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Consider two (n−1)-dimensional manifolds, S and S′ in R
n. We say that they are normal-

compatible when the closest projection of each one onto the other is a homeomorphism.

We give a tight condition under which S and S′ are normal-compatible. It involves
the minimum feature size of S and of S′ and the Hausdorff distance between them.
Furthermore, when S and S′ are normal-compatible, their Frechet distance is equal to

their Hausdorff distance. Our results hold for arbitrary dimension n.
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1. Introduction

For clarity, let us first consider two nearly similar smooth curves, C and C ′, in the

plane. Then we will generalize the proposed concepts to hypersurfaces in arbitrary

dimension. Such pairs of curves appear in several applications. Consider the follow-

ing examples. C may be an approximation of C ′ produced for simplification 17 or

compression 20. C and C ′ may be consecutive frames of a 2D animation 23 or the

contours of an organ in consecutive cross-sections 5.

In these applications, it is often important to establish a one-to-one mapping

(homeomorphism) between C and C ′. For example, one may need to map onto C ′

the values of attributes (such as color) associated with points along C. Amongst

all possible mappings, one is of particular interest: the normal mapping.

1



August 15, 2005 9:23 WSPC/Guidelines JournalVersion

2 F. Chazal, A. Lieutier, J. Rossignac

To each point q of C ′, the normal-map pC associates the closest point p = pC(q)

to q on C. Then each point q of C ′ may be expressed as the normal offset q =

p + d(p)N(p) where N(p) is a unit vector normal to C at p. We say that p is the

normal projection of q onto C and can express C ′ as a deformation of C completely

defined by the normal displacement field d(p). Such a deformation (or its inverse

which we called the OrthoMap in 9) may be used to construct a 2D animation

that will evolve C into C ′ or a surface in 3D that will interpolate two consecutive

cross-sections, C and C ′. Furthermore, to support multi-resolution graphics and

compressed progressive transmission, C ′ may be encoded as a composition of its

simplified or faired version, C, and of the details encoded in the normal displacement

field d.

The difficulty lies in the fact that for arbitrary curves C and C ′ the normal

map is neither single valued nor one-to-one. For example, the line passing through

p ∈ C and having for direction the normal N(p) to C at p may not intersect C ′.

Furthermore, two points q1 and q2 of C ′ may map onto the same point on C. In

this paper, we formulate a precise condition which guarantees that the normal-map

is one-to-one. This condition involves the Hausdorff distance h between C and C ′

and also the minimum f of the local feature size values (introduced in 2) for each

curve. The precise definitions of these concepts are reviewed further in the paper. In

particular, we derive a constant c = 2−
√

2, such that when h < cf , the normal-map

pC and the normal-map pC′ are both one-to-one. Furthermore, we demonstrate that

our condition is tight by producing an example of C and C ′ where h = cf and for

which the normal-map is not one-to-one. Finally, we discuss the extension of this

condition to surfaces in 3D and more generally to (n− 1)-dimensional manifolds in

R
n.

A normal-map between surfaces has been used for the compression of triangle

meshes 14 and may provide a solution for tracking texture coordinate from one frame

to the next in 3D animations 22 . We anticipate that the simple condition derived

in this paper will enable some applications to ensure that the curve or surface

pairs they generate are homeomorphic under normal-map. The results reported

here are formulated for smooth sets. Mapping them to the discrete representations

(polygons, triangle meshes) commonly used in geometric modeling and graphic

is not straightforward and is not discussed in the paper. We believe that such

a mapping requires interpreting these discrete representations not as continuous

pointsets, but as an incomplete model representing samples on a smooth curve or

surface and their connectivity. This interpretation has strong implications on how

the Hausdorff distance, the normal-map, the medial axis, and the local feature size

should be computed (see for example 24 for references about such computations).

2. Intuitive overview

This part introduces the concepts and provides intuitive formulations of our results.
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Let S and S′ be two compact connected codimension one manifolds in R
n.

The normal mapping pS from S′ onto S is the (multivalued) map that associates

with each point q on S′ its normal projection pS(q) defined as the set of closest

points to q on S. We call this map the normal map of S onto S′ (see section 3).

In general pS is not a bijection (two different points p and q on S′ may have the

same images pS(p) = pS(q)) neither single valued (the closest point of a point p on

S′ may not be uniquely defined) - see figure 2. The set of points p for which pS(p)

is not unique is the cut C(S) of S which is the medial axis of the complement Sc

of S 7 (see definition 4). When the normal-map is bijective, we call its inverse the

OrthoMap(S, S′).

Definition 1. The two manifolds S and S′ are normal-compatible if the two normal

maps pS : S′ → S and pS′ : S → S′ are homeomorphisms.

Fig. 1. Two normal-compatible curves

Figure 1 shows two curves that are normal-compatible and illustrates, in 2D,

that the normal map between them is bijective.

Our condition insuring that pS is bijective involves the Hausdorff distance be-

tween S and S′ and the notion of r-regularity of the surfaces.

The definition of Hausdorff distance dH(S, S′) between S and S′ is given in

definition 2, section 3.

A manifold S is r-regular if every point of it may be approached from both sides

by an open ball of radius r that is disjoint from S. More precisely, the r-thinning

Tr(A) of a set A is the difference between A and the union of open balls with center

out of A and the r-filleting Fr(A) of A is defined as Tr(Ar) where Ar is the union

of balls of radius r and center in A. The manifold S is said to be r-regular 3 if

Fr(S) = S . Note that Fr(S) contains all points that cannot be reached by a ball

of radius r whose interior does not interfere with S. The values r for which S is

r-regular are related to the minimum feature size mfs(S) 2,1 which is defined as the
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S′

q

q
p

pS(q)?

pS(q)?

pS(q) = pS(p)

Fig. 2. When normal map is not single valued or not one-to-one

minimum distance between S and its cut C(S). The surface S is r-regular if and

only if r ≤ mfs(S) (see lemma 2).

The following theorem is the main result of this paper (see section 4 for a

detailled statement):

Theorem 1 If S and S′ are both r-regular for

r = dH(S, S′)/(2 −
√

2)

then S and S′ are normal-compatible.

In terms of minimum feature size, the condition of theorem is equivalent to

dH(S, S′) < (2 −
√

2)min(mfs(S),mfs(S′)).

Moreover when the condition is satisfied, pS allows to define an explicit isotopy

between S and S′ (see formal definition 5), i.e. a continuous deformation of S′ into S

(see corollary 1 and 8,21). The proof of the theorem is cast in a precise mathematical

formalism which is necessary for giving the proof in arbitrary dimensions. This is

the object of the three next sections. We will also prove that our condition is tight

in the following sense: if one replaces 2 −
√

2 by any constant c > 2 −
√

2 in our

condition, then there exists two surfaces S and S′ satisfaying the condition for

which the normal-map is not a bijection.

The theorem has a global nature and will disqualify sets for which the mapping

is homeomorphic even though the conditions of the theorem do not hold. Consider

for instance two shapes, S1, and S′
1, for which the conditions of the theorem hold.

Assume for example that dH(S1, S
′
1) = h and that mfs(S1) = 2h and mfs(S′

1) = 3h.

Now consider S2 and S′
2 to be versions of S1, and S′

1 scaled by 2 and translated by a

sufficiently large distance (see figure 3). Clearly, the conditions of the theorem hold

for building normal-maps between S1 and S′
1, and between S2 and S′

2. Now, let S

be the union of S1 with S2. Let S′ be the union of S′
1 and S′

2. Clearly, S and S′ are

normal-compatible and thus, the normal maps between them are homeomorphisms.

Yet, S and S′ do not satisfy the global conditions of the theorem, because dH(S2, S
′
2)

exceeds (2 −
√

2)mfs(S1).
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S′
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h

Fig. 3. Normal-compatible curves that does not satisfy our condition

Hence, it is desirable to seek a more local version of our theorem. It appears

that it is not possible to give a completely local version of our theorem (see fig.

4) but it follows from the proof that one can give a semi-local version of it. The

precise formulation of this result is given at the end of section 4

S

S′

q

p

pS(p) = pS(q)

Fig. 4. An example showing two locally near pieces of curves with big mfs and no one-to-one
normal-map

3. Mathematical preliminaries

In the following, all the considered manifolds are compact connected codimension

one and Ck-smooth submanifolds of R
n for some integer k ≥ 1. Codimension one

submanifolds of R
n are called hypersurfaces. Let S be such an hypersurface. Its

complement Sc = R
n \ S is the disjoint union of two connected open sets. The

bounded component Si is called the interior component and the unbounded one Se is

called the exterior component of the complement Sc. One thus has R
n = Se∪S∪Si.
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In the following, to measure the distance between two shapes one uses the

Hausdorff distance and the Frechet distance.

Definition 2. Let A and B be two compact subsets of R
n. The Hausdorff distance

between A and B is defined by

dH(A,B) = max

(

sup
x∈A

d(x,B), sup
y∈B

d(y,A)

)

The Hausdorff distance dH(A,B) between two compact sets A and B may also

be defined in terms of r-thickening. The r-thickening Ar of A is the union of all

open balls of radius r and center in A. Note that Ar is the Minkowski sum of A

with an open ball of radius r and center at the origin. The r-thickening operator

was used as a tool for offsetting, rounding and filleting operations 19 and for shape

simplification 26. The Hausdorff distance, dH(A,B), between two sets A and B is

the infimum of the radii r such that A ⊂ Br and B ⊂ Ar. The Hausdorff distance

defines a distance on the space of compact subsets of R
n: dH(A,B) = 0 ⇒ A =

B, dH(A,B) = dH(B,A) and dH(A,C) ≤ dH(A,B) + dH(B,C) (see 6). It thus

allows to measure the discrepancy between any two compact sets, even when they

are not homeomorphic. When one wants to measure the discrepancy between two

homeomorphic compact sets A and B, Hausdorff distance does not provide any

information about how far one has to move points of A to B in order to realize an

homeomorphism. In other words, two compact sets A and B may have very small

Hausdorff distance but any homeomorphism between them move some points of A

far away (see figure 5). So instead of considering Hausdorff distance, it may be more

relevant for homeomorphic shapes to consider Frechet distance as a discrepancy

measure.

Definition 3. Let S and S′ be two compact homeomorphic submanifolds of R
n.

Let F = {f : S → S′ : f is an homeomorphism} be the set of all homeomorphisms

between S and S′. Given such an homeomorphism f , supx∈S d(x, f(x)) is the max-

imum displacement of the points of S by f . The Frechet distance between S ans S′

is the infimum of this maximum displacement among all the homeomorphisms. It

is defined by

dF (S, S′) = inf
f∈F

sup
x∈S

d(x, f(x)).

It is an easy and classical exercise to check that Frechet distance satisfies the

properties defining a distance and that one always has

dH(S, S′) ≤ dF (S, S′).

In general Frechet distance is much more difficult to compute than Hausdorff dis-

tance since one has to find an infimum among all the homeomorphisms between

S and S′. Nevertheless, we will see that under the hypothesis of our theorem 1,

Hausdorff and Frechet distances are equal: in this case the normal map minimizes
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the maximum displacement of points of S. More precisely, one has the following

result.

Lemma 1. Let S and S′ be two compact hypersurfaces in R
n. If S and S′ are

normal-compatible, then

dH(S, S′) = dF (S, S′).

Proof. Without loss of generality, on can suppose that dH(S, S′) = supy∈S′ d(y, S).

Thus, S and S′ being compact, there exists two points p ∈ S and q ∈ S′ such that

d(p, q) = supy∈S′ d(y, S) = dH(S, S′). It follows that the maximum displacement of

points of S′ by pS is equal to d(p, q). It also follows that for any homeomorphism

f : S′ → S, d(q, f(q)) ≥ d(p, q). This proves that pS minimize the maximum

displacement of points of S′ to S and dF (S, S′) = dH(S, S′).

Fig. 5. Two homeomorphic curves with small Hausdorff distance and big Frechet distance.

Definition 4. Let S be a smooth compact connected C2 codimension one manifold

in R
n. The cut C(S) of S is defined as the set of points of R

n that have more than

one nearest neighbor on S:

C(S) = {x ∈ R
3 : ∃y, z ∈ S, y 6= z, d(x, y) = d(x, z) = d(x, S)}.

C(S) decompose into the interior cut Ci(S) and the exterior cut Ce(S), each one

contained in Si and Se respectively. The minimum feature size of S, denoted mfs(S)

is defined as

mfs(S) = inf
x∈S

d(x,C(S)).

The cut of S is the medial axis of the complement Sc of S that has been

introduced by Blum in 7. Representation of shapes by their medial axis has been

extensively studied by various authors (see 27, 4, 10, 11 for example). Interior and

exterior cuts are the medial axes of the open sets Si and Se respectively. Notice

that, since S is a smooth C2 compact manifold, mfs(S) is a positive real number.

Minimum feature size has been first introduced by Federer 13 (who named it reach
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in the setting of geometric measure theory. The minimum feature size relates to the

notion of r-regularity in the following way.

Lemma 2. Let S be a smooth compact C2 hypersurface embedded in R
n and let

r > 0. The manifold S is r-regular if and only if r ≤ mfs(S).

Proof. It follows from lemma 3 iii) below that if r ≤ mfs(S) then S is r-regular.

Suppose now that r > mfs(S). The r-thickening Sr contains at least one point p0

of M(S). The maximal open ball centered at p0 that does not intersect S has a

radius r0 < r and its boundary meets S in two points p and q. This implies that

any open ball of radius r > r0 that is tangent to S at p and on the same side of S

as p must intersect S. So, p cannot be approached from both sides by an open ball

of radius r that is disjoint from S.

Recall that since S is a codimension one submanifold in R
n it is orientable and one

can continuously choose at any point x ∈ S a unit vector N(x) which is normal to S.

The following lemma summarizes classical results from differential geometry (see 25,

vol. I, chap. 9 for instance or 15 for more precise results on tubular neighborhoods)

that we will use in the following of the paper.

Lemma 3. Let S be a compact smooth Ck hypersurface without boundary embedded

in R
n.

i) The map ϕ : S×] − mfs(S),mfs(S)[→ R
n defined by ϕ(x, t) = x + tN(x) is a

Ck−1-diffeomorphism onto its image T = {x ∈ R
n : d(x, S) < mfs(S)}.

ii) For any t ∈]−mfs(S),mfs(S)[, the offset hypersurface St = {x+ tN(x) : x ∈ S}
is a smooth Ck hypersurface. For any x ∈ S, N(x) is the normal vector to St at

x + tN(x).

iii) Let x ∈ S and −mfs(S) < t < mfs(S). The open ball B(x + tN(x), | t |) does not

contain any point of S. Moreover, the sphere S(x + tN(x), | t |) intersects S only at

point x.

Using notations of the lemma, recall that ϕ is a Ck−1-diffeomorphism when ϕ is

an homeomorphism and when both itself and its inverse are differentiable (k − 1)

times with continuous (k−1)th derivatives. The projection pT→S along the normals

of S is defined on T by: for any y ∈ T , pT→S(y) is the first coordinate of ϕ−1(y).

This projection is a Ck−1-map. Notice that pT→S(y) is the nearest neighbor of y on

S: d(y, pS(y)) = d(y, S) = infx∈S d(y, x).

It follows that if S′ is another smooth surface contained in T , then the restriction

of pT→S to S′ is the normal map pS : S′ → S. In this case, the normal map is

single-valued and Ck−1.

One can extend the normal map pS to R
n as a multivalued map in the following

way: for any y ∈ R
n, pS(y) is the set of points x of S such that d(x, y) = d(y, S). The

cut C(S) of S is the set of points where the (extended) normal-map is multivalued.

We use in the proof the notion of topological covering. A definition is given

below. See 18 for more formal mathematical definition and properties of coverings.
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S

S′

Fig. 6. Example of normal-map: pink arrows represent normal-map pS and green arrows represent
normal-map pS′

A map p : S′ → S is a topological covering of S if there exists a non empty

discrete set F (finite or infinite denumerable) satisfying the following property: for

any point x ∈ S, there exists a neighbourhood V of x and an homeomorpism Φ

between p−1(V ) and V × F such that p1 ◦ Φ = p where p1 : V × F → V is the

canonical projection. If F is finite, the cardinality of F is known as the number of

sheets of the covering. The simplest examples of topological coverings are canonical

projections p1 : V ×F → V where F is a discrete set; such coverings are said to be

trivial.

Finally, we prove that normal-compatibility not only implies that the considered

manifolds S and S′ are homeomorphic but also that they are isotopic. Recall the

definition of isotopy.

Definition 5. (Isotopy and ambient isotopy)

An isotopy between S and S′ is a continuous map F : S × [0, 1] → R
n such that

F (., 0) is the identity of S, F (S, 1) = S′, and for each t ∈ [0, 1], F (., t) is a homeo-

morphism onto its image.

An ambient isotopy between S and S′ is a continuous map F : R
n × [0, 1] → R

n

such that F (., 0) is the identity of R
n, F (S, 1) = S′, and for each t ∈ [0, 1], F (., t)

is a homeomorphism of R
n.

Restricting an ambient isotopy between S and S′ to S × [0, 1] thus yields an

isotopy between them. It is actually true that if there exists an isotopy between S

and S′, then there is an ambient isotopy between them 16, so that both notions are

equivalent in our case.

4. Normal-compatibility and isotopy

Theorem 1. Let S and S′ be two compact Ck, k ≥ 1, surfaces embedded in R
n

such that

dH(S, S′) < (2 −
√

2)min(mfs(S),mfs(S′)).

Then S and S′ are normal-compatible, i.e. the normal projections pS : S′ → S and

pS′ : S → S′ are Ck−1-diffeomorphisms.
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Moreover Hausdorff and Frechet distance between S and S′ are equal: dH(S, S′) =

dF (S, S′).

Notice that if k = 1, the hypothesis of theorem does not ensure that mfs(S) > 0

and mfs(S′) > 0. It follows from geometric measure theory (see 12) that the normals

of S and S′ need to satisfy some Lipschitz condition to ensure positiveness of

mfs. Such a condition is always satisfied if the hypersurfaces are C2. Remark that

in previous theorem the equality between Hausdorff and Frechet distance is an

immediate consequence of lemma 1.

The condition of theorem implies that each surface separates the interior and the

exterior parts of the cut of the other one. Notice the converse is not true: separation

of interior and exterior parts of the cuts does not imply normal-compatibility as

it is shown with two pieces of curves on figure 7. Another example of two closed

curves is given in section 6 where we prove the tightness of our condition.

Fig. 7. Separation of interior and exterior cuts does not imply normal-compatibility

If the Hausdorff distance between two compact surfaces S and S′ in R
3 is small

with respect to their minimum feature sizes, it turns out that they are isotopic 8.

More precisely, it is proven in 8 that if two surfaces S and S′ embedded in R
3 are

such that dH(S, S′) < min(mfs(S),mfs(S′)) then there exists an isotopy between

S and S′. But in 8, the proof of the existence of the isotopy is not constructive

and only works for surfaces in R
3. We extend this result in the case of smooth

hypersurfaces by giving explicit homeomorphism and isotopy between S and S′.

Moreover, our result remains true in any dimension. As an immediate consequence

of previous theorem one deduces that S′ and S are isotopic.

Corollary 1. The map F : S′ × [0, 1] → R
n defined by

F (x, t) = pS(x) + (1 − t)d̃(x, pS(x))N(pS(x)),

where d̃(x, pS(x)) =< xpS(x), N(pS(x)) > denotes the signed distance, is an isotopy

between S′ and S. Moreover F is an dH(S, S′)-isotopy: for any x ∈ S′, t ∈ [0, 1],

d(x, F (t, x)) < dH(S, S′).
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The proof of theorem 1 adapts easily to give a semi-local result involving the

local feature size of S and S′ introduced in 2. For any x ∈ S′, denote by lfs(x) the

distance from x to the cut C(S′) of S′:

lfs(x) = d(x,C(S′)) = inf
y∈C(S′)

d(x, y).

For any point y ∈ S, one also denotes lfs(y) the distance from y to the cut C(S) of

S. Introduce the two functions ρ and α defined on S′ by

ρ(x) = min(lfs(x), lfs(pS(x))),

α(x) = dH(S ∩ B(x,
√

2ρ(x)), S′ ∩ B(x,
√

2ρ(x)))

where B(x,
√

2ρ(x)) denotes the ball of center x and radius
√

2ρ(x).

Theorem 2. Let S and S′ be two compact Ck, k ≥ 1, hypersurfaces embedded in

R
n such that

α(x) < (2 −
√

2)ρ(x)

for any x ∈ S′. The normal maps pS : S′ → S and pS′ : S → S′ are Ck−1-

diffeomorphisms. In particular, S and S′ are normal-compatible.

5. Proof of theorem

We must prove that the projection of S′ onto S along the normals of S is one-to-one.

The proof proceeds in two steps. First, one proves that S′ cannot be tangent to one

of the normals to S. To do that, one supposes that there exists a point x where S′ is

tangent to a normal of S. This means that the normals of S at pS(x) and S′ at x are

orthogonal. Such a condition implies that the Hausdorff distance between S and S′

cannot remain small (relatively to the mfs of S and S′) in a neighborhood of x which

leads to a contradiction. Second, using a topological argument one deduces that S′

intersects each normal to S restricted to the mfs(S)-thickening of S in exactly one

point. More precisely, one shows that S′ intersects each normal segment of length

mfs on each side of S at exactly one point. In the following, the tangent hyperplane

to a hypersurface S at a point x ∈ S is denoted TxS.

First step: For any x ∈ S′, TxS′ is transverse to N(pS(x)).

Suppose this is not the case, that is there exists a point x ∈ S′ such that

N(pS(x)) is colinear to the tangent plane TxS′. Let ρ = min(mfs(S),mfs(S′))

and α = dH(S, S′) < (2 −
√

2)ρ be the Hausdorff distance between S and S′.

Without loss of generality, one can suppose that there exists 0 ≤ t < α such

that x = pS(x) + tN(pS(x)). Since S ⊂ T ′
α = {x ∈ R

3 : d(x, S′) < α} and

S′ ⊂ Tα = {x ∈ R
3 : d(x, S) < α} one has that x ∈ Tα. Consider the two open balls

of radius ρ which are tangent to TxS′ at x and let a′ and b′ be their centers. They

do not intersect the surface S′ because mfs(S′) ≥ ρ. In the same way, consider the

offset surface S̃ of S that passes through x and consider the two open balls of radius
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ρ − t which are tangent to TxS̃ at x. Their centers a and b are on the normal to S

issued from pS(x) and one can suppose that a is on the same side as x of S. Since

S̃ ⊂ St = {x ∈ R
3 : d(x, S) = t} is an offset surface of S, the local feature size of S̃

is greater than ρ − t. It follows that B(a, ρ − t) and B(b, ρ − t) do not intersect S̃.

Moreover, their tangent planes at x are orthogonal to the tangent planes of B(a′, ρ)

and B(b′, ρ) (see figure 8).

S

S′

S̃

a

a′

b

b′

Fig. 8. Intersection of tangent balls

Since the two lines (ab) and (a′b′) intersect at x, the points a, b, a′, b′ and x

are coplanar. Let P be the plane that contains them. It follows from lemma 3 ii)

that P is transverse to the tangent planes of S′ and S̃ at x (it contains the normals

to S′ and S̃ at x). So the intersection of S′ and S̃ with P in a neighbourhood

of x are smooth plane curves. The four balls B(a, ρ − t), B(b, ρ − t), B(a′, ρ) and

B(b′, ρ) intersect P along four discs of radius ρ− t and ρ and centers a, b, a′ and b′

respectively.

The ball of center a and radius ρ − α is contained in the complement of Tα.

Since S′ ⊂ Tα, S′ ∩ P is contained in the complement of the disc of center a and

radius ρ − α. It is also contained in the complement of the discs of radius ρ and

centers a′ and b′ (see figure 9).

Now consider the segment that joins a to the first point of intersection of the line

(aa′) with the disc of radius ρ and center a′. The square length of (aa′) is equal to

ρ2+(ρ−t)2 (see figure 10). Since α < (2−
√

2)ρ, one has (2ρ−α)2 > ρ2+(ρ−t)2, so

the disc of center a′ and radius ρ and the disc of center a and radius ρ−α intersect.

It follows that the part of S′ ∩ P which is on the same side of S̃ as a remains in

the “triangular” area ∆a delimited by the circles C(a′, ρ), C(b′, ρ), C(a, ρ−α) (see
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S′ ∩ P

S̃ ∩ P

a

a′

b

b′

ρ

ρ − t

ρ − α

α − t

α + t

Fig. 9. Intersection with the plane P near from x

figure 10). Since S′ ∩P is a smooth curve it has to intersect the boundary of ∆a in

at leas two points: a contradiction. This concludes the proof of the first step.

Second step: S′ intersects each normal of S in M in exactely one point.

This step is a classical fact from algebraic topology. We recall it here. First consider

the case where S and S′ are connected. Since S′ is transverse to each fiber of the

normal bundle M of S, the normal-map pS defines a topological covering of S (see

section 3 the definition of covering). Thus S′ being compact, there exists a positive

integer l such that for any x ∈ S, N(x)∩S′∩M is a set of l points. Recall that there

exists a diffeomorphism ϕ between Tρ = {x ∈ R
n : d(x, S) < ρ} and S×] − ρ; ρ[,

so that Tρ has two sides ϕ(S × {−ρ}) and ϕ(S × {ρ}). One knows from 8 that

S′ separates the two sides of Tρ: any continuous path from one side of Tρ to the

other has to meet S′. Recall now that S and S′ are connected. For any x ∈ S′,

the vector N(pS(x)) defines a transverse orientation of S′ and points inside the

same connected component of R
n \S′ that we can suppose to be S′

e without loss of

generality. Suppose that l ≥ 2 and let x ∈ S. The normal line to S at x intersects

S′ in l points in M . Among these points, denote by y the farthest from x (see figure

11). Locally, the connected component of R
n \ S′ that belongs “over” y is S′

e. But

the one that belongs below y belongs over another point of intersection. So this

connected component is also S′
e. This contradicts the fact that S′ separates R

n in

two connected components.



August 15, 2005 9:23 WSPC/Guidelines JournalVersion

14 F. Chazal, A. Lieutier, J. Rossignac

a

a′
b′ρ

ρ − t

ρ − α

Ta

Fig. 10.

S

S′

S′
e

S′
e

y

Fig. 11.

To conclude, it remains to consider the case where S or S′ is not connected.

Using notations of first step, recall that S′ is included in the tubular neighborhood

Tα = {x ∈ R
3 : d(x, S) < α} with α = dH(S, S′) < (2 −

√
2)min(mfs(S),mfs(S′)).

Since α < mfs(S), Tα is the disjoint union of the tubular neighborhoods of size

α of each connected component of S. The Hausdorff distance between S and S′

being equal to α, each connected component of Tα contains at least one connected

component of S′. It follows that the number of connected components of S′ is

at least as big as the number of connected components of S. In the same way,

by symmetry, the number of connected components of S is at least as big as the

number of connected components of S′. Thus, S and S′ have the same number
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of connected components. Moreover, each connected component of S′ (resp. S) is

contained in the tubular neighborhood of size α of a unique connected component

of S (resp. S′). So one can apply first part of the second step to each pairs of

connected components of S and S′ separately.

Remark: To deduce theorem 2 from previous proof it sufficies to remark that step

one adapts easily to the semi-local hypothesis of theorem 2: arguments used only

depend on the geometry of S and S′ in a ball of center x and radius
√

2ρ(x). Step

2 remains unchanged.

6. Tightness of the bound 2 −

√

2

The constant 2 −
√

2 involved in theorem 1 is tight in the following sense.

Proposition 1. Let c be a positive real number such that c > 2−
√

2. There exists

two planar curves C and C ′ such that dH(C,C ′) < cmin(mfs(C),mfs(C ′)) and pC

is not an homeomorphism.

Notice also that, in the general case, the constant 2 −
√

2 is independent of

the dimension of the ambient space R
n. The previous proposition is proved by

constructing an explicit example of two planar curves C and C ′. One can easily

derive from this construction, higher dimensional examples showing the optimality

of 2 −
√

2 in any dimensions (we will not attempt to draw them here.)

Note that we use the word tight instead of necessary or optimal because it is

possible that S and S′ be normal-compatible without satisfaying our condition. An

example of such a situation is given on figure 3.

Let c > 2 −
√

2 be a fixed positive real number. We prove proposition 1 by giving

an example of two curves C and C ′ such that dH(C,C ′) < cmin(mfs(C),mfs(C ′))

and pC is not a a bijection. This example is deduced from the first step of the

proof of theorem 1. We first give an example of two curves C and C ′ being such

that dH(C,C ′) = (2 −
√

2)min(mfs(C),mfs(C ′)) and C ′ is not transverse to the

normals of C. We then obtain the desired curves as a small perturbation of this

first example.

The first curves are represented on figure 12. They are made of line segment

and pieces of circles of radius 1 that meet orthogonaly on the vertices of a regular

orthogonal grid which edges are of length 1. Notice that for clarity, only the half of

the grid is represented on figure 12. As an exception, some of the pieces of circles

that join the segment line are not centered on the grid vertices (but they remain

of radius 1). One easily sees that the minimum feature sizes of C and C ′ are both

equal to 1 and the Hausdorff distance between C and C ′ is equal to 2 −
√

2. It is

also clear that C and C ′ are C1. At the origin O, the two curves meet orthogonaly,

so that C ′ is tangent to the normal of C at O.

Nevertheless, the normal-map of C ′ onto C is an homeomorphism (notice that

it is not differentiable at O). But one can make a small perturbation of our example
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2

2

C

C ′

O

x

y

Fig. 12. Two curves being such that dH(S, S′) = (2 −

√

2)min(mfs(S), mfs(S′)) and that meet
orthogonaly

in order that the normal-map fails to be one-to-one in a neighborhood of O. This

is done in figure 13. Instead of considering the circles centered on the vertices of

an orthogonal grid one chooses a non-orthogonal grid. The angle between the two

families of parallel lines defining the grid is equal to π
2 − θ for a sufficiently small

value of θ > 0. The length of the edges of the grid is still equal to 1.

Clearly, the two new curves C and C ′ are C1 and their minimum feature sizes are

still equal to 1. They may be viewed as continuous deformations of the initial curves.

So for θ > 0 sufficiently small, one has dH(C,C ′) < c. Unlike in first example, the

normal projection of C ′ onto C is not one-to-one: the normal of C at O is the y-axis

which is intersected three times in a neighborhood of O (see figure 14).

The previous example may be generalized in higher dimension in the following

way. Let n ≥ 3 be an integer and denote by x1, · · · , xn the coordinates in R
n.

Identify the plane that contains the curves C and C ′ of previous example with

the (x1x2)-plane in R
n and identify the subspace generated by x3, · · · , xn with

R
n−2. The two manifolds S = C × R

n−2 and S′ = C ′ × R
n−2 are C1 manifolds of

codimension one in R
n that satisfy hypothesis and conclusion of proposition 1.

7. Conclusion

We have proven that one hypersurface can be expressed as the normal offset of

another, when the Hausdorff distance between the two hypersurfaces is less than

2 −
√

2 times their minimum feature sizes. We have proven that, under this con-

dition, the mapping between one hypersurface and its normal offset is one-to-one.
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2

2

C

C ′

O

x

y

Fig. 13. Example showing that the bound of theorem 1 is tight

O

x

y

θ

Fig. 14. Zoom of figure 13 in a neighborhood of O: normal projection is not one-to-one.

Furthermore, we have shown that the condition is tight by providing an example

where the Hausdorff distance equals the above limit and yet the mapping is not

one-to-one.
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