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Abstract

Many shapes resulting from important geometric operations in industrial applications such as Minkowski sums or

volume swept by a moving object can be seen as the projection of higher dimensional objects. When such a higher

dimensional object is a smooth manifold, the boundary of the projected shape can be computed from the critical

points of the projection. In this paper, using the notion of polyhedral chains introduced by Whitney, we introduce

a new general framework to define an analogous of the set of critical points of piecewise linear maps defined over

discrete objects that can be easily computed. We illustrate our results by showing how they can be used to compute

Minkowski sums of polyhedra and volumes swept by moving polyhedra.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling —Curve, surface, solid, and object representations

1. Introduction

Many shapes resulting from classical geometric operations
(silhouettes, caustics, Minkowski sums, volume swept by a
moving object...) can be seen as the projection of higher di-
mensional objects. This point of view allows to relate the
boundary of such shapes to the critical values of the pro-
jection maps defining them. In the smooth setting, a critical
value of a smooth map φ is a value φ(x) at a point x for which
the differential map Dφx does not have a full rank. The sets
of critical values arising for generic smooth maps have been
extensively studied [AV85]. In particular, for a smooth map
φ :M → R

d defined over a manifoldM without boundary of
dimension n ≥ d, the boundary points of φ(M) are critical
values of φ. More generally, changes in the topology of the
preimages y 7→ φ−1({y}) arise at critical values (See for ex-
ample, figure 1). The computation of silhouettes, envelopes
or boundaries of swept volumes based upon these properties
of the critical values of smooth maps have been widely con-
sidered in the last decades - see [EI07,PP00,MS90,RBIM01]
for example. Although the smooth setting provides a pow-
erful mathematical framework, it is not well-suited to deal
with polyhedral shapes and maps. In practice, the attempts
to adapt the smooth approach to the polyhedral setting often
leads to rather complicated algorithms facing robustness is-
sues. An alternative approach, which is the one adopted in

this paper, consists in defining a counterpart of the notion of
critical value in the context of polyhedral shapes and maps.
For real valued functions defined on polyhedra or more gen-
erally on so-called convex complexes, Banchoff [Ban67] has
introduced a theory of critical points and a discrete analog
of Morse theory. Banchoff’s theory has proven to be pow-
erful for generalizing various notions of smooth differential
topology (Morse-Smale complexes,...) to the discrete setting
- see [EHZ03,EHNP03] for example.

Figure 1: Two-dimensional linear projections of torus with the sil-
houettes (bold and dashed curves) corresponding to the critical val-

ues of the projection maps. On the left in the classsical setting of

smooth functions defined over smooth manifolds. On the right, our

counterpart in the context of piecewise linear functions defined over

simplicial complexes.

In this paper, we consider the case of multivalued continu-
ous piecewise linear maps defined on polyhedral objects. In-
spired by the theory of critical points introduced in [Ban67]
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and closely related to the notion of singularity chains for
piecewise linear maps [BAN75], our work introduces a gen-
eral framework that allows to define and compute an anal-
ogous of critical values of smooth functions in the world
of piecewise linear functions defined over discrete objects.
Using the framework of polyhedral chains [Whi57], we for-
mally define this set of critical values as polyhedral cycles
and call them silhouette cycles (see definition in Section
2 below). We establish key properties on silhouette cycles
which allow us to provide a simple and general algorithm for
their computation. Note that Edelsbrunner and Harer [EH02]
propose, in a similar framework, an alternate notion of sin-
gularities using Betti numbers. In contrast, the core of our
work consists in proving (see theorems 3.6 and 4.1 below)
that our simpler notion based on Euler characteristics allows
to compute boundaries of projections and therefore is suffi-
cient for the targeted applications. We illustrate its practical
relevance by showing how it can be used to design robust al-
gorithms for the computation of Minkowski sums and swept
volumes that are of prime interest in many applications such
as geometric modeling & animation, design & manufactur-
ing. However, the analysis of the complexity and the descrip-
tion of data structures for optimal algorithms are beyond the
scope of the paper.

The paper is organized as follows. Section 2 quickly
presents the necessary mathematical notions. Section 3 and
4 introduce our framework and establish the main results.
Practical illustrations are given in section 5.

2. Mathematical Preliminaries

The results of this paper rely upon two mathematical notions
that we introduce quickly (for a complete and detailed pre-
sentation the reader is referred to the references below). The
first one is the classical concept of combinatorial manifold
that extends the notion of triangulation in 2D and 3D. The
second one, less classical, has been introduced by H. Whit-
ney in the setting of Geometric Integration Theory [Whi57].
It extends the notion of polyhedron and provides a well-
suited framework to describe silhouettes and images of maps
considered in the sequel.

Simplicial complexes and combinatorial manifolds

[Mun93, BB04] A (finite) simplicial complex K in R
n is a

(finite) collection of simplices in R
n such that every face

of a simplex of K is also in K and the intersection of any
two simplices of K is either empty or a common face of
each of them. In this paper, all the complexes are finite. By
face (resp. proper face) of a simplex τ we mean a simplex σ

spanned by a subset (resp. a proper subset) of the vertices of
τ. Similarly, one says that a simplex τ of the simplicial com-
plex is a coface (resp. a proper coface) of a simplex σ if σ is
a face (resp. a proper face) of τ. The support of K, denoted
by |K|, is the union of the simplices of K. The dimension of
K is defined as the maximal dimension of the simplices of
K and, given k ≤ dim(K), the k-skeleton of K, denoted by

Skk(K) is the subcomplex of K consisting of the simplices
of dimension at most k.

Given a simplex σ in K, the (open) star of σ, denoted St(σ),
is the union of the relative interiors of all the simplices hav-
ing σ as a face. The closed star of σ, denoted St(σ), is the
closure of the open star of σ, i.e. the union of all the sim-
plices having σ as a face. The link of σ, denoted Lk(σ) is
the union of all the simplices lying in St(σ) that are disjoint
from σ, as illustrated on figure 2. A simplicial complex K is
a combinatorial n-manifold if the link of any k-simplex of
K is homeomorphic to S

n−k−1, where S
n−k−1 denotes the

n− k− 1 dimensional sphere. A combinatorial n-manifold

with boundary is a simplicial complex for which the set of
simplices is partitioned into two categories: the interior k-

simplices, for which the link is homeomorphic to S
n−k−1

and the boundary k-simplices for which the link is homeo-
morphic to the unit ball D

n−k−1 of dimension (n− k−1).

Figure 2: The edge τ (in blue), its star (in black) and its link (in

red).

Polyhedral chains [Whi57] are extensions of the classi-
cal notions of polyhedra and polyhedral regions. They can
be seen as formal sums of weighted polyhedra and are
defined in the following way. Let P1, · · · ,Pm be bounded
non-overlapping oriented polyhedral regions in R

r and
let a1, · · · ,am be real coefficients. The formal sum A =

∑
m
i=1 aiPi is a polyhedral r-chain in R

r. Choosing an orien-
tation of R

r, A is also determined by the piecewise constant,
real valued function A(.) defined over R

r, which equals ai
or −ai in the interior of Pi according as Pi is oriented like
or opposite to R

r for i = 1, · · ·m and equals 0 elsewhere.
Since A is entirely defined by A(.) and vice-versa, we use in
the sequel the same notation A for an r-chain and its corre-
sponding function. The notion of equality between r-chains
is defined using their corresponding functions: two r-chains
A and B are equal, and we write A = B, if the corresponding
functions are equal except in a finite set of polyhedral cells
of dimension less than r. As we will see in the following,
the ability of discarding a finite set of cells of dimension less
than r to prove the equality of two r-chains is extensively
used in the proofs. The set of polyhedral r-chains in R

r nat-
urally inherits a structure of linear space: the product of a
chain A with a real a being represented by the function aA(.)
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and the sum of two chains A and B being represented by
the sum of functions A(.)+B(.). Now, a polyhedral r-chain
A in R

d (d ≥ r) consists of a finite set of distinct oriented
r-dimensional affine subspaces together with a polyhedral r-
chain in each. Again, A can be defined as a function where,
once an orientation of each r-plane has been chosen, A(.) is
defined in each r-planes. The sum of two such r-chains A
and B is defined by summing A(.) and B(.) in each r-planes
occurring in A and B. The support of a r-chain A, denoted
by |A| is the closure of the union of the polyhedral cells on
which A(.) is not equal to 0.

A polyhedral convex cell in R
r (or cell in the following

for short) is a non empty bounded intersection of a finite
number of closed half-spaces bounded by hyperplanes. Any
r-chain A can be expressed as a finite sum A = ∑aiσi where
each σi is a polyhedral convex cell of dimension r and ai
is a real number. Such a decomposition is obviously non
unique. Given a polyhedral convex r-cell σ, its boundary ∂σ

is the (r−1)-chain which is equal to the sum of the oriented
(r−1)-dimensional faces of σ. The boundary of the r-chain
A = ∑aiσi is defined as the (r− 1)-chain ∂A = ∑ai∂Pi. An
important property of the boundary is that it does not depend
on the decomposition of A into convex cells and thus defines
a linear operator on chains. Moreover the boundary opera-
tor satisfies the following property: for any chain A, we have
∂∂A = 0. A (polyhedral) cycle is a chain A such that ∂A = 0.
This boundary operator is the counterpart, in the world of
polyhedral chains, of the boundary operator on chains used
in simplicial homology theory. It is also related to the notion
of winding number since for example if B = ∂A is a 1-chain
in R

2, the winding number of B around a point x gives the
value A(x).

It is important to notice that in general, the support of the
boundary of an r-chain A in R

r is different from the topo-
logical boundary ∂t |A| = closure(|A|) \ interior(|A|) of the
support of A (see figure 3 left).
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Figure 3: The rectangles P1 = (abcd) and P2 = (e f gh) are en-

dowed with the same orientation inR
2. Left: the 2-chain A=P1+P2

is defined by the sum of the characteristic functions of P1 and P2;

its support is the union of the two rectangles. Right: the 2-chain
B= P1−P2; its support is the symmetric difference of P1 and P2. ∂A

and ∂B are the sum of the oriented blue segments.

Euler Characteristic Given a simplicial complex K, we
recall that the Euler characteristic of K is the alternate
sum χ(K) = ∑σ∈K(−1)dim(σ). The Euler characteristic sat-
isfies the following fundamental additivity property: if K =
K1 ∪K2 where K1 and K2 are two sub-complexes of K then

χ(K) = χ(K1) + χ(K2)− χ(K1 ∩K2). Moreover, the Euler
characteristic is a topological invariant: if K and K′ are two
simplicial complexes with homeomorphic supports |K| and
|K′| then χ(K) = χ(K′) and if X is a topological space home-
omorphic to |K| then χ(X) = χ(K) by definition.

3. χ-projection chains and silhouette cycles of maps

defined over simplicial complexes

The class of maps we consider are the continuous maps
π : K → R

d where K a simplicial complex with values in
R
d such that the restriction of π to any simplex of K is

linear. Given such a map π : K → R
d , its image π(K) is

a polyhedron in R
d . Notice that its (topological) boundary

∂tπ(K) = closure(π(K)) \ interior(π(K)) cannot be deter-
mined by local computations in K. More precisely, deciding
whether a point π(p) ∈ R

d , p ∈ K, is on ∂tπ(K) cannot
be done by only considering the map π in a neighborhood
of p (see figure 4). This generally makes the computation of
∂tπ(K) prohibitively tricky and expensive. Taking advantage
of the framework of polyhedral chains, instead of consider-
ing the image π(K) as a simple polyhedron, we introduce
a chain, called the χ-projection chain, that carries topolog-
ical information about the fibers π−1(x), x ∈ R

d , of π. Its
boundary (as a chain), called the silhouette cycle, appears as
a weak version of the actual topological boundary of π(K).
The two main results of this paper, presented in the two next
sections, state that the silhouette cycle can be easily obtained
by local computations in K and that in many cases of prac-
tical importance the support of the silhouette cycle contains
the topological boundary of π(K) (theorems 3.6 and 4.1).

Figure 4: A map π from a 2-dimensional complex K to R. Consid-

ering the restriction of π to a neighborhood of p suggests that π(p)
is a boundary point of π(K) which is obviously not the case.

3.1. χ-projection chain and silhouette cycle

Definition 3.1 LetK be a simplicial complex and π :K→R
d

a continuous map which is linear on each simplex of K. The
χ-projection chain pπ(K), associated to the pair (K,π), is
the polyhedral d-chain in R

d corresponding to the function
χ ◦ π−1 which associate to each point x ∈ R

d the integer
χ(π−1(x)).

Note that, by the definition of equality between d-chains, the
function x 7→ χ(π−1(x)) defines pπ(K) up to a finite set of
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polyhedral cells of dimension less than d. In particular, if K
is a simplicial complex of dimension less than d or if π(|K|)
is contained in a finite union of affine subspaces of dimen-
sion d− 1, then χ(π−1(x)) is equal to 0 except on π(|K|)
which is of dimension less than d, so the d-chain pπ(K) is
equal to 0.

The main advantage of considering the Euler characteris-
tic of the fibers of π to define the χ-projection chain is that it
immediately inherits the important additivity property from
the Euler characteristic.

Lemma 3.2 (Additivity of the χ-projection chain) Let K1

and K2 be two subcomplexes of K such that K = K1 ∪K2.
If π1, π2 and π1,2 denote respectively the restrictions of π to
K1, K2 and K1∩K2, one has pπ(K) = pπ1(K1)+ pπ2(K2)−
pπ1,2(K1∩K2).

Proof Since for every p ∈ R
d , π−1(p) = π−1

1 (p)∪π−1
2 (p),

the additivity of the Euler characteristic gives
χ(π−1(p)) = χ(π−1

1 (p)) + χ(π−1
2 (p)) − χ(π−1

1 (p) ∩

π−1
2 (p)) = χ(π−1

1 (p))+χ(π−1
2 (p))−χ(π−1

1,2 (p))

Definition 3.3 LetK be a simplicial complex and π :K→R
d

a continuous map which is linear on each simplex of K. The
silhouette cycle sπ(K) of (K,π) is the boundary of the χ-
projection chain pπ(K): sπ(K) = ∂pπ(K). It is a (d − 1)-
chain in R

d .

The definition of the χ-projection chain and the linearity of
the boundary operator on the space of d-chains, easily gives
the following properties of the silhouette cycle.

Lemma 3.4 (Additivity of the silhouette cycle) If K1 and
K2 are two subcomplexes of K such that K = K1 ∪K2 then
sπ(K) = sπ(K1)+ sπ(K2)− sπ(K1∩K2)

Lemma 3.5 The map y 7→ χ
[

π−1({y})
]

is constant on each

connected component of the complement of the support of
the silhouette cycle.

Example: Let P be a polygonal region in R
2 and let Γ be

a piecewise linear curve in R
2 homeomorphic to a segment

(see figure 5). Triangulating the product P× Γ gives a 3-
dimensional simplicial complex K in R

4 = R
2 ×R

2. The
image of the map π : K → R

2 defined by π(x,γ) = x+ γ is
the union of the translated polygonal regions Tγ(P), γ ∈ Γ.
In other words, π(K) is the area swept by Pmoving along Γ.
The points of π(K) are exactly the points x ∈ R

2 such that
π−1(x) is not empty. Since π−1(x) is homeomorphic to a fi-
nite union of polygonal curves in Γ, χ(π−1(x)) is equal to
the number of connected components of π−1(x) and π(K)
is equal to the support of pπ(K). The figure 5 shows the χ-
projection chain and the silhouette cycle when P is a square
and Γ a very simple polygonal curve. The pink (resp. red)
part represent the points where the χ-projection chain is
equal to 1 (resp. 2). The bold black self-intersecting curve
represents the silhouette cycle. Figure 6 depicts a similar sit-
uation where the polygon P is not convex, while the trajec-
tory is a line segment.

Figure 5: The χ-projection chain and the silhouette cycle of a 2D

polygon P swept along a piecewise linear curve Γ. The pink (resp.

red) part represent the points where the χ-projection chain is equal

to 1 (resp. 2). The bold black self-intersecting curve represents the

silhouette cycle.

Figure 6: The χ-projection chain and the silhouette cycle (lower

right) of a non convex 2D polygon P swept along a linear segment

Γ (upper left). Upper right: the product complex and the inverse

images by the projection. Lower left the product seen from the pro-

jection direction.

3.2. A local formula for the silhouette cycle

Let K be a simplicial complex and let π : K → R
d a contin-

uous map which is linear on each simplex of K. From now
on we assume that an orientation of R

d has been chosen and
that the images of the simplices of K by π satisfy the follow-
ing generic property:

(G) the image π(σ) of any simplex σ of K of dimension
at most d is a non degenerate simplex in R

d , i.e. the smallest
affine subspace containing π(σ) has same dimension as σ.

Assuming Property (G) allows us to give a local formula to
compute the silhouette cycle. The constraint it imposes can
be easily overcome in practice as discussed in section 5.1.
We also assume in the sequel that any simplex of K of di-
mension less than d has at least one coface of dimension d.
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Note that such an assumption is always satisfied when K is
a combinatorial d-manifold.

Assume that an arbitrary orientation on each (d−1)-face of
K is given. For any (d−1)-face t of K the simplex T = π(t)
inherits an orientation from t. The normal vector nT to T is
the unit length vector normal to T such that the orientation
of T together with nT define the chosen orientation of R

d .
The hyperplane HT passing through T is the boundary in R

d

of two closed half-spaces H+
T and H−

T , H+
T being the one in

which nT is pointing inside.

Theorem 3.6 The silhouette cycle sπ(K) of (K,π) is equal to
a (d−1)-chain in R

d obtained as a weighted sum of the ori-
ented images T = π(t) of the (d−1)-faces of K. The weight
wT of the (d−1)-simplex T = π(t) is given by

wT = ∑
∂σ∋t

π(σ)⊆H+
T

(−1)dim(σ)−d − ∑
∂σ∋t

π(σ)⊆H
−
T

(−1)dim(σ)−d (1)

where, by a small abuse of notation ∂σ denotes here the set
of proper faces of σ.

By providing an explicit formula for the silhouette cycle, this
theorem shows that its support is contained in the image of
the (d−1)-skeleton of K and the computation of the weight
of the image T = π(t) of any (d− 1)-simplex t boils down
to computing on which side of the supporting hyperplane of
T the images of the vertices of the cofaces of t are.

Notice that the silhouette cycle does not depend on the arbi-
trary choice of the orientation of the (d− 1)-skeleton of K.
Indeed, if the orientation of a (d−1)-face t is reversed, then
the sign of wT in the previous formula and the orientation of
T are reversed, the silhouette cycle remaining unchanged.

The proof of theorem 3.6 is a consequence of the following
fundamental lemma relating the silhouette cycle to the Eu-
ler characteristic of the fibers of π when K is reduced to a
simplex.

Lemma 3.7 Let Σ be a simplex and π a linear map from Σ

to R
d satisfying the generic property (G). Let t be a (d−1)-

face of Σ and let p+ ∈ H+
T \HT and p− ∈ H−

T \HT be two
points that are arbitrarily close to the (relative) interior of
T = π(t). One has:

χ(π−1(p+))−χ(π−1(p−)) =

∑
∂σ∋t

π(σ)⊆H+
T

(−1)dim(σ)−d − ∑
∂σ∋t

π(σ)⊆H
−
T

(−1)dim(σ)−d (2)

As a consequence sπ(Σ) satisfies the equation (1) of theorem
3.6.

Proof Let n be the dimension of Σ. First observe that if
n≤ d−1 then there is a (d−1) hyperplane of R

d that con-
tains π(Σ). As a consequence the two sides of equation (2)
are equal to 0 for any p ∈ R

d . The lemma thus follows im-
mediately in this case. So we can now assume that n ≥ d.

The map π being linear, the image π(Σ) is a convex polyhe-
dron in R

d and for any p ∈ R
d , π−1(p) is either a convex

set or empty so that χ(π−1(p)) is equal to 0 or 1. This im-
plies that sπ(Σ) = ∂pπ(Σ) is equal to the sum of the faces
of the convex polyhedron π(Σ), i.e. a weighted sum of the
images of the (d−1)-simplices of Σ. The weight of each of
these images is exactly given by the left-hand side of equa-
tion (2). It is thus sufficient to prove Equation (2) to get the
conclusion of the lemma. We distinguish two cases.
Case 1: t is a (d−1)-simplex of Σ such that T is in the (topo-
logical) boundary of π(Σ). π(Σ) being convex, it is contained
in one of the two half-spacesH+

T orH−

T defined by the plane
containing T . The left hand side of equation (2) is equal to
+1 or −1. If it is for example equal to −1, then the right
hand side of equation (2) is equal to

− ∑
∂σ∋t

π(σ)⊆H
−
T

(−1)dim(σ)−d = −
n

∑
k=d

(−1)k−d

(

n−d+1

k−d+1

)

=
n−d+1

∑
j=1

(−1) j
(

n−d+1

j

)

= (1−1)n−d+1−1 = −1

the first equality following from the fact that the number of
k-dimensional cofaces of a (d−1)-simplex in a n-simplex is

equal to
(

n−d+1
k−d+1

)

.
Case 2: t is a (d − 1)-simplex of Σ such that the (rel-
ative) interior of T is contained in π(Σ). Then π−1(p+)
and π−1(p−) are both non empty, so the left hand side of
equation (2) is equal to 0. To evaluate the right hand side
of the equation let n1 and n2 be the numbers of vertices
of Σ contained respectively in H+

T and H−

T (one thus has
n1 + n2 = n− d + 1). Consider the restriction of π to the
simplex generated by the union of the vertices of t and the n1
vertices of Σ projected in H+

T . T is contained in the bound-
ary of the image of this simplex and we can apply the case 1
which gives

1 = ∑
∂σ∋t

π(σ)⊆H+
T

(−1)dim(σ)−d

Similarly, applying case 1 to the simplex generated by the
union of the vertices of t and the n2 vertices of Σ projected
in H−

T gives

−1 = − ∑
∂σ∋t

π(σ)⊆H
−
T

(−1)dim(σ)−d

As a consequence the right hand side of equation 2 is equal
to 0.

Proof [of the Theorem 3.6]
Note that if K is a simplex, then the result is given by the
lemma 3.7. Now notice that the righ-hand side of Equation
(1) satisfies the same additivity property as the silhouette cy-
cle sπ(K) (Lemma 3.4). More precisely, let K1 and K2 be
two subcomplexes of K such that K = K1 ∪K2 and let t be
a (d−1)-simplex of K. If wT1 , wT2 and wT12 are the weights
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given by the equation 1 when one restricts the sum to the
cofaces of t that are contained in K1, K2 and K1∩K2 respec-
tively then wT1 +wT2 = wT +wT12 . The proof of the theorem
follows by a simple induction on the number of simplices of
K.

Remark 1 The previous results can be generalized to convex
cell complexes introduced in [Ban67]. Roughly speaking, in
a convex cell complex, the required property on cells of sim-
plicial complexes to be simplices is weakened to the prop-
erty to be polyhedral convex cells and the restriction of the
map π to each convex cell of the complex is required to be
affine (thus the value of π on the vertices is constrained by
this condition). This generalization does not introduce new
ideas but can be useful in some practical applications where
the complexity of a convex cell complex may be simpler than
the complexity of a simplicial complex having the same sup-
port.

4. Topological boundary of images of combinatorial

manifolds

Our goal is to compute the topological boundary ∂tπ(K) of
the image π(K) of a simplicial complex by a piecewise lin-
ear map π. However, in general, the value of the function
associated to the χ-projection chain, which is the Euler char-
acteristic of a fiber π−1(p), may be equal to zero even if
π−1(p) is non empty. In this case, ∂tπ(K) is not necessarily
a subset of the support of the silhouette cycle sπ(K). For-
tunately, this problem can be overcome in many practical
situations thanks to Theorem 4.1 stated below. In section 5
we illustrate on two cases (computation of Minkowski sums
and swept volumes) how Theorems 3.6 and 4.1 allow us to
design simple and reliable algorithms.

We call the outer skin of a bounded set E ⊂ R
d , the topo-

logical boundary of the unbounded connected component of
the complement of E in R

d .

Theorem 4.1 Let n≥ d ≥ 1 be two integers such that n−d

is even (or zero). Let K be a combinatorial n-manifold, with
or without boundary, and π : K → R

d be a piecewise linear
map satisfying the generic condition (G). Then, ∂tπ(K) is a
subset of the support of the silhouette cycle sπ(K). In partic-
ular, the outer skin of π(K) coincides with the outer skin of
the support of the silhouette cycle sπ(K).

The proof of Theorem 4.1 relies on the key technical
Lemma 4.2 below. For x ∈ R

d , let us denote by Ki
x the set

of simplices of K of dimension i whose image have x in their
relative interior:

K
i
x = {τ ∈ K, dimτ = i, x ∈ Intπ(τ)}

where Intπ(τ) denotes the relative interior of π(τ). Note that
generically the cardinal of Kd−1

x is 0 for x ∈ R
d and 1 for

x ∈ ∂tπ(K). For an integer i, we denote by Ski(K) the i-
skeleton of K defined in Section 2. Observe that ∂tπ(K) ⊂
π(Skd−1(K)) is (d−1)-dimensional. For technical reasons,

we consider points in ∂tπ(K) which are neither in the im-
age of (d− 2)-simplices from K nor in the intersection of
two non overlapping images of (d−1)-simplices. We there-
fore exclude from ∂tπ(K) a set of points included in a finite
union of (d − 2)-dimensional affine spaces and has there-
fore a zero (d−1)-dimensional measure. Removing this set
of points, we get the following subset B of ∂tπ(K) of π(K)
which contains “almost all” the points in ∂tπ(K):

B = (∂tπ(K)\π(Skd−2(K)))

∩







x ∈ R
d
, dimAff





[

τ∈K
d−1
x

π(τ)



 = d−1







where, for a set X , AffX denotes the affine space spanned
by X .

Lemma 4.2 For any x ∈ B there is ε > 0 such that, for any
y ∈ B(x,ε)∩ Intπ(K):

χ
[

π−1(y)
]

= ∑
τ∈K

d−1
x

χ [Lkτ]

where Lkτ denotes the link of τ in K.

The proof of this lemma is technical and postponed to Ap-
pendix A. Figure 7 illustrate the lemma in a simple case.

Figure 7: The inverse image of a point y in a neighborhood

of x is homeomorphic to Lkτ.

Proof [of Theorem 4.1] We apply Lemma 4.2 in the special
situation of the theorem. In our case, the simplices τ of the
Lemma 4.2 are d−1 simplices and, according to the defini-
tion of combinatorial manifolds given in section 2, the link
Lkτ in K is either homeomorphic to a (n− d)-sphere S

n−d

or to a (n− d)-disk D
n−d . Recall that the Euler character-

istic of a k-sphere is 2 when k is even and the Euler char-
acteristic of a disk is always 1. In the former case one has

χ [Lkτ] = χ
[

S
n−d
]

= 2 since n− d is even and in the lat-

ter case χ [Lkτ] =
[

D
n−d
]

= 1. Therefore, in any neighbor-

hood of a point x∈B⊂ ∂tπ(K), the function y 7→ χ
[

π−1(y)
]

defining the χ-projection chain takes a strictly positive value
inside π(K) and obviously the value 0 outside. Using Lemma
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3.5 we get that x must belong to the support of the silhouette
cycle. Since ∂tπ(K) is the closure of B and since the support
of the silhouette cycle is closed we get that ∂tπ(K) is a subset
of the support of sπ(K) denoted |sπ(K)|. Since this support is
obviously a subset of π(K) we get ∂tπ(K)⊂ |sπ(K)| ⊂ π(K)
and it follows that the unbounded component of the comple-
ment of π(K) coincides with the unbounded component of
the complement of |sπ(K)| which proves our claim on outer
skins.

5. Application to the computation of generalized sweeps

In this section we illustrate the applicability of Theorems 3.6
and 4.1 on two important practical cases.

5.1. Minkowski sums in 2D and 3D

The Minkowski sums A⊕B of two solids A and B, defined
as A⊕ B = {a+ b , a ∈ A,b ∈ B} can be expressed as the
image, by the projection (a,b) 7→ a+b of the product A×B.
Let us first consider the Minkowski sum of two simple poly-
gons in R

2. Let P1 and P2 be the respective curves bound-
ing the polygons. Both P1 and P2 may be seen as com-
binatorial 1-manifolds and the product P1 × P2 is a com-
binatorial 2-manifold after the triangulation of each prod-
uct of an edge of P1 by and edge of P2 into two triangles.
The Minkowski sum P1⊕P2 is the image of the projection
π :P1×P2 →R

2 defined by π(x1,x2) = x1+x2. Theorem 4.1
applies since n−d = 2−2 is even. The simplest algorithm to
compute sπ(P1×P2) consists in iterating on the 1-simplices
(the edges) of the product P1×P2 and, for each of these sim-
plices compute the weight by the formula of Theorem 3.6.
Each edge for which the corresponding weight is non-zero
can be added to the output (connecting the corresponding
images of the vertices of the product). If the edges are given
the right weight/orientation, the output is the silhouette cy-
cle which support contains the outer skin of P1 ⊕ P2. No-
tice that in this case the silhouette cycle precisely coincides
with the cycle obtained in the context of the kinetic frame-
work [GRS83,BGRR96].

For the three-dimensional case, the product of the two
boundaries P1 and P2 of two polyhedra, each being a com-
binatorial 2-manifold, is a combinatorial 4-manifold. Again,
P1⊕P2 is the image of the projection π : P1×P2 → R

3 de-
fined by π(x1,x2) = x1 + x2 but unfortunately one cannot
apply directly Theorem 4.1 because 4− 3 = 1 is odd. Nev-
ertheless, notice that the outer skin of P1⊕P2 is the same as
the one of the image by π of the product of the combinato-
rial 2-manifold corresponding to the boundary of one of the
polyhedron by the combinatorial 3-manifold corresponding
to a triangulation (by tetrahedra) of the second polyhedron
(or, alternatively, a thickening of the boundary of it). Now
this product is a combinatorial manifold of dimension 5 and
one can apply Theorem 4.1 (5− 3 = 2 is even!). Again, the
simplest algorithm consists in computing the silhouette cycle

by iterating on the 2-simplices (triangles) of the product. For
each of these triangles, if the associated weight given by the-
orem 3.6 is non zero, one adds its image by the projection π

to the output. The resulting silhouette cycle coincides again
with the output given by the 3-dimensional kinetic frame-
work [GRS83,BGRR96] while our algorithm is simpler and
more general.

Figure 8: Minkowski sums between an octahedron and a cube

Figure 9: Minkowski sums between Puss in Boots (upper left) and

a small tetrahedron (upper right) and a big one (bottom).

The discussion on the optimal complexity of this ap-
proach is beyond the scope of this paper but an adequate
data structure should allow to accelerate the previous al-
gorithm with fast rejection tests avoiding to consider indi-
vidually all the 2-simplices in the product. A simple but
robust implementation of the algorithm for 3-dimensional
Minkowski sums has been realized and figures 8 and 9 show
some results. The robustness of this implementation relies
on three points. The use of exact predicates for the evalua-
tion of the weight given by theorem 3.6, the use of symbolic
perturbation [Ede87,EM90] to manage the situations where
the generic condition (G) is not satisfied and, last but not
least, the fact that the output of the algorithm is expressed
as a polyhedral cycle. This polyhedral cycle is represented
by a set of oriented triangles sharing a set of vertices and
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the zero boundary condition allows to define what is called
a winding number in other settings. As explained for ex-
ample in [MS07], such a representation is non redundant
and any small change (such as the effect of rounding er-
rors in the coordinates of projected points) does not break
the validity of the output and results only in a local and con-
trolled geometric perturbation. In fact, in the particular case
of Minkowski sums, it was more convenient in the imple-
mentation to consider the product P1 ×P2 as a convex cell
complex whose cells are the products of the simplices of P1
by the simplices of P2 since the restriction of the projec-
tion π(x1,x2) = x1 + x2 to each such convex product cell is
affine. This is not possible in the situation considered in the
next section if the trajectory contains not only translations
but also rotations.

The simple but robust implementation mentioned above
is usable in practice for inputs polyhedra of reasonable size:
its complexity is obviously the size of the product complex,
which is O(nm) where n and m are the respective numbers
of simplices in the boundaries of the two given polyhedra.
As explained above, in 2D and 3D the kinetic framework
[GRS83,BGRR96], provides precisely the same output than
our algorithm. A naive implementation of the kinetic frame-
work would lead to the same complexity than our simple
algorithm. Conversely, in the particular case of Minkowski
sums, our algorithm could benefit from the same optimisa-
tion proposed for the three-dimensional kinetic framework.
As for the kinetic framework, the output of our algorithm
is a 2-chain that may self-intersect but whose outer skin co-
incides exactly with the Minkowski sum outer skin. How-
ever, the combinatorial complexity of the polyhedral rep-
resentation of this outer skin is O(n3m3) in the worst case
[FH07], in other words, resolving the self-intersectons of a
2-chain with complexity O(nm) may produce a non self-
intersecting polyhedron of complexity O(n3m3). A natural
method for Minkowski sum computation [FH07] consists in
three steps. First step decomposes the operands into convex
polyhedrons, second step computes all the Minkowski sums
between each convex component of the first operand and
each convex component of the other operand and third step
computes the union of all the resulting convex sums. Since
at the end of he second step one gets a collection of poly-
topes whose outer skin is exactly the outer skin of the actual
Minkowski sum, our method can be compared to the two first
steps, since the third step consists in resolving all the inter-
sections in order to obtain a classical (non self-intersectiong)
polyhedral representation. However, in the worst case, the
convex decomposition of a polyhedron can produce up to
O(n2) pieces and therefore the combinatorial complexiy of
the result of step two can be O(n2m2).

5.2. Sweeping a solid along a trajectory

A second example for which the silhouette cycle allows to
determine reliably the outer skin of π(K) is the volume swept

by a body P along a one dimensional trajectory γ. More for-
mally, let GF(3) be the group of affine transformations act-
ing on R

3. Each element of GF(3) can be represented by
an invertible 3× 3 matrix together with a translation vec-
tor. From this representation GF(3) can be seen as a sub-
set of the vector space R

12, which makes it possible to de-
fine piecewise linear paths in GF(3). Let P a be combina-
torial 3-manifold (with boundary) embedded in R

3 triangu-
lating a 3-dimensional polyhedron and γ : [a,b] → GF(3)
be a continuous, piecewise linear path in GF(3). For ex-
ample, γ could be the discretization of a trajectory in the
space of rigid displacements. In this later case the discretized
trajectory is not exactly isometric but the corresponding
“chordal error” can be bounded. We require the local preser-
vation of orientation, namely that for any parameter t of
the discretized trajectory and any tetrahedron (p,q,r,s) of P,

det
(−−−−−−→

γ(t)p γ(t)q,
−−−−−−→
γ(t)p γ(t)r,

−−−−−−→
γ(t)p γ(t)s

)

is non zero and has

the sign of det
(−→pq,−→pr,−→ps

)

. A consequence of this property
is that if u is an interior vertex of P its image γ(t)u belongs
to the interior of γ(t)Stu and therefore can not be on the
boundary of the set γ(t)|P|. From this property, one see that
the outer skin of the volume swept by the polyhedron Pmov-
ing along the trajectory γ coincides with the outer skin of the
volume swept by the boundary of Pmoving along the trajec-
tory γ. For example, if the path γ consists in a discretization
of a trajectory in the group of rigid body displacements, it is
sufficient to avoid a rotation of exactly π betweeen two suc-
cessive discretization points in order to preserve the orien-
tation along the trajectory. Therefore, in this case, the local
preservation of orientation will automatically follow from
the choice of a reasonable tolerance on the chordal error of
the trajectory discretization. Let us denote by P′ the combi-
natorial 2-manifold corresponding to a triangulation of the
boundary of P.

Figure 10: Homer (left) swept along a rotational trajectory (right)

Let T , with vertices t0 = a, t1, . . . , tn = b be the one di-
mensional simplicial complex associated to a discretization
of the parameter space of the trajectory, which means that γ

is linear on each interval ti, ti+1. We denote by K the com-
binatorial 3-manifold corresponding to the product T ×P′,
after a consistent triangulation of the convex cells product of
simplices of T with simplices of P′. The projection map π

is defined by π(ti,v j) = γ(ti)v j where γ(ti)v j represents the
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image of v j by the transformation γ(ti), for any vertex ti ∈ T

and v j ∈ P and is linear on any simplex of K. Again, the
dimension of the product is 3 and theorem 4.1 applies since
n−d = 3−3= 0 is even. Figure 10 shows an example of the
support of the silhouette cycle corresponding to a rotational
sweep implemented again with a simplest algorithm which
iterate on each triangle of the product complex and, for each
of these triangles compute the weight asociated to its image
by π using the formula of Theorem 3.6.

The preceding construction generalizes to the situation
where a triangulated solid P is swept along a m-dimensional
trajectory γ, for example a robot arm with m degrees of
freedom. Formally, P is assumed to be a combinatorial 3-
manifold with boundary embedded in R

3, in other words the
triangulation of a solid three-dimensional polyhedron with
non degenerate tetrahedra. T is a combinatorial m-manifold
with or without boundary, which could be for example a dis-
cretization of the configuration space of the robot obtained
as the product of the discretization of the degrees of free-
dom. To each vertex vi of T we assign a space transforma-
tion γ(vi), that could be for example the rigid transformation
corresponding to the given configuration of the robot. If m
is even, the dimension of the product is n = m+3 and theo-
rem 4.1 applies since n−d = m+3−3 = m is even. Now if
m is odd, assuming, as in the case of a one-dimensional tra-
jectory the local preservation of orientation, on can consider
the product of T with the combinatorial 2-manifold P′ cor-
responding to the triangulation of the boundary of P. Again,
n−d = m+2−3 which is even and 4.1 applies.

6. Conclusion

In this paper we have introduced a general framework for
the robust computation of Minkowski sums and swept vol-
umes in any dimension. Building on the notion of poly-
hedral chains, we have introduced a formal notion of crit-
ical values for continuous piecewise linear maps defined
on simplicial complexes with values in an Euclidean space
R
d . In this framework the set of such critical values is de-

scribed by the silhouette cycle that turns out to be very
simply characterized: the computation of the coefficient of
each (d− 1)-simplex only involves the cofaces of the sim-
plex and does not require any geometric construction. We
have shown how the topological boundary of the images of
combinatorial manifolds can be deduced from the silhou-
ette cycle and as examples of applications we have described
simple algorithms for swept volumes and Minkowski sums
computations in a polyhedral setting. In the particular case
of Minkowski sums, the suggested algorithm, while being
simpler to implement in dimension 3 and higher, provides
the same combinatorial output as the kinetic framework of
Guibas and Al [GRS83, BGRR96]. Practical comparaisons
on realistic cases with other methods, including aproximate
methods [VM06], is beyond the scope of the paper.
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A. Appendix: proof of Lemma 4.2

Note: This appendix includes a complete proof of the lemma
4.2 which is technical but not necessary for the understand-
ing of the results of the paper.

Lemma 4.2 follows from Lemmas A.1, A.2 and A.3 be-
low. In some non generic situations that are not excluded
by condition (G), it may happen that a point x ∈ B lies in
the interior of two or more overlapping images of (d− 1)-
simplices in Ki

x. The following Lemma says that in this case
the open stars of these (d−1)-simplices are disjoint.

Lemma A.1 For x ∈ B and τ1,τ2 ∈ Kd−1
x

τ1 6= τ2 ⇒ Stτ1∩Stτ2 = ∅,

where Stτ denotes the (open) star of τ in K.

Proof Assume that Stτ1 ∩ Stτ2 6= ∅. Because τ1 6= τ2
this means that τ1 and τ2 share a common proper co-
face σ. Let σ′ be the face of σ whose vertices are the
union of the set of vertices of τ1 and the set of ver-
tices of τ2. Since τ1 6= τ2, dimσ′ ≥ d. Because x ∈ B,
dimAff [π(τ1)∪π(τ2)] = d− 1. From the linearity of π on
σ′, Affπ(σ′) = Aff [π(τ1)∪π(τ2)]. But if we have simulta-
neously dimAffπ(σ′) = d− 1 and dimσ′ ≥ d, this contra-
dicts the generic condition (G).

The next lemma states that for a point x∈B, the preimage of
points in a neighborhood of x are included in the open stars
of simplices of Kd−1

x .

Lemma A.2 For any x ∈ B there is ε > 0 such that:

π−1 [B(x,ε)] ⊂
[

τ∈K
d−1
x

Stτ

where B(x,ε) is the open ball with center x and radius ε.

Proof Let K′ be the set of simplices of K which are not a
coface of a simplex inKd−1

x :K′ =K\
S

τ∈K
d−1
x

Stτ. Observe

that if τ∈K′ and σ is a face of τ, then σ∈K′. ThereforeK′ is
a subcomplex of K and thus π(K′) is a compact subset of R

d

that does not contain x. As a consequence, d(x, π(K′)) > 0.
Taking ε = 1

2d(x, π(K′)), one has B(x,ε)∩π(K′) = ∅ which

gives π−1 [B(x,ε)] ⊂ K \K′ =
S

τ∈K
d−1
x

Stτ.

The next lemma gives a characterization of the topology of
π−1(y)∩Stτ for y in a neighborhood of x∈B and τ ∈Kd−1

x .

Lemma A.3 For any x ∈ B and τ ∈ Kd−1
x , there exists ε > 0

such that for all y∈ B(x,ε)∩ Intπ(K), π−1(y)∩Stτ is home-
omorphic to Lkτ, where Intπ(K) denotes the interior of
π(K)

Proof The proof of this Lemma is is a little bit technical but
the idea is simple. To each proper coface σ of τ corresponds a
simplex ησ ⊂ Lkτ whose vertices are the vertices of σ which
are not vertices of τ and the map σ 7→ ησ defines a one to one
correspondence between the set of proper cofaces of τ and
the simplices subsets of Lkτ. Figure 2 illustrates this situa-
tion for a 1-simplex τ in a three-dimensional complex, each
triangle (resp. tetrahedron) coface of τ corresponds to a ver-
tex (resp. an edge) of the link. Under the hypothesis of the
Lemma, π−1(y)∩σ is a simplex homeomorphic to ησ and
π−1(y)∩σ1 is a face of π−1(y)∩σ2 if and only if ησ1 is a
face of ησ2 . It results that π−1(y)∩Stτ is homeomorphic to
Lkτ as depicted on Figure 7. The formal proof building ex-
plicitly the homeomorphism is rather technical and available
in the full version of the paper [CLM09].
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