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1 Bottleneck distance

Question 1. Show that the bottleneck distance satisfies the triangle inequality.

Question 2. Show that the bottleneck distance is only a pseudodistance, that is: exhibit a
pair of distinct persistence diagrams whose distance is zero.

2 Euler characteristic

Given a topological space X and a field k, the Euler characteristic is the quantity:

χ(X;k) =
+∞∑
i=0

(−1)i dim Hi(X;k).

Question 3. Show that χ is a topological invariant, that is: for any spaces X,Y that are
homotopy equivalent, χ(X;k) = χ(Y ;k).
Hint: look at what happens to each individual homology group.

Now we want to prove the Euler-Poincaré theorem:

Theorem 1. For any simplicial complex X and any field k:

χ(X;k) =

+∞∑
i=0

(−1)ini(X),

where ni(X) denotes the number of simplices of X of dimension i.

For this we will use topological persistence. Consider an arbitrary filtration of X:

∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xm = X.

Assume without loss of generality that a single simplex σj is inserted at each step j:

∀j = 1, · · · ,m, Xj \Xj−1 = {σj}.

Note that m is then equal to the number of simplices of X, that is:

m =
+∞∑
i=0

ni(X).

Let us apply the persistence algorithm to this simplicial filtration. Recall that we have the
following property:
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Lemma 1. At each step j, the insertion of simplex σj either creates an independent dj-
dimensional cycle (i.e. increases the dimension of Hdj (Xj−1;k) by 1) or kills a (dj − 1)-
dimensional cycle (i.e. decreases the dimension of Hdj−1(Xj−1;k) by 1), where dj is the di-
mension of σj.

Question 4. Using Lemma 1, prove Theorem 1.
Hint: proceed by induction on j.

Question 5. Deduce that the Euler characteristic of a triangulable space is independent of the
choice of field k.

3 Reeb graph and Mapper

Consider the function f depicted on the left-hand side of Figure 1. Note that its domain X
(the gray area) is a subset of the plane, not a torus.
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Figure 1: Left: the height function f on a planar domain. Right: the interval cover.

Question 6. Compute the Reeb graph of f . You may simply draw it with labels.

Question 7. Compute the extended persistence diagram of the map f .
Hints: homology of dimension 2 and above is trivial; the values a, · · · , l are paired up to form
the diagram points.

Question 8. Prune the diagram to obtain the extended persistence diagram of the quotient
map f̃ . What do you observe? Explain.

Question 9. Consider now the interval cover of Im f depicted on the right-hand side of Figure 1.
Compute the corresponding Mapper.

Question 10. Relate the Mapper to the Reeb graph: in your opinion, to which points of the
extended persistence diagram of f̃ do the topological features of the Mapper correspond?
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4 The category of persistence modules

A morphism between two persistence modules V and W over T is a family Φ of linear maps
(φt : Vt →Wt)t∈T such that the following diagram commutes for all t ≤ t′ ∈ T :

Vt
vt

′
t //

φt
��

Vt′

φt′
��

Wt
wt′

t

//Wt′

Φ is called an isomorphism if each map φt is itself an isomorphism Vt →Wt.

Question 11. Show that the persistence modules over a fixed index set T , together with the
morphisms between them, form a category, that is:
• for each persistence module V there exist isomorphisms V→ V,

• for any morphisms U Φ // V and V Ψ //W there exists a morphism U Ψ◦Φ //W .

A submodule W of a persistence module V is composed of subspaces Wt ⊆ Vt for all t ∈ T ,
and of maps wt

′
t = vt

′
t |Wt for all t ≤ t′ ∈ T . In particular, vt

′
t (Wt) ⊆ Wt′ for all t ≤ t′ ∈ T . A

simple example of submodule is the null module W = 0 (defined by Wt = 0 for all t ∈ T and
wt

′
t = 0 for all t ≤ t′ ∈ T ), which is a submodule of any module V over T .

Question 12. Show that the null module is both an initial and a terminal object in the category,
that is: for any module V there is a unique morphism 0 // V and a unique morphism
V // 0 .

Direct sums in the category are defined pointwise, that is: for any persistence modules V
and W over T , the direct sum V ⊕W is composed of the spaces Vt ⊕Wt for all t ∈ T , and of
the maps vt

′
t ⊕ wt

′
t for all t ≤ t′ ∈ T . We say that V and W are summands of the direct sum

V⊕W. In particular, we have V = 0⊕V = V⊕ 0 for any persistence module V, so V is always
a summand of itself. A persistence module V is called indecomposable if its only summands are
itself or the null module. The decomposition theorem that we saw in class asserts that the only
indecomposable persistence modules are the so-called interval modules over T , and that (under
some conditions on T or on the dimensions of the spaces) any module decomposes as a direct
sum of interval modules.

Question 13. Prove the decomposition theorem in the case where |T | = 1.

In the general case however, the result is much more complicated to prove as the persistence
modules over T do not share the same properties of vector spaces, in particular they are not
semisimple:

Question 14. In the case where |T | ≥ 2, exhibit a counterexample showing that a submodule
of a persistence module V over T may not always be a summand of V.
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