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Abstract

Persistence provides a way of grading the importance of homological features in the sublevel sets
of a real-valued function. Following the de�nition given by Edelsbrunner, Morozov and Pascucci,
an ε-simpli�cation of a function f is a function g in which the homological noise of persistence less
than ε has been removed. In this paper, we give an algorithm for constructing an ε-simpli�cation
of a function de�ned on a triangulated surface in linear time. Our algorithm is very simple, easy to
implement and follows directly from the study of the ε-simpli�cation of a function on a tree. We
also show that the computation of persistence de�ned on a graph can be performed in linear time
in a RAM model. This gives an overall algorithm in linear time for both computing and simplifying
the homological noise of a function f on a surface.
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1 Introduction

Motivation. Much of modern science and engineering is driven by data. However, measuring
nature is no easy task. Experiments are always plagued by noise. More fundamentally, physical
phenomena do not exist at a single scale, and information obtained in experiments about these
phenomena spans all scales at once.

Recently the theory of persistence homology [8, 19] emerged as a viable method for dealing
with noise and omniscalar nature of data. Instead of forcing the user to make decisions about a
�xed scale or a �xed level of noise in the data, persistence quanti�es features across all di�erent
scales simultaneously. It presents the measurements in a persistence diagram [3] which records each
feature as a point in the extended plane. The distance of the point to the diagonal represents the
prominence, or persistence, of its feature. After examining such complete picture a user is free to
decide how to view the data.

However, just knowing how much noise there is in the data, and where it occurs is not enough.
Before using it in computation or visualization one usually desires to rid the data of unimportant
features while keeping signi�cant information intact. This raises the natural question of persistence-
sensitive simpli�cation.

Results and prior work. The question of simpli�cation is tightly embedded in the history of
persistence. It was considered in the �rst paper to introduce persistence [8] and later reinforced by
the stability result [3]. Some of the �rst uses of persistence in the visualization community have
been for simplifying various descriptors: Morse-Smale complexes [7, 2, 12] and Reeb graphs [17, 6].
We �nd simpli�cation of topological descriptors convenient for visualization, but insu�cient for
computational analysis of the underlying data.

In this paper we follow the formalization of the simpli�cation question proposed by Edelsbrunner,
Morozov, and Pascucci [9]. Given a space X and a real-valued function f : X→ R with a persistence
diagram Dgm(f), they call a generic function g : X → R a (strong) ε-simpli�cation of f if the two
functions are close, ‖f − g‖∞ ≤ ε, and the persistence diagram Dgm(g) consists only of those
points in the diagram of f that are more than ε away from the diagonal. Edelsbrunner et al. [9]
give a constructive proof of existence of ε-simpli�cations of functions on 2-manifolds, and show
that the distance between the original function and its ε-simpli�cation sometimes has to be ε.
Their algorithm applies to functions de�ned on the vertices of the triangulated 2-manifold, and
linearly interpolated elsewhere. It is technically involved, and di�cult to implement since it requires
potentially considerable subdivision of the domain.

In this paper we deliberately abstract ourselves from the piecewise linear function setting, and
show how to simplify general �ltrations of simplicial complexes without subdividing simplices. The
abstraction turns out bene�cial, and we obtain a simple algorithm that computes ε-simpli�cations
in linear time. Moreover, the algorithm allows for an e�cient extraction of a hierarchy of ε-
simpli�cations, thus resolving an open question of [9]. Our discrete setup can be applied to the
piecewise linear function simpli�cation by taking the �rst barycentric subdivision of the domain as
explained in Section 4.3. Additionally, we observe that in the RAM model, persistence of �ltrations
of 2-manifolds can be computed in linear time, thus giving us both an optimal computation and
simpli�cation algorithms in this model.
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2 Persistence

Persistence studies evolution of classes in sequences of vector spaces. Most commonly such sequences
arise as we consider the homology groups of a �ltration of the space by the sublevel sets of a real-
valued function de�ned on it. Intuitively homology is a topological invariant that keeps track of
components, tunnels, voids, and their high-dimensional counterparts in a topological space; we refer
the reader to Munkres [16] or Hatcher [13] for a review of homology theory.

2.1 Pairing and ε-simpli�cations

Let f : X → R be a real-valued function, and denote by Xa = f−1(−∞, a] its sublevel set, and
by Hp(Xa) the p-dimensional homology group1 of the sublevel set. For any a < b inclusion of the
sublevel sets Xa ⊆ Xb induces a map between their homology groups iba : Hp(Xa)→ Hp(Xb), and we
obtain a sequence

Hp(Xa1)→ Hp(Xa2)→ . . .→ Hp(Xan)

where ai are those function values where p-dimensional homology of the sublevel set changes. Ac-
cording to persistence, a class λ ∈ Hp(Xa) is born in Hp(Xa) if λ is not in the image of the map iaa′
for any a′ < a. Class λ dies in H(Xb) if iba(λ) ∈ im iba′ for some a′ < a, but ib

′
a (λ) /∈ im ib

′
a′ for any

b′ < b. In this case, we say that Hp(Xa) and Hp(Xb) are paired and we record this information by
adding point (a, b) to the p-dimensional persistence diagram of the function, Dgmp(f). We add a
point for every such class, and for technical reasons add every point on the diagonal with in�nite
multiplicity. Cohen-Steiner et al. [3] have shown that persistence diagrams are stable under small
perturbations of the function.

For algorithmic purposes one replaces space X with its triangulation K, and function f with
a �ltration of the simplices in K. Namely, we take an ordering F = σ1, σ2, . . . , σm of simplices of
K, and denote by Ki =

⋃i
j=1 σj the union of simplices up to σi. For all Ki to be subcomplexes,

a face σ of a simplex τ must precede it in the �ltration, which we denote σ <F τ . We will use
sometimes equivalently the terminology σ older than τ in F or σ lower than τ in F to designate
σ <F τ . A �ltration F is compatible with the function f : K → R if f(σ) ≤ f(τ) whenever σ <F τ .
Equivalently, we will also say that F is an f -�ltration.

The way in which we obtain a �ltration depends on the function we study. One example common
in practice is a piecewise linear function f : |K| → R de�ned on the vertices of a triangulation K and
linearly interpolated on the interior of the simplices. If we assign to each simplex the maximum value
the function attains on it, we get a piecewise constant approximation f̄ : K → R of f : |K| → R
with f̄(σ) = maxx∈σ f(x). Sorting the simplices by their f̄ -value and breaking the ties by dimension
and arbitrarily in each dimension, we get a total order on the simplices which gives an f̄ -�ltration.

The sequence of simplices implies a �ltration of subcomplexes built-up simplex by simplex,
∅ = K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Km = K. Applying the homology functor, the inclusions induce maps
between homology groups, and we obtain a sequence

H(K1)→ H(K2)→ . . .→ H(Km).

Applying the de�nition of persistence to this sequence we have a homology class born with the
addition of simplex σ = σi that dies with addition of simplex τ = σj . We call σ positive and τ

1In this paper we implicitely assume that homology groups are computed with coe�cients in Z/2Z, but other
coe�cient �elds may be used as long as the machine model can handle basic operations in this �eld.
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negative, and say that the two simplices are paired. Assuming we have a f -�ltration, the persistence
of (σ, τ) is f(τ) − f(σ). For example, for the case of 0-dimensional homology, an edge is negative
if it merges two components. From the oldest vertices of each component, we pick the youngest
one, and say that it is paired with the negative edge. Some positive simplices remain unpaired
because the classes they create never die, we call such simplices essential. The number of essential
p-simplices is equal to the rank of the p-dimensional homology group of K. Edelsbrunner, Letscher,
and Zomorodian [8] gave an algorithm to compute the pairing of simplices in the �ltration of a
simplicial complex. In particular, they show how to compute the dimension 0 persistence diagram
in O(mα(m)), where α is the inverse Ackermann function.

In this paper, we consider a function f : K → R de�ned on a triangulation K and suppose
sublevel sets of f are subcomplexes. In other words, we assume that K has a f -�ltration. We
want to simplify f in a way that removes its less persistent features. For this, we investigate the
concept of ε-simpli�cation introduced in [9] that we slightly adapt to our purpose. First, we need
the following de�nition:

De�nition 1. A persistence pair is local if its simplices are consecutive in the �ltration.

It is not too di�cult to prove [15] that two consecutive simplices in a �ltration are (locally)
paired if and only if the �rst simplex is a face of the second. The reason for considering local pairs
is that adding a local pair to a subcomplex does not change its homotopy type.

De�nition 2 (ε-simpli�cation). A dimension p ε-simpli�cation of a function f : K → R is a

function g : K → R such that:

1. ‖f − g‖∞ ≤ ε,

2. all persistence diagrams of g are the same as those of f except for Dgmp(g) which is the

same as Dgmp(f) but with all o�-diagonal points at L1-distance at most ε from the diagonal

removed,

3. K has a g-�ltration such that all pairs of dimension (p, p + 1) with persistence 0 are local.

A function which is a dimension p ε-simpli�cation of f for all p is called an ε-simpli�cation of f .
In Section 4.3, we will explain how to adapt our framework to the simpli�cation of piecewise linear
functions.

2.2 Computing the persistence of a �ltered graph in linear time

Having de�ned persistence for simplicial complexes, we now turn our attention to the computation
of persistence for connected graphs. For this, consider a �ltration of a connected graph G = (V,E).
Computing the persistence of this �ltration amounts (1) to distinguish positive from negative edges
and (2) to pair the negative edges with the (positive) vertices. As noticed in [1] for the special case
of height functions over terrain meshes, (1) and (2) can be implemented using the union-�nd data-
structure, keeping track of the oldest vertex in each component. In particular, G can be interpreted
as a union graph [1] with edge weights corresponding to the �ltration ordering. From Kruskal's
algorithm [18], we know that the set of negative edges of G's �ltration corresponds to the minimum
spanning tree of this union graph. To obtain a linear time algorithm we use a two step algorithm:

1. We compute the minimum spanning tree T of G with �ltration ordering for the edges.
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2. We compute the persistence pairing in T using T itself as a batched (or o�-line) union tree.

The �rst step can be implemented with the Fredman and Willard [10] linear time algorithm for the
minimum spanning tree problem.2 The model of computation is a Random Access Machine with
�xed word size, allowing usual arithmetic operations and bitwise Boolean operations in constant
time per word. The word size is also assumed to be large enough to hold the various parameters of
the problem (when the �ltration is deduced from a function on V ∪ E, each function value should
�t into a single machine word). We refer to this model simply as a RAM. The second step can be
implemented in the same model of computation with the algorithm by Gabow and Tarjan [11] for
union trees, see Appendix A for details. In conclusion,

Theorem 3. The persistent homology of a connected graph with m edges can be computed in O(m)-
time on a RAM.

Notice that when the �ltration of G is implicitly given by a function on V ∪ E, the �ltration
order of the edges in T can be obtained in linear time with Radix sort. In any case, using a decision
tree model will add at most a logarithmic factor for the whole procedure.

2.3 Persistence on d-manifolds via duality

Let K be a complex representing a d-manifold. We can de�ne its dual block-complex K∗ (which is
a cell complex for d ≤ 3) [16]. We associate to each simplex σ ∈ K of dimension p a block σ∗ ∈ K∗

of dimension d− p inverting the adjacency relation (i.e. a block τ∗ is a face of σ∗ in the dual if and
only if σ is a face of τ in the original complex). A �ltration F of K induces a �ltration F∗ of K∗

using the reverse of the ordering of F.

Theorem 4. The persistence pairs of dimension (p, p+1) in F∗ correspond to the pairs of dimension

(d− 1− p, d− p) in F.

This result can be deduced by applying the symmetry theorem of [4] to the �rst barycentric
subdivision of the complex (which is the same as the �rst barycentric subdivision of the dual
complex). Appendix B presents a simpler proof which is su�cient for our needs.

In this paper, we focus on the simpli�cation of the 0-dimensional persistence diagram of a �ltered
graph. By duality, this directly gives a way to simplify the 1-dimensional persistence diagram of a
�ltered 2-manifold, and more generally the (d− 1)-dimensional diagram of a �ltered d-manifold.

3 ε-Simpli�cation on trees

In this section, we state and prove a key result concerning trees.

Theorem 5. Given a tree T with n vertices, a function f : T → R and a positive constant ε, there
exists an ε-simpli�cation g : T → R. Moreover, assuming the persistence pairs in a f -�ltration of

T are given, the computation of g can be performed in O(n) time using O(n) storage.

In Section 3.1, we give an algorithm for computing an ε-simpli�cation g of f . Section 3.2 states
all technical lemmas required by the proof of the correctness. Throughout this section, F designates
a f -�ltration of T and we assume persistence pairs in F are given. To simplify the presentation, we
assume f is generic, i.e. injective on the set of vertices. If f is non-generic, we �rst apply a symbolic
perturbation to it.

2If the genus of the graph G is �xed, Mare² [14] gives a linear time algorithm in the pointer machine model.
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3.1 Algorithm
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Figure 1: Top left: the connecting path starting at w = minF Hv passes through v. Top right:
�ltration of the tree on the bottom left. Oriented edges are locally paired with their head. Bottom
middle: ε-simpli�cation for ε = 3. The forest is composed of 2 trees, rooted at the blue vertices.
Bottom right: (+∞)-simpli�cation.

3.1.1 Special case: ε = +∞

In a f -�ltration F of a tree T , all vertices are positive and all edges are negative. The vertex v0

with smallest f -value creates an essential connected component and is the only vertex which is
unpaired. In particular, the persistence diagram of f has a unique point with in�nite persistence,
namely the point (f(v0),+∞). Suppose all vertices in F are locally paired but v0. We observe that
every edge must be paired with its endpoint of largest f -value. Let us orient the edges in T from
their endpoint of smallest f -value to their endpoint of largest f -value as in Figure 1 (right). The
previous observation shows that every vertex but v0 has in-degree 1. The vertex v0 has in-degree 0.
In particular, f is increasing on the vertices going down the tree from v0.

If the pairs are not already local, an (+∞)-simpli�cation g of f can be constructed as follows.
We de�ne the vertex v0 with smallest f -value as the root of T and let Tv be the subtree of T rooted
at vertex v (see Figure 1). We set g(v0) = f(v0). For all vertices v 6= v0 we set g(v) = min f(Tv).
Note that g is indeed increasing on the vertices going from the root to the leaves. The reason for
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choosing this function g will become clear shortly. The function g can be computed in linear time
for all vertices by recursively removing the leaves of T after initializing g to f : if v is a leaf and w is
its neighbor, simply set g(w) = min(g(w), g(v)). Once the g-values at vertices have been determined
as described above, we set g(ab) = max{g(a), g(b)} for all vertices ab in T .

To prove that g is an (+∞)-simpli�cation, we construct a �ltration G compatible with g with the
property that all persistence pairs are local and the persistence diagram of g shares with Dgm(f)
the same point with in�nite persistence, (f(v0),+∞). For this, we rank simplices in such a way
that every edge follows immediately its endpoint of highest rank.

3.1.2 General case

All lemmas used in this section are stated and proved in Section 3.2.
To construct an ε-simpli�cation g of f , we �rst initialize g to f and mark simplices that belong

to pairs of persistence less than ε. We will prove in the next section that the set of marked simplices
has the structure of a forest, in which each tree H has a missing vertex u0. We use this missing
vertex u0 as the root of the tree H̄ = H ∪ {u0} and apply to H̄ the simpli�cation described above.
Speci�cally, writing Hv for the subtree of H rooted at v, we set g(v) = min f(Hv) for all vertices v in
H and g(ab) = max{g(a), g(b)} for all edges ab in H. By processing the forest componentwise, this
gives a linear time algorithm for computing an ε-simpli�cation g of f . Remark the data-structure
is reduced to T and has linear size.

We now establish the correctness of our algorithm, delaying the proof of technical lemmas to
the next section. For this, we use the fact that the root u0 of each tree H̄ has a value smaller than
any simplex in H (Lemma 8). Similar to the case ε = +∞, this allows us to construct a �ltration
G compatible with g with the property that all marked simplices are locally paired and have zero
persistence. Speci�cally, we initialize G to F. Note that the set of simplices in H which are assigned
the same g-value f(w) forms a subpath of the path from w to u0. This is a direct consequence of
the fact that Hv ⊆ Hw i� w is an ancestor of v in the tree H̄ rooted at u0. We move all simplices on
this subpath next to w in G and reorder them in such a way that they are locally paired in G. We
will prove in Lemma 11 that the pairing of non-marked simplices is the same in F and G, implying
that the persistence diagram of g is the same as the one of f but with all o�-diagonal points at
L1-distance at most ε from the diagonal removed. To complete the proof, we will also establish that
‖f − g‖ ≤ ε in Lemma 10.

3.2 Technical lemmas

We write [σ, τ ]F for the sequence of simplices between σ and τ in �ltration F. We say that a set of
persistence pairs P is closed under inclusion if whenever (σ, τ) ∈ P and (σ′, τ ′) is a persistence pair
with [σ′, τ ′]F ⊆ [σ, τ ]F, then (σ′, τ ′) ∈ P. In particular, the set of pairs with persistence less than ε
is closed under inclusion. Given a set of persistence pairs P closed under inclusion, we �rst study
the way simplices in P are arranged in the tree T .

Consider the set of connected components in the subcomplex de�ned by the �rst i simplices in
�ltration F. Each connected component in this subcomplex has a unique unpaired vertex, which is
the oldest in its component. The persistence pair (v, e) in F is characterized by the fact that adding
e to the �ltration F merges two components Cv and Cw such that v = minF Cv and w = minF Cw

for some vertex w which precedes v in the �ltration, v >F w. Let p(v, e) be the half-open path in
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the tree T connecting v to e. Clearly,

p(v, e) ⊆ Cv ∪ {e} ⊆ [v, e]F. (1)

Lemma 6. Any simplex σ ∈ p(v, e) is paired with some simplex τ ∈ [v, e]F. In particular, [σ, τ ]F ⊆
[v, e]F.

Proof. Let σ ∈ p(v, e). We may assume σ 6= v, e. By Equation (1), σ belongs to Cv. Suppose
σ is a vertex. Since v is the only simplex unpaired in Cv, this implies that when e is added to
the �ltration, σ must already be paired with an edge e(σ) preceding e in the �ltration, e(σ) <F e.
Suppose now that σ is an edge and denote v(σ) its paired vertex. As σ ∈ Cv, the two components
it joins when σ is added must be included in Cv, hence v(σ) ∈ Cv and v(σ) >F v.

Let us denote by {P} the set of simplices in the pairs of P.

Lemma 7. Consider a connected component H of {P} in T . Any simplex in H is paired with a

simplex in H.

Proof. Let (v, e) be a pair in P. Since P is closed by inclusion, Lemma 6 shows that p(v, e) ⊆ {P}.
It follows that e and v belong to a same component of {P} in T .

Let H̄ be the closure of a component H of {P} in T . It follows from Lemma 7 that each
component H of {P} is a subtree of T which contains the same number of vertices and edges.
Therefore, H̄ \H must be reduced to a single vertex which we call the root of H. Note that H may
share its root with other subtrees.

Lemma 8. The root of H is lower in F than any simplex in H.

Proof. Let u0 be the root of H. We show that the hypothesis u0 >F minF H leads to a contradiction.
For all simplices w in H lower than u0, we consider the highest edge on the path connecting w to
u0 and let e be the lowest of such edges. We claim that e must be paired with a vertex v ∈ H
lower than u0. Indeed, when e is added in the �ltration, e connects two components: one of whom
contains u0 and possibly vertices of H higher than u0, while the other component contains at least
one vertex of H lower than u0. Since e is paired in H, the claim follows. Let e(u0) be paired with u0.
Since P is closed by inclusion, we must have e(u0) >F e. But this contradicts that e(u0) is paired
with u0 since the component below e(u0) that contains u0 also contains v (they are connected by a
path below e) which is lower than u0 by the above hypothesis.

We now de�ne connecting paths which will turn out to be useful to bound the di�erence between
f and the function g computed by the algorithm in Section 3.1.2. Given a persistence pair (v, e),
we let ClosureF(v, e) be the set of persistence pairs obtained by taking the closure of (v, e) under
inclusion in F. Applying what we just saw, ClosureF(v, e) is a forest in which each tree has a missing
vertex. This missing vertex is designated as the root of the associated tree.

De�nition 9. The connecting path of (v, e) is the half-open path connecting v to the root of the

tree containing v in {ClosureF(v, e)}.

Lemma 10. The function g computed by the algorithm in Section 3.1.2 satis�es ‖f − g‖ ≤ ε.
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Proof. Let {P} be the set of pairs with persistence less than ε. For all simplices σ in {P}, we let H
be the connected component of {P} containing σ and designate as the root of H its missing vertex
u0 = H̄ \ H. If σ is a vertex, we let Hσ be the subtree of H rooted at σ. If σ is an edge, we let
Hσ be the subtree of H rooted at the endpoint of σ furthest away from the root of H. We have
g(σ) = min f(Hσ). Consider the vertex w such that w = minF Hσ, i.e. g(σ) = f(w) and let us
prove that f(w) ≤ f(σ) ≤ f(e(w)) where e(w) is the edge paired with w in F. By de�nition, the
connecting path of (w, e(w)) is contained in ClosureF(w, e(w)) ⊆ P and therefore is contained in H.
It starts from w and ends at a vertex whose f -value is smaller than the f -value of w while staying
inside H. On the other hand w is the simplex of Hσ with smallest f -value. This shows that the
connecting path of (w, e(w)) must go outside Hσ and in particular must pass through σ (see Figure
1). Thus, σ belongs to the connecting path of (w, e(w)) which is contained in [w, e(w)]F. It follows
that f(w) ≤ f(σ) ≤ f(e(w)) and since (w, e(w)) has persistence less than ε, |f(σ)− g(σ)| ≤ ε.

Let G be the �ltration constructed in Section 3.1.2 and let {P} be the set of pairs with persistence
less than ε. Some key properties are that <F and <G agree on K \ {P}, simplices of {P} can only
be lowered from F to G and P is composed only of local pairs in G.

Lemma 11. The pairing of simplices not in {P} is the same in F and G.

A proof is provided in Appendix C.

4 Applications

4.1 ε-Simpli�cation of the 0-dimensional diagram of a complex

The goal of this section is to prove that in a complex, we can simplify the dimension 0 persistent ho-
mology using our algorithm without a�ecting or being a�ected by higher dimensions. The following
lemma is easily veri�ed:

Lemma 12. The pairing of the dimension p persistent homology depends only on the relative order

of the positive p-simplices and the relative order of the negative (p + 1)-simplices.

Let F be a �ltration of a connected simplicial complex K. The vertices and negative edges of
F form a tree. The simpli�cation algorithm of Section 3 only lowers the value of the simplices of
this tree. The positive edges of F thus remain positive after the simpli�cation. Indeed, when a
positive edge appears in F, its extremities are already in the same connected component, and this
remains true if we only add vertices and edges before this edge. The negative edges therefore also
remain negative (their number does not depend on F). The tree of negative edges thus remains the
same during the algorithm. Using Lemma 12, this proves that our algorithm is not a�ected by the
presence of positive edges and higher dimensional simplices. It also proves that persistent homology
of dimension 1 or higher is not a�ected by our algorithm.

4.2 ε-Simpli�cation on surfaces

As stated in the title of this paper, our goal is to simplify a function on a surface. That is, our main
interest is in a complex whose underlying space is a 2-manifold.

Section 4.1 proves that we can �nd an ε-simpli�cation of the dimension 0 persistent homology
of a function on such a complex without a�ecting the dimension 1 persistence.
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By Theorem 4, the persistence pairs of dimension (1, 2) are simply the persistence pairs of
dimension (0, 1) of a dual graph. We can therefore apply the algorithm of Section 3 in the dual.
Besides, it is straightforward to see that the last paragraph of Section 4.1 also applies for this dual
simpli�cation, i.e. that since the dual simpli�cation only moves positive edges and negative triangles
higher, simplices do not change sign and the algorithm does not a�ect and is not a�ected by simplices
that are neither positive edges nor negative triangles. We therefore obtain an ε-simpli�cation of the
dimension 1 persistence without a�ecting the dimension 0 persistence.

The set of simplices whose value can be changed by the dimension 0 simpli�cation and the
dimension 1 simpli�cation are disjoint (they don't have the same dimension and sign). Since each
simpli�cation changes the value of a simplex by at most ε, cumulating the two simpli�cations also
changes the value of each simplex by at most ε. We thus have the following theorem:

Theorem 13. Given a function f on a triangulated 2-manifold K, there exists an ε-simpli�cation

g of f . Moreover, given the persistence pairing of a f -�ltration of K, we can compute an ε-
simpli�cation g and the g-�ltration in linear time.

In conjunction with Theorem 3, this gives:

Corollary 14. In the special case of the RAM model, given only a function f , an ε-simpli�cation

of f can be computed in linear time.

If the underlying space of K is a d-manifold with d > 2, the algorithm presented for 2-manifolds
can be adapted to compute a function g that is ε-close to f and has simpli�ed persistence diagrams
of dimension 0 and d − 1. The intermediate persistence diagrams are not a�ected. This is very
similar to a classical result in Morse theory where, after canceling handles (by inverting the gradient
between two critical points), a connected d-manifold has only one critical point of dimension 0 and
one critical point of dimension d left. Our result is a combinatorial and hierarchical (we can do
partial simpli�cation) version with bounds on the modi�cation of the function.

4.3 Simpli�cation of piecewise linear functions

The preceding Theorem 13 may be used to simplify piecewise linear functions. For this, we consider
a piecewise linear function f : |K| → R and its discrete version f̄ : K → R as in section 2.1. We know
that f and f̄ have the same persistence diagrams [15]. Following the preceding theorem we compute
an ε-simpli�cation ḡ : K → R of f̄ . We then de�ne a piecewise linear function Sd g : |K| → R
on the underlying barycentric subdivision of K. If σ̂ is the barycenter of the simplex σ ∈ K, we
set Sd g(σ̂) = ḡ(σ) and extend Sd g linearly. It can be shown [15] that ḡ and Sd g have the same
persistence diagram. We need to bound ‖f − Sd g‖∞. Consider a simplex σ of K of dimension 0, 1
or 2. The maximal di�erence between f and Sd g over |σ| is attained at one of the vertices of the
barycentric subdivision Sdσ of σ. For every vertex v of σ we have |f(v)−Sd g(v)| = |f̄(v)−ḡ(v)| ≤ ε
by de�nition of ḡ. It thus su�ces to bound |f − Sd g| over the vertices of the form τ̂ , for τ a face
of σ. We have

|f(τ̂)− Sd g(τ̂)| = |f(τ̂)− ḡ(τ)| ≤ |f(τ̂)− f̄(τ)|+ |f̄(τ)− ḡ(τ)| ≤ |f(τ̂)−max
|τ |

f |+ ε

But |f(τ̂)−max|τ | f | can be made as small as we wish by placing τ̂ in the interior of |τ | su�ciently
close to the vertex that maximizes f over |τ |. This only gives a bound of the form ε + η for any
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η > 0, but can be reduced to ε if we assume that f is generic, i.e. injective on the set of vertices.
Indeed, it can be shown in this case that the function at the vertices of K needs only be changed
by ε′ < ε to obtain an ε-simpli�cation of f̄ , leaving room for an ε-simpli�cation of f .3 To conclude,

Theorem 15. Given a piecewise linear generic function f on a triangulated 2-manifold |K| with m
edges, there exists an ε-simpli�cation of f that can be computed in O(m) time on a RAM machine,

or in O(m log m) time if we are dealing with real function values on a real-RAM.

5 Optimal �ltrations and counterexamples

As ε-simpli�cations can always be performed on surfaces, a natural question is to extend the process
to higher dimensional triangulated manifolds. We show that, in some restricted sense of optimal
simpli�cation, this is not always possible already for 3-manifolds and general complexes of dimension
2. In the following we only consider �ltrations where simplices are added one at a time. We
assume the reader familiar with some basics of algebraic topology and refer to the textbook by A.
Hatcher [13] for the various de�nitions.

De�nition 16. A �ltration is said optimal if all its non-essential simplices are locally paired. In

other words, an optimal simpli�cation is an ε-simpli�cation with ε = +∞.

Let K be a simplicial complex. If σ and τ are two simplices of K such that σ is a face of τ but
is not a face of any other simplex in K, then we say that K collapses to K − {σ, τ}. Furthermore,
K is said collapsible if it can be reduced to a vertex by a sequence collapses. It can be proved that a
collapsible complex is simply connected, i.e. has a trivial fundamental group. The following lemma
is easy.

Lemma 17. Let σ1, σ2, . . . , σm be the ordering of the simplices of a �ltration of K. If (σi, σi+1) is

a local pair, then Ki+1 collapses to Ki−1, where Kj denotes the subcomplex of K spanned by the j
�rst simplices.

Claim 18. A triangulated Poincaré homology 3-sphere has no optimal �ltration.

Proof. Let K be a �ltration of a triangulated homology 3-sphere K. Since a homology sphere has
the homology of a sphere, K has precisely two essential simplices: a vertex σ and a tetrahedron τ .
Clearly, from Section 2.1, σ must be the �rst simplex in the �ltration. Also, since the 3-cycle space
of a proper subcomplex of a connected 3-manifold is trivial, the only positive � hence essential �
tetrahedron must be the last simplex in K. If K was optimal, then by the preceding Lemma, K − τ
would be collapsible, hence simply connected. Since the fundamental group of K only depends on
its 2-skeleton, K would also be simply connected. A contradiction.

In fact, 2-complexes may already lack an optimal �ltration. This will be the case for non-
collapsible contractible complexes, as is easily shown with the same type of arguments as above. In
particular,

Claim 19. A triangulated dunce cap or Bing's house with two rooms has no optimal �ltration.

3Using our subdivision method and taking ε = 0 will actually modify f , though f is an obvious 0-simpli�cation
of itself. We can easily remedy to this problem by a simple merging procedure of vertices with equal value.
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A Computing persistence on a tree in linear time

This computation is based on the algorithm by Gabow and Tarjan [11] for union trees. We �rst pick an
arbitrary vertex as the root of the tree T and orient in linear time the edges of T away from this root.
Thus, each non-root vertex v has a unique parent p(v). We next perform a sequence of Union operations
corresponding to the edges of T and maintain a pointer to the oldest vertex in each component. If e = (p(v), v)
is a tree edge, Gabow and Tarjan de�ne a Union(v, p(v)) operation that only uses v as a parameter and is
referred to as Link(v). This leads to the following implementation of the second step, where we assume that
each vertex (representative of a set) has a �eld oldest pointing to the oldest vertex in its component. Here,
Find(v) returns as usual the representative of the component of v.

for each edge e = (p(v), v) of T taken in �ltration order
pvSet← Find(p(v)); // It results from [11] that v = Find(v) at this point.
if v.oldest is younger than pvSet.oldest then
output (v.oldest, e) as a persistence pair;

else

output (pvSet.oldest, e) as a persistence pair;
pvSet.oldest← v.oldest;

endif

Link(v); // The representative of the set p(v) becomes the
// representative for the union of the sets of v and p(v).

endfor

Putting n = |V |, this algorithm performs an intermixed sequence of 2n − 2 Find and Link operations,
which takes O(n) time according to [11].

B Proof of Theorem 4

Let D be the adjacency matrix of K with the rows and columns in the order given by the �ltration F. A
result in [5] shows that the pairing function rD(i, j) de�ned by 1 if the simplices of index i and j are paired
and 0 otherwise can be expressed as

rD(i, j) = rankDj
i − rankDj

i+1 + rankDj−1
i+1 − rankDj−1

i ,

where Dj
i is the lower left minor of D obtained by deleting the �rst i − 1 rows and the last n − j columns

(the simplices are indexed by 1 . . . n here).
The adjacency matrix D∗ associated to F∗ is the transpose of D with respect to the non-standard

diagonal: exchanging faces and cofaces means transposing D, while changing the �ltration order means
reversing the order of rows, and reversing the order of columns.

It follows that rD∗(n + 1− j, n + 1− i) = rD(i, j)4. This means that the persistence pairing is preserved
by duality. In particular, if (σ, τ) is a pair in the primal, (τ∗, σ∗) is a pair in the dual, and if σ creates an
essential cycle in the primal σ∗ also creates an essential cycle in the dual. The dual of a negative simplex is
positive, and the dual of a positive simplex is negative if it is paired and positive if it creates an essential
cycle.

C Proof of Lemma 11

Consider a (0, 1)-pair (v, e) of F not in P. As above, we denote Cv and Cw the two components merged by e
when it is added in F. Let C ′

v and C ′
w be the two components merged by e in G. Since reducing only lowers

4Note that i and j are indices in the �ltration, so the simplex of index i in the primal is the same as the simplex
of index n + 1− i in the dual.
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simplices of {P}, Cv and Cw can only grow in G, i.e Cv ⊆ C ′
v and Cw ⊆ C ′

w. Suppose for the purpose of
contradiction that e is not paired with v in G, and that v is the lowest vertex of F \ {P} whose pairing is
di�erent in G. Then the lowest vertex u of C ′

v in G is not v. If u ∈ Cv, u ∈ {P} (its value changed). Since
the simplices of {P} are paired with vertices of {P} in G (they form local pairs), e cannot be paired with u,
so it must be paired with the lowest vertex w′ of C ′

w which is at least as low as w and then lower than v.
For the same reason as before, w′ /∈ {P}. w′ is then a vertex of F \ {P} whose pairing is di�erent in G and is
lower than v which contradicts our hypothesis. Assuming now that u ∈ C ′

v \ Cv, the path from v to u must
contain an edge of C ′

v whose f -value is larger than the f -value of e in F (otherwise that path would already
be in Cv). Consider the edge η on this path with largest f -value. This edge must be an edge of {P}. It
merges in F two components, one contains w and the other one contains u. So η must be paired in F with
a vertex ν lower than u or w. But this implies [v, e]F ⊆ [ν, η]F and contradicts that P is closed by inclusion.

D Application to the topological simpli�cation of terrains

We wrote an implementation of our algorithms using the python language. It is specialized to the topological
simpli�cation of terrains. The terrain is a triangulated 2D grid whose simplices are assigned a height value in
[0, 1]. The terrain is made manifold by gluing dummy triangles from the boundary of the terrain to a dummy
vertex, thus forming a topological 2-sphere. The dummy simplices are assigned height greater that one. In
practice, this is not ideal, as the many dummy triangles and edges tend to interfere with the pairing of the
actual terrain's simplices; it would be preferable to use a single dummy 2-dimensional face whose boundary
spans the whole terrain boundary edges. Such a dummy face would become the only positive (and un-paired)
2-simplex, and would therefore not interfere with the pairing of the actual simplices. Figure 2 shows two
simpli�cations of the height function of a terrain. Additional views of the same terrain, including 3D views,
can be found at the following URL: http://www-sop.inria.fr/members/Samuel.Hornus/simplif/.

Figure 2: (This is a color �gure) Left : a 80x80 terrain. Heights range from blue (low = 0.0), through
cyan, green, yellow to red (high = 1.0). Middle: A 0.2-simpli�cation of the height function has been
computed. Right : A 1-simpli�cation of the height function has been computed. The terrain has
38396 simplices. The computation of the spanning tree took 1.32 seconds. Each computation of
the persistence pairs took roughly 2.37 seconds. Each simpli�cation step took roughly 0.41 seconds.
Timings were measured on a Core 2 duo 2.6 GHz processor.
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