∈ A = R−1
K ([a − ε,a + ε]). Suppose this

is not the case for some x ∈ A. It follows from Theorem 3.1 that there exists a (2
√

2ε
R K (x) )-critical point y of K at distance at

most 2
√

2εR K (x) from x. Since a − ε � R K (x) � a + ε, y is a (2
√

2ε
a−ε )-critical point of K at distance at most 2

√
2ε(a + ε)

from x. Moreover
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R K (y) � R K (x) + 2
√

2ε(a + ε)

� a + ε + 2
√

2ε(a + ε)

and in the same way R K (y) � a − ε − 2
√

2ε(a + ε). These two last inequalities contradict the hypothesis of the theorem.
The second part of the theorem follows from the second part of Lemma 4.1 and the first part of the Corollary 3.2. �

The previous theorem can be restated in terms of (κ,μ)-approximations to give the following result.

Theorem 4.3 (Isotopic reconstruction theorem). Let K ⊂ R
n be a compact set such that rμ(K ) > 0 for some μ > 0. Let K ′ be a

(κ,μ)-approximation of K where

κ < min

(
4
√

2 − 5

14
,

μ2

16 + 2μ2

)

and let d,d′ be such that

0 < d < wfs (K ) and
4κrμ
μ2

� d′ < rμ(K ) − 3κrμ

Then the level set R−1
K ′ (d′) is isotopic to the level set R−1

K (d).

Proof. Let rμ = rμ(K ), a = rμ/2 and ε = κrμ . It follows from the isotopy Lemma 2.2 that R−1
K (d) is isotopic to R−1

K (a).
It follows from the separation of the critical values theorem and from the isotopy Lemma 2.2 that R−1

K ′ (d′) is isotopic to

R−1
K ′ (a). Using that χK > μ on (0, rμ) and κ <

μ2

16+2μ2 one easily checks that

χK > 2

√
2ε

a − ε

on the interval (0, rμ). Theorem 4.2 allows to conclude the proof provided that the interval with center a and half-length
ε + 2

√
2ε(a + ε) is included in the interval (0, rμ). This last condition is equivalent to

κrμ + 2

√
2κrμ

(
rμ
2

+ κrμ

)
<

rμ
2

or, after division by rμ ,

2κ + 4
√

κ(1 + 2κ) < 1

This is satisfied as soon as κ < 4
√

2−5
14 . �

5. A second stability property of the gradient

In this section we consider the Clarke generalized gradient ∂ R K of the distance function [10] and prove a stability
theorem of ∂ R K with respect to Hausdorff distance perturbation of the compact set K . ∂ R K includes more information than
the generalized gradient ∇K . Indeed, consider for example a concave sharp edge on a polyedron in 3-space. The concave
edge will induce a sheet on the medial axis and the value of the Clarke gradient of the distance function on this sheet
of the medial axis is a line segment orthogonal to the sharp edge and its length is related by an elementary expression
to the sharp edge angle. More generally, the value of the Clarke gradient at medial axis points located near the set gives
information about the geometry of concave sharp features. For this reason, we expect the new stability property to allow
us to “extract” more geometric information about a compact set K from a Hausdorff approximation of it.

For a set E and a number r � 0, we recall that Er denotes the set Er = {z: d(z, E) � r}.

5.1. Clarke gradient of the distance function

The aim of this section is to prove Lemma 5.2 that provides a very simple relation between ΓK (x) and the Clarke
Gradient of R K at point x.

Instead of the usual definition of Clarke gradient we use the following characterization. For f : R
n → R we denote by

Ω f the set of point where f fails to be differentiable and, for x /∈ Ω f , we denote ∂ f
∂ X (x) the usual gradient of the function

f at x.
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Definition 5.1 (F.H. Clarke, adapted from [10], Section 2.5.1). Let f be Lipschitz near x, then:

∂ f (x) = co

{
lim

xi→x

∂ f

∂ X
(xi), xi /∈ Ω f

}

Rephrasing [10], the above characterization means the following. Consider any sequence xi converging to x with f dif-
ferentiable at each xi and such that the usual gradient ∂ f

∂ X (xi) converges; then ∂ f (x) is the convex hull of such limit points.
A characterization of ∂ R K (x) for x ∈ K is given in ([10], Section 2.5.6). However, because our stability property is meaningful
for x /∈ K only, we first prove the following characterization of ∂ R K for x ∈ R

n \ K .
For x ∈ R

n \ K and ρ > 0 we introduce the notations G̃ K (x), G K (x) and G K (x,ρ):

G̃ K (x) =
{

x − z

R K (x)
, z ∈ ΓK (x)

}

G K (x) = co
(
G̃ K (x)

)
G K (x,ρ) = co

( ⋃
‖y−x‖�ρ

G K (y)

)

Lemma 5.2. If x ∈ R
n \ K , one has:

∂ R K (x) = G K (x)

Proof. We first prove G K (x) ⊂ ∂ R K (x). For that we use Lemma 5.3 below. If a function f is differentiable at point x, we
denote by ∂ f

∂ X (x) the value of the usual gradient of f at point x.

Lemma 5.3. If x ∈ R
n \ K and v ∈ G̃ K (x) then for any z on the open line segment (x, x − R K (x)v), R K is differentiable at z and:

∂ R K

∂ X
(z) = v

Proof of Lemma 5.3. From the definition of G̃ K (x), one has v ∈ G̃ K (x) ⇒ xv = x − R K (x)v ∈ ΓK (x). We denote by B(x,r)

and B
◦
(x,r) respectively the closed and open balls centered at x with radius r and let Rmax be such that K ⊂ B(x,Rmax). We

consider the two compact sets K + = {xv} and K − = B(x,Rmax) \ B
◦
(x,R K (x)) one has:

K + ⊂ K ⊂ K −

Fig. 6. Proof of Lemma 5.3.
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which entails:

R K − � R K � R K + (8)

On another hand, R K − and R K + have simple radial expressions (see Fig. 6) which gives us that:

R K − (z) = R K (z) = R K + (z) (9)

R K − and R K + are differentiable in z and an easy computation shows that

∂ R K −

∂ X
(z) = ∂ R K +

∂ X
(z) = v

this together with Eqs. (8) and (9) entails that the first order expansion of R K is enclosed between the respective first order
expansions of R K − and R K + and therefore R K is differentiable at z and:

∂ R K

∂ X
(z) = v �

Now let v ∈ G̃ K (x). Lemma 5.3 entails that, for any positive integer n, there exists xn ∈ B
(x, 1

n )
such that:

∂ R K

∂ X
(xn) = v

this together with the Definition 5.1 implies that v ∈ ∂ R K (x). We have proved that G̃ K (x) ⊂ ∂ R K (x) and, because ∂ R K (x) is
convex, it entails G K (x) ⊂ ∂ R K (x).

We prove now ∂ R K (x) ⊂ G K (x). As seen in Section 2.1, Eq. (1), the function x �→ ΓK (x) is upper semi-continuous. When
R K (x) > 0, G K (x) is the image of ΓK (x) by a simple continuous transformation which allows easily to derive the following
lemma that expresses that if a point y is taken sufficiently close to a point x, then G K (y) is close to G K (x) for a “half”, or
“one-sided”, Hausdorff distance.

Lemma 5.4. G K is upper semi-continuous in R
n \ K , in other words:

∀x ∈ R
n \ K , ∀r > 0, ∃α > 0, ‖y − x‖ � α ⇒ G K (y) ⊂ G K (x)r

Let us consider a vector v such that there exists a sequence of points xn which as in Definition 5.1, are such that
limn→∞ xn = x, R K is differentiable at each xn and

lim
n→∞

∂ R K

∂ X
(xn) = v (10)

Let us consider ε > 0. From Lemma 5.4, there is α > 0 such that:

‖y − x‖ � α ⇒ G K (y) ⊂ G K (x)
ε
2 (11)

From (10), there is xk such that:

‖xk − x‖ � α and

∥∥∥∥∂ R K

∂ X
(xk) − v

∥∥∥∥ <
ε

2
(12)

From ([10] 2.5.4) R K differentiable at xk entails that ΓK (xk) is a single point and, if we denote {yk} = ΓK (xk) and vk = xk−yk
R K (xk)

one has vk = ∂ R K
∂ X (xk), which gives, with (12):

‖vk − v‖ <
ε

2

On the other hand one has from (11):

{vk} = G K (xk) ⊂ G K (x)
ε
2

which entails:

{v} ⊂ G K (x)ε

Because this inclusion holds for any ε > 0 and G K (x) is closed, it entails

v ∈ G K (x)

Because G K (x) is convex and ∂ R K (x) is defined in Definition 5.1 as the convex hull of all such v , we get ∂ R K (x) ⊂ G K (x). �
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5.2. Stability of ∂ R K

The aim of this section is to prove Theorem 5.6 which is the main stability result for the Clarke gradient of the distance
function. The idea is that, by confronting equation (13) below and the mean value theorem of Lebourg (Theorem 5.5 below)
we get a relation between G K ′ (x) and G K (x,ρ) for two sets K and K ′ nearby for the Hausdorff distance.

We consider again two compact subsets of R
n , K and K ′ which are “close” to each other for the Hausdorff distance:

dH (K , K ′) � ε.
Let x be a point in R

n \ K ′ . For any w ′ ∈ G̃ K ′ (x), the point z′ = x − R K ′ (x) w ′ is in ΓK ′ (x) and therefore in K ′ . One has
then, for any y ∈ R

n:

R K ′ (y)2 � (y − z′)2

= (x − z′)2 + 2〈x − z′, y − x〉 + (y − x)2

� R K ′ (x)2 + 2〈w ′, y − x〉R K ′ (x) + (y − x)2

which gives, for any w ′ ∈ G̃ K ′ (x)

R K ′ (y) − R K ′ (x) � R K ′ (x)

(√
1 + 2

R K ′ (x)
〈w ′, y − x〉 + (y − x)2

R K ′ (x)2
− 1

)

And, from
√

1 + α � 1 + α
2 :

R K ′ (y) − R K ′ (x) � 〈w ′, y − x〉 + (x − y)2

2R K ′ (x)
(13)

Notice that this last equation can be read as the membership of w ′ to a half-space. Therefore, if holds for any w ′ ∈ G̃ K ′ (x),
it holds also for any w ′ in the convex hull G K ′ (x) of G̃ K ′ (x).

Lemma 5.2 says that ∂ R K (x) = G K (x) which allows to use the following mean value theorem theorem which holds in
general for Clarke gradients. We denote by (x, y) the relatively open segment between points x and y.

Theorem 5.5 (Lebourg [10] 2.3.7). Let x and y be points in X, and suppose that f is Lipschitz in an open set containing the line segment
[x, y]. Then there exists a point w ∈ (x, y) such that:

f (y) − f (x) ∈ 〈
∂ f (w), y − x

〉
Let ρ > 0 and x such that R K (x) � ρ , applying Theorem 5.5 to the function R K gives: ∀y ∈ B(x,ρ), ∃w ∈ G K (x,ρ) such

that:

R K (y) − R K (x) = 〈w, y − x〉
Using R K (y) − R K (x) � R K ′ (y) − R K ′ (x) + 2ε and Eq. (13) we get: ∀y ∈ B(x,ρ) there is w ∈ G K (x,ρ) such that for any
w ′ ∈ G K ′ (x):

〈w, y − x〉 � 〈w ′, y − x〉 + (x − y)2

2R K ′ (x)
+ 2ε

or:

〈w ′ − w, x − y〉 � (x − y)2

2R K ′ (x)
+ 2ε

Assuming now ρ = ‖y − x‖, we consider the unit vector u = − y−x
ρ , which gives the following property: ∀u,‖u‖ = 1, ∀w ′ ∈

G K ′ (x) there is w ∈ G K (x,ρ) such that:

〈w ′ − w, u〉 � ρ

2R K ′ (x)
+ 2ε

ρ
(14)

This property, which holds for any unit vector u gives in fact a relation between the support functions of the compact sets
G K ′ (x) and G K (x,ρ).

Let w ′ ∈ G K ′ (x) such that w ′ /∈ G K (x,ρ) and let w ′′ ∈ G K (x,ρ) be its unique nearest point in the convex set G K (x,ρ):

d(w ′, w ′′) = d
(

w ′, G K (x,ρ)
)

let us consider the unit vector u� = 1
‖w ′−w ′′‖ (w ′ − w ′′). Because G K (x,ρ) is convex, ∀w ∈ G K (x,ρ), one has:

〈w, u�〉 � 〈w ′′, u�〉
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or equivalently:

〈w − w ′′, u�〉 � 0

Combining this with (14), for u = u� , gives:

〈w ′ − w ′′, u�〉 � ρ

2R K ′ (x)
+ 2ε

ρ

that is, for any w ′ ∈ G K ′ (x) \ G K (x,ρ), there is w ′′ ∈ G K (x,ρ) such that:

‖w ′ − w ′′‖ � ρ

2R K ′ (x)
+ 2ε

ρ

which proves the following.

Theorem 5.6. For any x such that R K (x) � ρ , one has:

G K ′ (x) ⊂ G K (x,ρ)
ρ

2R K ′ (x) + 2ε
ρ

6. Application to normal approximation

Based on the results from the previous section, we now introduce a scale-dependent notion of normal cone that allows
to infer first order information from finite approximations of compact sets, even in the non-smooth case.

6.1. A stable notion of normal cone

The main object of study of this section is defined as follows (see Fig. 7):

Definition 6.1. Given two non-negative numbers l � r, the normal cone at scale (r, l) of a compact set K at the point p ∈ R
n

is defined as:

Nr,l
K (p) = co

{
x − q

R K (x)

∣∣∣ d(x, p) � r, R K (x) � l,q ∈ ΓK (x)

}

This notion of normal cone may be viewed as a generalization of the normal cone in the sense of Clarke (see [10]
p. 51) since the latter coincides with the limit limr→0 Nr,0

K (p) when p belongs to K ([10] Proposition 2.5.7 p. 68). While the
original definition of Clarke’s normal cone is outside the scope of the paper, the reader not acquainted with it can take the
former limit as a definition. As we will see, our notion of normal cone allows in many cases to estimate Clarke’s normal
cone knowing only approximations of the compact set K .

First, we note that Theorem 5.6 gives the following result:

Lemma 6.2. Let K and K ′ be two compact sets with Hausdorff distance ε and let η � ε + 2
√

εl. We have for all r � l � 6ε:

Nr,l
K ′ (p) ⊂ Nr+η,l−η

K (p)2
√

ε/l

Fig. 7. Normal cones at three points of the boundary of a solid polygon.
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Proof. Let x be such that d(x, p) � r and d(x, K ′) � l. By Theorem 5.6, for any ρ � l − ε, we have:

G K ′ (x) ⊂ G K (x,ρ)
ρ
2l + 2ε

ρ

taking ρ = 2
√

εl as in [5]:

G K ′ (x) ⊂ G K (x,2
√

εl )2
√

ε/l

provided that 2
√

εl � l − ε, which is satisfied as soon as l � 6ε. The conclusion follows. �
Endowing the set of compact subsets of R

n with the Hausdorff distance, the map N .,.
K (p) becomes a map between two

metric spaces. From the previous lemma, one easily gets the following one:

Lemma 6.3. Let p ∈ R
n and 0 < l < r be such that N .,.

K (p) is κ-lipschitz on [r − ν, r + ν] × [l − ν, l + ν] for some positive constants
κ and ν . Let K ′ be a compact set at Hausdorff distance at most ε from K . If

ε � min

(
ν2

36l
,

l

6

)

then

dH
(
Nr,l

K ′ (p), Nr,l
K (p)

)
� 12κ

√
εl + 6

√
ε

l

In particular, if N .,.
K (p) is locally lipschitz at (r, l), then Nr,l

. (p) is locally 1/2-Hölder at K .

Proof. Applying Lemma 6.2 twice, we get:

Nr−η,l+η
K (p) ⊂ Nr,l

K ′ (p)2
√

ε/l ⊂ Nr+η,l−η
K (p)4

√
ε/l

for suitable η > 0. The conditions on ε are chosen so that we may take η = 6
√

εl. The lemma then follows from the double
inclusion above. �

Since our notion of normal cone is stable under Hausdorff approximation, it can be inferred from finite approximations
of compact sets. It now remains to pick suitable values for the parameters r and l. We consider two particular cases below:
submanifolds with positive reach and piecewise linear complexes.

6.2. Normal cone estimation for submanifolds with positive reach

Consider the case where the compact set K is a submanifold of R
n with positive reach. Assuming that p belongs to K ,

it is not difficult to show that for 0 < r < r1(K ), Nr,r
K (p) does not depend on r and coincides with Clarke’s normal cone

NK (p). Unfortunately, we cannot apply Lemma 6.3 for estimating Nr,r
K (p) = NK (p) directly since it only applies when the

two parameters of the normal cone are different. To apply Lemma 6.3, we need to estimate the lipschitz constant of the
function N .,.

K (p) at points where the two parameters are different. Given three numbers λ, λ′ and λ′′ in (0,1) we let
D = {(r, l) | λ′′r � l � λr, r � λ′r1(K )}.

Lemma 6.4. Let K be a compact submanifold of R
n. If p belongs to K , the function N .,.

K (p) is κ-lipschitz on D, with

κ =
(

1 − (1 + λ)2

4

)−1/2

max
{
(1 − λ′)−1r1(K )−1, (λ′′t)−1}

Proof. Function N .,.
K (p) is the composition f3 ◦ f2 ◦ f1 where f1 the set-valued function sending (r, l) to the closure of

B(p, r) \ K l , f2 is the set-valued function sending any closed subset to its image by ∇K , and f3 is the set-valued function
sending a compact set to its convex hull. The function f3 being 1-Lipschitz for the Hausdorff distance it is sufficient to
estimate the Lipschitz constants of f1 and f2. Let us first estimate the lipschitz constant of f1. Function r �→ B(p, r) is
clearly 1-lipschitz. For l < r1(K ), function l �→ K l is also 1-lipschitz. However the lipschitz constant of f1, which is the set
difference of the latter two functions, depends on the minimum angle α at which the boundaries of B(p, r) and of K l meet,
for (r, l) ∈ D . More precisely, this constant is equal to 1/ sin(α). We now show that the angle α satisfies cosα � (1 + λ)/2.

Assume the boundaries of B(p, r) and of K l intersect at say x ∈ R
n . Letting y be the point closest to x on K , we have

that α is the angle between the lines (px) and (xy). Let c be the unique point on the line (xy) such that the ball centered
at c and passing through y also passes through p. Since this ball is tangent to K and meets K at a point different from
its tangency point, its radius R must exceed the reach of K . We distinguish two cases. If the triangle xyp has an obtuse
angle at x, then the angle β between (yp) and (xy) is at most α. Since c is the intersection of the medial hyperplane of
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[yp] with (xy), we get that R = ‖cy‖ = ‖yp‖/(2 cosβ) � (r + l)/(2 cosα). Since R > r1(K ) � r, we get the desired bound
on cosα. Assume now that xyp has an acute angle at x. For the sake of contradiction assume that cosα > (1 + λ)/2. In
particular, cosα > λ hence r cosα > l, which implies that y ∈ [xc]. The triangle xcp thus has edge lengths ‖xp‖ = r, ‖cp‖ = R
and ‖xc‖ = R + l. Applying the generalized Pythagorean theorem at x gives:

(R + l)2 + r2 − 2(cosα)r(R + l) − R2 = 0

The derivative with respect to R of the l.h.s. of the above equation is 2l − 2r cosα which is negative by assumption. Hence
the l.h.s. becomes positive if we replace R by r. The desired bound on cosα follows, a contradiction. As a consequence, the
desired bound follows, from which we deduce that the lipschitz constant of f1 is at most (1 − (1 + λ)2/4)−1/2.

To finish the proof of the lemma, we note that the lipschitz constant of f2 equals the lipschitz constant of ∇K , which for
r < r1(K ) is bounded by

max
{(

r1(K ) − r
)−1

, l−1} � max
{

r1(K )−1(1 − λ′)−1, (λ′′r)−1}
(see [14] for example). �

The previous lemma together with Lemma 6.3 show that for any r > l, Nr,l
K ′ (p) allows to estimate Nr,l

K (p) with precision

O (
√

ε ). It also gives the rate of convergence of Nr,l
K (p) to Nr,r

K (p) = NK (p) as l tends to r. Indeed, we have that

dH
(
Nr,l

K (p), NK (p)
)
�

r∫
x=l

κ(r, x)dx

where κ(r, x) is the bound on the lipschitz constant of N .,.
K derived in the previous lemma. From the expression of κ , it can

be checked that as x tends to r, we have κ(r, x) � c(r, r1(K ))(1 − x/r)−1/2 for some constant c(r, r1(K )). Hence

dH
(
Nr,l

K (p), NK (p)
) �

r∫
x=l

c(r, r1(K ))√
1 − x/r

dx � c′(r, r1(K )
)√

1 − l/r.

As a consequence, we get that dH (Nr,λr
K ′ (p), NK (p)) = O (

√
ε + √

1 − λ ) when λ tends to 1 and ε tends to 0. Remark
however that our bounds on the Hausdorff distance between normal cones are only valid when ε is smaller than a certain
function of (λ, r, r1(K )) that we do not make explicit in the present paper to avoid additional calculations. Finally, as a
comment, we note that the estimators we propose are related to the ones introduced by Dey et al. [11,12] for normal
estimation in noisy smooth surfaces. One difference, though, is that our method can deal with submanifolds with arbitrary
dimension and codimension, rather than hypersurfaces in R

3.

6.3. Normal cone estimation for piecewise linear complexes

Let K be a (non-necessarily convex) piecewise linear complex. For any p in K , we define r(p) as the distance from p to
the closest (closed) face of K not containing p. The intersection of K with a sphere of radius less than r(p), scaled so that it
includes in the unit sphere, is a spherical complex called the link of p, and denoted by Lk(p). Let θ(p) � π be the maximal
radius such that for any face F ⊂ Lk(p), there exists y ∈ F such that the open geodesic ball B(y, θ(p)) only meets faces of
Lk(p) that are incident to F .

Lemma 6.5. For l � sin(θ(p)/2)r and r < r(p)/2, Nr,l
K (p) coincides with Clarke’s normal cone NK (p).

Proof. Assume for simplicity that r(p) > 2, so that the link of p is the intersection of K with the unit sphere. For r � 1,
Nr,0

K (p) only depends on the link of p. Hence, we have that Nr,0
K (p) = N1,0

K (p) for any r ∈ (0,1], which implies that NK (p) =
N1,0

K (p). In particular, we have the inclusion Nr,l
K (p) ⊂ NK (p). To prove the other inclusion, it is sufficient to consider the

case r = 1 by homogeneity. First, let v be an extreme point in NK (p) = N1,0
K (p). By definition, there is a point x at distance

1 from p and q ∈ ΓK (x) such that x − q points in the same direction as v . Let F be the minimal face containing q and
y ∈ F ∩ Lk(p) be such that the open geodesic ball B(y, θ(p)) in the unit sphere only meets faces of Lk(p) that are incident
to F . Let now s(t) be the geodesic on the unit sphere issued from y and with initial speed v . We have that the closest point
(for the geodesic distance) on Lk(p) of the point z = s(θ(p)/2) lies in a face that is incident to F . Since s′(0) = v , y must be
a local minimum of the distance to z. Because all faces are convex, y is also the absolute minimum in each face incident to
F , hence also the absolute minimum in the union of all faces incident to F and, by the above remark, we get that y is the
point closest to z in Lk(p). Elementary geometric considerations show that the closest point q′ (for the ambient distance) to
z on K lies on the segment py and is such that z − q′ points in the same direction as v . Also, the distance between q′ and
z is equal to sin(θ(p)/2). Since z is at unit distance from p, we get that v ∈ N1,sin(θ/2)

(p), which concludes the proof. �
K
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Hence Nr,l
K ′ (p) is a good estimate of Clarke’s normal cone for such a choice of r and l. More precisely, since Nr,l

K (p) does
not depend on r and l in the prescribed range, it follows from lemma 6.3 that this estimator has precision O (

√
ε ).

7. Discussion

The main purpose of this paper was to study the possibility of estimating “first order properties” of general compact
sets from Hausdorff approximations. In Section 3, we have shown that tangent planes of offsets can be reliably estimated
when the offset parameter lies in a sufficiently long interval where the critical function of the underlying shape is close to
1. When this is not the case, a one-sided stability result can still be obtained by introducing an interval version of Clarke
gradient for distance functions (Section 5). This result suggests that normal cones of the compact set (rather than the ones
of its offsets) may be estimated by a certain scale dependent notion of normal cone, as described in Section 6.

Several questions remain open. First, how can we choose suitable parameters for estimating the scale dependent normal
cone introduced in Section 6? In the case where the underlying shape is either a smooth submanifold or a convex set, or
a non-necessarily convex polyhedron, it is possible to find such parameters. Is there a way to infer these parameters from
data? Also, can anything be said in the general case? Second, how can we design an efficient algorithm implementing the
ideas of this paper? Exact computation of normal cones involves non-trivial geometric operations, such as intersecting balls
with convex polyhedra. Can we compute approximations of these normal cones in an efficient way?
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