Topological Data Analysis — Exam

April 07, 2016

1 Bottleneck distance

Question 1. Show that the bottleneck distance satisfies the triangle inequality.

Question 2. Show that the bottleneck distance is only a pseudodistance, that is: exhibit a pair of distinct persistence diagrams whose distance is zero.

2 Euler characteristic

Given a topological space X and a field \mathbf{k} , the *Euler characteristic* is the quantity:

$$\chi(X; \mathbf{k}) = \sum_{i=0}^{+\infty} (-1)^i \dim \mathcal{H}_i(X; \mathbf{k}).$$

Question 3. Show that χ is a topological invariant, that is: for any spaces X, Y that are homotopy equivalent, $\chi(X; \mathbf{k}) = \chi(Y; \mathbf{k})$.

Hint: look at what happens to each individual homology group.

Now we want to prove the Euler-Poincaré theorem:

Theorem 1. For any simplicial complex X and any field \mathbf{k} :

$$\chi(X;\mathbf{k}) = \sum_{i=0}^{+\infty} (-1)^i n_i(X),$$

where $n_i(X)$ denotes the number of simplices of X of dimension i.

For this we will use topological persistence. Consider an arbitrary filtration of X:

$$\emptyset = X_0 \subseteq X_1 \subseteq \cdots \subseteq X_m = X.$$

Assume without loss of generality that a single simplex σ_j is inserted at each step j:

$$\forall j = 1, \cdots, m, \ X_j \setminus X_{j-1} = \{\sigma_j\}.$$

Note that m is then equal to the number of simplices of X, that is:

$$m = \sum_{i=0}^{+\infty} n_i(X).$$

Let us apply the persistence algorithm to this simplicial filtration. Recall that we have the following property:

Lemma 1. At each step j, the insertion of simplex σ_j either creates an independent d_j dimensional cycle (i.e. increases the dimension of $H_{d_j}(X_{j-1}; \mathbf{k})$ by 1) or kills a $(d_j - 1)$ dimensional cycle (i.e. decreases the dimension of $H_{d_j-1}(X_{j-1}; \mathbf{k})$ by 1), where d_j is the dimension of σ_j .

Question 4. Using Lemma 1, prove Theorem 1. **Hint:** proceed by induction on j.

Question 5. Deduce that the Euler characteristic of a triangulable space is independent of the choice of field \mathbf{k} .

3 Reeb graph and Mapper

Consider the function f depicted on the left-hand side of Figure 1. Note that its domain X (the gray area) is a subset of the plane, not a torus.

Figure 1: Left: the height function f on a planar domain. Right: the interval cover.

Question 6. Compute the Reeb graph of f. You may simply draw it with labels.

Question 7. Compute the extended persistence diagram of the map f. **Hints:** homology of dimension 2 and above is trivial; the values a, \dots, l are paired up to form the diagram points.

Question 8. Prune the diagram to obtain the extended persistence diagram of the quotient map \tilde{f} . What do you observe? Explain.

Question 9. Consider now the interval cover of Im f depicted on the right-hand side of Figure 1. Compute the corresponding Mapper.

Question 10. Relate the Mapper to the Reeb graph: in your opinion, to which points of the extended persistence diagram of \tilde{f} do the topological features of the Mapper correspond?

4 The category of persistence modules

A morphism between two persistence modules \mathbb{V} and \mathbb{W} over T is a family Φ of linear maps $(\phi_t : V_t \to W_t)_{t \in T}$ such that the following diagram commutes for all $t \leq t' \in T$:

 Φ is called an *isomorphism* if each map ϕ_t is itself an isomorphism $V_t \to W_t$.

Question 11. Show that the persistence modules over a fixed index set T, together with the morphisms between them, form a category, that is:

- for each persistence module \mathbb{V} there exist isomorphisms $\mathbb{V} \to \mathbb{V}$,
- for any morphisms $\mathbb{U} \xrightarrow{\Phi} \mathbb{V}$ and $\mathbb{V} \xrightarrow{\Psi} \mathbb{W}$ there exists a morphism $\mathbb{U} \xrightarrow{\Psi \circ \Phi} \mathbb{W}$.

A submodule \mathbb{W} of a persistence module \mathbb{V} is composed of subspaces $W_t \subseteq V_t$ for all $t \in T$, and of maps $w_t^{t'} = v_t^{t'}|_{W_t}$ for all $t \leq t' \in T$. In particular, $v_t^{t'}(W_t) \subseteq W_{t'}$ for all $t \leq t' \in T$. A simple example of submodule is the null module $\mathbb{W} = 0$ (defined by $W_t = 0$ for all $t \in T$ and $w_t^{t'} = 0$ for all $t \leq t' \in T$), which is a submodule of any module \mathbb{V} over T.

Question 12. Show that the null module is both an *initial* and a *terminal* object in the category, that is: for any module \mathbb{V} there is a unique morphism $0 \longrightarrow \mathbb{V}$ and a unique morphism $\mathbb{V} \longrightarrow 0$.

Direct sums in the category are defined pointwise, that is: for any persistence modules \mathbb{V} and \mathbb{W} over T, the direct sum $\mathbb{V} \oplus \mathbb{W}$ is composed of the spaces $V_t \oplus W_t$ for all $t \in T$, and of the maps $v_t^{t'} \oplus w_t^{t'}$ for all $t \leq t' \in T$. We say that \mathbb{V} and \mathbb{W} are summands of the direct sum $\mathbb{V} \oplus \mathbb{W}$. In particular, we have $\mathbb{V} = 0 \oplus \mathbb{V} = \mathbb{V} \oplus 0$ for any persistence module \mathbb{V} , so \mathbb{V} is always a summand of itself. A persistence module \mathbb{V} is called *indecomposable* if its only summands are itself or the null module. The decomposition theorem that we saw in class asserts that the only indecomposable persistence modules are the so-called interval modules over T, and that (under some conditions on T or on the dimensions of the spaces) any module decomposes as a direct sum of interval modules.

Question 13. Prove the decomposition theorem in the case where |T| = 1.

In the general case however, the result is much more complicated to prove as the persistence modules over T do not share the same properties of vector spaces, in particular they are not semisimple:

Question 14. In the case where $|T| \ge 2$, exhibit a counterexample showing that a submodule of a persistence module \mathbb{V} over T may not always be a summand of \mathbb{V} .