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Introduction and motivations

What can we say about the topology/geometry of spaces known only through
a finite set of measurements?

What is the relevant topology/geometry of a point cloud data set?

Motivations: Reconstruction, Manifold Learning and NLDR, Clustering and
Segmentation,...



Geometric Inference

Question: Given an approximation C of a geometric object K, is it
possible to reliably estimate the topological and geometric properties
of K, knowing only the approximation C?

• The answer depends on:
- the considered class of objects (no hope to get a positive
answer in full generality),
- a notion of distance between the objects (approximation).

Question *: Given a point cloud C (or some other more compli-
cated set), is it possible to infer some robust topological or geometric
information of C?



Distance functions for geometric inference

Considered objects: compact subsets K of Rd

Distance:
distance function to a compact K ⊂ Rd: dK : x→ infp∈K ‖x− p‖
Hausdorf distance between two compact sets:

dH(K,K ′) = supx∈Rd |dK(x)− dK′(x)|

dH(K,K ′)

K ′

K
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Distance:
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Hausdorf distance between two compact sets:

dH(K,K ′) = supx∈Rd |dK(x)− dK′(x)|

Exercise: Show that

dH(K,K ′) = max

(
sup
y∈K′

dK(y), sup
z∈K

dK′(z)

)
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distance function to a compact K ⊂ Rd: dK : x→ infp∈K ‖x− p‖
Hausdorf distance between two compact sets:

dH(K,K ′) = supx∈Rd |dK(x)− dK′(x)|

• Replace K and C by dK and dC

• Compare the topology of the offsets
Kr = d−1K ([0, r]) and Cr = d−1C ([0, r])
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Topology: homeomorphy and isotopy

• X and Y are homeomorphic if there exists a bijection h : X → Y s. t.
h and h−1 are continuous.

• X,Y ⊂ Rd are isotopic if there exists a continuous map F : X×[0, 1]→
Rd s. t. F (., 0) = IdX , F (X, 1) = Y and ∀t ∈ [0, 1], F (., t) is an
homeomorphism on its image.

• X,Y ⊂ Rd are ambient isotopic if there exists a continuous map F :
Rd × [0, 1] → Rd s. t. F (., 0) = IdRd , F (X, 1) = Y and ∀t ∈ [0, 1],
F (., t) is an homeomorphim of Rd.



Topology: homotopy type

• Two maps f0 : X → Y and f1 : X → Y are homotopic if there exists
a continuous map H : [0, 1]×X → Y s. t. ∀x ∈ X, H(0, x) = f0(x)
and H1(1, x) = f1(x).

• X and Y have the same homotopy type (or are homotopy equivalent)
if there exists continuous maps f : X → Y and g : Y → X s. t. g ◦ f
is homotopic to IdX and f ◦ g is homotopic to IdY .

f0(x) = x

ft(x) = (1−t)x

f1(x) = 0
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Topology: homotopy type
f0(x) = x

ft(x) = (1−t)x

f1(x) = 0

homotopy equiv.

homotopy equiv.

not homotopy equiv.

If Y ⊂ X and if there exists a continuous map H : [0, 1]×X → X s.t.:
i) ∀x ∈ X, H(0, x) = x,
ii) ∀x ∈ X, H(1, x) ∈ Y
iii) ∀y ∈ Y , ∀t ∈ [0, 1], H(t, y) ∈ Y ,
then X and Y are homotopy equivalent. If one replaces condition iii) by
∀y ∈ Y , ∀t ∈ [0, 1], H(t, y) = y then H is a deformation retract of X onto
Y .



The gradient of the distance function

x

dK(x)

K

ΓK(x)

θK (x)

• ΓK(x) = {y ∈ K : d(x, y) = dK(x)}

• θK(x): center and radius of the smallest
ball enclosing ΓK(x)

∇dK(x) =
x− θK(x)

dK(x)

∇dK(x)

Definition: x is a critical point of dK iff ∇dK(x) = 0

Although not continuous, it can
be integrated in a continuous
flow.



The gradient for a point cloud

The gradient of the distance function to a
point cloud data set C is easy to com-
pute if one knows how to compute the
Voronöı diagram of C.



Integration of the gradient of dK

• Although ∇dK is discontinuous, it can be integrated: there exists C :
R+ × (Rd \ K) → Rd \ K a continuous function, right differentiable
with respect to t s. t.

∂C
∂t

(t, x) = ∇dK(C(t, x)) and C(t+ s, x) = C(s, C(t, x))

• The function dK is increasing along the trajectories of ∇dK .



Integration of the gradient of dK

• The norm of the gradient is given by

‖∇dK(x)‖2 = 1− FK(x)

dK(x)

• The trajectories of ∇dK can be parametrized by arc length s →
C(t(s), x) and one has

dK(C(t(l), x) = dK(x) +

∫ l

0

‖∇dK(C(t(s), x))‖ds

radius of the
smallest ball en-
closing ΓK(x)



Critical points and offsets topology

For α ≥ 0, the α-offset of K is Kα = {x ∈ Rd : dK(x) ≤ α}

Theorem: [Grove, Cheeger,...] Let K ⊂ Rd be a compact set.

• Let r be a regular value of dK . Then d−1K (r) is a topological submanifold
of Rd of codimension 1.

• Let 0 < r1 < r2 be such that [r1, r2] does not contain any critical value
of dK . Then all the level sets d−1K (r), r ∈ [r1, r2] are isotopic and

Kr2 \Kr1 = {x ∈ Rd : r1 < dK(x) ≤ r2}

is homeomorphic to d−1K (r1)× (r1, r2].



Weak feature size and stability

The weak feature size of a compact K ⊂ Rd:

wfs(K) = inf{c > 0 : c is a critical value of dK}

Proposition: [C-Lieutier’05] Let K,K ′ ⊂ Rd be such that

dH(K,K ′) < ε :=
1

2
min(wfs(K),wfs(K ′))

Then for all 0 < r ≤ 2ε, Kr and K ′r are homotopy equivalent.
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1

2
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Weak feature size and stability

The weak feature size of a compact K ⊂ Rd:

wfs(K) = inf{c > 0 : c is a critical value of dK}

Proposition: [C-Lieutier’05] Let K,K ′ ⊂ Rd be such that

dH(K,K ′) < ε :=
1

2
min(wfs(K),wfs(K ′))

Then for all 0 < r ≤ 2ε, Kr and K ′r are homotopy equivalent.

Compact set with positive wfs:

• Stability properties

• Large class of compact sets (including sub-
analytic sets)

• K → wfs(K) is not continuous (unstability
of critical points).

K′

K

wfs(K′)



Overcoming the discontinuity of wfs

Proposition: [C-Lieutier’05] Let K,K ′ ⊂ Rd be such that

dH(K,K ′) < ε :=
1

2
min(wfs(K),wfs(K ′))

Then for all 0 < r ≤ 2ε, Kr and K ′r are homotopy equivalent.

K → wfs(K) is not continuous (unstability of
critical points).

Option 1:
Restrict to a smaller class of com-
pact sets with some stability prop-
erties of the critical points.

Option 2:
Try to get topological information
about K without any assumption
on wfs(K ′).



Overcoming the discontinuity of wfs

Proposition: [C-Lieutier’05] Let K,K ′ ⊂ Rd be such that

dH(K,K ′) < ε :=
1

2
min(wfs(K),wfs(K ′))

Then for all 0 < r ≤ 2ε, Kr and K ′r are homotopy equivalent.

K → wfs(K) is not continuous (unstability of
critical points).

Option 1:
Restrict to a smaller class of com-
pact sets with some stability prop-
erties of the critical points.

Option 2:
Try to get topological information
about K without any assumption
on wfs(K ′).

Persistence-based inference

Notion of µ-critical points.
Strong reconstruction re-
sults.



Instability of critical points and µ-critical points

Critical
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Instability of critical points and µ-critical points

A point x ∈ Rd is µ-critical for K if ‖∇dK(x)‖ ≤ µ
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Instability of critical points and µ-critical points

A point x ∈ Rd is µ-critical for K if ‖∇dK(x)‖ ≤ µ

Theorem: [C-Cohen-Steiner-Lieutier’06] Let K,K ′ ⊂ Rd be two compact
sets s. t. dH(K,K ′) ≤ ε. For any µ-critical point x for K, there exists a
(2
√
ε/dK(x) + µ)-critical point for K ′ at distance at most 2

√
εdK(x) from

x.

Critical
points Critical

point

K
K ′



Proof of the stability theorem

Lemma 1: Let x be a µ-critical point for dK . For any
y ∈ Rd,

dK(y)2 ≤ dK(x)2 + 2µdK(x)‖x− y‖+ ‖x− y‖2



Proof of the stability theorem

Lemma 1: Let x be a µ-critical point for dK . For any
y ∈ Rd,

dK(y)2 ≤ dK(x)2 + 2µdK(x)‖x− y‖+ ‖x− y‖2

Proof:

For any x′ ∈ ΓK(x)

dK(y)2 ≤ ‖y − x′‖2

= ((y − x) + (x− x′), (y − x) + (x− x′))
= ‖y − x‖2 + ‖x− x′‖2 + 2(y − x, x− x′)
= dK(x)2 + 2dK(x)‖x− y‖ cos(y − x, x− x′) + ‖x− y‖2

x

dK(x)

K

ΓK(x)

θK (x)

y

x′

y − x
x′ − x

α = arccos(µ)
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• If µ = 0: θK(x) = x and any closed hemisphere
of S(x, dK(x)) intersects ΓK(x)⇒ ∃x′ ∈ ΓK(x)
s.t. (y − x, x′ − x) ≤ π − α.
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Lemma 1: Let x be a µ-critical point for dK . For any
y ∈ Rd,

dK(y)2 ≤ dK(x)2 + 2µdK(x)‖x− y‖+ ‖x− y‖2

Proof:
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x′ − xJust need to prove that there exists

x′ ∈ ΓK(x) s.t. cos(y− x, x− x′) ≤ µ
i.e. (y − x, x′ − x) ≤ π − α α = arccos(µ)

• If µ = 0: θK(x) = x and any closed hemisphere
of S(x, dK(x)) intersects ΓK(x)⇒ ∃x′ ∈ ΓK(x)
s.t. (y − x, x′ − x) ≤ π − α.

• If µ 6= 0: compactness of ΓK(x) → there exists a circular cone with apex
x and angle α′ < α containing ΓK(x).



Proof of the stability theorem

Lemma 2: Let K,K ′ ⊂ Rd be two compact sets s.t. dH(K,K ′) ≤ ε. For
any µ-critical point x for K and for any ρ > 0, there exists a µ′-critical point
for K ′ at distance at most ρ from x with

µ′ ≤ µ+
ρ

2dK(x)
+ 2

ε

ρ
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ρ

Proof:

• Let s→ C(s) be the trajectory of ∇dK′ starting at x and parametrized
by arc length.

• if C meets a critical point of K ′ before y = C(ρ) : ok!
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Lemma 2: Let K,K ′ ⊂ Rd be two compact sets s.t. dH(K,K ′) ≤ ε. For
any µ-critical point x for K and for any ρ > 0, there exists a µ′-critical point
for K ′ at distance at most ρ from x with

µ′ ≤ µ+
ρ

2dK(x)
+ 2

ε

ρ

Proof:

• Let s→ C(s) be the trajectory of ∇dK′ starting at x and parametrized
by arc length.

• if C meets a critical point of K ′ before y = C(ρ) : ok!

• Otherwise,

dK′(y)− dK′(x) =

∫ ρ

0

‖∇K′(C(s))‖ds

and there exist a point p on C between s = 0 and s = ρ such that:

‖∇dK′(p)‖ ≤
dK′(y)− dK′(x)

ρ



Proof of the stability theorem

Lemma 2: Let K,K ′ ⊂ Rd be two compact sets s.t. dH(K,K ′) ≤ ε. For
any µ-critical point x for K and for any ρ > 0, there exists a µ′-critical point
for K ′ at distance at most ρ from x with

µ′ ≤ µ+
ρ

2dK(x)
+ 2

ε

ρ

Proof:

• Applying Lemma 1 to x and y = C(ρ) gives

dK(y) ≤
√
dK(x)2 + 2µdK(x)||x− y||+ ||x− y||2

• Since ε = dH(K,K ′), we have that for all z ∈ Rd, |dK(z)−dK′(z)| ≤ ε.



Proof of the stability theorem

Lemma 2: Let K,K ′ ⊂ Rd be two compact sets s.t. dH(K,K ′) ≤ ε. For
any µ-critical point x for K and for any ρ > 0, there exists a µ′-critical point
for K ′ at distance at most ρ from x with

µ′ ≤ µ+
ρ

2dK(x)
+ 2

ε

ρ

Proof:

It follows that

dK′(y)− dK′(x) ≤
√
dK(x)2 + 2µdK(x)||x− y||+ ||x− y||2

−dK(x) + 2ε

≤ dK(x)[

√
1 +

2µ||x− y||
dK(x)

+
||x− y||2
dK(x)2

− 1]

+ 2ε

≤ µ||x− y||+ ||x− y||
2

2dK(x)
+ 2ε



Proof of the stability theorem

Lemma 2: Let K,K ′ ⊂ Rd be two compact sets s.t. dH(K,K ′) ≤ ε. For
any µ-critical point x for K and for any ρ > 0, there exists a µ′-critical point
for K ′ at distance at most ρ from x with

µ′ ≤ µ+
ρ

2dK(x)
+ 2

ε

ρ

Proof:

It follows that

dK′(y)− dK′(x) ≤
√
dK(x)2 + 2µdK(x)||x− y||+ ||x− y||2

−dK(x) + 2ε

≤ dK(x)[

√
1 +

2µ||x− y||
dK(x)

+
||x− y||2
dK(x)2

− 1]

+ 2ε

≤ µ||x− y||+ ||x− y||
2

2dK(x)
+ 2ε

smaller than ρ since y = C(ρ)
and C is parametrized by arc
length.

‖∇K′ (p)‖ ≤
dK′ (y)− dK′ (x)

ρ



The critical function of a compact set

Definition: The critical function χK : (0,+∞)→ R+ of a compact set K is
the function defined by

χK(r) = inf
x∈d−1

K (r)
‖∇K(x)‖



The critical function of a compact set

Definition: The critical function χK : (0,+∞)→ R+ of a compact set K is
the function defined by

χK(r) = inf
x∈d−1

K (r)
‖∇K(x)‖Easy to compute from

Vor(K) when K is a finite
point cloud!



The critical function of a compact set



Stability of the critical function

Theorem:[critical function stability theorem CCSL’06] Let K and K ′ be two
compact subsets of Rd s. t. dH(K,K ′) ≤ ε. For all r ≥ 0 , we have:

inf{χK′(u) |u ∈ I(r, ε)} ≤ χK(r) + 2

√
ε

r

where I(r, ε) = [r − ε, r + 2χK(r)
√
εr + 3ε]



Stability of the critical function

Proof: this is an easy consequence of the critical point stability theorem.

Let r ≥ 0 and x ∈ d−1K (r) be such that ‖∇dK(x)‖ = χK(r).

• Critical point stability theorem ⇒ there exists a (2
√
ε/r + χK(r))-

critical point p for K ′ s.t. d(p, x) ≤ 2
√
εr and dK′(p) ≥ dK′(x).

• Applying lemma 1 to x, p and K gives

dK(p) ≤
√
r2 + 4χK(r)d

√
εr + 4εr

≤ r

√
1 + 4χK(r)

√
ε/r + 4ε/r

≤ r + 2χK(r)
√
εr + 2ε

• to conclude the proof use that dK′(p) ≥ dK′(x) and |dK′(p)−dK(p)| <
ε.



Reach(es)

µ-reach of a compact K ⊂ Rd:

rµ(K) = inf{dK(x) : ‖∇dK(x)‖ < µ}

• ∀µ ∈ (0, 1), rµ(K) ≤ wfs(K)

• for µ = 1, rµ(K) is the reach introduced
by Federer in Geometric Measure Theory

K

• rµ(K) = 0 if µ ≥
√

2/2

• rµ(K) = a if µ <
√

2/2

• wfs(K) = a
2a



Separation of critical values

Theorem: [CCSL’06] Let K and K ′ be two compact subsets of Rd, ε be the
Hausdorff distance between K and K ′, and µ be a non-negative number. The
distance function dK has no critical values in the interval ]4ε/µ2 , rµ(K ′)−3ε[.
Besides, for any µ′ < µ, χK is larger than µ′ on the interval

]
4ε

(µ− µ′)2
, rµ(K ′)− 3

√
εrµ(K ′)[



Separation of critical values

Theorem: [CCSL’06] Let K and K ′ be two compact subsets of Rd, ε be the
Hausdorff distance between K and K ′, and µ be a non-negative number. The
distance function dK has no critical values in the interval ]4ε/µ2 , rµ(K ′)−3ε[.
Besides, for any µ′ < µ, χK is larger than µ′ on the interval

]
4ε

(µ− µ′)2
, rµ(K ′)− 3

√
εrµ(K ′)[

Large intervals without critical
values ⇒ large intervals without
critical value for any close approx-
imation.



A reconstruction theorem

A reconstruction theorem: [C-Cohen-Steiner-Lieutier’06]
Let K ⊂ Rd be a compact set s.t. rµ = rµ(K) > 0 for some µ > 0. Let

K ⊂ Rd be such that dH(K,K ′) < κrµ(K) with κ < min(
√
5
2 − 1, µ2

16+2µ2 )

Then for any d, d′ s.t.

0 < d < wfs(K) and
4κrµ
µ2
≤ d′ < rµ − 3κrµ

the hypersurfaces d−1K′ (d
′) and d−1K (d) are isotopic.



A reconstruction theorem

Reconstruction theorem: (Weak version)
Let K ⊂ Rd be a compact set s.t. rµ = rµ(K) > 0 for some µ > 0. Let

K ⊂ Rd be such that dH(K,K ′) = ε < κrµ(K) with κ < µ2

5µ2+12 Then for

any d, d′ s.t.

0 < d < wfs(K) and
4κrµ
µ2
≤ d′ < rµ − 3κrµ

the offsets K ′
d′

and Kd are homotopy equivalent.



Proof of the reconstruction theorem

• Separation of critical values: dK′ does not have any critical value in
( 4ε
µ2 , rµ(K)− 3ε)

⇒ it is enough to prove the theorem for d′ = 4ε/µ2.

• We have wfs(K ′d
′
) ≥ rµ(K)− 3ε− 4ε/µ2 and

dH(K,K ′d
′
) ≤ 4ε

µ2
+ ε

• The conclusion of the theorem holds as soon as

dH(K,K ′d
′
) <

1

2
min(wfs(K ′d

′
),wfs(K))
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This is exactly the assumption made on κ!



Proof of the reconstruction theorem

• Separation of critical values: dK′ does not have any critical value in
( 4ε
µ2 , rµ(K)− 3ε)

⇒ it is enough to prove the theorem for d′ = 4ε/µ2.

• We have wfs(K ′d
′
) ≥ rµ(K)− 3ε− 4ε/µ2 and

dH(K,K ′d
′
) ≤ 4ε

µ2
+ ε

• The conclusion of the theorem holds as soon as

dH(K,K ′d
′
) <

1

2
min(wfs(K ′d

′
),wfs(K))

This is exactly the assumption made on κ!

Remark: to get the isotopy one needs stability results for ∇dK ...



Topological/geometric properties of the offsets of K are stable with
respect to Hausdorff approximation:

1. Topological stability of the offsets of K (CCSL’06, NSW’06).

2. Approximate normal cones (CCSL’08).

3. Boundary measures (CCSM’07), curvature measures (CCSLT’09), Voronoi
covariance measures (GMO’09).

Distance-based geometric inference



Take-home messages

• Distance functions provide a powerful framework for robust geometric
inference with theoretical guarantees:
- for a wide class of (non smooth) shapes
- in any dimension.

• In practice (for point clouds) the algorithms rely on the Voronöı diagram
or the Delaunay triangulation ⇒ ok in 2D and 3D!

• But no efficient reconstruction algorithm in higher dimension...


