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Introduction
Persistent homology is a method for studying the homology at multiple scales simulta-
neously. Given a manifold X embedded in a metric space Y, we consider a probability
density function p : Y → R, defined over Y but concentrated around X; that is, the
density is positive for a small neighborhood around X and very small over Y \X. For
the right scale parameter t, the superlevel set p−1([t,∞)) captures the homology of X.
The problem, however, is that t is not known a priori. Persistent homology quantifies
the topological changes of the superlevel sets with a multiset of points in the extended
plane; we call this multiset the persistence diagram, and denote it by P . Another way
to represent the information contained in a persistence diagram is with the landscape
function L : R → R, which can be thought of as a functional summary of P ; we define
these concepts in Section 1.1.

Computationally, it may be difficult to compute P or L directly. Instead, we assume
that p corresponds to a probability distribution P , from which we can sample. Given
a sample of size n, we create an estimate of the probability density function pn using
a kernel density estimate. As n increases, pn approaches the true probability density.
Given n large enough, we compute the persistence diagram Pn and the landscape Ln
corresponding to pn.

Sometimes knowing the estimate of a persistence diagram or landscape is not enough.
The bigger question is: How close is the estimated persistence diagram or landscape to
the true one? We answer this question by constructing a confidence set for persistence
diagrams and a confidence band for persistence landscapes.

A (1 − α)-confidence interval for a parameter θ is an interval [a, b] such that the
probability P(θ ∈ [a, b]) is at least 1 − α. In our setting, we desire to find a confidence
set for a persistence diagram P . To do so, we compute an estimated diagram P̂ and and
interval [0, c] such that the bottleneck distance between P and P̂ is contained in [0, c]
with probability 1−α. That is, we find a metric ball containing P with high probability.

In this paper, we present the bootstrap, a method for computing confidence intervals,
and we apply it to persistence diagrams and landscapes. After briefly reviewing the
necessary concepts from computational topology, we give the general technique of boot-
strapping in statistics in Section 1.2. In Section 2, we apply the bootstrap to persistence
diagrams and landscapes, providing a few examples of these confidence intervals. We
conclude in Section 2.3 with a discussion of our ongoing research and open questions.

1 Background
Before presenting our results, we review the necessary definitions and theorems from
persistent homology. Then, we present the bootstrap. Due to space constraints, we cover
the basics and provide references for a more detailed description.

1.1 Persistence Diagrams and Landscapes

Let Y be a metric space, for example. let Y be a compact subspace of RD. Suppose
we have a probability density function p : Y → R concentrated in a neighborhood of a



Bootstrap for Persistence 177

(b
irt
h-
de
at
h)
/2

0 2 4 6 8 10
0

1
2

3
4

Рис. 1. The pink circles are the points in a persistence diagram. The cyan curve is the
landscape L(1, ·).

manifold X ⊆ Y. Persistent homology monitors the evolution of the generators of the
homology groups of p−1([t,∞)), the superlevel sets of p, and assigns to each generator of
these groups a birth time (or scale) b and a death time d. . The persistence diagram P
records each pair (b, d) as the point ( b+d

2
, b−d

2
); that is, the x-coordinate is the mid-life of

the homological feature and the y-coordinate is the half-life or half of the persistence of
the feature.7 We refer the reader to Edelsbrunner and Harer [2010] for a more complete
introduction to persistent homology.

Let DT be the space of positive, countable, T -bounded persistence diagrams; that is,
for each point (x, y) = ( b+d

2
, b−d

2
) ∈ P , we have 0 ≤ d ≤ b ≤ T and there are a countable

number of points for which y > 0. We note here that each point on the line x = 0
is included in the persistence diagram P with infinite multiplicity. Letting W∞(P1,P2)
denote the bottleneck distance between diagrams P1 and P2, the space (D,W∞) is a
metric space. We then have the following stability result from Cohen-Steiner et al. [2007]
and generalized in Chazal et al. [2012]:

Theorem 1.1 (Stability Theorem). Let M be finitely triangulable. Let f, g : M → R be
two continuous functions. Then, the corresponding persistence diagrams Pf and Pg are
well defined, and W∞(Pf ,Pg) ≤ ‖f − g‖∞.

Bubenik [2012] introduced another representation called the persistence landscape,
which is in one-to-one correspondence with persistence diagrams. A persistence landscape
is a continuous, piecewise linear function L : Z+ × R→ R. To define the persistence
landscape function, we replace each persistence point p = (x, y) =

(
b+d
2
, b−d

2

)
with the

triangle function

tp(z) =


z − x+ y z ∈ [x− y, x]
x+ y − z z ∈ (x, x+ y]

0 otherwise
=


z − d z ∈ [d, b+d

2
]

b− z z ∈ ( b+d
2
, b]

0 otherwise.

Notice that p is itself on the graph of tp(z). We obtain an arrangement of curves by
overlaying the graphs of the functions {tp(z)}p∈P ; see Figure 1. The persistence landscape

7In this paper, we focus on the persistent homology of the superlevel set filtration of a density
function. Thus, the birth time b is greater than the death time d.
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is defined formally as a walk through this arrangement:

LP(k, z) = kmax
p∈P

tp(z), (1)

where kmax is the kth maximum value in the set; in particular, 1max is the usual
maximum function. Observe that LP(k, z) is 1-Lipschitz. For the ease of exposition, we
will focus on k = 1 in this paper, using L(z) = LP(1, z). However, the ideas we present
in Section 2.2 hold for k > 1. Our definition of the persistence landscape is equivalent
to the original definition given in Bubenik [2012].

1.2 The Standard Bootstrap

Introduced in Efron [1979], the bootstrap is a general method for estimating standard
errors and for computing confidence intervals. We focus on the latter in this paper, but
refer the interested reader to Efron et al. [2001], Davison and Hinkley [1997], and Van der
Vaart [2000] for more details on the versatility of the bootstrap.

Let X1, . . . , Xn be independent and identically distributed random variables taking
values in the measure space (X,X , P ). Suppose we are interested in estimating the real-
valued parameter θ corresponding to the distribution P of the observation. We estimate θ
using the statistic θ̂ = g(X1, . . . , Xn), which is some function of the data. For example, θ
and θ̂ could be the population mean and the sample mean, respectively. The distribution
of the difference θ̂ − θ contains all the information that we need to construct a confidence
interval of level 1− α for θ; that is, an interval [a, b] depending on the data X1, . . . , Xn

such that P(θ ∈ [a, b]) ≥ 1 − α. If we knew the cumulative distribution F of θ̂ − θ,
then the quantiles F−1(1 − α/2) and F−1(α/2) can be computed. Furthermore, setting
a = θ̂−F−1(1−α/2) and b = θ̂−F−1(α/2), we immediately obtain a (1−α)-confidence
interval for θ:

P(θ ∈ [a, b]) = P
(
F−1

(α
2

)
≤ θ̂ − θ ≤ F−1

(
1− α

2

))
= 1− α.

Unfortunately, the distribution of θ̂ − θ depends on the unknown distribution P .
In the first step in the bootstrap procedure, we approximate the unknown P with

the empirical measure Pn that puts mass 1/n at each Xi in the sample. Let X∗1 , . . . , X∗n
be sample of size n from Pn. Equivalently, we can think of drawing X∗1 , . . . , X∗n from
X1, . . . , Xn with replacement. We estimate the distribution F (r) with the distribution
F̂ (r) = Pn(θ̂

∗ − θ̂ ≤ r), where θ̂∗ = g(X∗1 , . . . , X
∗
n).

The distribution F̂ is still not analytically computable, but can be approximated
by simulation: for large B, obtain B different values of θ̂∗ and approximate F̂ (r), and
hence F (r), with F̃ (r) = 1

B

∑B
j=1 I(θ̂

∗
j − θ̂ ≤ r). Since the quantiles of F̃ approximate the

quantiles of F , we define the estimated confidence interval as

Cn =
[
θ̂ − F̃−1n (1− α/2) , θ̂ − F̃−1n (α/2)

]
. (2)

In summary, the standard bootstrap procedure is:

1. Compute the estimate θ̂ = g(X1, . . . , Xn).
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2. Draw X∗1 , . . . , X
∗
n from Pn and compute θ̂∗ = g(X∗1 , . . . , X

∗
n).

3. Repeat the previous step B times to obtain θ̂∗1, . . . , θ̂∗B.

4. Compute the quantiles of F̃ and construct the confidence interval Cn.

There are two sources of error in the Bootstrap procedure. We first approximate F with
F̂ and then we estimate F̂ by simulation. The second error can be made arbitrarily small,
by choosing B large enough. Therefore, this error is usually ignored in the theory of the
bootstrap. Formally, one has to show that supr

∣∣∣F̃ (r)− F (r)∣∣∣ P→ 0 , which implies that
the confidence interval Cn, defined in (2), is asymptotically consistent at level 1−α; that
is, lim infn→∞ P(θ ∈ Cn) ≥ 1− α.

1.3 The Bootstrap Empirical Process

When a random variable is a function rather than a real value, the bootstrap procedure
described above can be used to construct a confidence interval for the function evaluated
at a particular element of the domain. Instead, we use the bootstrap empirical process,
which can be used to find a confidence band for a function h(t); that is, we find a pair
of functions a(t) and b(t) such that the probability that h(t) ∈ [a(t), b(t)] for all t is at
least 1−α. We describe this technique below, but refer the reader to Van der Vaart and
Wellner [1996] and Kosorok [2008] for more details.

An empirical process is a stochastic process based on a random sample. LetX1, . . . , Xn

be independent and identically distributed random variables taking values in the measure
space (X,X , P ). For a measurable function f : X → R, we denote Pf =

∫
fdP and

Pnf =
∫
fdPn = n−1

∑n
i=1 f(Xi). By the law of large numbers Pnf converges almost

surely to Pf . Given a class F of measurable functions, we define the empirical process
Gn indexed by F as

{Gnf}f∈F =
{√

n(Pnf − Pf)
}
f∈F .

Example 1.2. If F = {I(x ≤ t)}t∈R, then {Pnf}f∈F = {n−1
∑n

i=1 I(Xi ≤ t)}t∈R,
which is the empirical distribution function seen as a stochastic process indexed by t.
Furthermore, we have {Gnf}f∈F = {n−1/2

∑n
i=1 I(Xi ≤ t)− P (Xi ≤ t)}t∈R.

Definition 1.3. A class F of measurable functions f : X → R is called P -Donsker if
the process {Gnf}f∈F converges in distribution to a limit process in the space `∞(F),
where `∞(F) is the collection of all bounded functions f : F → R. The limit process is a
Gaussian process G with zero mean and covariance function E GfGg := Pfg − PfPg;
this process is known as a Brownian Bridge.

Let P ∗nf = n−1
∑n

i=1 f(X
∗
i ) where {X∗1 , . . . , X∗n} is a bootstrap sample from Pn, the

measure that puts mass 1/n on each element of the sample {X1, . . . , Xn}. The bootstrap
empirical process G∗n indexed by F is defined as

{G∗nf}f∈F = {
√
n(P ∗nf − Pnf)}f∈F .

Theorem 1.4 (Theorem 2.4 in Giné and Zinn [1990]). F is P -Donsker if and only if
G∗n converges in distribution to G in `∞(F).
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In words, Theorem 1.4 states that F is P -Donsker if and only if the bootstrap
empirical process converges in distribution to the limit process G given in Definition 1.3.
Suppose we are interested in constructing a confidence band of level 1−α for {Pf}f∈F ,
where F is P -Donsker. Let θ̂ = supf∈F |Gnf |. We proceed as follows:

1. Draw X∗1 , . . . , X
∗
n from Pn and compute θ̂∗ = supf∈F |G∗nf |.

2. Repeat the previous step B times to obtain θ̂∗1, . . . , θ̂∗B.

3. Compute qα = inf
{
q : 1

B

∑B
j=1 I(θ̂

∗
j ≥ q) ≤ α

}
.

4. For f ∈ F define the confidence band Cn(f) =
[
Pnf − qα√

n
, Pnf + qα√

n

]
.

A consequence of Theorem 1.4 is that, for large n and B, the interval [0, qα] has coverage
1− α for θ̂ and the band Cn(f)f∈F has coverage 1− α for {Pf}f∈F .

2 Applications of the Bootstrap

In this section, we apply the bootstrap from the previous section to persistence diagrams,
as well as to persistence landscapes.

2.1 Persistence Diagrams

Let X1, . . . , Xn be a sample from the distribution P , supported on a smooth manifold
X ⊂ RD. Let ph(x) =

∫
X

1
hD
K
(
||x−u||
h

)
dP (u), where K : R→ R is an integrable function

satisfying
∫
K(u)du = 1 and K(u) is nonnegative for all u; thus ph is a probability

distribution. The function K is called a kernel and the parameter h > 0 is its bandwidth.
Then ph is the density of the probability measure Ph which is the convolution Ph = P ?Kh

where Kh(A) = h−DK(h−1A) and K(A) =
∫
A
K(t)dt. Ph is a smoothed version of P .

Our target of inference in this section is Ph, the persistence diagram of the superlevel
sets of ph. The standard estimator for ph is the kernel density estimator

p̂h(x) =
1

n

n∑
i=1

1

hD
K

(
||x−Xi||

h

)
;

notice that ifXi are fixed, then p̂h is a porbability distribution. Let P̂h be the corresponding
persistence diagram. We wish to find a confidence set for Ph, i.e. , an interval [0, cn] such
that lim supn→∞ P(W∞(P̂h,Ph) ∈ [0, cn]) ≥ 1 − α. From Theorem 1.1 (Stability), it
suffices to find cn such that lim supn→∞ P(‖p̂h − ph‖∞ > cn) ≤ α.

To find cn, we use the bootstrap. Let F =
{
fx(u) =

1
hD
K
(
‖x−u‖
h

)}
x∈X

. Using the

notation of Section 1.3, it follows that Pfx = ph(x), Pnfx = p̂h(x) and θ̂ = supfx∈F |Gnfx| =√
n‖p̂h−ph‖∞. The approximated 1−α quantile qα can be obtained through simulation,

i.e., qα = inf{q : 1
B

∑B
j=1 I(

√
n||p̂jn− p̂n|| ≥ q) ≤ α}, where pjh(x) denotes the probability
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Рис. 2. Left: Persistence Diagram of the superlevel sets of a kernel density estimator
on the 3D torus described in Example 2.2. The boxes of side = 2 × 0.01 around the
points represent the 95% confidence set for Ph. Middle: 2D projection of the superlevel
set {x : p̂h(x) > 0.034}. Right: 2D projection of the superlevel set {x : p̂h(x) > 0.027}.

distribution corresponding to the jth bootstrap sample. The following result holds under
suitable regularity conditions on the kernel K for which F is Donsker; see Giné and
Guillou [2002].

Theorem 2.1 (Lemma 15 in Balakrishnan et al. [2013]). We have that

lim sup
n→∞

P
(√

n‖p̂h − ph‖∞ > qα

)
≤ α.

By the Stability Theorem, we conclude: limn→∞ P
(
W∞(P̂h,Ph) > qα√

n

)
≤ α.

Example 2.2 (Torus). We embed the torus S1 × S1 in R3 and we use the rejection
sampling algorithm of Diaconis et al. [2012] (R = 1.5, r = 0.8) to sample 10, 000

points uniformly from the torus. Then, we compute the persistence diagram P̂h using the
Gaussian kernel with bandwidth h = 0.25 and use the bootstrap to construct the 0.95%
confidence interval [0 , 0.01] for W∞(P̂h,Ph); see Figure 2. Notice that the confidence
set correctly captures the topology of the torus. That is, only the points representing real
features of the torus are significantly far from the horizontal axis.

2.2 Landscapes

Let the diagrams P1, . . . ,Pn be a sample from the distribution P over the space of
persistence diagrams DT . Thus, by definition, we have x+ y ≤ T <∞ and 0 ≤ y ≤ T/2
for all (x, y) ∈ ∪iPi.

Let L1, . . . ,Ln be the landscape functions corresponding to P1, . . . ,Pn. That is,
Li(t) = LPi(1, t), as defined in (1). We define the mean landscape µ(t) = EP [Li(t)],
and the empirical mean landscape Ln(t) = 1

n

∑n
i=1 Li(t). In this section, we show that
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the process
√
n(Ln(t) − µ(t)) converges to a Gaussian process, so that we may use the

procedure given in Section 1.3.
Let F = {ft : 0 ≤ t ≤ T}, where ft : D → R is defined by ft(P) = LP(1, t). We note

here that ft(P) = 0 if t /∈ (0, T ). We can now write
√
n(Ln(t) − µ(t)) as an empirical

process indexed by t ∈ [0, T ] :

√
n(Ln(t)− µ(t)) =

√
n

(
1

n

n∑
i=1

Li(t)− µ(t)

)
=
√
n(Pnft − Pft) ≡ Gnft.

We note that the constant function F (P) = T/2 is a measurable envelope for F .
Given a probability measure Q over F , let ‖f − g‖Q,2 =

√∫
|f − g|2dQ and let

N(F , L2(Q), ε) be the covering number of F , that is, the size of the smallest ε-net in
this metric.

Lemma 2.3 (Theorem 2.5 in Kosorok [2008]). Let F be a class of measurable functions
satisfying

∫ 1

0

√
log supQN(F , L2(Q), ε‖F‖Q,2)dε <∞ , where F is a measurable envelope

of F and the supremum is taken over all finitely discrete probability measures Q with
‖F‖Q,2 > 0. If PF 2 <∞, then F is P -Donsker.

Theorem 2.4 (Weak Convergence of Landscapes). Let G be a Brownian bridge with
covariance function κ(t, u) =

∫
ft(P)fu(P)dP (P)−

∫
ft(P)dP (P)

∫
fu(P)dP (P). Then,

Gn converges in distribution to G.

Proof. Since persistence landscapes are 1-Lipschitz, we have ‖ft − fu‖Q,2 ≤ |t − u|.
Construct a regular grid 0 ≡ t0 < t1 < · · · < tN ≡ T , where tj+1− tj = ε‖F‖Q,2 = ε T/2.
We claim that {ftj : 1 ≤ j ≤ N} is an (ε T/2)-net for F : choose ft ∈ F ; then there is a j
so that tj ≤ t ≤ tj+1 and ‖ftj+1

− ft‖Q,2 ≤ |tj+1 − t| ≤ |tj+1 − tj| = ε T/2. The fact that
{ftj : 1 ≤ j ≤ N} is an (ε T/2)-net implies supQN(F , L2(Q), ε‖F‖Q,2) ≤ 2/ε. Hence,∫ 1

0

√
log supQN(F , L2(Q), ε‖F‖2)dε < ∞. F = T/2 is trivially square-integrable. By

Lemma 2.3, Gn converges in distribution to G.

Now that we have shown that Gn converges to a Gaussian process, we can follow
the procedure outlined in Section 1.3. Let Pn be the empirical measure that puts mass
1/n at each diagram Pi. We draw P∗1 , . . .P∗n from Pn and construct the corresponding
landscapes L∗1, . . . ,L∗n. Let L

∗
n be the empirical mean and θ̂∗ = supt∈R |

√
n(L∗n(t)−Ln(t))|.

Repeating this B times, we obtain θ̂∗1, . . . θ̂∗B, and we compute the quantile qα.

Theorem 2.5 (Confidence Band for Persistent Landscapes). The interval Cn(t) indexed
by t ∈ R, defined by Cn(t) =

[
Ln(t)− qα√

n
, Ln(t) + qα√

n

]
, is a confidence band for µ(t):

lim
n→∞

P (µ(t) ∈ Cn(t) for all t) ≥ 1− α.

Example 2.6 (Circles). Given the nine circles of radii 0.4 and 0.3, shown in Figure 3,
we obtain a sample X1, . . . , X100 as follows: first, choose a circle Ci uniformly at random,
then sample a point iid from Ci. Let P be the (Betti 1) persistence diagram corresponding
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Рис. 3. Left: The set of circles from which samples are taken. Right: The confidence band
for the persistence landscape corresponding to the distance to the point set.

to the Rips filtration for the sample, and L be the landscape corresponding to P. 8 We
repeat this 50 times to obtain diagrams P1, . . .P50 and landscapes L1, . . .L50.

Then, we use the bootstrap procedure to obtain the quantile qα = 0.234. Together with
L50, this gives us an approximated 95% confidence band for µ(t) = EP (Li(t)). On the
right of Figure 3 we show the empirical mean landscape L50 with the 95% confidence
band for µ(t).

2.3 Discussion

In this paper, we have described the bootstrap as it applies to persistence diagrams and
landscapes. The purpose of this paper was to introduce the bootstrap and the bootstrap
empirical process to topologists. In a related paper (Balakrishnan et al. [2013]), aimed
towards a statistical audience, we derive the convergence rates for the technique presented
in Section 2.1, as well as present three other methods for computing confidence sets for
persistence diagrams.

The persistence landscape can be thought of as a summary function of a persistence
diagram. The bootstrap method that we presented in Section 2.2 trivially generalizes to
handle all landscapes L(k, t). Furthermore, we need not limit the scope of this method to
landscape functions. In a future paper, we plan to investigate other meaningful summary
functions as well as the convergence rates for the techniques presented in Section 2.2.

We have demonstrated how the bootstrap works for two examples, given in Figure 2
and Figure 3. Part of our ongoing research is investigating applications for these confidence
intervals; in particular, we are applying it to real (rather than simulated) data sets. One
can use the confidence intervals for hypothesis testing, but an open question is how to
determine the power of such a test.

8Note that, since in this example we are using sublevel sets, the role of birth and death in the
definitions of section 1.1 is inverted. The death time d is greater than the birth time b.
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