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Homeomorphisms between curves and between surfaces are fundamental to many ap-
plications of 3D modeling, graphics, and animation. They define how to map a texture

from one object to another, how to morph between two shapes, and how to measure the
discrepancy between shapes or the variability in a class of shapes. Previously proposed
maps between two surfaces, S and S′, suffer from two drawbacks: (1) it is difficult to

formally define a relation between S and S′ which guarantees that the map will be bijec-
tive and (2) mapping a point x of S to a point x′ of S′ and then mapping x′ back to S

does in general not yield x, making the map asymmetric. We propose a new map, called

ball-map, that is symmetric. We define simple and precise conditions for the ball-map to
be a homeomorphism. We show that these conditions apply when the minimum feature

size of each surface exceeds their Hausdorff distance. The ball-map, BMS,S′ , between
two such manifolds, S and S′, maps each point x of S to a point x′ = BMS,S′ (x) of S′.
BMS′,S is the inverse of BMS,S′ , hence BM is symmetric. We also show that, when S

and S′ are Ck (n− 1)-manifolds in R
n, BMS,S′ is a Ck−1 diffeomorphism and defines a

Ck−1 ambient isotopy that smoothly morphs between S to S′. In practice, the ball-map
yields an excellent map for transferring parameterizations and textures between ball

compatible curves or surfaces. Furthermore, it may be used to define a morph, during
which each point x of S travels to the corresponding point x′ of S′ along a broken line

that is normal to S at x and to S′ at x′.
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1. Introduction

Many problems in 3D graphics, animation, computer vision and data analysis re-

quire building a map between two curves or between two surfaces 13,23,9. Such a

map may be used to transfer a texture from a surface S to a simplified version S′

of S 26 or to formulate the discrepancy between S and S′, 6,20,24 better than it has

been possible so far by using variations of the Hausdroff distance 18,19. Finally, it

provides a point-to-point association for computing 3D morphs 1,15.

In most cases, a bijective map (homeomorphism) is desired. Several maps have been

used in the past. The closest-point map CS′,S : S′ → S maps a point x′ of S′ to its

closest point x = CS′,S(x′) of S. Its inverse, the orthomap 12 OS,S′ : S → S′ maps a

point x of S to the point x′ of S′ that is the first intersection of a ray starting from x

along the normal to S at x oriented towards the interior of the symmetric difference

between the regions bounded by S and S′. According to 8, the orthomap and the

closest-point map from S to S′ are homeomorphisms if the minimum feature sizes

of S and S′ both exceed h/(2 −
√

2), where h is the Hausdorff distance between S

and S′. We refer to this condition as the normal-compatibility condition between

two surfaces in 3D or curves in 2D. Unfortunately, the orthomap and its inverse are

not symmetric, and thus, in a sense, suboptimal 13. In particular, if x′ is the closest

point on S′ to a point x of S, x is not in general the closest point on S to x′. Hence,

one anticipates the existence of a better map producing a shorter average distance

between points x of S and their closest point image on S′.

In this paper, we propose a new map, which we named ball-map, between any two

(n− 1)-manifolds in R
n. We show that under specific conditions, the two manifolds

are, what we call, ball-compatible which means that the ball-map BMS,S′ : S → S′

from the manifold S onto the manifold S′ is a homeomorphism and BMS,S′ is the

inverse of BMS′,S . Furthermore, we show that in this case the ball-map defines a

smooth isotopy through which S may morph into S′. We say that two curves or

surfaces are minimum feature compatible when the minimum feature sizes of S and

S′ both exceed h, where h is the Hausdorff distance between S and S′. We show that

two minimum feature compatible curves or surfaces are ball-compatible. Note that

this sufficient feature-respecting compatibility condition ensuring ball-compatibility

is less restrictive than the corresponding condition for normal-compatibility, which

requires a tighter ratio of h/(2 −
√

2).

Minimum-feature compatibility is an optimal condition for the equality of the Haus-

dorff and Fréchet distances and provides a mild condition for surface isotopy. Con-

sequently, we anticipate that the ball-map will be of value for comparing smooth

surfaces and for formulating the error between a shape and its approximation that

ensures topological compatibility. In solid modeling, the ball-map will make it possi-

ble to simplify the expression of the discrepancy between a CAD model of a nominal

part and 3D measurements of manufactured products. In particular, it provides a

generalized and constructive version of the theorem proven in 3 that uses metric

conditions to guarantee surface isotopy .
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Finally, it follows from the definition of the ball-map that it is a conformal invariant

(i.e. invariant under Möbius transforms). Note that the closest-point projection is

invariant under isometries only.

When the discrepancy between the two surfaces or the two curves exceeds the

feature-respecting compatibility condition, the ball-map may not be a homeomor-

phism. In such cases, one may need to rely on more general, and less precise, map-

pings 9. Still, even in such incompatible cases, the ball-map may be of use for

automatically generating, an optimal map and morph between consecutive frames

in a family that samples the morph between disparate curves or surfaces.

The remainder of this paper is organized as follows. Section 2 provides prelimi-

nary definitions and assumptions used throughout the rest of the paper. In section

3, we introduce the ball-compatibility and prove the continuity of the ball-map.

Section 4 provides a necessary and sufficient condition for C1 manifolds to be ball-

compatible and then the sufficient feature-respecting compatibility condition formu-

lated in terms of the Hausdorff distance. We show in section 5 that for a pair of sur-

faces satisfying the feature-respecting compatibility condition the Fréchet distance

equals the Hausdorff distance. Section 6 relates the smoothness of the ball-map and

of the median surface that it defines to the smoothness of the two ball compatible

surfaces. We show in section 7 that the ball-map is not only a homeomorphism, but

in fact an isotopy. The sufficient conditon for ball-map is then a metric based suf-

ficient condition for two manifolds to be isotopic. Section 8 reviews the anticipated

impact of the new results developed in this paper on practical applications. Finally

section 9 concludes and mentions possible extensions and future work.

2. Background concepts and definitions

For any set X, X and Xc denote respectively the closure and the complement of

X. For two sets X and Y , X ∪ Y , X ∩ Y and X \ Y denote respectively the union,

intersection and set difference of X and Y .

2.1. Compact connected (n − 1)-manifolds embedded in R
n

We consider here a (n − 1)-manifold S embedded in R
n. Hence, each one of its

points has a neighborhood homeomorphic to an (n − 1)-dimensional disk 25. For

example, it may be a curve embedded in R
2 or a surface embedded in R

3. When

the (n− 1)-manifold S is orientable and smooth, a unit-length normal vector field

to S defines a map ~n : x→ ~n(x) known as the Gauss map.

A compact connected (n − 1)-manifold S embedded in R
n is orientable and the

complement of S in R
n has two connected components (10 pp. 234). In other words,

S decomposes R
n into three connected parts: S itself, Si, the interior, and Se, the

exterior. Se is the unbounded part of the complement of S. Note that Si and Se are

open. Using Computer Aided Design terminology, in two dimensions S would be a

closed curve separating the interior face Si from the unbounded exterior face Se.
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In three dimensions, S would be a single shell surface without borders, although

possibly with handles.

The cut C(S) of S is the medial axis of Sc. It is the set of points (of Sc) that

have at least two closest points on S. From 16, we know that C(S) has exactly

one connected component in Si, that we denote Ci(S) and may have one or more

connected components in Se that we denote Ce(S). From the definition we have of

course: C(S) = Ci(S) ∪ Ce(S).

The local feature size 17, or lfs, is defined for each point x ∈ S as the distance to

C(S): lfs(x) = infy∈C(S) d(x, y).

The minimal feature size or mfs is the infimum of the values of lfs on S:

mfs(S) = inf
x∈S

lfs(x) = inf
x∈S,y∈C(S)

d(x, y)

the concept of mfs has been introduced by Federer in the 50’s and called reach.

2.2. Mean feature size and smoothness

The ball-map is not a homeomorphism when the curves or surfaces considered

exhibit sharp features, i.e., points with unbounded curvature. To preclude these, we

could simply require that each surface S for which the ball-map is defined be C2,

by which we mean that it has a continuous curvature. Unfortunately, the boundary

of a solid in which the sharp edges have been rounded by smooth fillets or blends
21 will have bounded curvature, but its boundary may not be C2. Since we wish to

extend the results discussed here to such shapes, which are common in practices,

we need a less constraining characterization of smoothness.

Note that, in the Computer Aided Geometric Design terminology, a distinction has

been introduced between Ck and Gk (“G ” for Geometric) continuity. However,

this distinction does not apply here because we are using the classical terminology

of differential geometry, where a Ck manifold is one that admits a local regular

Ck parameterization which corresponds to the Gk continuity notion used by the

CAGD community. (The term regular means here: ”whose derivative has full rank

everywhere”.)

A natural approach to try and address this problem is to require that the surfaces

be C1. Unfortunately, this is not sufficient. Indeed, requiring only that the surfaces

be C1 not guarantee that the curvature is bounded. As an example, consider the

curve defined by:

C = {(x, y) ∈ R
2 : y3 − x4 = 0} = {(x, y) ∈ R

2 : y = |x| 43 }

The curve C is C1, but mfs(C) = 0, indeed, the map x 7→ |x| 43 is differentiable

and has derivative 0 for x = 0 but its second derivative tends toward infinity when

x→ 0.

For compact manifolds, the condition mfs(S) > 0 is equivalent to the C1,1 property,

which means that the surfaces are C1 manifolds with a Lipschitz condition on the
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Gauss map. The Lipschitz constant is then bounded by 1
mfs(S) and the Lipschitz

condition may therefore be expressed as:

∀x, y ∈ S, ‖−→nS(x) −−→nS(y)‖ ≤ 1

mfs(S)
‖x− y‖ (1)

where −→nS is the Gauss map of S.

2.3. Comparing two (n − 1)-manifolds embedded in R
n

We consider two compact, connected (n− 1)-manifolds S and S′ embedded in R
n.

The discrepancy between two such manifolds may be measured in a variety of ways.

In this paper we consider both Hausdorff and Fréchet distances.

Definition 1 (Hausdorff distance). Let A and B be two compact subsets of R
n.

The Hausdorff distance between A and B is defined by

dH(A,B) = max

(

sup
x∈A

d(x,B), sup
y∈B

d(y,A)

)

The Hausdorff distance dH(A,B) between two compact sets A and B may also

be defined in terms of r-thickening. The r-thickening Ar of A is the union of all

open balls of radius r and center on A. Note that Ar is the Minkowski sum of A

with an open ball of radius r and center at the origin. The r-thickening operator

was used as a tool for offsetting, rounding and filleting operations 22 and for shape

simplification 14. The Hausdorff distance, dH(A,B), between two sets A and B is

the infimum of the radius r such that A ⊂ Br and B ⊂ Ar. The Hausdorff distance

defines a distance on the space of compact subsets of R
n: dH(A,B) = 0 ⇒ A = B,

dH(A,B) = dH(B,A) and dH(A,C) ≤ dH(A,B) + dH(B,C) (see 2).

We recall that a homeomorphism is a continuous bijection, the inverse of which is

also continuous. We say that two sets are homeomorphic if there exists a homeomor-

phism between them: in this case they are identical regarding intrinsic topological

properties.

Hausdorff distance allows us to measure the discrepancy between any two compact

sets, even when they are not homeomorphic. When one wants to measure the dis-

crepancy between two homeomorphic compact sets A and B, the Hausdorff distance

does not provide any information about how far one has to move points of A to B

in order to realize a homeomorphism. In other words, two compact sets A and B

may have a very small Hausdorff distance yet any homeomorphism between them

will map at least some distant pairs (see figure 1). So instead of considering the

Hausdorff distance, it may be more relevant for homeomorphic shapes to consider

the Fréchet distance as a discrepancy measure.

Definition 2 (Fréchet distance). Let S and S′ be two compact homeomorphic

submanifolds of R
n. Let F = {f : S → S′ : f is an homeomorphism} be the

set of all homeomorphisms between S and S′. Given such a homeomorphism f ,

supx∈S d(x, f(x)) is the maximum displacement of the points of S by f . The Fréchet
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Fig. 1. The curves in solid and dotted line are close to each other in terms of the Hausdorff distance,
while they are significantly different in terms of the Fréchet distance.

distance between S and S′ is the infimum of this maximum displacement among all

the homeomorphisms. It is defined by

dF (S, S′) = inf
f∈F

sup
x∈S

d(x, f(x)).

It is a classical exercise to check that the Fréchet distance satisfies the properties

defining a distance and that one always has

dH(S, S′) ≤ dF (S, S′).

In general, the Fréchet distance is more difficult to compute than the Hausdorff

distance since one has to find an infimum among all the homeomorphisms between

S and S′. In section 5, we show that, under specific conditions (theorem 3 ), the

Hausdorff and Fréchet distances are equal.

When a homeomorphism and its inverse are both Ck-smooth, the homeomorphism

is a Ck-diffeomorphism. If a homeomorphism may be realized by a continuous de-

formation, it defines an isotopy:

Definition 3 (Isotopy and ambient isotopy). An isotopy between S and S′

is a continuous map F : S × [0, 1] → R
n such that F (., 0) is the identity of S,

F (S, 1) = S′, and for each t ∈ [0, 1], F (., t) is a homeomorphism onto its image.

An ambient isotopy between S and S′ is a continuous map F : R
n × [0, 1] → R

n

such that F (., 0) is the identity of R
n, F (S, 1) = S′, and for each t ∈ [0, 1], F (., t)

is a homeomorphism of R
n. If the map F is Ck-smooth, it is called a Ck-smooth

(ambient) isotopy.

Restricting an ambient isotopy between S and S′ to S× [0, 1] thus yields an isotopy

between them. If there exists an isotopy between S and S′, then there is an ambient

isotopy between them 11, so that both notions are equivalent in our case.

2.4. Moat and median

Given two (n− 1)-manifolds S and S′, we define their moat and median (see figure

2). The moat of S and S′, Moat(S, S′) is the union of S, S′ and the symmetric
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Fig. 2. On both examples the moat is depicted as a hatched area and the median curve as a dashed
line. In the example on the right, the curves S and S′ overlap partially.

difference of their interiors:

Moat(S, S′) = S ∪ S′ ∪ (Si ∩ S′
e) ∪ (S′

i ∩ Se)

or, equivalently:

Moat(S, S′) = ((Si ∩ S′
i) ∪ (Se ∩ S′

e))
c

The median of S and S′, Me(S, S′) is defined as the set of points in Moat(S, S′)

which are equidistant from S and S′:

Me(S, S′) = {x ∈ Moat(S, S′) | d(x, S) = d(x, S′)}

Both Moat(S, S′) and Me(S, S′) are clearly compact sets. Notice that S ∩ S′ ⊂
Me(S, S′).

Alternatively, the median can be defined as the locus of centers of closed balls

included in the moat that intersect (in fact touch) both S and S′.

3. Ball-compatibility and ball-map

We define now the main object of the paper: the ball-map.

Definition 4 (Ball-pair). Given two compact connected (n− 1)-manifolds S and

S′ in R
n, we say that (x, x′) ∈ S × S′ is a ball-pair if there is c ∈ Me(S, S′) such

that d(c, x) = d(c, S) = d(c, x′) = d(c, S′).

Obviously, one has the following alternate definition.

Definition 5 (Ball-pair, alternate definition). (x, x′) ∈ S × S′ is a ball-pair if

and only if there is a closed ball B ⊂ Moat(S, S′) such that x ∈ B∩S and x′ ∈ B∩S′.

It follows from this last definition that the ball-pairing is a conformal invariant,

which means that any isometry or any inversion preserving the inner and outer

connected components of R
n \ S and R

n \ S′ will preserve the ball pairing.
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Definition 6 (Ball-compatibility). If each point of S and each point of S′ be-

longs to exactly one ball pair, the ball pairing defines a bijection, which is then

called the ball-map and S and S′ are said to be ball-compatible

Notices that the definition entails trivially that a surface S, even non-smooth,

is ball-compatible with itself.

Definition 7 (Ball-map). If S and S′ are ball-compatible, the bijection BMS,S′

and its inverse BMS′,S defined by the ball pairing are called ball-maps.

Note that, when S and S′ are ball compatible, the projections πS : Me(S, S′) → S

and πS′ : Me(S, S′) → S′ that associates to each point of Me(S, S′) its unique

closest point on S (resp. S′) are also bijections and:

BMS,S′ = πS′ ◦ π−1
S (2)

BMS′,S = πS ◦ π−1
S′ (3)

When the manifolds are ball-compatible, the ball-map is a homeomorphism:

Lemma 1. If S and S′ are ball-compatible, BMS,S′ is a homeomorphism.

Proof. It is clear that BMS,S′ , πS and πS′ are bijections. Recall that a continuous

bijection between compact sets is a homeomorphism 7. From equation (2), it is then

enough to prove that πS : Me(S, S′) → S is continuous.

For that, we consider, in the condition of the Lemma, a sequence of points (cn)n∈N

in Me(S, S′) that converges to some c ∈ Me(S, S′). Let us denote by (an)n∈N the

respective closest points on S: an = πS(cn). Because S is compact, there is at least

one point a such that a subsequence (ani
)i∈N of (an)n∈N converges toward a. S

and S′ being metric spaces, it is enough to prove that a = πS(c) to ensure the

continuity of the map πS . Because both the distance function and the distance to S

are continuous, the sequence of distances d(cn, S) converges toward d(c, S) = d(c, a),

which entails that a = πS(c).

Note that Lemma 1 does not require any smoothness condition on the surfaces S

and S′. It follows immediately from Lemma 1 and from its proof that:

Corollary 1. If S and S′ are ball-compatible, the median Me(S, S′) is a compact,

connected (n− 1)-manifold.

4. Conditions for ball-compatibility

4.1. Necessary and sufficient condition for C
1 manifolds

If we restrict ourselves to C1 manifolds, one has the following necessary and suffi-

cient condition for ball-compatibility:

Theorem 1. Let S and S′ be compact, connected C1 (n− 1)-manifolds. S and S′

are ball-compatible if and only if the following conditions hold:
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Fig. 3. The square and circle curves are not ball-compatible (the square corners belong to many
ball-pairs) even though they match all conditions of theorem 1, except the C1 condition: the square

is not smooth.

(i) Si ∩ S′
i 6= ∅

(ii) Me(S, S′) ∩ C(S) = Me(S, S′) ∩ C(S′) = ∅

Note that, as seen on figure 3, the theorem does not hold if we drop the C1 condition.

Proof of Theorem 1.

The proof of the “only if” part of theorem 1 is rather trivial: indeed, if condition

(ii) of the theorem does not hold, for example if Me(S, S′) ∩ C(S) 6= ∅, a point c ∈
Me(S, S′)∩C(S) will have several closest point on S and the surfaces can not be ball-

compatible. If the condition (i) does not hold, one has Moat(S, S′) = S∪S′∪Si∪S′
i

and therefore Me(S, S′) = S ∩ S′. Since S 6= S′, there exists x ∈ S ∪ S′ \ S ∩ S′

which cannot be in a ball-pair.

For the “if” part we prove first, using the C1 smoothness and the condition (ii),

that a point x ∈ S cannot belong to more than one ball-pair:

Lemma 2. If S and S′ are compact, connected C1 (n − 1)-manifolds such that

Me(S, S′) ∩ C(S′) = ∅ then any point x ∈ S belongs to at most one ball-pair.

Symmetrically, if Me(S, S′) ∩ C(S) = ∅, then any point x ∈ S′ belongs to at

most one ball pair.

Proof. Under the conditions of the Lemma, let us consider x ∈ S. If x ∈ S ∩ S′,

x belongs only to the zero radius ball corresponding to the unique ball-pair (x, x).

Now if for example x ∈ S′
i (see figure 4), let us assume that it belongs to a ball-

pair corresponding to a ball centered in c. Because x /∈ S′ the ball has positive

radius and, because S is C1, c must lies on the line through x orthogonal to the

plane tangent to S at x. Moreover, because the ball is included in the moat, its

radius [c, x] is in the moat and then in Se. But there may be only one ball through

x centered on the same half line orthogonal to the plane tangent to S at x and

maximal in the moat. Therefore, the ball is unique and the condition of the Lemma
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c

x

x
′

S

S
′

Fig. 4. A point x ∈ S ∩ S′

i and its “ball-companion” x′ ∈ S′.

implies that its center c ∈ Me(S, S′) is not in C(S′) so that there is only one x′ ∈ S′

closest to c and x belongs to no other ball-pair. The case x ∈ S′
e is similar.

We still have to prove that a point x ∈ S belongs to at least one ball pair. For

that, the main argument makes use of the fact that Si and therefore (see 16) Ci(S)

are connected and, for the outer part, that Se is connected and unbounded, and

therefore the connected components of Ce(S), if any, are not bounded. This, together

with condition (i) and (ii) of the theorem, shows that the median separates Ci(S)

and Ce(S) (corollary 2). For that we consider the function ψ : R
n → R:

ψ(x) = d
(

x, Si ∩ S′
i

)

− d
(

x, Se ∩ S′
e

)

We let the reader check that:

ψ(x) = 0 ⇐⇒ x ∈ Me(S, S′) (4)

Hence, we may now introduce the open sets Mei and Mee:

Mei(S, S
′) = {x | ψ(x) < 0}

Mee(S, S
′) = {x | ψ(x) > 0}

We have the following Lemma.

Lemma 3. If condition (i) of theorem 1 holds, then:

Mei(S, S
′) ∩ Ci(S) 6= ∅

Mei(S, S
′) ∩ Ci(S

′) 6= ∅
In other words, a non-empty subset of the cut of S (and the cut of S′) lies inside

Mei(S, S
′).

Proof. We prove here that Mei(S, S
′) ∩ Ci(S) 6= ∅.

Let us take x ∈ Si ∩ S′
i. Because Si ∩ S′

i ⊂ Mei(S, S
′), if x ∈ Ci(S) one has

x ∈ Mei(S, S
′) ∩ Ci(S) and Mei(S, S

′) ∩ Ci(S) 6= ∅. Let us suppose now that

x /∈ Ci(S). There is a unique y ∈ S which is closest to x: d(x, y) = d(x, S) and y 6= x.

The half line [yx cuts the closure of the medial axis Ci(S) at a point x0 ∈ Ci(S).
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To see this, grows a ball centered at x and touching S at y by sliding its center on

[yx as long as it does not contain any other point of S and the boundary point of

the set of such centers is x0. Recall that x ∈ Si ∩ S′
i. One has

d(x0, Se ∩ S′
e) ≥ d(x0, Se) = d(x0, y) > d(x0, x) ≥ d(x0, Si ∩ S′

i)

x0 ∈ Mei(S, S
′) and x0 ∈ Ci(S). But Mei(S, S

′) is open and this entails

Mei(S, S
′) ∩ Ci(S) 6= ∅

Lemma 3, implies the following.

Corollary 2. If conditions (i) and (ii) of theorem 1 hold, then:

Ci(S) ⊂ Mei(S, S
′)

Ce(S) ⊂ Mee(S, S
′)

Ci(S
′) ⊂ Mei(S, S

′)

Ce(S
′) ⊂ Mee(S, S

′)

Proof. Because Si is connected, Ci(S) is connected (see 16). Me(S, S′)∩Ci(S) = ∅
( condition (ii) of the theorem) and equation (4) entails that ψ does not vanish

on Ci(S). Lemma 3 says us that ψ takes negative values on Ci(S). Since ψ is

continuous and Ci(S) is connected, ψ is negative on Ci(S). Similarly, because Se is

connected, the connected components of Ce(S), if there are any, are unbounded and

necessarily lies in Mee(S, S
′). Again Me(S, S′) ∩ Ce(S) = ∅ allows us to conclude

that Ce(S) ⊂ Mee(S, S
′). The two other properties follow from similar proofs.

So we prove now that x ∈ S is the closest point of some point c ∈ Me(S, S′). There

are three possibilities for x ∈ S:

(1) x ∈ Me(S, S′)

(2) x ∈ Mei(S, S
′)

(3) x ∈ Mee(S, S
′)

In case (1), x ∈ Me(S, S′) and, trivially, x is the closest point to c = x.

In case (2), x ∈ S and x ∈ Mei(S, S
′) entails x ∈ S′

i. The half-line starting at x

and going outward S in the direction orthogonal to the plane tangent to S at x will

cut the closed set Me(S, S′) at a first point c ∈ Me(S, S′). From Corollary 2, we

have Ce(S) ⊂ Mee(S, S
′) and therefore Mei(S, S′) ∩ Ce(S) = ∅ and, the segment

[x, c] being in Mei(S, S′) cannot meet the outer medial axis Ce(S). x ∈ Mei(S, S
′)

entails that d(x,Ce(S)) > 0. Therefore, one can grow a small sphere (see figure 5)

contained in Se, tangent to S at x until its center coincides with c. Consequently, x

is the unique point of S closest to c. Case (3) is similar to case (2), using this time

the relation Ci(S) ⊂ Mei(S, S
′) of Corollary 2.
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c

x

x
′

S

S
′

Fig. 5. One can grow a small sphere contained in Se, tangent to S at x until its center coincides
with c.

4.2. A sufficient condition relying on Hausdorff distance

Given two surfaces S and S′ sufficiently close to each other with respect to their

minimum feature size, the ball-map is an homeomorphism between S and S′. More

precisely:

Theorem 2. Let S and S′ be connected, compact (n− 1)-manifolds in R
n. If there

exists ǫ > 0 such that mfs(S) > ǫ, mfs(S′) > ǫ, and dH(S, S′) < ǫ, then the ball-

pairing BMS,S′ defines a homeomorphism between S and S′.

We use the term feature-respecting compatibility to describe the condition of

theorem 2. We show below that under the condition of this theorem, S and S′ meet

the conditions of theorem 1.

Proof. We have seen in section 2.2 that mfs(S) > ǫ (and mfs(S′) > ǫ) entails that

S (and S′) are C1 smooth.

One denotes by Se ↓ǫ the erosion of Se: this is the set of points in Se whose distance

to S is greater than ǫ. Similarly, one denotes by Si ↓ǫ the set of points in Si whose

distance to S is greater than ǫ.

Se ↓ǫ = {x ∈ Se : d(x, S) > ǫ}
Si ↓ǫ = {x ∈ Si : d(x, S) > ǫ}

S′
e ↓ǫ and S′

i ↓ǫ are defined accordingly.

We have the following lemma:

Lemma 4. Let S and S′ be connected, compact (n − 1)-manifolds in R
n. If there

exists ǫ > 0 such that mfs(S) > ǫ, mfs(S′) > ǫ, and dH(S, S′) < ǫ then

Si ↓ǫ⊂ S′
i and Se ↓ǫ⊂ S′

e

S′
i ↓ǫ⊂ Si and S′

e ↓ǫ⊂ Se
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Notice that the condition mfs(S) > ǫ, mfs(S′) > ǫ is crucial. Indeed in the

example of figure 1 one has dH(S,S
′) < ǫ for some small ǫ while the inclusions of

the lemma does not hold.

Proof. proof of Lemma 4

The condition dH(S, S′) < ǫ, together with the definition of erosion entails that the

unions of the erosions Si ↓ǫ ∪Se ↓ǫ has no intersection with the other surface S′

and therefore:

Si ↓ǫ ∪Se ↓ǫ⊂ S′
i ∪ S′

e

Because both Si ↓ǫ and Se ↓ǫ are connected (see 4 ), they are each either a subset of

the connected component S′
i or a subset of the connected component S′

e. Because

Se ↓ǫ is not bounded, it has to be a subset of S′
e. That is:

Se ↓ǫ⊂ S′
e

Assume now that Si ↓ǫ⊂ S′
e. Consequently

Si ↓ǫ ∪Se ↓ǫ⊂ S′
e (5)

We denote by S+ǫ the set of points at distance less than ǫ from S:

S+ǫ = {x ∈ R
n : d(x, S) < ǫ}

By taking the complement and then the interior of both terms of inclusion (5), we

obtain

S′
i ⊂ S+ǫ (6)

We know (using a homotopy argument) that the medial axis Ci(S
′) of S′

i is not

empty 16. Let us take x′ ∈ Ci(S
′). Because mfs(S′) > ǫ, let us take α > 0 such that

ǫ+ α < mfs(S′).

The ball Bx′,ǫ+α centered at x′ with radius ǫ+ α is contained in S′
i:

Bx′,ǫ+α ⊂ S′
i

And, from the inclusion (6):

Bx′,ǫ+α ⊂ S+ǫ (7)

Because mfs(S) > ǫ, one has x′ /∈ C(S). Let x be the unique point on S closest to

x′. The line segment γ of length 2ǫ, centered at x supported by the line normal to

S at x′ is included in S+ǫ. Moreover, from mfs(S) > ǫ, the two boundary points

of this line segment belong to the boundary of S+ǫ. Note that x′ ∈ γ. This is

in contradiction with the inclusion (7). Consequently, the assumption Si ↓ǫ⊂ S′
e

cannot happen. Hence, because Si ↓ǫ is connected, we have Si ↓ǫ⊂ S′
i.

An immediate consequence of lemma 4 is the following
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S

S
′

Fig. 6. The two curves S and S′ are ball compatible. Still dF (S, S′) 6= dH(S, S′), because the
second (from the top) layer of S is close to the bottom part (third and forth layers) so the

Hausdroff distance is small, while the Frechet distance is the height of the gap between the second
layers of S and S′.

Corollary 3. Let S and S′ be connected, compact (n − 1)-manifolds in R
n with

ǫ > 0 such that mfs(S) > ǫ, mfs(S′) > ǫ, and dH(S, S′) < ǫ. Then:

Ci(S) ⊂ S′
i and Ce(S) ⊂ S′

e

Ci(S
′) ⊂ Si and Ce(S

′) ⊂ Se

In other words, S separates Ci(S
′) from Ce(S

′) and, symetrically, S′ separates Ci(S)

from Ce(S).

Corollary 3 implies that, if mfs(S) > ǫ, mfs(S′) > ǫ and dH(S, S′) < ǫ, then one has

Ci(S) ⊂ Si ∩ S′
i and Ce(S) ⊂ Se ∩ S′

e. Therefore Me(S, S′) ∩ C(S) = ∅. One shows

similarly that Me(S, S′) ∩ C(S′) = ∅ and hence theorem 1 applies.

5. Bounding Fréchet distance

From the definition of the Fréchet distance (definition 2), taking an infimum on the

set of homeomorphisms, we conclude that its computation for arbitrary (homeo-

morphic) pair of surfaces is expensive. In contrast, the definition of the Hausdorff

distance whose nature is more geometric, makes it affordable.

Under the condition of ball-compatibility dH can be arbitrary small with dF arbi-

trarily large as suggested by figure 6.

However, we can show that, in the conditions of theorem 2, the Hausdorff and

Fréchet distances are equal.

Theorem 3. Let S and S′ be connected, compact (n − 1)-manifolds in R
n with

ǫ > 0 such that mfs(S) > ǫ, mfs(S′) > ǫ, and dH(S, S′) < ǫ. Then:

dF (S, S′) = dH(S, S′)

Proof. The inequality dH(S, S′) ≤ dF (S, S′) holds in general and follows from the

definitions of dH and dF . Because S is compact, there is a ball-pair (x, x′) ∈ S×S′,

such that:

d(x, x′) = sup
y∈S

d(y,BMS,S′(y)) ≥ dF (S, S′)
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x
′

x

S

S
′

Fig. 7. The ball centered at x and tangent to S′ at x′ contains no point of S′ other than x′.

As seen in section 2.2 under the hypothesis of the theorem, both S and S′ are C1.

Therefore, in order for the distance d(x, x′) to be maximal among ball-pairs, the

segment [x, x′] must be orthogonal to S at x and to S′ at x′.

On the other hand, it follows from Lemma 4 that Moat(S, S′) ⊂ S′ǫ. But the

segment [x, x′] being in Moat(S, S′) ⊂ S′ǫ and orthogonal to S′ at x′, it follows

that d(x, x′) < ǫ < mfs(S′). Therefore, the ball of radius d(x, x′) tangent to S′ at x′

centered at x contains no point of S′ other than x′ (see figure 7). But this implies

that x′ is the closest point to x on S′: d(x, S′) = d(x, x′), and then:

dF (S, S′) ≤ d(x, x′) = d(x, S′) ≤ dH(S, S′)

6. Smoothness

6.1. The smoothness of the ball-map

In the condition of theorem 2, the smoothness of BMS,S′ is related to the smoothness

of S and S′:

Theorem 4 (2 improved with smoothness of BMS,S′). In the conditions of

theorem 2, BMS,S′ is in fact Lipschitz and, if S and S′ are Ck manifolds, with

k ≥ 2, then BMS,S′ is a Ck−1 diffeomorphism.

Recall that we denote by S+ǫ the set of points at distance less than ǫ from S:

S+ǫ = {x ∈ R
n : d(x, S) < ǫ}

We start with a corollary of lemma 4. If one compares the definition of the moat

with lemma 4, one gets:

Corollary 4. Let S and S′ be connected, compact (n − 1)-manifolds in R
n with

ǫ > 0 such that mfs(S) > ǫ, mfs(S′) > ǫ, and dH(S, S′) < ǫ. Then:

Moat(S, S′) ⊂ S+ǫ

Moat(S, S′) ⊂ (S′)+ǫ
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Corollary 4 helps in the proof below.

Proof of theorem 4.

When the surfaces are not C2 and mfs(S) > ǫ, mfs(S′) > ǫ, equation (1) in section

2.2 entails that −→nS and −→nS are 1
ǫ
-Lipchitz. If moreover S is a Ck manifold with

k ≥ 2 x 7→ −→nS(x) is a Ck−1 map.

Let us consider the map ϕ : S × R → R
n defined by:

ϕ(x, t) = x+ t · −→nS(x)

ϕ′ : S′ × R → R
n is defined similarly. Notice that if x′ = BMS,S′(x), then, there

exists t ∈ (−ǫ, ǫ) such that:

ϕ(x, t) = ϕ′(x′,−t)
Indeed, if x ∈ S ∩ S′, the equality holds for t = 0.

If x ∈ S \ S ∩ S′, then either the ball map is defined by a ball in Si ∩ S′
e, in which

case its center y satisfies y = ϕ(x, t) for some t < 0, or the ball-map is defined

through a ball in Se ∩ S′
i, in which case its center y satisfies y = ϕ(x, t) for some

t > 0.

Define the map F : S × S′ × R → R
n as

F (x, x′, t) = ϕ(x, t) − ϕ′(x′,−t)
Locally, the implicit equation F (x, x′, t) = 0 defines the ball-map:

x′ = BMS,S′(x) ⇒ ∃t : F (x, x′, t) = 0 and ϕ(x, t) ∈ Moat(S, S′)

We check below that the implicit functions theorem applies and it follows that

the relation F (x, x′, t) = 0 defines locally a Ck−1 smooth one-to-one mapping:

x 7→ (x′(x), t(x)) such that F (x, x′(x), t(x)) = 0. In order to express the derivative of

the map ϕ′ at x′ ∈ S′ by a matrix, one chooses a convenient local coordinate system

for S′ and Rn. It is a classic result that, when mfs(S) > ǫ, ϕ : S × (−ǫ, ǫ) → S+ǫ is

one-to-one, but we give the proof here for completeness.

Let us take an orthonormal frame centered at x′, with last vector being the unit

normal to S′ at x′ ∈ S′ pointing outward. This defines a frame in Rn. Notice that,

with the origin x′, the first n − 1 vectors of the frame define an orthogonal frame

for the plane tangent to S′ at x′.

The orthogonal projection of S′ on its tangent plane at x′ defines a local coordinate

system for S′, using the same (n−1) orthonormal frame of the tangent plane defined

above. Using these maps for S′ and R
n, it is possible to write the derivative of ϕ′

with respect to x′ and t in the form of a matrix. In the expression below, the first

column and row correspond to the n−1 tangential directions and the second column

and row to the normal direction to S′ at x′. One denotes by 1 the (n− 1)× (n− 1)

unit matrix. One has

(

∂ϕ′

∂x′

∂ϕ′

∂t

)

=

(

1 + t · ∂−−→n
S′ (x′)
∂x′

0

0 1

)
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Notice that, with the chosen maps, ∂−−→n
S′ (x′)
∂x′

is precisely the derivative of the Gauss

map of S′ at x′. If F (x, x′, t) = 0, one has either t = 0 or ϕ′(x′, t) ∈ Moat(S, S′).

Thus, from corollary 4, one has t < ǫ. Using equation (1), we obtain:

‖t · ∂
−→nS′(x′)

∂x′
‖ < 1 (8)

It follows that the (n− 1) × (n− 1) determinant |1 + t · ∂−−→n
S′ (x′)
∂x′

| does not vanish:
∣

∣

∣1 + t · ∂−−→n
S′ (x′)
∂x′

∣

∣

∣
6= 0

Consequently:
(

∂F
∂x′

∂F
∂t

)

has a non-zero determinant and therefore full rank, which allows to apply the im-

plicit function theorem: there are Ck−1 maps x 7→ x′(x) and x 7→ t(x) defined in a

neighborhood of x such that F (x, x′(x), t(x)) = 0. Therefore, BMS,S′ and BMS,S′

are Ck−1, which proves the theorem when the surfaces are at least C2.

When the surfaces are not C2, but only with strictly positive mfs, one cannot apply

the usual implicit function theorem. The local inversion can be built explicitly: using

a weak version of equation (8), it is possible to inverse the map ϕ′ explicitly, as the

fix point of an iterative inversion algorithm. Alternatively, one can use a Lipschitz

variant of the implicit function theorem (see Clarke 5).

6.2. Smoothness of the median surface

As stated in theorem 4, the map BMS,S′ loses one order of continuity with respect

to S and S′: if S and S′ are Ck, then the ball-map is Ck−1 only. This behavior is

not a surprise if we recall the central role of the Gauss maps −→n and
−→
n′ , which are

of course Ck−1. Consequently, Me(S, S′) is then a Ck−1 manifold. We prove that

Me(S, S′) is in fact not only Ck−1 but Ck.

Theorem 5. Let S and S′ be connected, compact (n − 1)-manifolds in R
n with

ǫ > 0 such that mfs(S) > ǫ, mfs(S′) > ǫ, and dH(S, S′) < ǫ. Then, the Gauss map
−−−−−−→nMe(S,S′) of the median surface Me(S, S′) is ǫ-Lipschitz. Moreover, if S and S′ are

Ck manifolds, then Me(S, S′) is a Ck manifold.

The proof of the theorem is based upon the characterization of Me(S, S′) with

distance functions to S and S′. For that, one uses the following Lemma.

Lemma 5. Let S and S′ be connected, compact (n−1)-manifolds in R
n with ǫ > 0

such that mfs(S) > ǫ, mfs(S′) > ǫ, and dH(S, S′) < ǫ. Let x ∈ S, x′ ∈ S′ and

c ∈ Me(S, S′) be such that x (resp. x′) is the point of S (resp. S′) closest to c. Let

Πx,S, Πx′,S′ and Πc,Me(S,S′) be the respective tangent planes at x, x′ and c on the

respective surfaces S, S′ and Me(S, S′).

Then:
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(1) if x 6= x′, Πc,Me(S,S′) is the bisector of the points x and x′

(2) Πc,Me(S,S′) is the bisector of the planes Πx,S and Πx′,S′

Proof. The fact that, if x 6= x′, the bisector of the points x and x′ happen to be the

bisector of the planes Πx,S and Πx′,S′ results from the observation that the triangle

xcx′ is isosceles and that the planes Πx,S and Πx′,S′ are orthogonal respectively to

cx and cx′. It is then enough to prove (2).

The distance function to S, dS : R
n → R

+ is 1-Lipschitz and is differentiable

at any point that does not belong to the closure of the cut C. In particular, it is

differentiable at c ∈ Moat(S, S′). Without loss of generality, assume that c ∈ Si∩S′
e.

In this case, if one denotes by ∇dS the gradient of dS , one has:

∇dS(c) = −−→n (x)

and, similarly:

∇dS′(c) =
−→
n′(x′)

Therefore, the map c 7→ dS′(c) − dS(c) is differentiable and has gradient:

∇ (dS′ − dS) (c) = −→n (x) +
−→
n′(x′)

We claim that this gradient cannot be 0:

−→n (x) +
−→
n′(x′) 6= 0, (9)

Indeed, if x = x′, the relation (9) holds (if not, there exists a λ > 0 such that

x+ λ−→n (x) ∈ Moat(S, S′) which leads to a contradiction). Otherwise, if x 6= x′, one

has ‖−→cx‖ = ‖−→cx′‖ = t > 0 , −→cx = t−→n (x), and
−→
cx′ = −t−→n′(x′). Therefore:

−→n (x) +
−→
n′(x′) =

1

t

−→
x′x

which proves (9).

Then, it follows from the implicit function theorem, that the surface Me(S, S′) has

a tangent plane at c that is normal to the vector −→n (x) +
−→
n′(x′).

The previous Lemma allows us to prove the smoothness of C:

Proof. Proof of Theorem 5

In the proof of Lemma 5 above, we show that the implicit function theorem applies

to the map c 7→ dS′(c) − dS(c). If S and S′ are Ck manifolds, this map is Ck and,

by the implicit function theorem, Me(S, S′) is a Ck manifold.



December 16, 2007 16:37 WSPC/Guidelines Paper˙IJCGA˙040506

Ball-map : Homeomorphism between compatible surfaces 19

7. Ball-map and isotopy

In this section we introduce an isotopy from S to S′ that “morph” any point

x ∈ S to BMS,S′(x) ∈ S′. Let us define the map πS : Me(S, S′) → S as

the projection on S which associates to y ∈ Me(S, S′) its closest point on S :

∀z ∈ S, d(y, z) ≥ d(y, πS(y)). The map πS′ is defined similarly. It is possible to

“parametrize” Moat(S, S′) by Me(S, S′) × [−1, 1]:

I(y, t) =

{

(1 + t)y − tπS(y) if t ∈ [−1, 0],

(1 − t)y + tπS′(y) if t ∈ [0, 1] .
(10)

The map I is then an isotopy that ”morphs” S onto S′, called broken line morph.

Notice that under the condition mfs(S) > ǫ, mfs(S′) > ǫ, and dH(S, S′) < ǫ, one can

in fact relax the requirement for S and S′ to be connected, because S+ǫ has exactly

one connected component for each connected component of S and each connected

component of S+ǫ contains exactly one connected component of S′ and theorem 2

can be applied independently to each pair of respective connected components of S

and S′. We have therefore:

Theorem 6. Let S and S′ be two compact (n−1)-manifolds in R
n with ǫ > 0 such

that mfs(S) > ǫ, mfs(S′) > ǫ, and dH(S, S′) < ǫ. The broken line morph associated

to the ball-pairing BMS,S′ is an isotopy from S to S′.

The existence of an isotopy from S to S′ under the condition of this theorem when

n = 3 has first been proven in 3. Theorem 6 extends the result in arbitrary di-

mensions and provides an explicit isotopy. This theorem has a consequence on the

determination of the isotopy type of a surface from a Hausdorff approximation,

for example a set of sampled points. Any given compact set, possibly finite, whose

Hausdorff distance to a compact set X is less than ǫ
2 is called an ( ǫ

2 )-Hausdorff ap-

proximation of X. Note that if a ( ǫ
2 )-Hausdorff approximation of S with mfs(S) > ǫ

is given, then the topology and even the isotopy class of the surface is completely

determined. Indeed if S̃ is any surface satisfying mfs(S̃) > ǫ and dH(X, S̃) < ǫ
2 , one

has dH(S, S̃) ≤ dH(X,S) + dH(X, S̃) and, according to theorem 6, S̃ is isotopic to

S.

8. Anticipated applications

We anticipate several possible applications of the ball-map. For example, the ball-

map may be used to transfer parameterizations and texture maps 23 between two

ball-compatible surfaces (Fig 8). Note that it is distortion-free when mapping a

planar portion of S to a planar portion of S′.

It may also be used to compare two curves or two surfaces. Arguably, measuring the

maximum, average, or mean square of the distances between all points x of S and

their ball-image BMS,S′(x) on S′ may be more useful than measuring the Hausdorff

distance between S and S′.
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Fig. 8. The checkerboard texture of the horizontal plane S is mapped onto the curved surface S′

in three ways. Left: a point x′ of S′ inherits the color of the closest point x of S. Center, a point
x′ of S′ inherits the color of the point BMS′,S(x′) on S. Right, a point x of S transfers its texture
to the closest point x′ on S′. The bottom row shows a top view.

Fig. 9. The double-torus S (left) is morphed into the smaller double-torus S′ (right), positioned
partly inside Si. Broken-lines, x-to-c(x)-to-x′, defined by the ball-map are shown in green (right)

along with a wireframe of S. The mid-time frame of the morph is shown (center).

The isotopies induced by the ball-map may be used to define a morph between S

and S′.

9. Conclusion

We introduce the concept of ball-compatible manifolds and show that, when the

Hausdorff distance between S and S′ is strictly smaller than mfs(S) and mfs(S′), S

and S′ are ball-compatible. We introduce the ball-map between two ball-compatible

manifolds and show that it is a homeomorphism (theorem 1). Note that this is a

weaker constraint than the one proposed in 8 ensuring that the orthomap is a bijec-

tion. For example, if the Hausdorff distance h is 0.8mfs, the ball-map is bijective, but

the orthomap may not be. The ball-map may be used to transfer parameterizations,

textures, and other properties and annotations between two curves or between two

surfaces.

We also prove several smoothness results. In particular, when S and S′ are Ck

manifolds, then their ball-map is a Ck−1 diffeomorphism and their median Me(S, S′)
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is a Ck manifold. We also show that a morph defined by the ball-map is a Ck−1

isotopy.
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