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Figure 1: (a) Given two shapes M,N and a map T between them, the functional operator V is generated as one of the shape difference
operators introduced in [ROA∗13]. Intuitively, the real-valued function f2, which is supported on a region that undergoes deformation via
T , is significantly distorted by V . Whereas f1, being supported in area-preserved region, remains the same after V acting on it. (b) Given
perturbed shapes N to Ñ, we generate highlighted functions with the multi-scale framework of [OBCCG13]. In our paper we prove two
types of consistency: horizontally, as the scale k increases, the highlighted functions remain stable; vertically, at each scale, the highlighted
functions are stable with respect to the changes of the input shapes.

Abstract
In this paper, we provide stability guarantees for two frameworks that are based on the notion of functional maps – the shape
difference operators introduced in [ROA∗13] and the framework of [OBCCG13] which is used to analyze and visualize the
deformations between shapes induced by a functional map. We consider two types of perturbations in our analysis: one is on
the input shapes and the other is on the change in scale. In theory, we formulate and justify the robustness that has been observed
in practical implementations of those frameworks. Inspired by our theoretical results, we propose a pipeline for constructing
shape difference operators on point clouds and show numerically that the results are robust and informative. In particular, we
show that both the shape difference operators and the derived areas of highest distortion are stable with respect to changes in
shape representation and change of scale. Remarkably, this is in contrast with the well-known instability of the eigenfunctions
of the Laplace-Beltrami operator computed on point clouds compared to those obtained on triangle meshes.

Categories and Subject Descriptors (according to ACM CCS): according to http://www.acm.org/class/1998/ I.3.3 [Computer
Graphics]: —Shape Analysis.

1. Introduction

Shape comparison is a fundamental problem in geometry pro-
cessing. In the most general setting, this problem consists of en-
coding and quantifying similarities and differences across pairs
or collections of shapes. This can be especially useful for shape
retrieval [TV08, BWY∗12], interpolation [XZWB06, VTSSH15],
or visualization [PRMH10]. However, even when a map between
shapes is given, encoding and visualizing the differences between

them are still challenging. Approaches based on the point-to-point
correspondences usually suffer from issues such as sensitivity to
noise, difficulty of selecting an appropriate scale of analysis and
inconvenient visualization. The discrete nature of point correspon-
dences is one of the major reasons of these issues. The framework
of functional maps, which is introduced in [OBCS∗12], alleviates
these issues to some extent by considering more general linear map-
pings between functions, which can be encoded in a multi-scale
fashion with functional bases. As demonstrated in [OBCS∗12],
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functional maps provide a compact, informative representation,
which can naturally incorporate tools from spectral analysis.

Based on the notion of functional maps, several approaches have
been proposed to analyze pairs or collections of shapes along with
maps between them. In this paper we consider two of them, which
are intimately related to each other. One is the framework of shape
difference operators introduced in [ROA∗13], which encodes the
differences between a pair of shapes as linear operators acting on
the functions on one of the shapes (see Figure 1(a) for an illustration
of one of the operators). And the other is proposed in [OBCCG13],
which generates a collection of multi-scale distortion functions in-
dicating the areas on one of the shapes which undergo deforma-
tions. The latter framework can be integrated into the former in the
sense that its output, which is a set of highlighted functions, corre-
spond, in essence, to eigenfunctions of shape difference operators.

Though the theoretical formulations of both frameworks are
well-established, the associated stability analyses remain absent. In
practice, however, we observe robustness of the outcomes of these
frameworks. For example, as shown in Figure 1(b), two types of
consistency are evidenced: horizontally, as the highlighted func-
tions are consistent with respect to the change in scale; vertically,
at fixed scales, the highlighted functions are stable with respect to
the changes of the input shapes. In this paper, we initiate a rigorous
theoretical analysis of these stability properties. In particular, our
contributions are three-fold:

• We provide the first rigorous formulations and theoretical guar-
antees of stability properties of the shape difference operators.
• We propose a new multi-scale scheme for extracting information

from the shape difference operators, which comes with rigorous
stability guarantees.
• Inspired by our theoretical results, we design a practical pipeline

for computing the shape difference operators on shapes rep-
resented by point clouds, and we show numerically that this
pipeline is relevant and robust, even when individual spectral
quantities such as eigenfunctions of the Laplace-Beltrami oper-
ator might not be.

1.1. Overview

We assume that we are given a pair M and N of connected, com-
pact, smooth shapes without boundary. Given a map T : M → N,
the authors of [ROA∗13] introduce a pair of linear operators acting
on real-valued functions on N, each of which captures one type of
differences or distortion between the two shapes induced by T . We
first study the stability of these operators with respect to perturba-
tions on metrics and measures on M and on N (Section 4).

Then we consider the multi-scale framework based on shape dif-
ference operators. For one of the shape difference operators – V
as illustrated in Figure 1(a), the authors of [OBCCG13] propose a
functional for evaluating the deviation from a function on N to its
image under V and search for a function that maximizes the func-
tional as a distortion indicator. Then they introduce a multi-scale
framework by restricting the search to a subspace spanned by the
first k eigenfunctions of the Laplace-Beltrami operator (LBO) on
N. Figure 2 shows typical outputs of this framework: a collection
of multi-scale highlighted functions on the shape N and a sequence

1.1929 1.4423 1.5673

1.6061 1.6683 1.7345

N

M T k = 20 k = 60 k = 100

k = 120 k = 160 k = 200

Figure 2: Stability across ranges of scales: the highlighted func-
tions from k = 20 to 100 consistently highlight the hip of the horse,
whereas the ones from k = 120 to 200 highlight the root of its front
right leg. The corresponding quantitative measurements of distor-
tion are marked above of each shape.

of the corresponding maxima of the energy functional shown above
the highlight functions with respect to different scales ranging from
k = 20 to 200. In this example, we observe consistency in the output
at different scales, which are similar to the observations from Fig-
ure 1(b). Therefore, in the second part of our analyses (Section 5),
we provide a rigorous stability analysis with respect to the change
in scale. One challenge, however, is that the scale in the original
framework is controlled by an integer k, and as we will demon-
strate in Section 5.1, the discrete nature of scale is not suitable for
stability analysis. Indeed, as we show below, the result might not
be stable with respect to changes of k. To overcome this issue, we
introduce a new multi-scale framework whose scale is controlled
by a continuous parameter C ∈ R+, and discuss the connection be-
tween the two multi-scale frameworks in Section 5.4. Within this
continuous multi-scale framework, we provide rigorous theoretical
guarantees of the stability with respect to C.

Moreover, at any fixed scale C, we prove that the new multi-
scale framework is stable with respect to perturbations on the input
shapes as well. Figure 3 illustrates this property: we perturb the
input shapes by and show the highlighted functions at the same
scale k = 50. Note both the stability of the highlighted regions and
the proximity among the maxima of the distortion energy shown
above the meshes.

(a) Original (b) Densified (c) Simplified

1.2897 1.2947 1.2857

Figure 3: Highlighted functions at a fixed scale for different
meshes. We densify the original shape (a) by adding points in the
body of the horse (b) and simplify it by down-sampling the limbs
(c). The corresponding distortion energy values are shown above.

As an extension, we adapt the other shape difference operator –
the one captures conformal distortion – to the multi-scale frame-
work of [OBCCG13] and prove the stability of this extension with
respect to the change in scale as well (Section 5.5).

Lastly, we notice that in practice the two frameworks have so far
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only been constructed on shapes which are discretized as triangle
meshes. In Section 6.3 we extend these constructions by design-
ing a pipeline for computing shape difference operators on shapes
represented as point clouds. As shown in Figure 4, although the
eigenfunctions of the LBO generated on the mesh N and on the
point cloud Y are distinct, the highlighted function generated with
M,N are comparable with the one from comparing X ,Y at a fixed
scale. This supports the stability results we obtain in theory, and
suggests a remarkable robustness of measures based on functional
maps and the derived shape difference operators.

1.2. Paper Organization

After discussing related works in Section 2, we introduce the pre-
liminaries and the notations in Section 3. We then study the stabil-
ity of shape difference operators in Section 4, and provide stability
analysis for the framework of [OBCCG13], by analyzing the per-
turbations of scale, in Section 5.2 (Figure 2) and of the shapes in
Section 5.3 (Figure 3). We present experimental results showing
the stability properties in Section 6.

2. Related Work

The two frameworks we analyze in this paper are based on the no-
tion of functional maps, which has been a key ingredient of vari-
ous applications in geometry processing, including analyzing maps
between shapes [HWG14], vector field processing [ABCFO13,
AWO∗14] and image segmentation [WHG13] to name a few.

Our main focus is to perform perturbation analysis on both shape
difference operators (which are linear operators, see [Kat95] for
an introduction of perturbation analysis on them) and a spectral
method based on such operators. The spectral methods have long
been applied in various areas: spectral clustering [vL06], shape
analysis [RWP06] and so on. Besides demonstrating practical use-
fulness of the spectral methods, providing theoretical justifications
is attracting more and more research interest. Theoretical guaran-
tees for spectral clustering algorithms often stem from Cheeger’s
inequality, which is powerful if there exists a significant spec-
tral gap. Assuming such a gap, several works [KLL∗13, LOT12,
LRTV12,OT14,DRS14] present theoretical guarantees on the qual-
ity (measured by some graph conductance) of the output of the re-
spective algorithms. It is worth noting that the works above only
consider the case of a single object, while in this paper, we study
operators and quantities derived from pairs of shapes. From this
point of view, our work has a similar flavor to the ones by Mé-
moli [Mém09, Mém11], who proposes metrics between shapes
based on spectral invariants and discusses their robustness with re-
spect to perturbations on the input shapes.

Beyond spectral methods, in geometric and topological data
analysis, several approaches have been proposed for guaranteeing
stability of the data processing and analysis techniques. In particu-
lar, stability has been theoretically proven in many works aimed at
estimating geometric quantities. For example, in [MNG04], the au-
thors provide a theoretical and practical analysis of stability and ac-
curacy of normal estimation process. In [MOG11], a sharp feature
detection algorithm is presented with guarantees of stability with
respect to Hausdorff noise. In the same noise model, the stability of

the curvature measures is proven under certain conditions in [CC-
SLT09]. Similar problems are also actively studied in the commu-
nity of topological data analysis (TDA). The stability of persistence
diagram is verified in [CSEH07], which has been instrumental in
establishing a solid theoretical foundation for data analysis using
topological methods. Some more recent developments in TDA also
come with stability guarantees, including, e.g, the notion of dis-
tance to a measure [CFL∗14].

A rich body of research has also been devoted to providing anal-
ysis for convergence properties of various discrete Laplacian op-
erators. In [War05, Xu07, DRW10] the converging behaviors of
the cotangent Laplacian operators on meshes to the underlying
Laplace-Beltrami operators are investigated from diverse perspec-
tives. While in [BSW09, LPG12, HAvL07, DRW13], similar prob-
lems are considered in a different setting, where the discrete Lapla-
cian operators are built on point clouds. In particular, our dis-
cretization scheme proposed in Section 6.3 is based on the result
from [HAvL07], where convergence of graph Laplacian on non-
uniformly sampled point clouds is proven. Lastly, we point out that
unlike the frameworks of [BSW09, LPG12], our scheme does not
require constructing any local mesh structure.

3. Preliminaries and Notations

In this section, we introduce the fundamental notions from dif-
ferential geometry involved in this work, and refer the readers
to [Gri06] for more details. Let N be a connected, compact, smooth
2-dimensional Riemannian manifold endowed with a metric gN .
The volume (or Riemannian measure) νN is induced by gN . Given
a positive smooth function ρN on N, we obtain a weighted Rieman-
nian manifold (N,gN ,µN) by letting dµN = ρNdνN .

Remark 3.1 In this paper, by a Riemannian manifold we mean
a triple (N,gN ,νN), where the volume νN is induced by the met-
ric. We use the term weighted Riemannian manifold to denote
(N,gN ,µN), where µN is an arbitrary measure having a density with
respect to the volume measure on N.

The Laplace-Beltrami operator (LBO) on N, ∆N , is semi-
negative definite and self-adjoint. Since we assume that N is com-
pact, the spectrum of ∆N is discrete. In fact, we can order the eigen-
values of −∆N such that 0 = λ1 < λ2 ≤ ·· · ≤ λk ≤ ·· · (only the
first eigenvalue is zero as N is connected).

Since N is compact and without boundary, the classic Green for-
mula implies that for any smooth functions u,v on N.∫

N
u(−∆N)vdνN =

∫
N
〈∇u,∇v〉gN dνN (1)

On the other hand, it is well-known that the eigenfunctions of
−∆N form an orthonormal basis of function space L2(N) = { f :∫

N f 2dνN <+∞}, and we have the following classical result:

Proposition 3.1 Let {ϕi}i≥1 be an orthonormal basis of L2
ν(N)

consisting of eigenfunctions of ∆N . Then any function u ∈ L2
ν(N)

admits a decomposition u = ∑i≥1 aiϕi,ai =
∫

N uϕidνN . Moreover:

∫
N

u2dνN = ∑
i≥1

a2
i (2)
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Figure 4: Left: highlighted functions from the mesh setting (top) and the PCD setting (bottom) both at scale k = 50; Right: the 9th to the
12th eigenfunctions of the Discrete LB operator on mesh (top) and those of the Graph Laplacian on PCD (bottom).

If we further assume that u is differentiable, then∫
N
〈∇u,∇u〉gN dνN = ∑

i≥1
a2

i λi (3)

Here and throughout the rest of this paper we use L2
ν(N) to de-

note the space of square integrable functions.

Functional Maps. A functional map, TF , is simply a pull-back
from the function space of N to that of M induced by the map T .
Namely, given a function w : N→R, TF (w) = w◦T returns a func-
tion on M. As demonstrated in [OBCS∗12], TF is a linear operator
across the function spaces on M and N.

Shape Difference Operators In [ROA∗13], a pair of Shape Dif-
ference Operators was introduced, which encode the change of in-
ner products under functional map TF .

The area-based shape difference operator, V : L2(N)→ L2(N),
is a linear operator such that for any f ,g ∈ L2(N),∫

N
fV (g)dνN =

∫
M

TF ( f )TF (g)dνM (4)

Rustamov and colleagues proved in [ROA∗13] that such a linear
operator V is linear and is well-defined for any TF .

Note that unless T is an area-preserving map,
∫

N f gdνN does not
always equal to

∫
M TF ( f )TF (g)dνM , the linear operator V captures

and compensates for the discrepancy.

Similarly, the so-called conformal-based shape difference opera-
tor, R, is a linear operator such that for any f ,g in the Sobolev space
H1

0 (N) = { f :
∫

N f 2 +‖∇ f‖2dνN <+∞,
∫

N f dνN = 0}, we have:

∫
N
〈∇ f ,∇R(g)〉gN dνN =

∫
M
〈∇TF ( f ),∇TF (g)〉gM dνM (5)

It follows from the Riesz representation theorem that given
smooth shapes M,N and a map T , the operators V and R exist
and are unique. Particularly, if M,N are 2-dimensional Riemannian
manifolds without boundary, the authors of [ROA∗13] show that T
is locally area-preserving (resp., conformal) if and only if V (resp.,
R) is an identity operator.

Map Analysis In [OBCCG13], an energy measuring distortions
induced by a map is defined on the function space on N. Namely,
for any real-valued function w on M, the authors define:

E(w) =
∫

M TF (w)2dνM∫
N w2dνN

(6)

As discussed in [OBCCG13], E(w) should be large if TF (w)
is supported on areas of M which undergo large distortion via T .
Therefore, the problem of map analysis is turned into optimization
of E(w). Moreover, instead of optimizing E(w) over all w in L2(N),
a multi-scale approach is taken by adding a constraint such that w
must lie in a subspace spanned by the first k eigenfunctions of−∆N ,
which we denote by S(k).

S(k) = span{ϕ1, · · · ,ϕk}. (7)

(a,b)-closeness We now introduce our model for characterizing
perturbations on the input shapes.

Definition 3.1 A Riemannian manifold (N, g̃N , ν̃N) is a-close to
another one (N,gN ,νN) if the following holds: For any x ∈ N and
any tangent vector η in TxN, the tangent plane at x: a−1≤ 〈η,η〉g〈η,η〉g̃ ≤
a holds for some constant a≥ 1.

Definition 3.2 A weighted Riemannian manifold (N,gN ,µN) is b-
close to a Riemannian manifold (N,gN ,νN) if the following holds:
µN is obtained by perturbing νN (the volume induced by gN ) with
ρN : dµN = ρNdνN . And b−1 ≤ ρN ≤ b holds for a constant b≥ 1.

It is clear that the (a,b)-closeness characterizes perturbations on
the metric and on the measure, respectively. Combining them to-
gether, a weighted Riemannian manifold, (N, g̃N , µ̃N), is said to be
(a,b)-close to a Riemannian manifold (N,gN ,νN) if

• (N, g̃N , µ̃N) is b-close to the corresponding Riemannian manifold
(N, g̃N , ν̃N).

• (N, g̃N , ν̃N) is a-close to (N,gN ,νN).

Intuitively, we view (N, g̃N , µ̃N) as a perturbed version of
(N,gN ,νN). It is obvious that (1,1)-closeness implies that the two
are isometric. Furthermore, the following proposition provides a
quantitative relation between the perturbed and original manifolds.
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Proposition 3.2 If (N, g̃N , µ̃N) is (a,b)-close to (N,gN ,νN), then
for any smooth function w on N.

a−1 ≤ 〈∇w,∇w〉gN

〈∇w,∇w〉g̃N

≤ a,

and

(ab)−1dµ̃N ≤ dνM ≤ abdµ̃N .

The detailed proof of this proposition and all of the other results
mentioned below are provided in the supplementary material to im-
prove readability. At the same time, we provide the outlines of the
proofs of all the main theorems in the appendix.

Remark 3.2 Note that the gradient operator on a Riemannian
manifold is defined directly by the metric. Thus the first inequal-
ity in this proposition is not simply a corollary of the condition of
(a,b)-closeness.

Bounded-distortion Condition. Throughout our analysis in the
following sections, we assume that the input Riemannian mani-
folds, (M,gM ,νM) and (N,gN ,νN), together with the map T be-
tween them satisfy the following bounded-distortion condition.

Condition 3.1 (Bounded-distortion) Let TF be the functional map
induced by T : M→ N, the distortions induced by TF (or equiva-
lently by T ) are bounded:

For any w ∈ L2(N),
∫

M
TF (w)

2dνM ≤ BT

∫
N

w2dνN

For any w ∈ H1
0 (N),

∫
M
〈∇TF (w),∇TF (w)〉gM dνM ≤

DT

∫
N
〈∇w,∇w〉gN dνN

where BT and DT are finite positive constants.

In particular, the following proposition suggests that this condi-
tion is satisfied in a fairly general case.

Proposition 3.3 If M,N are compact and TF is induced by a point-
wise T which is a diffeomorphism, then Condition 3.1 is satisfied.

4. Stability of the Shape Difference Operators

In this section, we first consider the stability of the shape difference
operators on their own with respect to perturbations on the metrics
and the measures. For the sake of simplicity, from now on we de-
note by N the original Riemannian manifold (N,gN ,dνN) and by
Ñ the perturbed one (N, g̃N , µ̃N), unless stated otherwise.

We have defined the area-based shape difference operator V with
respect to M,N and T in Eq. 4. Similarly, the perturbed pair of
shapes M̃, Ñ together with T give rise to another shape difference
operator Ṽ acting on L2(Ñ), which satisfies∫

N
f Ṽ (g)dµ̃N =

∫
M

TF ( f )TF (g)dµ̃M ,∀ f ,g ∈ L2(Ñ) (8)

The stability of the area-based shape difference operator with
respect to perturbations on the metrics and measures is stated in the
following theorem:

Theorem 4.1 Let M,N be two smooth shapes, and T be a map
from M to N. Let M̃ be (aM ,bM)-close to M and Ñ be (aN ,bN)-
close to N. If aM ,aN ,bM and bN are finite real numbers not smaller
than 1, then L2(N) = L2(Ñ). Moreover, if M,N and T satisfy con-
dition 3.1, we have the following convergence guarantee

lim
aM ,aN ,bM ,bN→1+

∫
N
(V g− Ṽ g)2dνN = 0

As mentioned above, the outline of the proof of this theorem and of
the others hereinafter are provided in the appendix.

Similar stability guarantee holds for the conformal shape differ-
ence operators as well. We start with defining the conformal shape
difference operator, R̃, for the perturbed input shapes.∫

N
〈∇ f ,∇R̃(g)〉g̃N dµ̃N =

∫
M
〈∇TF ( f ),∇TF (g)〉g̃M dµ̃M (9)

The following theorem suggests that as aM ,bM ,aN ,bN converge
to 1 simultaneously, the norm of the gradient of R̃ f −R f converges
to zero, which in turn means that it converges to a constant function.

Theorem 4.2 Let M,N and M̃, Ñ be smooth shapes under the same
assumptions of Theorem 4.1, then for H1

0 (N) = H1
0 (Ñ). Moreover,

we have

lim
aM ,bM ,aN ,bN→1+

∫
N
〈∇(R f − R̃ f ),∇(R f − R̃ f )〉gN dνN = 0

Remark 4.1 Our proofs for theorems 4.1 and 4.2 do not require
the shapes involved to be compact or boundaryless. The stability
properties proven in this section are valid for any pair of smooth
shapes and maps satisfying Condition 3.1.

5. Stability of the Shape Difference Operators in a Multi-Scale
Framework

In this section, we study the stability properties of the shape dif-
ference operators in the framework of [OBCCG13], where they are
employed in a multi-scale way.

We start by pointing out the connection between the multi-scale
framework and the shape difference operators. Recall that Eq. 6
defines a functional measuring the distortion induced by T for a
given function w ∈ L2

ν(N). Given a pair of manifolds M,N and a
map T : M→ N, let V be the area-based shape difference operator
formulated in Eq. 4. It follows directly from the definitions that:

E(w) =
∫

M TF (w)2dνM∫
N w2dνN

=

∫
N wV (w)dνN∫

N w2dνN
.

Since V is a positive-definite self-adjoint operator acting on
L2(N), the maximum of E(w) within L2(N) is simply the L2-norm
of V . The framework of [OBCCG13] computes the constrained
norm of V with respect to a special collection of subdomains of
L2(N): {S(k)}k∈N+ . In general, given a subdomain Ω of L2(N), the
maximum of E(w) constrained in Ω provides a quantitative charac-
terization of to what extent V can distort functions in Ω. The maxi-
mizer (which we call the highlighted function), w∗, is a function in
Ω that is the most distorted by V .
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NM

T l = 10 l = 11 l = 12

Figure 5: Highlighted functions with respect to conformal-based
shape difference operator depicted on shape N at scales l = 10,11
and 12. λ9 < λ10 < λ11 ≈ λ12 < λ13. λ11 is numerically close to
λ12 (their difference is of order 10−5), causing the instability in the
highlighted functions.

5.1. A New Subdomain Construction

A good selection of Ω is beneficial for abstracting information from
the shape difference operators.

Despite several advantages of choosing S(k) demonstrated
in [OBCCG13], the subdomain construction suffers some issues
that are rooted in its discrete nature.

First, since k must be integer, the minimal perturbation on scale
is 1. In practice, we observe that the output can change a lot when
k is increased by 1, i.e., the original multi-scale framework is not
stable with respect to the changes in scale.

Second, it can lead to confusing results when k isn’t selected ap-
propriately. If there is a degenerate eigenvalue, say, λl = λl+1 <
λl+2, then using the subdomain S(l) can be problematic. That is
because the eigenspace formed by the eigenfunctions with respect
to the degenerate eigenvalue can be of more than one dimension.
Truncating in this subspace introduces randomness in basis con-
struction, therefore the space spanned by the first l eigenfunctions
is not even well-defined. For example, instability in the more subtle
case of analyzing conformal differences is illustrated in Figure 5.

To overcome these issues, we construct a new collection of
multi-scale subdomains which evolves continuously. It follows
from Proposition 3.1 that for any w∈ S(k),−

∫
N〈∇w,∇w〉gN dνN ≤

λk
∫

N w2dνN

It is then natural to consider the following multi-scale subdo-
mains controlled by a continuous scalar-valued parameter C:

A(C) = {w :
∫

N
〈∇w,∇w〉gN dνN ≤C

∫
N

w2dνN} (10)

From this point of view, this expression suggests that (the nor-
malized) Dirichlet’s energy of w ∈ A(C) is upper-bounded by C. In
general, a small C prohibits large variations of w over a short dis-
tance with a global control of the magnitude of the gradient of w,
therefore it forces w ∈ A(C) to be smooth.

In particular, the following proposition indicates the relationship
between the original and the new subdomain constructions.

Proposition 5.1 If C ≥ λk, then S(k) is a proper subset of A(C).

5.2. Stability with Respect to the Changes in Scale

We first verify the stability with respect to the change in scale,
which only involves the original input shapes M and N. As demon-
strated in Figures 1 and 2, the results show consistencies of the
areas on N indicated by the highlighted functions across a range

of scales. It is then tempting to validate the stability of the maxi-
mizer of the energy. However, it is not always the case. For exam-
ple, imagine that we deform the bottom of shape M in Figure 1 so
that the deformations from M to N are symmetrical. In this case, at
every scale, the maximum of E(w) is realized by two highlighted
functions wt ,wb which highlight respectively the top and the bot-
tom of shape N, therefore we will no longer observe consistency in
the highlighted functions.

Thus we then turn to study the stability of the maxima of the
energy E(w) with respect to the change in scale. Our stability anal-
ysis is performed on the new multi-scale framework. For a subspace
A(C), we define:

‖V‖C = max E(w) s.t. w ∈ A(C)

where E(w) is the functional defined in Eq. 6.

Let C go through interval [0,+∞), and consider the curve
(C,‖V‖C). The following theorem suggests its continuity.

Theorem 5.1 Given two connected compact smooth Riemannian
manifolds M and N, and a map T between them. If M,N,T satisfy
Condition 3.1, then for any positive constant C > 0,C′ =C+ε > 0,
we have: ∣∣‖V‖C′ −‖V‖C

∣∣≤ 4BT
√
|ε|/C+2BT |ε|/C.

Notice that BT is in fact an upper-bound for the constrained
norms, i.e., ‖V‖C ≤ BT ,∀C > 0. Thus the inequality proven in the-
orem 5.1 only makes sense when ε is close to zero. At the same
time, the inequality suggests that for a perturbation of fixed magni-
tude |ε|, the larger C is, the more stable ‖V‖C is.

5.3. Stability with Respect to Perturbed Inputs

On the other hand, we can also fix the scale C and add perturbations
on the shapes M and N in the same way as we did in Section 4. I.e.,
we perturb M and N to M̃ and Ñ, which are (aM ,bM)-close and
(aN ,bN)-close to the unperturbed ones respectively. Let V and Ṽ be
the corresponding area-based shape difference operators defined in
Eq. 4 and Eq. 8.

In order to define the constrained norm for Ṽ , we first construct
the corresponding functional Ẽ(w):

Ẽ(w) =
∫

N wṼ (w)dµ̃N∫
N w2dµ̃N

=

∫
M TF (w)2dµ̃M∫

N w2dµ̃N
(11)

The construction of the corresponding subdomain Ã(C) follows the
same spirit of Eq. 10:

Ã(C) = {w :
∫

N
〈∇w,∇w〉g̃N dµ̃N ≤C

∫
N

w2dµ̃N} (12)

Based on the above constructions of Ã(C) and Ẽ(w), the
constrained norm in the perturbed case is defined as ‖Ṽ‖C =
max Ẽ(w) s.t. w ∈ Ã(C). The main result of this section is stated in
the following theorem, which claims that at each scale C, the con-
strained norm is stable with respect to perturbations on the input
shapes.

submitted to COMPUTER GRAPHICS Forum (1/2017).



R. Huang, F. Chazal, M. Ovsjanikov / On the Stability of Functional Maps and Shape Difference Operators 7

Theorem 5.2 Let M,N be two connected compact smooth shapes
without boundary, and T be a map from M to N. Let M̃ (resp.Ñ) be
a smooth manifold that is (aM ,bM)-close (resp. (aN ,bN)-close) to
M (resp. N). V and Ṽ are the area-based shape difference opera-
tors constructed with M,N and M̃, Ñ respectively. If M,N,T satisfy
condition 3.1, then at any fixed scale C, we have:

lim
aM ,bM ,aN ,bN→1+

‖Ṽ‖C = ‖V‖C

5.4. Approximating ‖V‖C

By investigating the behavior of the operators within the continu-
ously evolving subdomains A(C), we have a more stable and poten-
tially richer understanding of V than that arising from S(k). How-
ever, in practice, calculating ‖V‖C is far from being obvious. Since
neither E(w) nor A(C) is convex, there is no guarantee on achieving
the global optimum with the constraint A(C).

For the sake of consistency, we denote by ‖V‖k the maximum of
E(w) within subdomain S(k) . As discussed in [OBCCG13], com-
puting ‖V‖k in the case where M and N are finite discrete meshed
shapes is straightforward.

First note that the construction of A(C) and S(k) are closely re-
lated. The following proposition quantifies this relationship.

Proposition 5.2 Let M,N and T be a pair of manifolds and a map,
which satisfy Condition 3.1. IF λk,λk+1 are two consecutive eigen-
values of the LB operator on N, then the constrained norms with
respect to A(λk) and S(k) satisfy the following inequality:

0≤ ‖V‖λk
−‖V‖k ≤ 4BT

√
λk/λk+1 +2BT λk/λk+1

As a direct corollary, the smaller λk/λk+1 is, the better ‖V‖k
approximates to ‖V‖λk

. It is also worth noting that this proposi-
tion indicates a general criterion of choosing a discrete scale: it is
preferable to choose k such that the gap between λk and λk+1 is
significant. And as we will discuss soon, this proposition suggests
that if the spectral gap is clear, then the maximizer realizing ‖V‖k
is a nice candidate of initial guess for iterative algorithms for max-
imizing E(w) constrained in A(λk).

Secondly, a major obstacle of optimizing within A(C) is that it is
of infinite dimension. Even in the discrete case, the problem scale
is still determined by the number of points, which can range in the
tens or hundred of thousands. The following proposition suggests
that there is a trade-off between accuracy and complexity in this
optimization.

Proposition 5.3 For a fixed parameter C, let ε > 0 and λl+1 be the
smallest eigenvalue of the LB operator on N such that C ≤ ελl+1.
Now denote ‖V‖C,l by the optimum of the following problem:

maxE(w) s.t. w ∈ A(C)∩S(l). (13)

Then ‖V‖C−‖V‖C,l is of order
√

ε.

5.5. Analysis for the Conformal Shape Difference Operator

In essence, with the energy functional E(w), the framework
of [OBCCG13] casts the problem of extracting information from
the area-based shape difference operator as a series of constrained
optimization problems.

Note that the framework of [ROA∗13] introduces two shape dif-
ference operators which encode different types of distortion be-
tween shapes. A natural extension of the multi-scale framework
of [OBCCG13] is to construct parallel functionals and subdomains
with respect to the conformal shape difference operators, R.

We first define a functional, F , acting on H1
0,ν(N) as the follow-

ing:

F(w) =
∫

N〈∇w,∇R(w)〉gN dνN∫
N〈∇w,∇w〉gN dνN

=

∫
M〈∇TF (w),∇TF (w)〉gM dνM∫

N〈∇w,∇w〉gN dνN
.

(14)
where w is not a constant function so that

∫
N〈∇w,∇w〉gN dνN 6= 0.

On the other hand, modifying the multi-scale subdomain con-
struction is necessary to suit the new functional. If we use A(C)
in the conformal case, then F(w) is not well-defined if w is the
constant function. In fact, following the same idea proving Proposi-
tion 5.1, for any w∈A(C), we can find w̄∈A(C−ε) such that w−w̄
is a constant function, which in turn means that F(w) = F(w̄).
To obtain multi-scale results, we construct another subdomain,
Acon f (C), for the conformal case.

Acon f (C) = A(C)∩{w :
∫

N
wdνN = 0} (15)

and we define ‖R‖C = maxF(w) s.t. w ∈ Acon f (C). It is worth not-
ing that if C < λ2, the second eigenvalue of −∆N , then Acon f (C)
is empty. Thus C must be at least λ2 so that ‖R‖C is well-defined.
In practice, it is easier computationally to maximize F(w) in the
subdomains spanned by finite number of eigenfunctions. Follow-
ing the same arguments above, we modify S(k) to obtain Scon f (k) =
span{ϕ2, · · · ,ϕk}, where k must be at least 2.

After the above formulations, we validate the stability of R with
respect to the change in scale.

Theorem 5.3 Let M,N be two connected compact smooth Rieman-
nian manifolds, and T be a map between them. Let λ2 be the first
non-zero eigenvalue of −∆N . If M,N,T satisfy condition 3.1, then
for C > λ2,C

′ =C+ ε > λ2 we have:

∣∣‖R‖C′−‖R‖C
∣∣≤ 4DT

√
λ2|ε|

(C−λ2)(C−|ε|)
+2DT

λ2|ε|
(C−λ2)(C−|ε|)

Then we consider perturbations on the input manifolds. As be-
fore, we denote by M̃ and Ñ the perturbed version of M and N.
The perturbed conformal shape difference operator, R̃, is defined in
Eq. 9. The associated functional, F̃(w), is defined as follows:

F̃(w) =
∫

M〈∇TF (w),∇TF (w)〉g̃M dµ̃M∫
N〈∇w,∇w〉g̃N dµ̃N

. (16)

Accordingly, we define Ãcon f (C) = Ã(C) ∩ {
∫

N wdµ̃N = 0} and
‖R̃‖C = max F̃(w) s.t. w ∈ Ãcon f (C).
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Unfortunately, the strategy of proving Theorem 5.2 doesn’t work
in this case. That is because the interleaved structure is not guaran-
teed between the new subdomains Acon f (·) and Ãcon f (·): a function
satisfying

∫
N wdνN = 0 doesn’t necessarily fulfill

∫
N wdµ̃N = 0 si-

multaneously.

6. Experimental Results

In this section, we demonstrate experimental results that are related
to our theoretical analyses. Notice that implementing the frame-
works of [ROA∗13, OBCCG13] on a pair of meshed shapes M,N
requires essentially an approximation of the LBO on each of the
shape. That is usually done by computing two matrices AM ,WM , the
former is a diagonal matrix whose (i, i)-th entry is the area element
(see [MDSB03]) around the i-th vertex in M, and the latter is the
stiffness matrix computed with the cotangent scheme (see [PP93]).
The LBO is then approximated by A−1

M WM .

6.1. Approximating ‖V‖C
Now suppose that we are given a pair of meshed shapes, we demon-
strate how to search for a local optimum of the constrained non-
linear optimization with the barrier function method. Let M,N be
two meshed shapes consisting of nM and nN vertices respectively.
The functional map TF induced by T is represented by a matrix
P ∈ RnM×nN in the discrete setting. Let Φk ∈ RnN×k be a matrix
whose columns are the first k eigenvectors solved by WN f = λAN f .

Then calculating ‖V‖C in this setting is equivalent to maximize
the following function:

max
f T PT AMP f

f T AN f
,s.t.

f T LN f
f T AN f

≤C

Based on that a barrier function is constructed

G(β, f ) =− f T PT AMP f
f T AN f

−βlog(C− f T LN f
f T AN f

)

As suggested in proposition 5.2, we take the optimizer that realizes
‖V‖k as the initial guess for minimizing G(1, f ). After obtaining f1
as a local minimizer, we take it as the initial guess for G( 1

2 , f ). The
iteration continuous until there is no more significant improvement
or β is sufficiently small. where a∈Rl . Note that this method, while
being easy to implement can potentially be improved with more
advanced constrained optimization techniques. We leave the explo-
ration of alternatives as an interesting direction for future work.

As mentioned in section 5.1, both subdomains S(k) and A(C)
are designed to control the Dirichlet energy of feasible solutions.
The difference between them is that in the former case the energy
is controlled by truncating high frequency components while in the
latter case high frequency components are allowed but with implicit
bounds on their weights. To demonstrate this, we consider the pair
of (bumped) spheres shown in Figure 1 and the map therein and
compute the local maxima and maximizers of ‖V‖C with different
scales C range from 0.5 to 2. Figure 6 shows the portion of each
of the four local maximizers expressed by the first k eigenfunc-
tions (k = 1 ∼ 300). It can be seen that the four local highlighted
functions are well-expressed by the first 300 eigenfunctions (with
λ300 = 15.20). The blue curve indicates that the local maximizer

at C = 0.5 is almost fully spanned by the first 50 eigenfunctions,
whereas the purple curve indicates that the first 50 only represent
around 75 percent of the norm of the one at C = 2.

3.16 8.37 12.48

Figure 6: The X-axis indicates the index of eigenval-
ues/eigenfunctions, and the Y-axis represents the ratio
∑

k
i=1 a2

i /∑i≥1 a2
i , where the maximizer is decomposed as

∑i≥1 aiϕi. Three eigenvalues, λ50,λ150 and λ250, are labeled
accordingly along the X-axis.

Note that since the barrier function method is a gradient-based
technique, the results depend on the initial guess and can get
trapped in local maxima. Such issues will be amplified when deal-
ing with more sophisticated input shapes, where the global maxima
are not as clear as in the simple shapes demonstrated above.

In fact, the new subdomain construction enjoys better theoreti-
cal properties, while loses computational simplicity as a trade-off.
However, as suggested in Proposition 5.2, the original optimization
problem is closely related to the new one. From this point of view,
we will use the original framework which optimizes within S(k),
and reduces to solving a generalized eigenvalue problem in analyz-
ing more complicated shapes in the following experiments, which
also illustrates remarkable stability.

6.2. Robustness of the Area-based Shape Difference Operator

We have observed robustness of the frameworks of [OBCCG13]
with respect to perturbations on the input meshes in Figures 1 and 3.
Besides changing the mesh structure, we now perturb the input
meshes by introducing noise in the vertex positions.

In this example, the vertices are especially perturbed along the
normal direction of the unperturbed shape so that the point-to-point
correspondences are roughly preserved. We first compute the mean
distance of edges of each mesh, d̄M and d̄N , and the vertex normal
vectors. Given a parameter σ, we perturb a point p of mesh M to
p′ = p+σd̄Mxp ·np, where xp is a one-dimensional random vari-
able distributed normally with mean 0 and variance 1, and np is the
unit normal vector at vertex p. And we use the original mesh con-
nectivity to connect perturbed points, since they are in a one-to-one
correspondence to the unperturbed points.

We perturb both M and N in the same manner, and consider 4
choices of σ: 0,0.1,0.5,1.0. At each level of perturbation, we gen-
erate highlighted functions with respect to the area-based shape dif-
ference operator at 3 scales k = 20,50,200. The results are shown
in Figure 7. We observe that when σ = 0.1, the highlighted func-
tions are consistent with the ones of the first row. In fact, even
when σ = 0.5, meaning that the standard deviation of the pertur-
bations is half the mean distance, the highlighted functions are still
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k = 20 k = 50 k = 200

� = 0

� = 0.1

� = 0.5

� = 1.0

M N

Figure 7: Four pairs of meshed shapes are compared, σ indi-
cates the strength of perturbations added on each of the shapes in
the same row. At each row, three highlighted functions are plot-
ted on mesh N, which are obtained by maximizing E(w) within
S(20),S(50) and S(200) respectively. Note that the human poses
in the second column stand with their backs towards us, thus the
highlighted areas are the hip and the right elbow.

reasonable. At the end, we also notice that in the most noisy row,
the highlighted function at k = 200 deviates from the ground-truth
significantly while the first two at k = 20,50 are still relevant. As
we mentioned before, as k increases, the corresponding highlighted
function is supposed to be more and more localized. The functions
of higher frequencies are more difficult to differentiate from the
noise caused by our perturbations.

6.3. Pipeline for Point Cloud Data

Inspired by the stability of the shape difference operators and the
highlighted distortion functions in theory and in the case of triangle
meshes, below we aim to apply this framework to point cloud data.
Approximating the LBO of a manifold with a certain Laplacian
of a graph built on top of points sampled from the manifold is a
problem that has been well-studied. In particular, our pipeline takes
advantage of the results in [HAvL07], where the authors show that
given a point cloud X sampled from a Riemannian manifold N, the
un-normalized graph Laplacian of a certain weighted graph (which
we estimate with WX below) approximates to −ρ

−1
∆N , where ρ is

the sampling density of X . On the other hand, we use the framework
in [BCCSLD11] to estimate the sampling density. The matrix AX

below, serves as an estimator of ρ
−1, therefore we use A−1

X WX as
an approximation of the LBO.

Our pipeline for implementing the frameworks above on shapes
represented as point clouds is described in Algorithm 1, where we
compute for an input point cloud X two matrices AX ,WX and then
use them as AM ,WM in the same way as in the mesh setting. In
all the experiments involving point cloud inputs, we always use
K = 40, i.e., we compute 40-NN graphs on all point clouds.

Algorithm 1: Pipeline for Point Cloud Inputs
input : A point cloud X = {x1,x2, · · · ,xn} and an integer K
output: Two matrices AX and WX

AX ,KX ,WX ←− zero matrices of dimension n×n
for xi ∈ X do

N(xi,K)←− the K nearest neighborhoods of xi in X\xi

AX (i, i)←− ( ∑
x j∈N(xi,K)

‖xi− x j‖2)3/2

t←−
n

∑
i=1

∑
x j∈N(xi,K)

‖xi− x j‖/Kn

if x j ∈ N(xi,K) or xi ∈ N(xi,K) then
KX (i, j)←− exp(−‖xi− x j‖2/2t2)

for i = [1..n] do
di←− mean of non-zero elements in the i-th row of KX

for KX (i, j) 6= 0 do
K̃X (i, j)←− KX (i, j)/did j

if i = j then
WX (i, j)←−∑

j
K̃X (i, j)

else
WX ←−−K̃X (i, j).

Using these constructions, we observe that the robustness is evi-
denced in the results from our PCD setting as well. In this experi-
ment, three pairs of PCD are involved: human poses (12500 points),
horses (8431 points) and cats (7207 points). Given shapes X ,Y , we
first randomly select np points in Y . Then for a selected point p, we
perturb p = (px, py, pz) ∈ R3 to (px + dx, py + dy, pz + dz) where
dx,dy,dz are one-dimension random variables distributed normally
with mean 0, and standard deviation dY , which is the mean length
of edges in mesh N. Repeating the displacements r times for each
p, we enlarge Y to Y ′ with npr more points.

In Figure 8, all the area-based highlighted functions are com-
puted at scale k = 50. The highlighted functions generated from
comparing the noiseless point clouds X and Y at each row are con-
sistent with the results generated from the mesh setting (see the
rightmost column of Figure 8). More interestingly, the highlighted
functions are robust in the case of comparing X to the noisy point
clouds Y ′1 and Y ′2 across different pairs of inputs. Note that the num-
ber of added noisy points to each point cloud is at least 3000, which
is non-negligible, as it represents 24 to 42 percents of the total num-
ber of points. The noisy points are clearly visible in the figure.

Particularly, we notice in the horse case that the highlighted func-
tion on Y ′2 is a little noisy–it also highlights a part of the horse back,
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X Y Y 0
1 : np = 400, r = 10 Y 0

2 : np = 300, r = 20

X Y Y 0
1 : np = 300, r = 10 Y 0

2 : np = 100, r = 20

Y 0
2 : np = 300, r = 20Y 0

1 : np = 400, r = 10YX

N

N

N

Figure 8: Robustness of results from the PCD setting with respect
to noisy point clouds: X and Y are the original point clouds ex-
tracted from meshes. Y ′i , i = 1,2 are noisy versions of Y , which are
generated with the parameters marked below. The functions plot-
ted on Y,Y ′1 and Y ′2 are area-based highlighted function at the same
scale k = 50. On the rightmost column are the highlighted functions
from the mesh setting.

while the one on Y ′3 (1000 more noisy points added) is more con-
sistent. This might be due to the way that noise is distributed: in Y ′1 ,
the noisy points are more decentralized, whereas in Y ′2 , more points
are generated around each of the selected point in Y . Thus the sam-
pling density is more distorted in Y ′2 , resulting in a less consistent
highlighted function.

On the other hand, we have seen in Figure 4 that although the
eigenfunctions of the graph Laplacian on the point cloud are dis-
tinct from those of the LBO on the mesh, the eigenfunctions of
the shape difference operators are comparable. We further explore
this by considering the pair of cats taken from the bottom row of
Figure 8. In particular, we take N, Y and Y ′2 , compute the eigen-
functions of the LBO on mesh N and of the graph Laplacian on
Y,Y ′2 . The highlighted functions and part of the eigenfunctions with
respect to the three representations are depicted in Figure 9. Again,
changing the representation of the shape causes significant pertur-
bations on the eigenfunctions, however, as illustrated in Figure 8,
the areas indicated by the respective highlighted functions remain
similar to each other.

6.4. Analyzing Shape Collections

The experiment above shows the stability of the shape difference
operators for analyzing maps between a single pair of shapes in a
multi-scale way. As we prove in Section 4, the shape difference op-
erators on their own are stable with respect to perturbations on the
input shapes. To demonstrate this, we repeat one of the experiments
in [ROA∗13] (see Figure 3 on page 7 therein), but in the point cloud
setting. We compute the shape difference operators and then vec-
torize them so that we can apply PCA. The PCA embeddings in R2

are depicted in the right two columns of Figure 10.

The top row of Figure 10 depicts the embeddings for the de-
formed spheres. Both layouts uncover the grid structure of the

original shape collection. The results in [ROA∗13] suggest that in
both area and conformal cases, the variances of the first two prin-
cipal components are evenly close to 50 percents. In our results:
(1) Area-based case: though the sum of percentages add up to al-
most 100, the grid is unbalanced and stretched along the direction
of the first principal component; (2) Conformal case: balance pre-
served, the shapes of the first and the second rows are not well dif-
ferentiated, suggesting that the operators are less sensitive to small
changes.

The bottom row shows the layouts for the galloping horse se-
quence, which consists of two cycles of continuous movement of
the horse. Our results successfully capture the circular structure of
the sequence, as depicted in the layout. The plot also reveals the
fact that there is more conformal distortions than area distortions in
this data, as the range of layout in the third column is larger than
that in the second one.

Overall, we conclude from these experiments that although the
results from the PCD setting are not always as accurate as those
from the mesh setting, our results capture most of the basic and
significant information hidden in the data. Considering that we start
from a much coarser understanding of the input shapes , these re-
sults are non-trivial and quite remarkable, especially given the well-
known instability in the eigenfunctions of the LBO.

7. Conclusion and Future Work

In this paper we present two types of stability guarantees for the
shape difference operators. We also introduce a new multi-scale
scheme for extracting information from the shape difference op-
erators, which is provably stable in contrast to the original one
proposed in [OBCCG13]. From a practical point of view, we
present a pipeline for constructing shape difference operators on
point clouds, which extends the range of applications of the related
frameworks.

Several follow-up problems arise along our investigation. We
especially remark the optimization problem attached to our new
multi-scale scheme. As the new scheme provides more stable re-
sults in theory, it is appealing to design an efficient implementa-
tion. It is as well appealing to consider more rigorous analysis of
our pipeline for point cloud data.
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Appendix A:

Here we outline the proofs for the main theorems in this paper. We
refer interested readers to the corresponding supplemental material
for detailed proofs.

Theorem 4.1 and Theorem 4.2: First we can prove L2(N) =
L2(Ñ) with proposition 3.2. To verify the convergence, we first
prove that

∫
N fV f dνN −

∫
N f Ṽ f dνN vanishes as aM ,aN ,bM ,bN

converge to 1 simultaneously. Then due to the fact that V is self-
adjoint, we prove

∫
N gV f dνN −

∫
N gṼ f dνN vanishes under the

same condition. Lastly, we let g =V f − Ṽ f and finish the proof.

The idea of proving in the case of conformal shape differ-
ence operator is analogous to the area-based one, but proving∫

N〈∇ f ,∇R f 〉gN dνN −
∫

N〈∇ f ,∇R̃ f 〉gN dνN → 0 is slightly more
complicated as both the measure and the inner-product are per-
turbed.

Theorem 5.1 and Theorem 5.3: Given parameters C′ > C, our
strategy is to find for any function w ∈ A(C′) a function w̄ ∈ A(C),
such that |E(w)−E(w̄)| is upper-bounded by some variable with
respect to C′−C, which vanishes as C′ → C. Regarding the con-
formal case, we apply the same idea, i.e., find for any function
w ∈ Acon f (C′) a function w̄ ∈ Acon f (C), such that |F(w)−F(w̄)| is
uniformly bounded by a variable depending on C′−C.

Theorem 5.2: The key observations to proving this theorem are:
first, A(C) and Ã(C) are interleaving, i.e., for any C > 0 we can
find a C′ such that A(C) ⊂ A(C′) and vice versa; second, given a
w∈ L2(N) = L2(Ñ), the ratio of E(w) to Ẽ(w) is two-side bounded
with respect to aM ,bM ,aN and bN . The theorem is obvious then
after verifying those observations.
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