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Introduction and motivations

What can we say about the topology/geometry of spaces known only through
a finite set of measurements?

What is the relevant topology/geometry of a point cloud data set?

Motivations: Reconstruction, Manifold Learning and NLDR, Clustering and
Segmentation, ...



Geometric Inference

0ar

05}

Question:

Given an approximation C' of a geometric object K, is it

possible to reliably estimate the topological and geometric properties
of K, knowing only the approximation C'7?

Question

cated set),

*: Given a point cloud C' (or some other more compli-
s it possible to infer some robust topological or geometric

information of C'?

e [ he answer depends on:

- the considered class of objects (no hope to get a positive
answer in full generality),

- a notion of distance between the objects (approximation).



Distance functions for geometric inference

Considered objects: compact subsets K of R

Distance:
distance function to a compact K C R%: di : x — inf, ek ||z — p||
Hausdorf distance between two compact sets:

du (K, K') = sup,ega |dr (2) — dg (2)]




Distance functions for geometric inference

Considered objects: compact subsets K of R

Distance:

distance function to a compact K C R%: di : x — inf, ek ||z — p||
Hausdorf distance between two compact sets:

du (K, K') = sup,ega |dr (2) — dg (2)]

Exercise: Show that

7 i‘“‘"a q dy (K, K') = max (Sup dr (y), sup dg- (z))
~ A = K/’ zcK



Distance functions for geometric inference

Considered objects: compact subsets K of R

Distance:

distance function to a compact K C R%: di : x — inf, ek ||z — p||
Hausdorf distance between two compact sets:

du (K, K') = sup,ega |dr (¢) — de ()

e Replace K and C by dx and d¢

e Compare the topology of the offsets
K" = d; ([0,7]) and C" = d* ([0, 7))




Distance functions for geometric inference

Considered objects: compact subsets K of R

Distance:

distance function to a compact K C R%: dg : & — inf e ||z — p|
Hausdorf distance between two compact sets:

du (K, K') = sup,ega |dr (¢) — de ()

e Replace K and C by dx and d¢

e Compare the topology of the offsets
K" =d ([0,7]) and C" = dg' ([0, 7])




Topology: homeomorphy and isotopy

e X and Y are homeomorphic if there exists a bijection h: X — Y s. t.
h and h~! are continuous.

e X.Y C R?areisotopic if there exists a continuous map F : X x 0,1] —
R%s. t. F(.,0) = Idx, F(X,1) =Y and Vt € [0,1], F(.,t) is an
homeomorphism on its image.

e X.Y C R? are ambient isotopic if there exists a continuous map F' :
R? x [0,1] = R%s. t. F(.,0) = Idge, F(X,1) =Y and Vt € [0, 1],
F(.,t) is an homeomorphim of R<.



Topology: homotopy type
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e Twomaps fp : X — Y and f; : X — Y are homotopic if there exists
a continuous map H : [0,1] x X - Y s. t. Ve € X, H(0,2) = fo(x)
and Hi(1,x) = fi(x).

e X and Y have the same homotopy type (or are homotopy equivalent)
If there exists continuous maps f: X - Y andg:Y — X s. t. gof
Is homotopic to Idx and f o g is homotopic to Idy .



Topology: homotopy type
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— — homotopy equiv.
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e Twomaps fp : X — Y and f; : X — Y are homotopic if there exists
a continuous map H : [0,1] x X - Y s. t. Ve € X, H(0,2) = fo(x)
and Hi(1,x) = fi(x).

e X and Y have the same homotopy type (or are homotopy equivalent)
If there exists continuous maps f: X - Y andg:Y — X s. t. gof
Is homotopic to Idx and f o g is homotopic to Idy .
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e Twomaps fp : X — Y and f; : X — Y are homotopic if there exists

a continuous map H : [0,1] x X - Y s. t. Ve € X, H(0,2) = fo(x)
and Hi(1,x) = fi(x).

e X and Y have the same homotopy type (or are homotopy equivalent)
If there exists continuous maps f: X - Y andg:Y — X s. t. gof
Is homotopic to Idx and f o g is homotopic to Idy .

X and Y homotopy equivalent = X and Y have isomorphic homotopy and
homology groups.



Topology: homotopy type
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If Y C X and if there exists a continuous map H : [0,1] x X — X s.t.:

)Vre X, HO,z) =z,
i)Vee X, H(l,x) €Y

i)Yy e Y, vt € |0,1], H(t,y) € Y,

then X and Y are homotopy equivalent. If one replaces condition iii) by
VyeY,Vtel0,1], H(t,y) = y then H is a deformation retract of X onto

Y.



The gradient of the distance function

o I'(z) ={y € K :d(z,y) = dx(z)}

e Ox(x): center and radius of the smallest
ball enclosing ' ()

r— Ok (x)

LAIthough not continuous, It can
be integrated in a continuous
flow.

Definition: z is a critical point of dy iff Vdg (x) =0



The gradient for a point cloud
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A Lk S /
... .,.. N
% ¢, The gradient of the distance function to a
L T B point cloud data set C' is easy to com-
""""""" ‘ ‘* pute if one knows how to compute the
""""" ) ’ Voronoi diagram of C.




Integration of the gradient of dy

Although Vdx is discontinuous, it can be integrated: there exists C :
R, x (R*\ K) — R%\ K a continuous function, right differentiable

with respect to ¢ s. t.

ac

gy (t,x) =Vdg(C(t,z)) and C(t+ s,x) =C(s,C(t,x))

The function dg is increasing along the trajectories of Vdg.



Integration of the gradient of dy

e The norm of the gradient is given by

radius of the

smallest ball en-
/closing 'k ()

[Vdk (z)]® =1

FK(SU

dK(ZIZ‘)

e The trajectories of Vdig can be parametrized by arc length s —

C(t(s),x) and one has

dr (C(t(l), ) = dr(x) + i

[

IVdk (C(t(s), x))||ds




Critical points and offsets topology
For o > 0, the a-offset of K is K* = {x € R? : dg(z) < o}

Theorem: [Grove, Cheeger,...] Let K C RY be a compact set.

e |Letr bearegularvalue of dix. Then d;(r) is a topological submanifold
of R? of codimension 1.

e Let 0 < r; < ry be such that |r{, 3] does not contain any critical value
of dx. Then all the level sets d.' (r), © € [r1, 73] are isotopic and

K2\ K" ={zeR?:r <dg(z) <ry}

is homeomorphic to d' (1) x (11, 73].




Weak feature size and stability

The weak feature size of a compact K C R%:
wfs(K) = inf{c > 0 : ¢ is a critical value of dx}

Proposition: [C-Lieutier'05] Let K, K’ C R be such that

dp(K.K') < ¢ = %min(wfs(K), wis(K7))

Then for all 0 < r < 2¢, K" and K" are homotopy equivalent.



Weak feature size and stability

The weak feature size of a compact K C R%:
wfs(K) = inf{c > 0 : ¢ is a critical value of dx}

Proposition: [C-Lieutier'05] Let K, K’ C R be such that

dp(K.K') < ¢ = %min(wfs(K), wis(K7))

Then for all 0 < r < 2¢, K" and K" are homotopy equivalent.

Proof: let 6 > 0 be s.t. § + 2 < min(wfs(K), wfs(K")).

ao al
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do dl
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Weak feature size and stability

The weak feature size of a compact K C R%:
wfs(K) = inf{c > 0 : ¢ is a critical value of dx}

Proposition: [C-Lieutier'05] Let K, K’ C R be such that

dp(K.K') < ¢ = %min(wfs(K), wis(K7))

Then for all 0 < r < 2¢, K" and K" are homotopy equivalent.

Compact set with positive wfs:

Stability properties

Large class of compact sets (including sub- °
analytic sets)

@ K — wfs(K) is not continuous (unstability
of critical points).



Overcoming the discontinuity of wfs

Proposition: [C-Lieutier'05] Let K, K’ C R? be such that

(K. K') < & i= %min(wfs(K), wis(K"))

Then for all 0 < r < 2¢, K" and K'" are homotopy equivalent.

(2K — wfs(K) is not continuous (unstability of
critical points).

v ~

Option 1: Option 2:
Restrict to a smaller class of com- Try to get topological information
pact sets with some stability prop- about K without any assumption

erties of the critical points. on wfs(K").



Overcoming the discontinuity of wfs

Proposition: [C-Lieutier'05] Let K, K’ C R? be such that

(K. K') < & i= %min(wfs(K), wis(K"))

Then for all 0 < r < 2¢, K" and K'" are homotopy equivalent.

(2K — wfs(K) is not continuous (unstability of
critical points).

v ~

Option 1: Option 2:
Restrict to a smaller class of com- Try to get topological information
pact sets with some stability prop- about K without any assumption
erties of the critical points. on wfs(K").
l
Notion of u-critical points. 1
Strong reconstruction re- Persistence-based inference

sults.



Instability of critical points and p-critical points

Critical
points
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Instability of critical points and p-critical points

Critical
points

-
-
-
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A point x € R% is p-critical for K if ||Vdx(x)] < p

Critical
point



Instability of critical points and p-critical points

Critical
points

A point x € R% is p-critical for K if ||Vdx(x)] < p

Theorem:

- o
-
-
-

Critical
point

[C-Cohen-Steiner-Lieutier'06] Let K, K’ C R? be two compact
sets s. t. dy(K,K’) < e. For any p-critical point x for K, there exists a

2\/€/dK

) + p)-critical point for K’ at distance at most 2\/6dK () from



Proof of the stability theorem

Lemma 1: Let x be a p-critical point for dgi. For any
y € RY,

dr(y)* < dic(2)* + 2pdg (z)||z — yl| + |lz — y|7



Proof of the stability theorem

Lemma 1: Let x be a p-critical point for dgi. For any
d
y € R, FK(w)

dr(y)* < dic(2)* + 2pdg (z)||z — yl| + |lz — y|7

For any 2’ € Tk ()

di (y)° ly — 2'||7
(y—x)+ (x—2"),(y —2) + (. — "))
= |y —z|® + lo —2'|* + 2(y — &,z — ')

dic (2)* + 2dk () ||z =yl cos(y — z, & — ) + ||z — y|7

I




Proof of the stability theorem

Lemma 1: Let x be a p-critical point for dgi. For any
d
y € R, FK(w)

dr(y)* < dic(2)* + 2pdg (z)||z — yl| + |lz — y|7

Proof:

Just need to prove that there exists
' €lk(x) st cos(y—x,z—a') <pu &/
le. (y—z, 2’ —x) <7m—q Y

For any 2’ € Tk ()

di (y)° ly — '||?
(y—2)+(xz—2),(y—2)+ (v
= |ly—zP+ lz — 2’| +2(y —=

d (2)° + 2dx (x) ||z — yl|Cos(y — =,z — z)

I

|z — y||?




Proof of the stability theorem

Lemma 1: Let x be a p-critical point for dgi. For any
y € RY,

dr(y)* < dic(2)* + 2pdg (z)||z — yl| + |lz — y|7

Proof:

Just need to prove that there exists
' €lk(x) st cos(y—x,z—a') <pu &/
le. (y—z, 2’ —x) <7m—q Y

o If 4 =0: Ox(x) = x and any closed hemisphere
of S(x,dx (x)) intersects 'k (z) = dz’ € 'k (o)
st. (y—x, 2" —x) <7 —q.



Proof of the stability theorem

Lemma 1: Let x be a p-critical point for dgi. For any
d
y € R, FK(w)

dr(y)* < dic(2)* + 2pdg (z)||z — yl| + |lz — y|7

Proof:
Just need to prove that there exists
/ / oy LS
' €l'g(x)st cos(ly—xz,x—a") <
K () (y : ) < u y [ /o = arccos(u)

le. (y—z, 2’ —x) <7m—q

o If 4 =0: Ox(x) = x and any closed hemisphere
of S(x,dx (x)) intersects 'k (z) = dz’ € 'k (o)
st. (y—x, 2" —x) <7 —q.

o If ;1 # 0: compactness of I'i () — there exists a circular cone with apex
x and angle o’ < «a containing 'k ().



Proof of the stability theorem

Lemma 2: Let K, K’ C RY be two compact sets s.t. dg(K,K’) < e. For
any p-critical point x for K and for any p > 0, there exists a u-critical point
for K’ at distance at most p from x with

P

/< | 26
MR k(@) T T




Proof of the stability theorem

Lemma 2: Let K, K’ C RY be two compact sets s.t. dg(K,K’) < e. For
any p-critical point x for K and for any p > 0, there exists a u-critical point
for K’ at distance at most p from x with

P

/< | 26
MR k(@) T T

Proof:

e Let s — C(s) be the trajectory of Vdg starting at = and parametrized
by arc length.

e if C meets a critical point of K’ before y = C(p) : ok!



Proof of the stability theorem

Lemma 2: Let K, K’ C RY be two compact sets s.t. dg(K,K’) < e. For
any p-critical point x for K and for any p > 0, there exists a u-critical point
for K’ at distance at most p from x with

I < P | 25
BT @) )

Proof:

e Let s — C(s) be the trajectory of Vdg starting at = and parametrized
by arc length.

e if C meets a critical point of K’ before y = C(p) : ok!

e Otherwise,

dK/( dK/ / HVK’ HdS
and there exist a point p on C between s = 0 and s = p such that:

dr+ (y) — di(x)
0

IVdg: (p)]| <



Proof of the stability theorem

Lemma 2: Let K, K’ C RY be two compact sets s.t. dg(K,K’) < e. For
any p-critical point x for K and for any p > 0, there exists a u-critical point
for K’ at distance at most p from x with

P

/< | 26
MR k(@) T T

Proof:

e Applying Lemma 1 to x and y = C(p) gives

di (y) < Vdr(2)? + 2udk (z)]|z — y|| + ||z — y||2

e Sincee = dy (K, K'), we have that for all z € R?, |dg (2)—dg/(2)] < €.



Proof of the stability theorem

Lemma 2: Let K, K’ C RY be two compact sets s.t. dg(K,K’) < e. For
any p-critical point x for K and for any p > 0, there exists a u-critical point
for K’ at distance at most p from x with

P

/< | 26
MR k(@) T T

Proof:

It follows that

dicr (y) — dxr(2) < Vdi(2)? + 2pudi (2)]|z = yl| + ||z — yl|?

—dK(w)—I—QS
2pllz —yl| | |z —yl]?
< d 11 | 1
: K<°”””\/ i@ | de@?
+ 2¢
2
T —y
SMW—yHIH LS

ZdK(QZ’)



Proof of the stability theorem

Lemma 2: Let K, K’ C RY be two compact sets s.t. dg(K,K’) < e. For
any p-critical point x for K and for any p > 0, there exists a u-critical point
for K’ at distance at most p from x with

P

/< | 25
MR k(@) T T

Proof:

It follows that (\ — ||V (D) <

i/ (y) — drer (2D < /dg ()2 + 2pdk ()] |2 — yl] + || — y||?
—dK(CIZ) + 2¢

dgr(y) — dgr ()

smaller than p since y = C(p)
and C is parametrized by arc

length. < dK(x)[ 14

o dK(I)
k + 2¢
Nz —yl?
S“' Y (z) T

2ullz —yl| | [lz —yl]]?
| dK(I)2

1]




The critical function of a compact set

<

bk a

D

Definition: The critical function xx : (0,+00) — R of a compact set K is
the function defined by

xi(r) = inf [[Vg(z)|

:cEdl}l (r)



The critical function of a compact set

Definition: The critical function xx : (0,+00) — R of a compact set K is

the functioWy

Easy to compute from (7’)
Vor(K) when K is a finite XK
point cloud!

= inf [[Vk(2)]

:cEdl}l (r)



The critical function of a compact set




Stability of the critical function

Theorem:|critical function stability theorem CCSL'06] Let K and K’ be two
compact subsets of R? s. t. dp (K, K') <e. Forall 7 >0, we have:

inf{XK/ (u) \u ~ ](7", 8)} < XK(T) T 2\/%

where I(r,e) = [r —e,r + 2x Kk (r)\/er + 3¢



Stability of the critical function

Proof: this is an easy consequence of the critical point stability theorem.

Let » > 0 and = € d' () be such that |Vdg (2)| = xx (7).

e Critical point stability theorem = there exists a (2+/¢/r 4+ xx(7))-
critical point p for K’ s.t. d(p,x) < 2+/er and dg/(p) > dg/(x).

e Applying lemma 1 to z,p and K gives

dr (p)

VAN

VAN

<

r2 + 4x i (r)dyer + der

P+ A (Ve + e/
r+ 2xk(r)ver +2e

e to conclude the proof use that di/(p) > di/(x) and |dx/(p) —dk (p)| <

E.



Reach(es)

?\ ” K
o r,(K)=0if u>+2/2
o 1 (K)=uaif p <v2/2
2a
o wis(K)=a
'l

y-reach of a compact K C R%:
r,(K) =inf{dx(x) : |Vdx(2)] < p

o Vue (0,1), r,(K) < wfs(K)

o for u =1, r,(K) is the reach introduced
by Federer in Geometric Measure Theory




Separation of critical values

U|{ 1\

Lﬂ-ﬂ# Vlﬂi,lwl fﬂj

A

] L0 ‘IE.EI 143.0 EE.D 24’;.0 36.[] 915.0 4[5.0 4&3.0

Theorem: [CCSL'06] Let K and K’ be two compact subsets of R?, ¢ be the
Hausdorff distance between K and K’, and i1 be a non-negative number. The
distance function dx has no critical values in the interval |4e/u? | 1, (K')—3¢].
Besides, for any u' < i, vk is larger than ' on the interval

(,U _ ,LL’)2 ) TM(K/) - 3\/€TM(K/)[



Separation of critical values

_» Large intervals without critical
values = large intervals without
critical value for any close approx-
Imation.

Theorem: [CCSL'06] Let K and K’ be two compact subsets of R?, ¢ be the
Hausdorff distance between K and K’, and i1 be a non-negative number. The
distance function dx has no critical values in the interval |4e/u? | 1, (K')—3¢].
Besides, for any u' < i, vk is larger than ' on the interval

(,U _ ,LL’)2 ) TM(K/) - 3\/€TM(K/)[



A reconstruction theorem

A reconstruction theorem: [C-Cohen-Steiner-Lieutier’'06]
Let K C R? be a compact set s.t. 7, = r,(K) > 0 for some u > 0. Let

K C R be such that dg (K, K') < xr,(K) with k < min @ — 1, 161%;2
Then for any d, d’ s.t.

4mrM

0<d<wfs(K) and >
L

/
d <r,—3kr,

the hypersurfaces dl}} d’) and d;{l d) are isotopic.



A reconstruction theorem

o

v, o B "_:) *
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Reconstruction theorem: (Weak version
Let K C RY be a compact set s.t. r, = 7,(HK) > 0 for some p > 0. Let

K C R? be such that d (K, K') = ¢ < kT, (K) with k < 5u5—2k12 Then for
any d, d’ s.t.

4mru

0<d< wfs(K) and 5
1L

/
d <r,—3kr,

the offsets K’ and K¢ are homotopy equivalent.



Proof of the reconstruction theorem

e Separation of critical values: dg does not have any critical value in
4
(M—g,m(K) R 38)

= it is enough to prove the theorem for d’ = 4¢/u°.

o We have wfs(K'®) > r,(K) — 3¢ — 4¢/p? and

A4
(K, K'") < = +¢
[

e [ he conclusion of the theorem holds as soon as

/ 1 /
du(K,K'") < 5 min(wfs(K'?®), wis(K))



Proof of the reconstruction theorem

e Separation of critical values: dg does not have any critical value in
4
(M—g,m(K) R 35)

= it is enough to prove the theorem for d’ = 4¢/u°.

o We have wfs(K'®) > r,(K) — 3¢ — 4¢/p? and

/ 4
dH(K,K/d ) < —(Z + €
v

e [ he conclusion of the theorem holds as soon as

/ ]_ /
du(K,K'") < 5 min(wfs(K'?®), wis(K))

p

This is exactly the assumption made on x!



Proof of the reconstruction theorem

e Separation of critical values: dg does not have any critical value in
4
(M—g,m(K) R 35)

= it is enough to prove the theorem for d’ = 4¢/u°.

o We have wfs(K'®) > r,(K) — 3¢ — 4¢/p? and

A4
(K, K'") < = +¢
[

e [ he conclusion of the theorem holds as soon as

/ ]_ /
du(K,K'") < 5 min(wfs(K'?®), wis(K))

p

This is exactly the assumption made on x!

Remark: to get the isotopy one needs stability results for Vdg ...



Distance-based geometric inference

Topological /geometric properties of the offsets of K are stable with
respect to Hausdorff approximation:

1. Topological stability of the offsets of K (CCSL'06, NSW’06).
2. Approximate normal cones (CCSL'08).

3. Boundary measures (CCSM'07), curvature measures (CCSLT’'09), Voronoi
covariance measures (GMO’09).



Take-home messages

e Distance functions provide a powerful framework for robust geometric

inference with theoretical guarantees:
- for a wide class of (non smooth) shapes

- In any dimension.

e In practice (for point clouds) the algorithms rely on the Voronoi diagram
or the Delaunay triangulation = ok in 2D and 3D!

e But no efficient reconstruction algorithm in higher dimension...



