* POLYTOPE def: CH of finite set of points P hyperplane: ax+b=0 half-space h-:ax+b<=0, h+:ax+b>=0 supporting hyperplane: intersects h, included in h+ or h- face=intersection with a supporting hyperplane faces are polytopes. faces are CH of subset -> finite number polytope <=> bounded intersection of a finite number of half-spaces convex polyhedron: intersection of a finite number of half-spaces, can be infinite general position for points in R^d: every subset of <=d+1 points are affinely independent => faces are simplices, "simplicial polytope". boundary complex is a geometric simplicial complex general position for hyperplanes in R^d: any k intersect in affine subspace of dim d-k. "simple convex polyhedron" cell complex: set C of convex polyhedra (faces), face of face is a face, intersection of faces empty or common face boundary complex is a cell complex thm de la borne supérieure, borne inf borne inf: (t,t²...t^2d), t1...td, prod(X-ti)²≥0, X^i->x_i et c'est l'équation d'un hyperplan support algos enveloppe convexe dD def voronoi def delaunay max complexité (3D: n²), borne inf de CH encore valide Delaunay maximizes min angle, minimizes max min enclosing ball of simplices Delaunay is a 1.99-spanner premiers algos de reconstruction Delaunay restreint Crust 2d: Delaunay of points and Voronoi vertices axe médian, reach pole of s: furthest point p+ in the voronoi cell (or average of normals to adjacent faces if on the convex hull), and the furthest point p- with negative projection on sp+. delaunay of points and poles remove poles and cofaces remove triangles when normal and sp+ make a large angle orient (inside/outside) consistently and extract manifold, avoiding sharp edges Cocone sp+: estimated normal complement of cone of angle pi/2-theta keep Delaunay triangle if dual Voronoi edge intersects all 3 cocones (approx restricted Delaunay) same last extraction step as crust (meshing: move points (or add weight) to avoid slivers) Flow complex (partition by following the gradient of the distance) alpha-shape (molécule d'eau) alpha-complex (+ petit que Cech) Algo (2D) pratique: localisation par marche + insertion. analyse backwards de l'insertion (dans un ordre aléatoire) différents types de marche (certaines ne marchent que pour Delaunay) marche: sqrt(n)*dist pour aléatoire tri space filling curve parabole -> quadratique BRIO