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Abstract
Persistence diagrams play a fundamental role in Topological Data Analysis where they are used
as topological descriptors of filtrations built on top of data. They consist in discrete multisets
of points in the plane R2 that can equivalently be seen as discrete measures in R2. When the
data come as a random point cloud, these discrete measures become random measures whose
expectation is studied in this paper. First, we show that for a wide class of filtrations, including
the Čech and Rips-Vietoris filtrations, the expected persistence diagram, that is a deterministic
measure on R2, has a density with respect to the Lebesgue measure. Second, building on the
previous result we show that the persistence surface recently introduced in [1] can be seen as a
kernel estimator of this density. We propose a cross-validation scheme for selecting an optimal
bandwidth, which is proven to be a consistent procedure to estimate the density.
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1 Introduction

Persistent homology [16], a popular approach in Topological Data Analysis (TDA), provides
efficient mathematical and algorithmic tools to understand the topology of a point cloud
by tracking the evolution of its homology at different scales. Specifically, given a scale (or
time) parameter r and a point cloud x = (x1, . . . , xn) of size n, a simplicial complex K(x, r)
is built on {1, . . . , n} thanks to some procedure, such as, e.g., the nerve of the union of balls
of radius r centered on the point cloud or the Vietoris-Rips complex. Letting the scale r
increase gives rise to an increasing sequence of simplicial complexes K(x) = (K(x, r))r called
a filtration. When a simplex is added in the filtration at a time r, it either "creates" or "fills"
some hole in the complex. Persistent homology keeps track of the birth and death of these
holes and encodes them as a persistence diagram that can be seen as a relevant and stable
[6, 7] multi-scale topological descriptor of the data. A persistence diagram Ds is thus a
collection of pairs of numbers, each of those pairs corresponding to the birth time and the
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death time of a s-dimensional hole. A precise definition of persistence diagram can be found,
for example, in [16, 8]. Mathematically, a diagram is a multiset of points in

∆ = {r = (r1, r2), 0 ≤ r1 < r2 ≤ ∞}. (1)

Note that in a general setting, points r = (r1, r2) in diagrams can be "at infinity" on the line
{r2 =∞} (e.g. a hole may never disappear). However, in the cases considered in this paper,
this will be the case for a single point for 0-dimensional homology, and this point will simply
be discarded in the following.

In statistical settings, one is often given a (i.i.d.) sample of (random) point clouds
X1, . . . ,XN and filtrations K(X1), . . . ,K(XN ) built on top of them. We consider the set
of persistence diagrams Ds[K(X1)], . . . , Ds[K(XN )], which are thought to contain relevant
topological information about the geometry of the underlying phenomenon generating the
point clouds. The space of persistence diagrams is naturally endowed with the so-called
bottleneck distance [12] or some variants. However, the resulting metric space turns out to
be highly non linear, making the statistical analysis of distributions of persistence diagrams
rather awkward, despite several interesting results such as, e.g., [28, 15, 10]. A common
scheme to overcome this difficulty is to create easier to handle statistics by mapping the
diagrams to a vector space thanks to a feature map Ψ, also called a representation (see,
e.g., [1, 2, 4, 9, 11, 20, 25]). A classical idea to get information about the typical shape of a
random point cloud is then to estimate the expectation E[Ψ(Ds[K(Xi)])] of the distribution
of representations using the mean representation

ΨN :=
∑N
i=1 Ψ(Ds[K(Xi)])

N
. (2)

In this direction, [4] introduces a representation called persistence landscape, and shows
that it satisfies law of large numbers and central limit theorems. Similar theorems can be
shown for a wide variety of representations: it is known that ΨN is a consistent estimator of
E[Ψ(Ds[K(Xi)])]. Although it may be useful for a classification task, this mean representation
is still somewhat disappointing from a theoretical point of view. Indeed, what exactly
E[Ψ(Ds[K(Xi)])] is, has been scarcely studied in a non-asymptotic setting, i.e. when the
cardinality of the random point cloud Xi is fixed or bounded.

Asymptotic results, when the size of the considered point clouds goes to infinity, are well
understood for some non-persistent descriptors of the data, such as the Betti numbers: a
natural question in geometric probability is to study the asymptotics of the s-dimensional Betti
numbers βs(K(Xn, rn)) where Xn is a point cloud of size n and under different asymptotics
for rn. Notable results on the topic include [17, 30, 31]. Considerably less results are known
about the asymptotic properties of fundamentally persistent descriptors of the data: [3] finds
the right order of magnitude of maximally persistent cycles and [14] shows the convergence
of persistence diagrams on stationary process in a weak sense.

Contributions of the paper.

In this paper, representing persistence diagrams as discrete measures, i.e. as element of
the space of measures on R2, we establish non-asymptotic global properties of various
representations and persistence-based descriptors. A multiset of points is naturally in
bijection with the discrete measure defined on R2 created by putting Dirac measures on
each point of the multiset, with mass equal to the multiplicity of the point. In this paper
a persistence diagram Ds is thus represented as a discrete measure on ∆ and with a slight
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abuse of notation, we will write

Ds =
∑

r∈Ds

δr, (3)

where δr denotes the Dirac measure in r and where, as mentioned above, points with
infinite persistence are simply discarded. A wide class of representations, including the
persistence surface [1] (variants of this object have been also introduced [11, 20, 25]), the
accumulated persistence function [2] or persistence silhouette [9] are conveniently expressed as
Ψ(Ds) = Ds(f) :=

∑
r∈Ds

f(r) for some function f on ∆. Given a random set of points X, the
expected behavior of the representations E[Ds[K(X)](f)] is well understood if the expectation
E[Ds[K(X)]] of the distribution of persistence diagrams is understood, where the expectation
E[µ] of a random discrete measure µ is defined by the equation E[µ](B) = E[µ(B)] for
all Borel sets B (see [23] for a precise definition of E[µ] in a more general setting). Our
main contribution (Theorem 7) consists in showing that for a large class of situations the
expected persistence diagram E[Ds[K(X)]], which is a measure on ∆ ⊂ R2, has a density p
with respect to the Lebesgue measure on R2. Therefore, E[Ψ(Ds[K(X)])] is equal to

∫
pf ,

and if properties of the density p are shown (such as smoothness), those properties will also
apply to the expectation of the representation Ψ.

The main argument of the proof of Theorem 7 relies on the basic observation that for
point clouds X of given size n, the filtration K(X) can induce a finite number of ordering
configurations of the simplices. The core of the proof consists in showing that, under suitable
assumptions, this ordering is locally constant for almost all X. As one needs to use geometric
arguments, having properties only satisfied almost everywhere is not sufficient for our purpose.
One needs to show that properties hold in a stronger sense, namely that the set on which it is
satisfied is a dense open set. Hence, a convenient framework to obtain such properties is given
by subanalytic geometry [26]. Subanalytic sets are a class of subsets of Rd that are locally
defined as linear projections of sets defined by analytic equations and inequations. As most
considered filtrations in Topological Data Analysis result from real algebraic constructions,
such sets naturally appear in practice. On open sets where the combinatorial structure of the
filtration is constant, the way the points in the diagrams are matched to pairs of simplices is
fixed: only the times/scales at which those simplices appear change. Under an assumption of
smoothness of those times, and using the coarea formula [24], a classical result of geometric
measure theory generalizing the change of variables formula in integrals, one then deduces
the existence of a density for E[Ds[K(X)]].

Among the different representations of the form Ψ(D) = D(f), persistence surface is
of particular interest. It is defined as the convolution of a diagram with a gaussian kernel.
Hence, the mean persistence surface can be seen as a kernel density estimator of the density
p of Theorem 7. As a consequence, the general theory of kernel density estimation applies
and gives theoretical guarantees about various statistical procedures. As an illustration,
we consider the bandwidth selection problem for persistence surfaces. Whereas Adams et
al. [1] states that any reasonable bandwidth is sufficient for a classification task, we give
arguments for the opposite when no "obvious" shapes appear in the diagrams. We then
propose a cross-validation scheme to select the bandwidth matrix. The consistency of the
procedure is shown using Stone’s theorem [27]. This procedure is implemented on a set of
toy examples illustrating its relevance.

The paper is organized as follow: section 2 is dedicated to the necessary background in
geometric measure theory and subanalytic geometry. Results are stated in section 3, and the
main theorem is proved in section 4. It is shown in section 5 that the main result applies
to the Čech and Rips-Vietoris filtrations. Section 6 is dedicated to the statistical study of
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persistence surface, and numerical illustrations are found in section 7. All the technical
proofs that are not essential to the understanding of the idea and results of the paper have
been moved to the Appendix.

2 Preliminaries

2.1 The coarea formula
The proof of the existence of the density of the expected persistence diagram depends heavily
on a classical result in geometric measure theory, the so-called coarea formula (see [24] for a
gentle introduction to the subject). It consists in a more general version of the change of
variables formula in integrals. Let (M,ρ) be a metric space. The diameter of a set A ⊂ (M,ρ)
is defined by supx,y∈A ρ(x, y).

I Definition 1. Let k be a non-negative integer. For A ⊂M , and δ > 0, consider

Hδk(A) := inf
{∑

i

diam(Ui)k, A ⊂
⋃
i

Ui and diam(Ui) < δ

}
. (4)

The k-dimensional Haussdorf measure on M of A is defined by Hk(A) := limδ→0Hδk(A).

If M is a d-dimensional submanifold of RD, the d-dimensional Haussdorf measure coincides
with the volume form associated to the ambient metric restricted to M . For instance, if M
is an open set of RD, the Haussdorf measure is the D-dimensional Lebesgue measure.

I Theorem 2 (Coarea formula [24]). Let M (resp. N) be a smooth Riemannian manifold of
dimension m (resp n). Assume that m ≥ n and let Φ : M → N be a differentiable map. De-
note by DΦ the differential of Φ. The Jacobian of Φ is defined by JΦ =

√
det((DΦ)× (DΦ)t).

For f : M → R+ a positive measurable function, the following equality holds:∫
M

f(x)JΦ(x)dHm(x) =
∫
N

(∫
x∈Φ−1({y})

f(x)dHm−n(x)
)
dHn(y). (5)

In particular, if JΦ > 0 almost everywhere, one can apply the coarea formula to f×(JΦ)−1

to compute
∫
M
f . Having JΦ > 0 is equivalent to have DΦ of full rank: most of the proof

of our main theorem consists in showing that this property holds for certain functions Φ of
interest.

2.2 Background on subanalytic sets
We now give basic results on subanalytic geometry, whose proofs are given in Appendix.
See [26] for a thorough review of the subject. Let M ⊂ RD be a connected real analytic
submanifold possibly with boundary, whose dimension is denoted by d.

I Definition 3. A subset X of M is semianalytic if each point of M has a neighbourhood
U ⊂M such that X ∩ U is of the form

p⋃
i=1

q⋂
j=1

Xij , (6)

where Xij is either f−1
ij ({0}) or f−1

ij ((0,∞)) for some analytic functions fij : U → R.
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I Definition 4. A subset X of M is subanalytic if for each point of M , there exists a
neighborhood U of this point, a real analytic manifold N and A, a relatively compact
semianalytic set of N ×M , such that X ∩ U is the projection of A on M . A function
f : X → R is subanalytic if its graph is subanalytic in M × R. The set of real-valued
subanalytic functions on X is denoted by S(X).

A point x in a subanalytic subset X of M is smooth (of dimension k) if, in some
neighbourhood of x in M , X is an analytic submanifold (of dimension k). The maximal
dimension of a smooth point of X is called the dimension of X. The smooth points of X
of dimension d are called regular, and the other points are called singular. The set Reg(X)
of regular points of X is an open subset of M , possibly empty; the set of singular points is
denoted by Sing(X).

I Lemma 5. (i) For f ∈ S(M), the set A(f) on which f is analytic is an open subanalytic
set of M . Its complement is a subanalytic set of dimension smaller than d.
Fix X a subanalytic subset of M . Assume that f, g : X → R are subanalytic functions

such that the image of a bounded set is bounded. Then,
(ii) The functions fg and f + g are subanalytic.
(iii) The sets f−1({0}) and f−1((0,∞)) are subanalytic in M .

As a consequence of point (i), for f ∈ S(M), one can define its gradient ∇f everywhere
but on some subanalytic set of dimension smaller than d.

I Lemma 6. Let X be a subanalytic subset of M . If the dimension of X is smaller than d,
then Hd(X) = 0.

As a direct corollary, we always have

Hd(X) = Hd(Reg(X)). (7)

Write N (M) the class of subanalytic subsets X of M with Reg(X) = ∅. We have just shown
that Hd ≡ 0 on N (M). They form a special class of negligeable sets. We say that a property
is verified almost subanalytically everywhere (a.s.e.) if the set on which it is not verified is
included in a set of N (M). For example, Lemma 5 implies that ∇f is defined a.s.e..

3 The density of expected persistence diagrams

Let n > 0 be an integer. Write Fn the collection of non-empty subsets of {1, . . . , n}. Let
ϕ = (ϕ[J ])J∈Fn

: Mn → RFn be a continuous function. The function ϕ will be used to
construct the persistence diagram and is called a filtering function: a simplex J is added
in the filtration at the time ϕ[J ]. Write for x = (x1, . . . , xn) ∈ Mn and for J a simplex,
x(J) := (xj)j∈J . We make the following assumptions on ϕ:

(K1) Absence of interaction: For J ∈ Fn, ϕ[J ](x) only depends on x(J).
(K2) Invariance by permutation: For J ∈ Fn and for (x1, . . . , xn) ∈Mn, if τ is a permutation

of {1, . . . , n}, then ϕ[J ](xτ(1), . . . , xτ(n)) = ϕ[J ](x1, . . . , xn).
(K3) Monotony: For J ⊂ J ′ ∈ Fn, ϕ[J ] ≤ ϕ[J ′].
(K4) Compatibility: For a simplex J ∈ Fn and for j ∈ J , if ϕ[J ](x1, . . . , xn) is not a function

of xj on some open set U of Mn, then ϕ[J ] ≡ ϕ[J\{j}] on U .
(K5) Smoothness: The function ϕ is subanalytic and the gradient of each of its entries (which

is defined a.s.e.) is non vanishing a.s.e..
Assumptions (K2) and (K3) ensure that a filtration K(x) can be defined thanks to ϕ by:

∀J ∈ Fn, J ∈ K(x, r)⇐⇒ ϕ[J ](x) ≤ r. (8)

SoCG 2018
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Assumption (K1) means that the moment a simplex is added in the filtration only depends
on the position of its vertices, but not on their relative position in the point cloud. For
J ∈ Fn, the gradient of ϕ[J ] is a vector field in TMn. Its projection on the jth coordinate is
denoted by ∇jϕ[J ]: it is a vector field in TM defined a.s.e.. The persistence diagram of the
filtration K(x) for s-dimensional homology is denoted by Ds[K(x)].

I Theorem 7. Fix n ≥ 1. Assume that M is a real analytic compact d-dimensional connected
submanifold possibly with boundary and that X is a random variable on Mn having a density
with respect to the Haussdorf measure Hdn. Assume that K satisfies the assumptions (K1)-
(K5). Then, for s ≥ 0, the expected measure E[Ds[K(X)]] has a density with respect to the
Lebesgue measure on ∆.

I Remark. The condition that M is compact can be relaxed in most cases: it is only used
to ensure that the subanalytic functions appearing in the proof satisfy the boundedness
condition of Lemma 5. For the Čech and Rips-Vietoris filtrations, one can directly verify
that the function ϕ (and therefore the functions appearing in the proofs) satisfies it when
M = Rd. Indeed, in this case, the filtering functions are semi-algebraic.

Classical filtrations such as the Rips-Vietoris and Čech filtrations do not satisfy the full
set of assumptions (K1)-(K5). Specifically, they do not satisfy the second part of assumption
(K5): all singletons {j} are included at time 0 in those filtrations so that ϕ[{j}] ≡ 0, and the
gradient ∇ϕ[{j}] is therefore null everywhere. This leads to a well-known phenomenon on
Rips-Vietoris and Čech diagrams: all the non-infinite points of the diagram for 0-dimensional
homology are included in the vertical line {0}× [0,∞). A theorem similar to Theorem 7 still
holds in this case:

I Theorem 8. Fix n ≥ 1. Assume that M is a real analytic compact d-dimensional connected
submanifold and that X is a random variable on Mn having a density with respect to the
Haussdorf measure Hdn. Define assumption (K5’):

(K5’) The function ϕ is subanalytic and the gradient of its entries J of size greater than 1 is
non vanishing a.s.e.. Moreover, for {j} a singleton, ϕ[{j}] ≡ 0.

Assume that K satisfies the assumptions (K1)-(K4) and (K5’). Then, for s ≥ 1, E[Ds[K(X)]]
has a density with respect to the Lebesgue measure on ∆. Moreover, E[D0[K(X)]] has a
density with respect to the Lebesgue measure on the vertical line {0} × [0,∞).

The proof of Theorem 8 is very similar to the proof of Theorem 7. It is therefore relegated
to the appendix.

One can easily generalize Theorem 7 and assume that the size of the point process X
is itself random. For n ∈ N, define a function ϕ(n) : Mn → RFn satisfying the assumption
(K1)-(K5). If x is a finite subset of M , define K(x) by the filtration associated to ϕ(|x|) where
|x| is the size of x. We obtain the following corollary, proven in the appendix.

I Corollary 9. Assume that X has some density with respect to the law of a Poisson process
on M of intensity Hd, such that E

[
2|X|
]
< ∞. Assume that K satisfies the assumptions

(K1)-(K5). Then, for s ≥ 0, E[Ds[K(X)]] has a density with respect to the Lebesgue measure
on ∆.

The condition E
[
2|X|
]
< ∞ ensures the existence of the expected diagram and is for

example satisfied when X is a Poisson process with finite intensity.
As the way the filtration is created is smooth, one may actually wonder whether the

density of E[Ds[K(X)]] is smooth as well: it is the case as long as the way the points are
sampled is smooth. Recalling that a function is said to be of class Ck if it is k times
differentiable, with a continuous kth derivative, we have the following result.
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I Theorem 10. Fix 0 ≤ k ≤ ∞ and assume that X ∈Mn has some density of class Ck with
respect to Hnd. Then, for s ≥ 0, the density of E[Ds[K(X)]] is of class Ck.

The proof is based on classical results of continuity under the integral sign as well as an
use of the implicit function theorem: it can be found in the appendix.

As a corollary of Theorem 10, we obtain the smoothness of various expected descriptors
computed on persistence diagrams. For instance, the expected birth distribution and the
expected death distribution have smooth densities under the same hypothesis, as they are
obtained by projection of the expected diagram on some axis. Another example is the
smoothness of the expected Betti curves. The sth Betti number βrs(K(x)) of a filtration
K(x) is defined as the dimension of the sth homology group of K(x, r). The Betti curves
r 7→ βrs(K(x)) are step functions which can be used as statistics, as in [29] where they are
used for a classification task on time series. With few additional work (see proof in Appendix),
the expected Betti curves are shown to be smooth.

I Corollary 11. Under the same hypothesis than Theorem 10, for s ≥ 0, the expected Betti
curve r 7→ E[βrs (K(X))] is a Ck function.

4 Proof of Theorem 7

First, one can always replace Mn by A(ϕ) =
⋂
J∈Fn

A(ϕ[J ]), as Lemma 5 implies that it is
an open set whose complement is in N (Mn). We will therefore assume that ϕ is analytic on
Mn.

Given x ∈ Mn, the different values taken by ϕ(x) on the filtration can be written
r1 < · · · < rL. Define El(x) the set of simplices J such that ϕ[J ](x) = rl. The sets
E1(x), . . . , EL(x) form a partition of Fn denoted by A(x).

I Lemma 12. For a.s.e. x ∈Mn, for l ≥ 1, El(x) has a minimal element Jl (for the partial
order induced by inclusion).

Proof. Fix J, J ′ ⊂ {1, . . . , n} with J 6= J ′ and J ∩J ′ 6= ∅. consider the subanalytic functions
f : x ∈Mn 7→ ϕ[J ](x)− ϕ[J ′](x) and g : x ∈Mn 7→ ϕ[J ](x)− ϕ[J ∩ J ′](x). The set

C(J, J ′) := {f = 0} ∩ {g > 0}. (9)

is a subanalytic subset of Mn. Assume that it contains some open set U . On U , ϕ[J ](x)
is equal to ϕ[J ′](x). Therefore, it does not depend on the entries xj for j ∈ J\J ′. Hence,
by assumption (K4), ϕ[J ](x) is actually equal to ϕ[J ∩ J ′](x) on U . This is a contradiction
with having g > 0 on U . Therefore, C(J, J ′) does not contain any open set, and all its
points are singular: C(J, J ′) is in N (Mn). If J ∩ J ′ = ∅, similar arguments show that
C(J, J ′) = {f = 0} cannot contain any open set: it would contradict assumption (K5). On
the complement of

C :=
⋃

J 6=J′⊂{1,...,n}

C(J, J ′), (10)

having ϕ[J ](x) = ϕ[J ′](x) implies that this quantity is equal to ϕ[J ∩ J ′](x). This show
the existence of a minimal element Jl to El(x) on the complement of C. This property is
therefore a.s.e. satisfied. J

I Lemma 13. A.s.e., x 7→ A(x) is locally constant.

SoCG 2018
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Proof. Fix A0 = {E1, . . . , El} a partition of Fn induced by some filtration, with minimal
elements J1, . . . , Jl. Consider the subanalytic functions F,G defined, for x ∈Mn, by

F (x) =
L∑
l=1

∑
J∈El

(ϕ[J ](x)− ϕ[Jl](x)) and G(x) =
∑
l 6=l′

(ϕ[Jl](x))− ϕ[Jl′ ](x))2
.

The set {x ∈ Mn,A(x) = A0} is exactly the set C(A0) = {F = 0} ∩ {G > 0}, which is
subanalytic. The sets C(A0) for all partitions A0 of Fn define a finite partition of the space
Mn. On each open set Reg(C(A0))), the application x 7→ A(x) is constant. Therefore,
x 7→ A(x) is locally constant everywhere but on

⋃
A0

Sing(C(A0)) ∈ N (Mn). J

Therefore, the space Mn is partitioned into a negligeable set of N (Mn) and some open
subanalytic sets U1, . . . , UR on which A is constant.

I Lemma 14. Fix 1 ≤ r ≤ R and assume that J1, . . . , JL are the minimal elements of A on
Ur. Then, for 1 ≤ l ≤ L and j ∈ Jl, ∇jϕ[Jl] 6= 0 a.s.e. on Ur.

Proof. By minimality of Jl, for j ∈ Jl, the subanalytic set {∇jϕ[Jl] = 0}∩Ur cannot contain
an open set. It is therefore in N (Mn). J

Fix 1 ≤ r ≤ R and write

Vr = Ur

∖ L⋃
l=1

|Jl|⋃
j=1
{∇jϕ[Jl] = 0}

 .

The complement of Vr in Ur is still in N (Mn). For x ∈ Vr, Ds[K(x)] is written
∑N
i=1 δri ,

where ri = (ϕ[Jl1 ](x), ϕ[Jl2 ](x)) =: (bi, di). The integer N and the simplices Jl1 , Jl2 depend
only on Vr. Note that di is always greater than bi, so that Jl2 cannot be included in Jl1 .
The map x 7→ ri has it differential of rank 2. Indeed, take j ∈ Jl2\Jl1 . By Lemma 14,
∇jϕ[Jl2 ](x) 6= 0. Also, as ϕ[Jl1 ] only depends on the entries of x indexed by Jl1 (assumption
(K1)), ∇jϕ[Jl1 ](x) = 0. Furthermore, take j′ in Jl1 . By Lemma 14, ∇j′ϕ[Jl1 ](x) 6= 0. This
implies that the differential is of rank 2.

We now compute the sth persistence diagram for s ≥ 0. Write κ the density of X with
respect to the measure Hnd on Mn. Then,

E[Ds[K(X)]] =
R∑
r=1

E [1{X ∈ Vr}Ds[K(X)]] =
R∑
r=1

E

[
1{X ∈ Vr}

Nr∑
i=1

δri

]

=
R∑
r=1

Nr∑
i=1

E [1{X ∈ Vr}δri ]

Write µir the measure E[1{X ∈ Vr}δri
]. To conclude, it suffices to show that this measure

has a density with respect to the Lebesgue measure on ∆. This is a consequence of the coarea
formula. Define the function Φir : x ∈ Vr 7→ ri = (ϕ[Jl1 ](x), ϕ[Jl2 ](x)). We have already
seen that Φir is of rank 2 on Vr, so that JΦir > 0. By the coarea formula (see Lemma 2),
for a Borel set B in ∆,

µir(B) = P (Φir(X) ∈ B,X ∈ Vr) =
∫
Vr

1{Φir(x) ∈ B}κ(x)dHnd(x)

=
∫
u∈B

∫
x∈Φ−1

ir
({u})

(JΦir(x))−1κ(x)dHnd−2(x)du.
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Therefore, µir has a density with respect to the Lebesgue measure on ∆ equal to

pir(u) =
∫
x∈Φ−1

ir
({u})

(JΦir(x))−1κ(x)dHnd−2(x). (11)

Finally, E[Ds[K(X)]] has a density equal to

p(u) =
R∑
r=1

Nr∑
i=1

∫
x∈Φ−1

ir
({u})

(JΦir(x))−1κ(x)dHnd−2(x). (12)

I Remark. Notice that, for n fixed, the above proof, and thus the conclusion, of Theorem 7
also works if the diagrams are represented by normalized discrete measures, i.e. probability
measures defined by

Ds = 1
|Ds|

∑
r∈Ds

δr. (13)

5 Examples

We now note that the Rips-Vietoris and the Čech filtrations satisfy the assumptions (K1)-(K4)
and (K5’) when M = Rd is an Euclidean space. Note that the similar arguments show that
weighted versions of those filtrations (see [5]) satisfy assumptions (K1)-(K5).

5.1 Rips-Vietoris filtration
For the Rips-Vietoris filtration, ϕ[J ](x) = maxi,j∈J ‖xi−xj‖. The function ϕ clearly satisfies
(K1), (K2) and (K3). It is also subanalytic, as it is the maximum of semi-algebraic functions.

For x ∈Mn and J ∈ Fn a simplex of size greater than one, ϕ[J ](x) = ‖xi − xj‖ for some
indices i, j. Those indices are locally stable, and ϕ[J ](x) = ϕ[{i, j}](x): hypothesis (K4) is
satisfied. Furthermore, on this set,

∇ϕ[{i, j}](x) =
(

xi − xj
‖xi − xj‖

,
xj − xi
‖xi − xj‖

)
6= 0. (14)

Hence, (K5’) is also satisfied: both Theorem 8 and Theorem 10 are satisfied for the Rips-
Vietoris filtration.

5.2 Čech filtration
The ball centered at x of radius r is denoted by B(x, r). For the Čech filtration,

ϕ[J ](x) = inf
r>0

⋂
j∈J

B(xj , r) 6= ∅

 . (15)

First, it is clear that (K1), (K2) and (K3) are satisfied by ϕ.
We give without proof a characterization of the Čech complex.

I Proposition 15. Let x be in Mn and fix J ∈ Fn. If the circumcenter of x(J) is in the
convex hull of x(J), then ϕ[J ](x) is the radius of the circumsphere of x(J). Otherwise, its
projection on the convex hull belongs to the convex hull of some subsimplex x(J ′) of x(J)
and ϕ[J ](x) = ϕ[J ′](x).
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I Definition 16. The Cayley-Menger matrix of a k-simplex x = (x1, . . . , xk) ∈ Mk is the
symmetric matrix (M(x)i,j)i,j of size k+1, with zeros on the diagonal, such thatM(x)1,j = 1
for j > 1 and M(x)i+1,j+1 = ‖xi − xj‖2 for i, j ≤ k.

I Proposition 17 (see [13]). Let x ∈Mk be a point in general position. Then, the Cayley-
Menger matrix M(x) is invertible with (M(x))−1

1,1 = −2r2, where r is the radius of the
circumsphere of x. The kth other entries of the first line of M(x)−1 are the barycentric
coordinates of the circumcenter.

Therefore, the application which maps a simplex to its circumcenter is analytic, and the
set on which the circumcenter of a simplex belongs in the interior of its convex hull is a
subanalytic set. On such a set, the function ϕ is also analytic, as it is the square root of
the inverse a matrix which is polynomial in x. Furthermore, on the open set on which the
circumcenter is outside the convex hull, we have shown that ϕ[J ](x) = ϕ[J ′](x) for some
subsimplex J ′: assumption (K4) is satisfied.

Finally, let us show that assumption (K5’) is satisfied. The previous paragraph shows
the subanalyticity of ϕ. For J ∈ Fn a simplex of size greater than one, there exists some
subsimplex J ′ such that ϕ[J ](x) is the radius of the circumsphere of x(J ′). It is clear that
there cannot be an open set on which this radius is constant. Thus, ∇ϕ[J ] is a.s.e. non null.

6 Persistence surface as a kernel density estimator

Persistence surface is a representation of persistence diagrams introduced by Adams & al.
in [1]. It consists in a convolution of a diagram with a kernel, a general idea that has been
repeatedly and fruitfully exploited, with slight variations, for instance in [11, 20, 25]. For
K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix),
let for u ∈ R2,

KH(u) = det(H)−1/2K(H−1/2 · u). (16)

For D a diagram, K : R2 → R a kernel, H a bandwidth matrix and w : R2 → R+ a weight
function, one defines the persistence surface of D with kernel K and weight function w by:

∀u ∈ R2, ρ(D)(u) :=
∑
r∈D

w(r)KH(u− r) = D(wKH(u− ·)) (17)

Assume that X is some point process satisfying the assumptions of Theorem 7. Then,
for s ≥ 1, µ := E[Ds[K(X)]] has some density p with respect to the Lebesgue measure on
∆. Therefore, µw, the measure having density w with respect to µ, has a density equal to
w × p with respect to the Lebesgue measure. The mean persistence surface E[ρ(Ds[K(X)])]
is exactly the convolution of µw by some kernel function: the persistence surface ρ(Ds[K(X)])
is actually a kernel density estimator of w × p.

If a point cloud approximates a shape, then its persistence diagram (for the Čech filtration
for instance) is made of numerous points with small persistences and a few meaningful points
of high persistences which corresponds to the persistence diagram of the "true" shape. As
one is interested in the latter points, a weight function w, which is typically an increasing
function of the persistence, is used to suppress the importance of the topological noise in the
persistence surface. Adams & al. [1] argue that in this setting, the choice of the bandwidth
matrix H has few effects for statistical purposes (e.g. classification), a claim supported by
numerical experiments on simple sets of synthetic data, e.g. torus, sphere, three clusters, etc.

However, in the setting where the datasets are more complicated and contain no obvious
"real" shapes, one may expect the choice of the bandwidth parameter H to become more
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critical: there are no highly persistent, easily distinguishable points in the diagrams anymore
and the precise structure of the density functions of the processes becomes of interest. We
now show that a cross validation approach allows the bandwidth selection task to be done
in an asymptotically consistent way. This is a consequence of a generalization of Stone’s
theorem [27] when observations are not random vectors but random measures.

Assume that µ1, . . . , µN are i.i.d. random measures on R2, such that there exists a
deterministic constant C with |µ1| ≤ C. Assume that the expected measure E[µ1] has a
bounded density p with respect to the Lebesgue measure on R2. Given a kernel K : R2 → R
and a bandwidth matrix H, one defines the kernel density estimator

p̂H(x) := 1
N

N∑
i=1

∫
KH(x− y)µi(dy). (18)

The optimal bandwidth Hopt minimizes the Mean Integrated Square Error (MISE)

MISE(H) := E
[
‖p− p̂H‖2

]
= E

[∫
(p(x)− p̂H(x))2

dx

]
. (19)

Of course, as p is unknown, MISE(H) cannot be computed. Minimizing MISE(H) is
equivalent to minimize J(H) := MISE(H)− ‖p‖2. Define

p̂iH(x) := 1
N − 1

∑
j 6=i

∫
KH(x− y)µj(dy) (20)

and

Ĵ(H) := 1
N2

∑
i,j

∫∫
K

(2)
H (x− y)µi(dx)µj(dy)− 2

N

∑
i

∫
p̂iH(x)µi(dx), (21)

where K(2) : x 7→
∫
K(x− y)K(y)dy denotes the convolution of K with itself. The quantity

Ĵ(H) is an unbiased estimator of J(H). The selected bandwidth Ĥ is then chosen to be
equal to arg minH Ĵ(H).

I Theorem 18 (Stone’s theorem [27]). Assume that the kernel K is nonnegative, Hölder
continuous and has a maximum attained in 0. Also assume that the density p is bounded.
Then, Ĥ is asymptotically optimal in the sense that

‖p− p̂Ĥ‖
‖p− p̂Hopt‖

−−−−→
N→∞

1 a.s.. (22)

Note that the gaussian kernel K(x) = exp(−‖x‖2/2) satisfies the assumptions of Theorem
18.

Let X1, . . . ,XN be i.i.d. processes on M having a density with respect to the law of
a Poisson process of intensity Hd. Assume that there exists a deterministic constant C
with |Xi| ≤ C. Then, Theorem 18 can be applied to µi = Ds[K(Xi)]. Therefore, the cross
validation procedure (21) to select H the bandwidth matrix in the persistence surface ensures
that the mean persistence surface

ρN := 1
N

N∑
i=1

ρ(Ds[K(Xi)]) (23)

is a good estimator of p the density of E[Ds[K(X1)]].
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(a) (b) (c)

Figure 1 Realization of the processes (a), (b) and (c) described in Section 7.

(a) (b) (c)

Figure 2 Superposition of the N = 40 diagrams of class (a), (b) and (c), transformed under the
map r→ (r1, r2 − r1).

7 Numerical illustration

Three sets of synthetic data are considered (see Figure 1). The first one (a) is made of
N = 40 sets of n = 300 i.i.d. points uniformly sampled in the square [0, 1]2. The second
one (b) is made of N samples of a clustered process: n/3 cluster’s centers are uniformly
sampled in the square. Each center is then replaced with 3 i.i.d. points following a normal
distribution of standard deviation 0.01× n−1/2. The third dataset (c) is made of N samples
of n uniform points on a torus of inner radius 1 and outer radius 2. For each set, a Čech
persistence diagram for 1-dimensional homology is computed. Persistence diagrams are then
transformed under the map (r1, r2) 7→ (r1, r2 − r1), so that they now live in the upper-left
quadrant of the plane. Figure 2 shows the superposition of the diagrams in each class. One
may observe the slight differences in the structure of the topological noise over the classes
(a) and (b). The cluster of most persistent points in the diagrams of class (c) correspond to
the two holes of a torus and are distinguishable from the rest of the points in the diagrams
of the class, which form topological noise. The persistence diagrams are weighted by the
weight function w(r) = (r2 − r1)3, as advised in [19] for two-dimensional point clouds. The
bandwidth selection procedure will be applied to the measures having density w with respect
to the diagrams, e.g. a measure is a sum of weighted Dirac measures.

For each class of dataset, the score Ĵ(H) is computed for a set of bandwidth matrices

of the form h2 ×
[
1 0
0 1

]
, for 50 values h evenly spaced on a log-scale between 10−5 and

1. Note that the computation of Ĵ(H) only involves the computations of KH(r1 − r2) for
points r1, r2 in different diagrams. Hence, the complexity of the computation of Ĵ(H) is
in O(T 2), where T is the sum of the number of points in the diagrams of a given class.
If this is too costly, one may use a subsampling approach to estimate the integrals. The
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(a) (b) (c)

Figure 3 Persistence surfaces for each class (a), (b) and (c), computed with the weight function
w(r) = (r2 − r1)3 and with the bandwidth matrix selected by the cross-validation procedure.

selected bandwidth were respectively h = 0.22, 0.60, 0.17. Persistence surfaces for the selected
bandwidth are displayed in Figure 3. The persistence of the "true" points of the torus are
sufficient to suppress the topological noise: only two yellow areas are seen in the persistence
surface of the torus. Note that the two areas can be separated, whereas it is not obvious
when looking at the superposition of the diagrams, and would not have been obvious with an
arbitrary choice of bandwidth. The bandwidth for class (b) may look to have been chosen
too big. However, there is much more variability in class (b) than in the other classes: this
phenomenon explains that the density is less peaked around a few selected areas than in
class (a).

Illustrations on non-synthetic data are shown in the appendix: similar behaviors are
observed.

8 Conclusion and further works

Taking a measure point of view to represent persistence diagrams, we have shown that the
expected behavior of persistence diagrams built on top of random point sets reveals to have
a simple and interesting structure: a measure on R2 with density with respect to Lebesgue
measure that is as smooth as the random process generating the data points! This opens
the door to the use of effective kernel density estimation techniques for the estimation of
the expectation of topological features of data. Our approach and results also seem to be
particularly well-suited to the use of recent results on the Lepski method for parameter
selection [22] in statistics, a research direction that deserves further exploration. As many
persistence-based features considered among the literature - persistence images, birth and
death distributions, Betti curves,... - can be expressed as linear functional of the discrete
measure representation of diagrams, our results immediately extend to them. The ability
to select the parameters on which these features are dependent in a well-founded statistical
way also opens the door to a well-justified usage of persistence-based features in further
supervised and un-supervised learning tasks.
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A Proofs of the subanalytic elementary lemmas

I Lemma 19. (i) For f ∈ S(M), the set A(f) on which f is analytic is an open subanalytic
set of M . Its complement is a subanalytic set of dimension smaller than d.
Fix X a subanalytic subset of M . Assume that f, g : X → R are subanalytic functions

such that the image of a bounded set is bounded. Then,
(ii) The functions fg and f + g are subanalytic.
(iii) The sets f−1({0}) and f−1((0,∞)) are subanalytic in M .

Proof. (i) Section I.2.1 in [26] states that A(f) is subanalytic. Therefore, its complement E
is also subanalytic: it is enough to show that E is of empty interior to conclude.
Claim: The set F of points x where f is not analytic but Gf is locally a real analytic
manifold in (x, f(x)) is a subanalytic set of empty interior.
Proof: Assume F contains an open set U . Replacing U by a smaller open set if necessary,
there exists some local parametrization of Uf = {(x, f(x)), x ∈ U} by some analytic
function Φ : V → R, V being a neighborhood of Uf in M × R. Denote by ∇uΦ ∈ R the
gradient of Φ with respect to the real variable u ∈ R. The set Z on which ∇uΦ = 0 is an
analytic subset of V . As Gf is the graph of a function, Z ∩Gf is made of isolated points:
one can always assume that those points are not in Uf . Therefore, there exists some
neighborhood V ′ of Uf which does not intersect Z. One can now apply the analytic implicit
function theorem (see for instance [18, Section 8]) anywhere on Uf : for (x0, u0) ∈ Uf ,
there exists some neighborhood W ⊂ V ′ and an analytic function g : Ω→ R, Ω being a
neighborhood of x0, such that, on W

Φ(x, u) = 0⇐⇒ u = g(x).

As we also have Φ(x, u) = 0 if and only if u = f(x), f ≡ g on Ω and f is analytic on Ω.
This is a contradiction with having f not analytic in every point of U . �

SoCG 2018

http://dx.doi.org/10.1007/s00440-015-0678-9


XX:16 The density of expected persistence diagrams and its kernel based estimation

Now, the set E is the union of F and of E∩G where G is the projection onM of Reg(Gf ).
As, by definition, Reg(Gf ) is of empty interior, G is also of empty interior. Therefore, E
is of empty interior, which is equivalent to say that its dimension is smaller than d.

(i) See [26, Section II.1.1].
(ii) See [26, Section II.1.6].

J

I Lemma 20. Let X be a subanalytic subset of M . If the dimension of X is smaller than d,
then Hd(X) = 0.

Proof. Write k the dimension of X. First, one can always assume that X is closed, as
Hd(X) ≥ Hd(X). Therefore, there exists some real analytic manifold N of dimension k

and a proper real analytic mapping Ψ : N → M such that Ψ(N) = X (see [26, Section
I.2.1]). The set X can be written as the union of some compact sets XK for K ≥ 0. It
is enough to show that Hd(XK) = 0. The set XK can be written Ψ(Ψ−1(XK)), where
Ψ−1(XK) is some compact subset of N . We have Hd(Ψ−1(XK)) = 0 because N is of
dimension k < d. Furthermore, as Ψ is analytic on Y , it is Lipschitz on Ψ−1(XK). Therefore,
Hd(Ψ(Ψ−1(XK))) = Hd(XK) is also null. J

B Proof of Theorem 8

I Theorem 8. Fix n ≥ 1. Assume that M is a real analytic compact d-dimensional connected
submanifold and that X is a random variable on Mn having a density with respect to the
Haussdorf measure Hdn. Define assumption (K5’):

(K5’) The function ϕ is subanalytic and the gradient of its entries J of size greater than 1 is
non vanishing a.s.e.. Moreover, for {j} a singleton, ϕ[{j}] ≡ 0.

Assume that K satisfies the assumptions (K1)-(K4) and (K5’). Then, for s ≥ 1, E[Ds[K(X)]]
has a density with respect to the Lebesgue measure on ∆. Moreover, E[D0[K(X)]] has a
density with respect to the Lebesgue measure on the vertical line {0} × [0,∞).

We indicate how to change the proof of Theorem 7 when assumption (K5’) is satisfied
instead of assumption (K5). In the partition E1(x), . . . , EL(x) of Fn, the set E1(x) plays a
special role: it corresponds to the value r1 = 0 and contains all the singletons, which satisfy
ϕ[{j}] ≡ 0 by assumption. Lemma 12 holds for l > 1 and one can always define J1 = {1} to
be a minimal element of E1(x). With this convention in mind, it is straightforward to check
that Lemma 13 still holds and that Lemma 14 is satisfied as well for l > 1. Now, one can
define in a likewise manner the sets Vr. For x ∈ Vr, the diagram Ds[K(x)] is still decomposed∑N
i=1 δri

, with ri = (ϕ[Jl1 ](x), ϕ[Jl2 ](x)). If s > 0, the end of the proof is similar. However,
for s = 0, the pairs of simplices (Jl1 , Jl2) are made of one singleton Jl1 and of one 2-simplex
Jl2 . As ϕ is null on singletons, the points in this diagram are all included in the vertical line
L0 := {0} × [0,∞). The map Φir : x ∈ Vr 7→ ri ∈ L0 has a differential of rank 1, as Lemma
14 ensures that ∇jϕ[Jl2 ](x) 6= 0 for j ∈ Jl2 . One can apply the coarea formula to Φir to
conclude to the existence of a density with respect to the Lebesgue measure on L0.

C Proof of Corollary 9

I Corollary 9. Assume that X has some density with respect to the law of a Poisson process
on M of intensity Hd, such that E

[
2|X|
]
< ∞. Assume that K satisfies the assumptions

(K1)-(K5). Then, for s ≥ 0, E[Ds[K(X)]] has a density with respect to the Lebesgue measure
on ∆.
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The diagram Ds[K(X)] can be written

Ds[K(X)] =
∑
n≥0

1{|X| = n}Ds[K(X)], (24)

and Theorem 7 states that 1{|X| = n}Ds[K(X)] has a density pn with respect to the Lebesgue
measure on ∆. Take B a Borel set in ∆:

E[Ds[K(X)]](B) =
∑
n≥0

E[1{|X| = n}Ds[K(X)]](B)

=
∑
n≥0

∫
B

pn =
∫
B

∑
n≥0

pn by Fubini-Torelli’s theorem.

It is possible to use Fubini-Torelli’s theorem because E[Ds[K(X)]](B) is finite. Indeed, as
Ds[X] is always made of less than 2|X| points, and as we have supposed that E

[
2|X|
]
<∞,

the measure E[Ds[K(X)]] is finite as well.

D Proof of Theorem 10

I Theorem 10. Fix 0 ≤ k ≤ ∞ and assume that X ∈Mn has some density of class Ck with
respect to Hnd. Then, for s ≥ 0, the density of E[Ds[K(X)]] is of class Ck.

Given the expression (11), it is sufficient to show that integrating a function along the
fibers is a smooth operation in the fibers. We only show that the density is continuous.
Continuity of the higher orders derivatives is obtained in a similar fashion. The proof is a
standard application of the implicit function theorem.

Using the same notations than in the proof of Theorem 7, fix 1 ≤ r ≤ R and 1 ≤ i ≤ Nr.
We will show that pir is continuous. As the indices r and i are now fixed, we drop the
dependency in the notation: V := Vr and Φ := Φir. By using a partition of unity and
taking local diffeomorphisms, one can always assume that V ⊂ Rd. Define the function
f : (x, u) ∈ V ×∆ 7→ Φ(x) − u ∈ R2. We have already shown in the proof of Theorem 7
that for x0 ∈ V , there exists two indices a1 and a2 (depending on x0) such that the minor
M(x0) = (DΦ(x0))a1,2 is invertible. Rewrite x ∈ V in (y, z) where z = (xa1 , xa2) ∈ R2.
By the implicit function theorem, for (x0, u0) such that f(x0, u0) = 0, there exists a
neighborhood Ωx0 ⊂ V ×∆ of (x0, u0) and an analytic function gx0 : Wy0×Yu0 → R2 defined
on a neighborhood of (y0, u0) such that for (x, u) ∈ Ωx0

f(x, u) = 0⇐⇒ z = gx0(y, u).

The sets (Ωx0)x0∈V constitutes an open cover of the fiber f−1(0). Consider a smooth partition
of unity (ρx0)x0∈V subordinate to this cover. Then, for all (x, u) ∈ f−1(0)

(JΦ(x))−1κ(x) =
∑
x0∈V

ρx0(y, u, gx0(y, u))(JΦ(y, gx0(y, u)))−1κ(y, gx0(y, u))

Therefore,

pir(u) =
∫
x∈Φ−1(u)

(JΦ(x))−1κ(x)dHnd−2(x)

=
∑
x0∈V

∫
y∈Wy0

ρx0(y, u, gx0(y, u))(JΦ(y, gx0(y, u)))−1κ(y, gx0(y, u))dy. (25)
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We are now faced with a classical continuity under the integral sign problem. First, the
Cauchy-Binet formula (see [21, Example 2.15]) states that JΦ is equal to the square root
of the sum of the squares of the determinants of all 2× 2 minors of DΦ. Therefore, JΦ(x)
is greater than the determinant of M(x), the minor of f of indices a1 and a2. The implicit
function theorem gives the exact value of M(x). Indeed, for X = (x, u) ∈ Ωx0 , and for any
index k,

∂g

∂Xk
(y, u) = −

(
M−1 · ∂f

∂Xk

)
(y, u, g(y, u)) (26)

Take Xk = u1,2. Then, ∂f/∂Xk = (−1, 0), resp. (0,−1). Therefore,

M−1(y, u, g(y, u)) = ∂g

∂u
(y, u, g(y, u)) (27)

As ρx0 has a compact support, it suffices to show that the integrand is bounded by a
constant independent of u. The only issue is that (JΦ)−1 may diverge. Equation (27) shows
that it is bounded by det ∂g/∂u. This is bounded, as g is analytic on the compact support
of ρx0 : each term in the sum (25) is continuous. By the compactness of M , all the partitions
of unity can be taken finite, and a finite sum of continuous functions is continuous. This
proves the continuity of p.

E Proof of Corollary 11

I Corollary 11. Under the same hypothesis than Theorem 10, for s ≥ 0, the expected Betti
curve r 7→ E[βrs (K(X))] is a Ck function.

Define f(r, u) to be equal to 1 if u1 ≤ r ≤ u2 and 0 otherwise. Then, βrs (K(X)) is equal
to Ds[K(X)](f(r, ·)). Therefore, the expectation E[βrs (K(X))] is equal to∫

p(u)f(r, u)du. (28)

As we assumed that the hypothesis of Theorem 10 were satisfied, the density p is smooth.
Moreover, p(u)f(r, u) is smaller than p(u). The function p being integrable, one can apply the
continuity under the integral sign theorem to conclude that r 7→ E[βrs (K(X))] is continuous.
Higher-order derivatives are obtained in a similar fashion.

F Bandwidth selection on accelerometer data

The walk of 3 persons A, B and C, has been recorded using the accelerometer sensor of a
smartphone in their pocket, giving rise to 3 multivariate time series in R3. Using a sliding
window, each serie have been splitted in a list of 10 times series made of 200 consecutive
points. Using a time-delay embedding technique, those new time series are embedded into
R9: these are the point clouds on which we build the Rips filtration. For each person, the
set of 10 persistence diagrams is transformed under the map (r1, r2) 7→ (r1, r2 − r1). The
persistence diagrams are weighted by the weight function w(r) = (r2− r1)3. For each person,

the scores Ĵ(H) are computed for a set of bandwidth matrix of the form h2 ×
[
1 0
0 1

]
, for 20

values h evenly spaced on a log-scale between 10−3 and 10−1. The selected bandwidths are
0.0089, 0.01833 and 0.0089 and the corresponding persistence images are displayed in figure
4. The three images show very distinct patterns: a reasonable machine learning algorithm
will easily make the distinction between the three classes using the images as input.
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(a)

(b)

(c)

Figure 4 Persistence surfaces for each person A,B and C, computed with the weight function
w(r) = (r2 − r1)3 and with the bandwidth matrix selected by the cross-validation procedure.
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