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Abstract

In this work, one proves that under quite general assumptions one
can deduce the topology of a bounded open set in R

n from an ap-
proximation of it. For this, one introduces the weak feature size (wfs)
that extends for non smooth objects the notion of local feature size.
Our results apply to open sets with positive wfs. This class includes
subanalytic open sets which cover many cases encountered in practical
applications. The proofs are based upon the study of distance func-
tions to closed sets and their critical points. The notion of critical point
is the same as the one used in riemannian geometry (Grove-Shiohama
[22], Cheeger [10], Gromov [20]) and nonsmooth analysis (Clarke [11]).
As an application, one gives a way to compute the homology groups
of open sets from noisy samples of points on their boundary.

1 Introduction and related works

The contribution of this work is theoretical. However, it addresses a question
arising in practice in the process of reverse engineering. Reverse engineering,
in our context, is the process of building a geometric model for a physical
object, given a set of points sampled on the object boundary. Does this
geometric model, for example a polyhedron, capture the right topology of
the initial object? Intuitively, this seems possible if the size of the features,
such as the thickness of the thin parts, the diameter of holes, etc... are large
with respect to the sampling accuracy and density.
In recent years, authors have worked out sampling conditions and associated
reconstruction algorithms that allow the reconstructed geometric model to
reflect correctly the topology of the sampled object. [1] introduce the local
feature size, or lfs, defined in each point as the distance to the medial axis of
the object. Several algorithms are proved to provide a result homeomorphic
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to the sampled object [1, 2, 4], given a smooth object sampled with a local
density at least around 20 times smaller than lfs.

Most studies assume exact sampling. In practice, measured points are
assumed to lie within a given tolerance from the object boundary. The case
of noisy sampling has been considered as well. In [14], it is proven that,
as far as this noise is small with respect to lfs, the topology can still be
captured.
However, the problem of a density criterion relying on the local feature size
is that lfs vanishes on the boundary of non-smooth objects. Theorems in-
volving lfs do not help on non-smooth objetcs, such as solids with sharp
edges. Fortunately, algorithms proved correct in the case of smooth objects,
behave relatively well in practice on solids with sharp edges.
In [7, 8], the authors examine, given a Hausdorff distance approximation of
an object O, the possibility to compute an approximation of the medial axis
of O. For this purpose, a new measure of the “feature size” of an object
is introduced, the weak feature size, or wfs (see section 3). wfs allows to
consider non smooth objects, such as polyhedra or, more generally, piecewise
analytic or semi-analytic sets, for which wfs > 0. wfs is defined as the
minimum distance between the boundary and the set of singular points of
the distance function (distance to the boundary). In other words, wfs is
the minimum singular value of the function distance to the boundary (see
section 2.2 and 3 below).
In the present work, the noisy sampling is modelized by a possibly finite
set within a given Hausdorff distance of the boundary of the original object.
Using the tools developped in [7, 8], one shows, roughly speaking, that if two
objects O and O′ such that wfs(O) > 2ε and wfs(O′) > 2ε, have their com-
plement Oc and O′c within a Hausdorff distance less than ε, dH(Oc, O′c) < ε,
then O and O′ have same homotopy type (see theorem 3.3). A consequence
is that if one is given a ε Hausdorff approximation of the complement Oc of
an open set O with wfs(O) > 4ε, then the homotopy type of O is uniquely
determined by the approximation. Indeed, we show that it is possible to ex-
press the homology of the set O through the notion of persistent homology
([27, 15]) from the given approximation (see theorem 4.2).

If this aproximation is a finite sample of the boundary, the algorithms for
the computation of persistent Betti numbers (see [27, 15] ) may be used on a
filtration in the Voronoi complex, named λ-medial axis, defined in [23, 7, 8],
see section 4.2.
We show that the persistent Betti numbers computation on the λ-medial
axis filtration is guaranteed to provide the Betti numbers of the originally
sampled set (theorem 4.4). A similar computation for persistent homology
on the α-complex filtration allows to capture the homology of a thickening of
the boundary of the initial object (theorem 4.5). It has been independently
observed by D. Cohen-Steiner and H. Edelsbrunner ([5]), in the context
of a work on topological persistence and Morse functions, that sampling
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conditions based on a variant of the weak feature size, the homological feature
size, and the use of topological persistence techniques allow to capture the
homology of a thickening of the boundary of the initial object.

Aknowledgment. The authors are grateful to Pierre Pansu for helpful
comments and remarks. They are also grateful to David Cohen-Steiner for
helpful discussions.

2 Preliminaries

Let introduce mathematical tools and results which are useful in the sequel
of the paper. The proof of the results of this section are available in [23].

2.1 The “Gradient” vector field of distance function

We use the following definitions and notations. In the whole paper, O and
M always denote respectively a bounded open subset of R

n and its Medial
Axis defined below. For any set X, X, X◦, ∂X and Xc denote respectively
the closure, the interior, the boundary and the complement of X. Bx,r and
B
◦
x,r respectively denote the closed and open ball of center x and radius r in

R
n. We denote by Sx,r the corresponding sphere, that is Sx,r = Bx,r \ B

◦
x,r.

For any point x ∈ O, we denote by Γ(x) the set of closest boundary points,
that is:

Γ(x) = {y ∈ Oc, d(x, y) = d(x,Oc)}

= {y ∈ ∂O, d(x, y) = d(x, ∂O)}

Because ∂O is compact, Γ(x) is a non empty compact set. For a set E, |E|
denotes the cardinal of E.

Definition 2.1 (Medial Axis) The Medial Axis M of the open set O is
the set of points x of O who have at least 2 closest boundary points:

M = {x ∈ O, |Γ(x)| ≥ 2}

One denotes by R the distance function to the boundary of O defined by

R(x) = d(x,Oc) for any x ∈ O

One can check, using the triangular inequality twice, that R is 1-Lipschitz.
Given a point x ∈ O, there always exists a unique closed ball with minimal
radius enclosing Γ(x)([23]). One defines a real valued positive function F :
F(x) is the radius of this smallest closed ball enclosing Γ(x) and one denotes
by Θ(x) its center (cf. figure 1). In other words:

F(x) = inf{r : ∃y ∈ R
n, By,r ⊃ Γ(x)}
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One proves in [23] that F is upper semicontinuous, that is:

∀ε ∈ R, {x ∈ O,F(x) < ε} is open

R(x)

x
Θ(x)

F(x)

Γ(x)

∂O

Figure 1: A 2-dimensional example with 2 closest points

Of course, when x /∈ M, we have Γ(x) = {Θ(x)} and F(x) = 0. Moreover,
R is differentiable at such a point x and its gradient ∇(x) is colinear to
(xΘ(x)) (see [17], theorem 4.8). One extends the gradient of R to all points
in O by the following formula:

∇(x) =
x − Θ(x)

R(x)

One has the following relation (see [23]):

∇(x)2 = 1 −
F(x)2

R(x)2
(1)

which entails trivially:

F(x) = R(x)
√

1 −∇(x)2 (2)

The map x 7→ ‖∇(x)‖ is lower semicontinuous (see [23]). The singular
points of ∇ are the points x for which ∇(x) = 0. When Oc is finite, that is
for Voronoi Diagrams, singular points are the intersections of the Delaunay
cells with their dual Voronoi cell when they do intersect. Notice that in
this setting a variant of the vector field ∇ (and which leads to the same
critical points) has been used in [13] to study the flow complex of a finite
set of points. In the general case, one has the following characterization of
singular points (also observed in [14]).
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Lemma 2.2 A point x is a singular point of ∇ if and only if it lies in the
convex hull of Γ(x) : x ∈ CH (Γ(x)).

Notice that this lemma shows that our notion of singular point is the same
as the one considered in the setting of non smooth analysis (see [11],[12] and
section 3.2).

The vector field ∇ is not continuous. However, it is shown in [23] that
Euler schemes using this vector field converge uniformly, when the integra-
tion step decreases, toward a continuous flow C:

C : R
+ ×O → O

This flow is used in [23] to realize a homotopy equivalence between O and
M (see section 2.2). It also satisfies the following equalities proven in [23]:

C(t, x) = x +

∫ t

0
∇(C(τ, x))dτ (3)

R (C(t, x)) = R(x) +

∫ t

0
∇(C(τ, x))2dτ (4)

Moreover R and F are increasing along the trajctories of C: for any x ∈ O,
the functions t → R(C(t, x)) and t → F(C(t, x)) are defined and increasing
over R

+.

2.2 homotopy equivalence

Two maps f0 : X → Y and f1 : X → Y are said homotopic if there is a
continuous map H, H : [0, 1] × X → Y , such that ∀x ∈ X, H(0, x) = f0(x)
and H(1, x) = f1(x). Homotopy allows to introduce the notion of homotopy
equivalence which is defined below (see [19] pages 171-172 or [25] pages 108
for more details).

Definition 2.3 Two spaces X and Y are said to have the same homotopy
type if there are continuous maps f : X → Y and g : Y → X such that g ◦f
is homotopic to the identity map of X and f ◦ g is homotopic to the identity
map of Y .

Homotopy type is clearly a topological invariant: if two spaces X and Y
are homeomorphic then they have the same homotopy type. In general,
the converse is not true. The homotopy equivalence between topological
sets enforces a one-to-one correspondance between connected components,
cycles, holes, tunnels, cavities, or higher dimensional topological features of
the two sets, as well as the way these features are related. More precisely,
if X and Y have same homotopy type, then their homotopy and homology
groups are isomorphic.
In the case where Y ⊂ X and g is the canonical inclusion: ∀y ∈ Y, g(y) = y,
the homotopy equivalence may be proven using the following characteriza-
tion.
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Proposition 2.4 If Y ⊂ X and there exists a continuous map H, H :
[0, 1] × X → X such that:

• ∀x ∈ X, H(0, x) = x

• ∀x ∈ X, H(1, x) ∈ Y

• ∀y ∈ Y,∀t ∈ [0, 1], H(t, y) ∈ Y

then, X and Y have same homotopy type.
If one replaces the third property by the stronger one: ∀y ∈ Y,∀t ∈ [0, 1], H(t, y) =
y, then H defines a deformation retraction of X towards Y .

The definition of a deformation retraction given above is taken from [24] pp.
66.

2.3 Hausdorff distance

Hausdorff distance between sets is widely used in the paper. Basic definitions
and properties of this distance are quickly recalled. For more general results
and detailled proofs, the reader is referred to [3] section 9.11 for example.

Definition 2.5 Let A and B be two compact subsets of R
n. The Hausdorff

distance between A and B is defined by

dH(A, B) = max

(

sup
x∈A

d(x, B), sup
y∈B

d(y, A)

)

Hausdorff distance defines a distance on the set K(Rn) of compact subsets
of R

n which becomes a complete metric space. Moreover, if K is some fixed
compact set, the metric space (K(Rn)K , dH) of compact subsets contained
in K is compact.

3 Weak Feature Size, homotopy and singular points

of distance functions

The aim of this section is to introduce the notion of Weak Feature Size of a
bounded open set O in R

n and to relate it with properties of the function
R defined by the distance to the complement of O.

As in previous section, O is a bounded open subset of R
n, R : O → R

+ is
the distance function defined by R(x) = d(x,Oc) and ∇ is the “gradient”
of R as defined in section 2.1.

Definition 3.1 The Weak Feature Size, denoted wfs(O), of an open, bounded
subset O of R

n is the distance between the complement Oc and the set of
singular points {x ∈ O,∇(x) = 0} of the vector field ∇.
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In the sequel of the paper, we focus on open sets with positive Weak
Feature Size. Weak Feature Size is closely related to stability properties
of the topology of open sets. It is shown in section 3.2 that open sets
with positive wfs cover a large class of open sets including most of the ones
encountered in practical applications.

3.1 Weak Feature Size and stablility of the homotopy type

Let d > 0 be a positive real number. We denote by Od the set of points of
O at distance greater than d from the boundary:

Od = {x ∈ O,R(x) > d}

and by Od the closure of Od.
In [8], theorem 1, one proves that if d < wfs(O) one can push O into Od

along the trajectories of the vector field ∇ to obtain the following result.

Theorem 3.2 if d < wfs(O), Od is a deformation retract of O and Od has
the homotopy type of O.

In other words, for any d < wfs(O) one can shrink the open set O until
Od without erasing any topological feature. This result plays an important
role in the sequel of the paper. Moreover, since the trajectoties of ∇ are
used to push O into Od, the retraction deformation H : [0, 1] × O → O of
previous theorem is such that for any x ∈ O, R(H(x, t)) is an increasing
function of t (see [8] for a detailed proof).

Remark One can directly prove a stronger result (not used in the follow-
ing) using isotopy lemma for distance functions (proposition 3.4): under
hypothesis of previous theorem, O and Od are in fact homeomorphic.

One deduces from this result that two nearby bounded open sets with
positive wfs have the same homotopy type.

Theorem 3.3 Let O and O′ be two bounded open sets in R
n and let ε > 0

be such that wfs(O) > 2ε and wfs(O′) > 2ε. If dH(Oc,O′c) < ε then O and
O′ have the same homotopy type.

Proof. − From wfs(O) > 2ε, there exists α > 0 with 2ε + α < wfs(O).
Let f : O → O2ε+α ⊂ O′ be the deformation retraction of the theorem
3.2, that shrinks O into O2ε+α. Similarly, let g : O′ → O′

2ε+α′ ⊂ O be the

deformation retraction that shrinks O′ into O′
2ε+α′ .

The maps f : O → O′ and g : O′ → O define the homotopy equivalence,
according to the definition 2.3. One has to check that for example g ◦ f is
homotopic to the identity in O. Notice that:

O2ε+α ⊂ O′
ε ⊂ O (5)
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The natural homotopy consists in first applying the homotopy corresponding
to f , that is pushing x ∈ O to f(x) ∈ O2ε+α. Then, from the inclusion (5),
f(x) ∈ O′

ε. Then one applies the homotopy corresponding to g, that is
pushing f(x) ∈ O′ to g(f(x)) ∈ O′

2ε+α′ .
Along the trajectory from f(x) to g(f(x)), the distance to O′c increases,
which means that the trajectory remains in O′

ε and, using again inclusion
(5), it still remains in O. As a consequence, the combination of the two
previous homotopy induces an homotopy between the identity map of O
and g ◦ f : O → O. �

Theorem 3.3 gives us a hope to compute the homotopy type of a set given
a Hausdorff distance approximation of its boundary. Let S be a closed set.
From 3.3, if two open sets O and O′ with a wfs greater than 4ε are such that
dH(S,Oc) < ε and dH(S,O′c) < ε then they have same homotopy type.
Therefore, if S is known to be a ε Hausdorff approximation of some Oc

with wfs(O) > 4ε, one has “in theory” enough information to determine the
homotopy type of O. For example, we know that there exists at least O
itself that satisfies wfs(O) > 4ε, and dH(S,Oc) < ε. If, starting from S, one
is able to construct any set O′ with wfs(O′) > 4ε and dH(S,O′c) < ε, the
homotopy type of O′ gives the homotopy type of O.

Remark. In previous theorem, the bound 2ε is tight for any n ≥ 2. In-
deed, on Figure 2, the “U” shape and the “O” have not the same homotopy
type: “U” is simply connected while “O” is not. The sides of the square
of the doted grid have length ε. One can check that the Hausdorff distance
between the “U” shape and the “O” is ε. The two vertical bars of the “U”
are actually not exactly vertical: the “U” is imperceptibly open, and there-
fore wfs(U) = ∞. The “O” is a circle of radius 2ε and one has obviously
wfs(O) = 2ε.

3.2 Critical values of distance functions

The vector field ∇ and the Weak Feature Size are closely related to the
notion of critical points of distance functions. Critical points for distance
functions to a point have been introduced in riemannian geometry by Grove
and Shiohama [22]. Distance functions to closed sets have been intensively
studied (see [21], [18] for example) and the aim of this section is to give
properties of such functions that apply to our setting. As a consequence, we
show that any bounded open subset with piecewise analytic boundary has
a positive weak feature size.

Recall that a point x ∈ O is a singular point of ∇ (i.e ∇(x) = 0) if and
only if it lies in the convex hull of Γ(x) (lemma 2.2). This characterization
coincides with the definition of singular points of the generalized Clarke
gradient of the function R (see [11], [12], [18]). Singular points of ∇ are thus
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Figure 2: The “U” shape and the “O” shape have not the same homotopy
type.

critical points of the function R. The critical values of R are defined as the
values taken by R at critical points. Notice that this notion of critical point is
also the same as the one used in riemannian geometry for distance functions
to a point (see [22], [10]). The weak feature size is thus the distance between
Oc and the set F of singular points of R or, equivalently, the infimum of the
critical values of R.

In some way the properties of the distance function to a compact set are
quite similar to those of the smooth functions. In particular, they satisfy
an Isotopy Lemma [21], that we reproduce below (Proposition 3.4). Notice
that the Theorem 3.2 may be proven as a Corollary of Proposition 3.4.

Proposition 3.4 If 0 < ρ1 < ρ2 are such that Oρ1
\ Oρ2

does not con-
tain any critical point of R, then all the levels R−1(ρ), ρ ∈ [ρ1, ρ2], are
homeomorphic topological manifolds and

Oρ1
\ Oρ2

= {x ∈ O : ρ1 ≤ R(x) ≤ ρ2}

is homeomorphic to R−1(ρ1)× [ρ1, ρ2]. As a consequence, Oρ1 and Oρ2 are
homeomorphic and thus homotopy equivalent.

As a consequence, if O has a positive wfs, then for all values ρ ∈]0, wfs[,
the level sets Oρ are homeomorphic topological manifolds, even if the bound-
ary of O is not a manifold (see figure 3).
If n = 3, the function R satisfies a Sard theorem ([18]):

Proposition 3.5 If n = 3, then the set of critical values of R,

Crit(R) = R(F) = R({x ∈ O : ∇(x) = 0})

is a compact set with zero Lebesgue measure in R.
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O

Oρ

Figure 3: An open set with positive wfs and non manifold boundary

Note that such a result is false without the assumption n = 3 (see [18]).
Nevertheless, if the open set O is subanalytic one has a stronger result.
Definition of subanalytic sets is rather technical and not presented here.
In some way, this definition may be considered as a rigourous definition of
piecewise analytic sets. Subanalytic sets include most of the sets encountered
in practical applications (BRep solids, solids bounded by NURBS surfaces,
solids with piecewise linear boundary,...) The reader may refer to [9] for
more details and precise definitions.

Proposition 3.6 Let O ⊂ R
n be a subanalytic bounded open set. The set

of critical values of R,

Crit(R) = R(F) = R({x ∈ O : ∇(x) = 0})

is finite. In particular wfs(O) > 0.

This result has been proven by Fu ([18] p.1045) for semialgebraic sets.
The proof adapts easily to piecewise analytic sets and may be found in [8].

4 Homotopy and homology of sets with positive

Weak Feature Size

We now study the behavior of the homotopy and singular homology groups
of open sets O with positive wfs under small perturbations. Some of the ideas
of this section are closely related to the notion of topological persistence (see
[15]). To be conceptual, all the homology groups considered in the sequel
are with coefficients in Z/2. Proofs of this section are clearly independent
of the choice of the coefficients domain, so results of this section remain true
if one replaces Z/2 by another coefficients domain (e.g. Z). If x is a point
in a topological space X, one denotes by π1(X, x) the fundamental group of
X with x as base point.
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4.1 Stability of homology and homotopy

If O and Õ are two bounded open sets in R
n and ε > 0 such that dH(Oc, Õc) <

ε, then one has the inclusions:

O4ε ⊂ Õ3ε ⊂ O2ε ⊂ Õε ⊂ O (6)

These inclusions are used in the proofs of proposition 4.1 and theorem 4.2.
The next proposition is the key argument to prove theorem 4.2.

Proposition 4.1 Let O and Õ be two bounded open sets in R
n and let ε > 0

be such that wfs(O) > 2ε and dH(Oc, Õc) < ε.
1. Let k ∈ {0, · · · , n} and let c1 and c2 be two k-chains in Õ3ε. Then c1

and c2 are homologous in O if and only if c1 and c2 are homologous in Õε.
2. Let γ1 and γ2 be two continuous loops in Õ3ε. The loops γ1 and γ2 are
homotopic in O if and only if γ1 and γ2 are homotopic in Õε.

Notice that no assumption is done on the wfs of Õ.

Proof. − We only give the proof of part 1, the proof of part 2 being similar.
Among the inclusions (6), one uses here:

Õ3ε ⊂ O2ε ⊂ Õε ⊂ O.

If c1 and c2 are homologous in Õε, then there exists a (k + 1)-cycle C ⊂ Õε

such that ∂C = c1 + c2 where ∂ denotes the boundary operator. From
Õε ⊂ O it follows that C ⊂ O and c1 and c2 are homologous in O.
Suppose now that c1 and c2 are two k-cycles in Õ3ε that are homologous in
O. This means there exists a (k + 1)-cycle C ⊂ O such that ∂C = c1 + c2.
The cycles c1 and c2 are compact sets in O2ε, so there exists α > 0 such that
c1 and c2 are included in O2ε+α and 2ε+α < wfs(O). There exists (theorem
3.2) a continuous map ϕ : O → O2ε+α which is a deformation rectraction.
ϕ restricted to O2ε+α is the identity map, so, one has

∂ϕ#(C) = ϕ#(∂C) = ϕ#(c1) − ϕ#(c2) = c1 + c2

where ϕ# is the homomorphism induced by ϕ between the modules of k-
chains. So c1 and c2 are homologous in O2ε+α.
To conclude the proof it suffices to notice that O2ε+α ⊂ Õε. �

The following theorem shows that even if one does not know O but only
an approximation Õ of it, one can still “compute” its homology groups.

Theorem 4.2 Let O and Õ be two bounded open sets in R
n, let ε > 0

be such that wfs(O) > 4ε and dH(Oc, Õc) < ε and let k ∈ {0, · · · , n} be
an integer. Denote by i : Õ3ε → Õε the canonical inclusion map and i∗ :

11



Hk(Õ3ε,Z/2) → Hk(Õε,Z/2) the induced map between homology groups.
One has

Hk(O,Z/2) ' im(i∗ : Hk(Õ3ε,Z/2) → Hk(Õε,Z/2))

Denoting also i∗ the map induced by i between fundamental groups, one also
has

π1(O, x) ' im(i∗ : π1(Õ3ε, x) → π1(Õε, x))

Using the terminology of [15], the previous result means that the ho-
mology groups of O can be deduced from the homology groups of Õ3ε by
“removing” the cycles of persistence less than 2ε in the filtration defined by
the open sets Õd, d > 0. In other words, the homology groups of O are
determined by the way Õ3ε is included in Õε.

Proof. − First, one has

im(i∗ : Hk(Õ3ε,Z/2) → Hk(Õε,Z/2)) ' Hk(Õ3ε,Z/2)/Ker(i∗)

where Ker(i∗) denotes the kernel of the homomorphism i∗.
Let j : Õ3ε → O the canonical inclusion map and j∗ the induced homo-
morphism between corresponding homology groups. Consider the following
sequence of inclusion maps :

O4ε → Õ3ε → O.

Because 4ε < wfs(O), it follows from theorem 3.2 that O4ε is a deforma-
tion retract of O. As a consequence the composition of the two previous
maps, which is the inclusion map O4ε → O, induces an isomorphism be-
tween corresponding homology groups. Thus the composition of the two
homomorphisms

Hk(O4ε,Z/2) → Hk(Õ3ε,Z/2) → Hk(O,Z/2)

is an isomorphism. It follows that j∗ is surjective and

Hk(O,Z/2) ' Hk(Õ3ε,Z/2)/Ker(j∗).

To conclude the proof, it suffices to remark that proposition 4.1 implies that
Ker(i∗) = Ker(j∗).
This proof immediately adapts to the case of fundamental groups using
second part of proposition 4.1. �

Remark Notice that in proposition 4.1, one only needs the assumption
wfs(O) > 2ε while in theorem 4.2 one needs wfs(O) > 4ε to be satisfied.
Notice also that previous proposition and theorem generalize immediately
to higher homotopy groups.
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4.2 Using λ-medial axis

In [8], a subset of the medial axis, called λ-medial axis and denoted Mλ is
introduced. Using the definitions and notations of section 2.1, for an open
set O, its medial axis M(O) can be defined as

M(O) = {x ∈ O ; F(x) > 0}

For λ > 0 , the λ-medial axis Mλ(O) is defined by:

Mλ(O) = {x ∈ O ; F(x) ≥ λ}

Notice that, because F is upper semicontinuous, Mλ(O) is a closed set.
For a finite set S, the medial axis M(Sc) is the union of the cells of the
Voronoi diagram of S of dimension strictly less than the dimension n of the
ambient space. Moreover, the function F being constant on each Voronoi
cell, Mλ(Sc) is a union of some Voronoi cells of the Voronoi diagram of S
(see [8]). Since Mλ(Sc) is closed, it is thus a subcomplex of the Voronöı
diagram of S. Given the Voronoi diagram, it is straigth forward to compute
Mλ(Sc), by selecting the cells on which F is greater or equal to λ.
The set F = {x ∈ O ; ∇(x) = 0} of critical points of the distance function
is compact because O is bounded and x 7→ ‖∇(x)‖ is lower semicontinuous.
Therefore, the set R(F) of critival values of the distance function is compact.
We have the following lemma:

Lemma 4.3 Let O be a bounded open set. If ε > 0 is not a critical value
of the distance function R, then Oε and Mε have the same homotopy type.

Proof. − Because ∀x ∈ O, F(x) ≤ R(x), one has of course Mε ⊂ Oε.
Because the set R(F) of critival values is compact, there is α > 0 such that
there are no critical values in [ε, ε+α]. Therefore, it is possible to shrink Oε

on Oε+α, using for example proposition 3.4.
Let us take β > 0 such that

√

1 − β2(ε + α) > ε (7)

If D is a bound on the diameter of O, t 7→ R(C(t, x)) is bounded by D. Then,
from equation (4) there must be some t ∈ [0, D

β2 ] with ‖∇(C(t, x))‖ < β.

One considers the following deformation x 7→ f(x). First one pushes x ∈ Oε

toward y ∈ Oε+α by the deformation retraction on Oε+α, one thus has:

R(y) ≥ ε + α (8)

The second part of the deformation consists in applying the flow C, for
t ∈ [0, D

β2 ]: f(x) = C( D
β2 , y).
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For at least some t, one has ‖∇(C(t, y))‖ < β. Let denote this point by
z = C(t, y). One has ‖∇(z)‖ < β and, from (8), R(z) ≥ ε + α which entails,
by equations (2) and (7), F(z) ≥ ε. This means z ∈ Mε. But because
t 7→ F(C(t, y)) is increasing (see [23]), this entails that f(x) = C( D

β2 , y)
belongs to Mε. The map f meets the condition of the characterization of
proposition 2.4 for homotopy equivalence.

�

Theorem 4.2 allows to capture the homology of a set O from an approxi-
mation Õ by looking at the image, by the homomorphism i∗ induced by the
canonical inclusion i, of Hk(Õ3ε) toward Hk(Õε). In fact one has a similar
result using respectively M3ε(Õ) and Mε(Õ) which is more convenient for
a practical computation of the homology of O from finite samples.

Theorem 4.4 Let O and Õ be two bounded open sets in R
n, let ε > 0 be

such that ε and 3ε are not critical values of the distance function to Õc

and such that wfs(O) > 4ε and dH(Oc, Õc) < ε. Let k ∈ {0, · · · , n} be an
integer. Denote by i : M3ε(Õ) → Mε(Õ) the canonical inclusion map and
by i∗ the induced map between homology groups. One has

Hk(O,Z/2) = im(i∗ : Hk(M3ε(Õ),Z/2) → Hk(Mε(Õ),Z/2)).

Proof. − We use the notation Hk(.) for Hk(.,Z/2). In the diagram below,
right and right-up arrows are group homomorphisms induced by canonical
inclusions. The vertical arrows are the group isomorphisms corresponding
to the deformation defined in the proof of lemma 4.3. We claim that the
diagram below commutes.

Hk(Õ3ε) −→ Hk(Õε)
↓↑ ↗ ↓↑

Hk(M3ε(Õ)) −→ Hk(Mε(Õ))

Let us consider c ∈ Hk(Õ3ε) and its image c′ ∈ Hk(M3ε(Õ)) by the
isomorphism induced by the deformation of the proof of lemma 4.3. If
γ ∈ Õ3ε is a k-chain in the class c ∈ Hk(Õ3ε) and γ′ ∈ M3ε(Õ) is a k-chain
in the class c′ ∈ Hk(M3ε(Õ)), then γ and γ′ are homologous in Õ3ε (that is
γ − γ′ is a boundary in Õ3ε ). Therefore c and c′ have same image by the
homomorphism induced by the inclusion in Hk(Õε). This proves that the
upper-left part of the diagram commutes.
Recall that the canonical inclusion of Mε(Õ) in Õε induces an isomorphism.
It results that if γ ∈ M3ε(Õ) is a chain from the class c ∈ Hk(M3ε(Õ)), its
images by the respective canonical inclusions in Õε and Mε(Õ) belong to
respective isomorphic classes in Hk(Õε) and Hk(Mε(Õ)). This proves that
the lower-right part of the diagram commutes.
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It results that the image of Hk(Õ3ε) in Hk(Õε) is isomorphic to the image
of Hk(M3ε(Õ)) in Hk(Mε(Õ)). This, together with theorem 4.2, concludes
the proof. �

Notice that the commutative diagram is still valid with homotopy groups.
We will see in section 5 that theorem 4.4 together with the algorithms
of topological persistence (see [15]) allow to compute the homology of a
bounded open set O with wfs(O) > 0 from a noisy sampling.

4.3 Homology of thickenings of compact sets with positive

wfs

The weak feature size of a compact subset K of R
n is the weak feature size of

its complement R
n \K. Note that R

n \K is not bounded but one can define
its wfs in the same way as for bounded open sets. Let K ⊂ R

n be a compact
set such that wfs(K) > 0. One denotes by Kε = {x ∈ R

n : d(x, K) < ε} the
ε-thickening of K. In this section one shows how our previous results adapt
immediately to the topology of Kε.

Theorem 4.5 Let K and K̃ be two compact subsets of R
n, let ε > 0 be such

that wfs(K) > 4ε and dH(K, K̃) < ε and let x ∈ K. Let α > 0 be such that
α + 4ε < wfs(K) and denote by i : K̃α+ε → K̃α+3ε the canonical inclusion
map and i∗ the induced map between homotopy or homology groups. For
any 0 < λ < wfs(K) one has

Hk(K
λ,Z/2) = im(i∗ : Hk(K̃

α+ε,Z/2) → Hk(K̃
α+3ε,Z/2))

π1(K
λ, x) = im(i∗ : π1(K̃

α+ε, x) → π1(K̃
α+3ε, x))

The part of this result about homology has been independantly proven
in [5] using topological persistence theory.

Proof. − First note that it follows from isotopy proposition 3.4, that for
any 0 < λ, µ < wfs(K), the two thickenings Kλ and Kµ are isotopic. It
is thus sufficient to prove the theorem for λ = α. Now,the proof follows, in
the same way as in revious proofs, from the following inclusions

Kα ⊂ K̃α+ε ⊂ Kα+2ε ⊂ K̃α+3ε ⊂ Kα+4ε

and the fact that Kα is a deformation retract of Kα+2ε which is itself a
deformation retract of Kα+4ε. �

Such a result combined with results on homological persistence [15] and
alpha-shapes [16] leads to an algorithm to compute the homology groups of
K from a noisy sample of points (see section 5 below). A case of particular
interest is when K is the boundary of an open set. It is important to notice
that even if wfs(K) > 0, the homology groups of K and the homology
groups of its thickenings are not always the same: consider the following
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Figure 4: A compact set with positive wfs whose homology groups differ
from the ones of its thickenings

example (see also [26], 2.4.8). Let K ⊂ R
2 be the union of the four sets

K1 = {(x, y) : x = 0,−2 ≤ y ≤ 1}, K2 = {(x, y) : 0 ≤ x ≤ 1, y = −2}, K3 =
{(x, y) : x = 1,−2 ≤ y ≤ 0} and K4 = {(x, y) : 0 < x ≤ 1, y = sin(2π/x)}
(see figure 4.3). It is an easy exercise to check that K is a simply connected
compact set with positive weak feature size, while the thickenings of K are
homeomorphic to annuli and that K is the boundary of a topological disk
([26], 2.4.8).

5 Applications

Let consider a bounded open set O such that O and (Oc)◦ have positive wfs.
Results of section 4 combined with algorithms of [15] for the computation

of persistent homology allow us to compute the homology groups of O as
well as the homology groups of a thickening of the boundary of O, given a
noisy set of points sampled on the boundary of O. The main interest of the
algorithm we provide is twofold. First, no assumption on the smoothness
of the boundary of O is needed. Second, noisy samples are allowed, i.e. it
is only required that the Hausdorff distance between ∂O and the sample
is bounded by some constant depending on wfs(O ∪ (Oc)◦). We use the
following notion of noisy sample that presents some similarities with the one
ntroduced in [14]. Let O be a bounded open subset of R

n whose boundary
is denoted by

S = ∂O = Oc ∩ O

Definition 5.1 A finite sample of points E such that the Hausdorff distance
between S and E is less than ε is called an ε-noisy sample of S.

Homology through the Voronoi filtration Mλ. We consider now a ε-
noisy sample E of S. Let us consider a ball of radius R, with R large enough
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for B
◦
0, R

2

to contain E and all the Voronoi vertices of the Voronoi diagram of

E . From the Voronoi diagram of E , it is possible to compute the filtration of
the Mλ(Õ) where Õ = B

◦
0,R \E . If one assumes wfs(B◦

0,R \S) > 4ε, theorem

4.4 can be applied to the open sets O = B
◦
0,R \ S and Õ.

The Delaunay filtration dual to the Voronoi filtration Mλ is simplicial. It
is then possible to use techniques described in [15, 27] on the filtration
corresponding to the Mλ(Õ) when λ decreases from 3ε to ε to compute
the homology of i∗(Hk(M3ε(Õ),Z/2)) and therefore, by theorem 4.4, of
Hk(B

◦
0,R \ S,Z/2).

Notice that Sc has exactly one unbounded connected component, which
can be identified in the filtration Mλ(Õ). Therefore, if one knows that Oc

has only one connected component (which means that O has no voids), then,
the homology of B

◦
0,R \ S gives the homology of O.

Homology through α-shape filtration. Consider, in theorem 4.5, the
case where K̃ is a finite set. K̃r is then a union of balls, which is known
to have the homotopy type of the dual complex or α-complex of K̃. One
can use precisely the filtration mentionned in [15] on the α-complex and
the associated algorithm for the computation of persistent homology. Then,
according to theorem 4.5, counting the cycles classes that “survive” between
the “times” ε and 3ε gives the Betti numbers of Kλ.

Finiteness of homotopy types. Theorem 3.3 also leads to a homotopy
finiteness theorem for bounded open sets with positive wfs.

Theorem 5.2 (homotopy finiteness) Given an integer n ≥ 1 and two posi-
tive reals ε > 0 and D > 0, there are at most finitely many homotopy types
among bounded open sets O in R

n satisfying wfs(O) > ε and diameter(O) <
D.

As a consequence, the number of homotopy types among bounded open sets
in R

n with positive wfs is countable.

This theorem shows that the geometry of a bounded open set in R
n

involves constraints on its topology. This is the same kind of result as the
ones known for Riemannian manifolds (see [20], [21], [10]).

Proof. − Since one considers open sets with diameter less than D, one can
suppose that they are all included into the cube H = [−D, D]n. Let h = ε

2
√

n

and let

Gε = {(k1h, k2h, · · · knh) :
−D

h
≤ ki ≤

D

h
}

be the h-regular grid in H and let O be an open set included in H. Notice
that dH(H, G) = ε/4. One associates to O a subset of Gε defined by GO =
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{x ∈ Gε : d(x,Oc) < ε/4}. Since Gε is finite, one thus defines a map between
the open sets of H and the finite set of subsets of Gε.
Now, if two open sets O and Õ included in H are such that GO = GÕ, then

dH(Oc, Õc) < ε/2. Moreover if wfs(O) > ε and wfs(Õ) > ε, it follows from
theorem 3.3 that O and Õ have the same homotopy type. �

Note that given n, ε and D, the number of different homotopy types
for open subset of R

n with wfs greater then ε and diameter less than D is

bounded by 2( 4D
√

n

ε
+1)n

. Such a bound is far from being optimal.

To conclude remark that previous theorem together with proposition 3.6
have the following consequence in real analytic geometry.

Corollary 5.3 The number of homotopy types among bounded subanalytic
open sets in R

n with positive wfs is countable.
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