Topological Data Analysis — Exam

April 07, 2016

1 Bottleneck distance

Question 1. Show that the bottleneck distance satisfies the triangle inequality.

Question 2. Show that the bottleneck distance is only a pseudodistance, that is: exhibit a
pair of distinct persistence diagrams whose distance is zero.

2 FEuler characteristic

Given a topological space X and a field k, the Fuler characteristic is the quantity:

+o00
X(Xik) =D (=1)" dim H; (X k).
=0

Question 3. Show that y is a topological invariant, that is: for any spaces X,Y that are
homotopy equivalent, x(X; k) = x(Y; k).
Hint: look at what happens to each individual homology group.

Now we want to prove the Euler-Poincaré theorem:

Theorem 1. For any simplicial complex X and any field k:
~+00 A
X(Xik) =D (=1)'ni(X),
i=0
where n;(X) denotes the number of simplices of X of dimension i.
For this we will use topological persistence. Consider an arbitrary filtration of X:
P=XoCX;C--C X, =X.
Assume without loss of generality that a single simplex o is inserted at each step j:

\V/jzl, ,m, Xj\Xj—l :{O'j}.

Note that m is then equal to the number of simplices of X, that is:
+o0o
m = Z ni(X).
i=0

Let us apply the persistence algorithm to this simplicial filtration. Recall that we have the
following property:



Lemma 1. At each step j, the insertion of simplex o; either creates an independent d;-
dimensional cycle (i.e. increases the dimension of Hy,(X;-1;k) by 1) or kills a (d; — 1)-
dimensional cycle (i.e. decreases the dimension of Hy,1(X;-1;k) by 1), where d; is the di-
mension of o;.

Question 4. Using Lemma 1, prove Theorem 1.
Hint: proceed by induction on j.

Question 5. Deduce that the Euler characteristic of a triangulable space is independent of the
choice of field k.
3 Reeb graph and Mapper

Consider the function f depicted on the left-hand side of Figure 1. Note that its domain X
(the gray area) is a subset of the plane, not a torus.
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Figure 1: Left: the height function f on a planar domain. Right: the interval cover.

Question 6. Compute the Reeb graph of f. You may simply draw it with labels.

Question 7. Compute the extended persistence diagram of the map f.
Hints: homology of dimension 2 and above is trivial; the values a,--- ,[ are paired up to form
the diagram points.

Question 8. Prune the diagram to obtain the extended persistence diagram of the quotient
map f. What do you observe? Explain.

Question 9. Consider now the interval cover of Im f depicted on the right-hand side of Figure 1.
Compute the corresponding Mapper.

Question 10. Relate the Mapper to the Reeb graph: in your opinion, to which points of the
extended persistence diagram of f do the topological features of the Mapper correspond?



4 The category of persistence modules

A morphism between two persistence modules V and W over T is a family ® of linear maps
(¢¢ : Vi = Wi)ier such that the following diagram commutes for all ¢t < ¢’ € T

!
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V, ——>Vy
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Wi —= Wy
’ll)t
t

® is called an isomorphism if each map ¢, is itself an isomorphism V; — W;.

Question 11. Show that the persistence modules over a fixed index set T, together with the
morphisms between them, form a category, that is:
e for each persistence module V there exist isomorphisms V — V,

e for any morphisms U — 2.V and V—2=W there exists a morphism U Lot wy

A submodule W of a persistence module V is composed of subspaces W; C V, for all t € T,
and of maps w! = v |, for all t <t € T. In particular, v/ (W;) C Wy for all t <t € T. A
simple example of submodule is the null module W = 0 (defined by W; = 0 for all t € T" and
wfl =0 for all t <t € T), which is a submodule of any module V over T.

Question 12. Show that the null module is both an initial and a terminal object in the category,
that is: for any module V there is a unique morphism 0——V and a unique morphism
V——0.

Direct sums in the category are defined pointwise, that is: for any persistence modules V
and W over T, the direct sum V @& W is composed of the spaces V; & W, for all t € T', and of
the maps v/ @ w! for all t < ¢’ € T. We say that V and W are summands of the direct sum
V& W. In particular, we have V=0® YV =V & 0 for any persistence module V, so V is always
a summand of itself. A persistence module V is called indecomposable if its only summands are
itself or the null module. The decomposition theorem that we saw in class asserts that the only
indecomposable persistence modules are the so-called interval modules over T', and that (under
some conditions on 7' or on the dimensions of the spaces) any module decomposes as a direct
sum of interval modules.

Question 13. Prove the decomposition theorem in the case where |T'| = 1.

In the general case however, the result is much more complicated to prove as the persistence
modules over T' do not share the same properties of vector spaces, in particular they are not
semisimple:

Question 14. In the case where |T| > 2, exhibit a counterexample showing that a submodule
of a persistence module V over T" may not always be a summand of V.



