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Cluster Analysis

- point cloud with coordinates

a finite set of observations:

Input

)similarity matrix

- distance / (dis-

Task:

partition the data points into a collection of relevant subsets called clusters



A Wealth of Approaches

Variational
- k-means / k-medoid
- EM
- CLARA
spectral |k-means
Spectral

- Normalized Cut
- Multiway Cut

Hierarchical divisive /agglomerative

- single-linkage
- BIRCH

Density thresholding

- DBSCAN
- OPTICS

Mode seeking
- Mean/Medoid/Quick Shift
- graph-based hill climbing

Valley seeking
- [JBD'79]
- NDDs [ZZZL'07]
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Mode-Seeking Paradigm

e Assume the data points are sampled from some unknown probability distribution

e Partition the data according to the basins of attraction of the peaks of the density
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Mode-Seeking Paradigm

e Assume the data points are sampled from some |unknown |probability distribution

e Partition the data according to the basins of attraction of the peaks of the density




Hill-Climbing Schemes

o lterative, e.g. D. Comaniciu and P. Meer. Mean shift: A robust

approach toward feature space analysis. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 24(5):603619, May 2002.

e Non-iterative, eg. W. L. Koontz, P. M. Narendra, and K. Fuku-

naga. A graph-theoretic approach to nonparametric cluster analysis.
IEEE Trans. on Computers, 24:936944, September 1976.
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[Koontz, Narendra, Fukunaga'76] in a Nutshell

estimate density

>
at the data points

approximate gradient
-

by a graph edge
at each data point
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Why things are likely to go ill

e Noisy estimator

e Neighborhood graph

Solutions:
1. Be proactive: smooth-out estimator before clustering, a la Mean-Shift
— how much smoothing is needed?
— does not solve the neighborhood graph issue
2. Be reactive: merge clusters after clustering, to regain some stability

— repeat mode-seeking until convergence (Medoid-Shift [SKK'07])

— use topological persistence to guide a single-pass merging step



Enter Topological Persistence...



Persistence for Mode Seeking

Given a probability density f:
o Nested family (filtration) of superlevel-sets f—!([a, +00)) for o = +00 to —oo.

e Track evolution of topology throughout the family.
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Persistence for Mode Seeking

Given an estimator f:

Stability Theorem = d%(Dg £, Dg ) < ||If — fllso-

R A




More precisely...

e Density estimator f defines an order on the point cloud

(sort data points by decreasing estimated density values)
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More precisely...

e Density estimator f defines an order on the point cloud

(sort data points by decreasing estimated density values)

e Extend order to the graph edges — upper-star filtration
(f([u,v]) = min{f(u), f(v)})

e Compute the O-dimensional persistence diagram of this filtration

(apply O-dimensional persistence algorithm — union-find data structure)
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Estimating the Correct Number of Clusters

6 prominent
peaks
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Estimating the Correct Number of Clusters

Hypotheses:
e X a Riemmaniann manifold with positive convexity radius o(X),
e f: X — R a c-Lipschitz probability density function,
e P a finite set of n points of X sampled i.i.d. according to f,

e f: P — R a density estimator such that n := max,e p \f(p) — f(p)| < 11/5,

IT—5n

e G = (P, E) the 6-Rips graph for some positive § < min {o(X), ~=

Note: II is the prominence of the least prominent peak of f
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Estimating the Correct Number of Clusters

Hypotheses:
e X a Riemmaniann manifold with positive convexity radius o(X),
e f: X — R a c-Lipschitz probability density function,

e P a finite set of n points of X sampled i.i.d. according to f,

e f: P — R a density estimator such that n := max,e p \f(p) — f(p)| < 11/5,

IT—5n

e G = (P, E) the 6-Rips graph for some positive § < min {o(X), ~=

Conclusion:

For any choice of 7 such that 2(c¢d +1n) < 7 < II — 3(cd + 1),
the number of clusters computed by the algorithm is equal to the num-
ber of peaks of f with probability at least 1 — e~*}(").

(the Q) notation hides factors depending on ¢, § and the sectional curvature of X)
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Conclusion:

For any choice of 7 such that 2(cd +7n) < 7 < II — 3(cd + 1),
the number of clusters computed by the algorithm is equal to the num-
ber of peaks of f with probability at least 1 — e~$}(").

(the Q) notation hides factors depending on ¢, § and the sectional curvature of X)
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Estimating the Correct Number of Clusters

P 2(65 + 77)

L —3(cd +n)

2(05:+ n) 11 - 3(cd + 1)

Proof's main ingredient: stability theorem for persistence diagrams

Note: f,f are not defined over the same domain
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e O-dimensional persistence builds a hierarchy of the peaks of f (merge tree)

e merge clusters according to the hierarchy (merge each cluster into its parent)
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Merging Clusters

e O-dimensional persistence builds a hierarchy of the peaks of f (merge tree)
e merge clusters according to the hierarchy (merge each cluster into its parent)

e given a fixed threshold 7 > 0, only merge those clusters of prominence < 7

v —0 < T< +00
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Approximating the Basins of Attraction of f
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Approximating the Basins of Attraction of f

mq mo e a7

STABLE

UNSTABLE

[

Partial Approximation Theorem: the cluster associated .~
— e, \.'/ r =7

with a 7-prominent peak in the graph is the trace over P
of the (merged) basin of attraction of the corresponding
peak in the underlying continuous domain, until that basin
gets connected to the one of another 7-prominent peak.




Complexity of the Algorithm

Given a neighborhood graph with n vertices (with density values) and m edges:

1. the algorithm sorts the vertices by decreasing density values,

2. the algorithm makes a single pass through the vertex set, creating the span-
ning forest and merging clusters on the fly using a union-find data structure.
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Complexity of the Algorithm

Given a neighborhood graph with n vertices (with density values) and m edges:

1. the algorithm sorts the vertices by decreasing density values,

2. the algorithm makes a single pass through the vertex set, creating the span-
ning forest and merging clusters on the fly using a union-find data structure.

— Running time: O(nlogn + (n +m)a(n))
— Space complexity: O(n + m)

— Main memory usage: O(n)

14



Pseudo-code:

Input: simple graph G with n vertices, n-dimensional vector f real parameter 7 > 0.

Sort the vertex indices {1,2,--- ,n} so that f(1) > f(2) > --- > f(n);
Initialize a union-find data structure 4 and two vectors g, r of size n;

for: =1 ton do
Let A/ be the set of neighbors of 7 in G that have indices lower than 7;

if N = () // vertex i is a peak of f within G
Create a new entry e in U and attach vertex 7 to it;
7"(6) — 1 // r(e) stores the root vertex associated with the entry e
else // vertex i is not a peak of fl/vithin G
g(z) <— argmaxj ENf(]) // g (1) stores the approximate gradient at vertex 1
e; < U.find(g(7));
Attach vertex ¢ to the entry e;;
for j € N do
e < U.find(j); . .
if e # e; and min{f(r(e)), f(r(e:))} < f(i)+7
U.union(e, €;); 3
7“(6 U 67;) — argImaxy,(e), 7n(ei)}f;
e; < elUe;;

Output: the collection of entries e of U such that f(r(e)) > 7.



Experimental Results

Synthetic Data
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Experimental Results

Synthetic Data

ToMATo
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Synthetic Data
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Experimental Results

Biological Data

Alanine-Dipeptide conformations (R?!)

RMSD distance (non-Euclidean)

Ay

Common belief: 6 metastable states

PD shows anywhere between 4 and 7 clusters
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Experimental Results

Biological Data

Alanine-Dipeptide conformations (R?!)

RMSD distance (non-Euclidean)

Common belief: 6 metastable states
PD shows anywhere between 4 and 7 clusters

Measures of metastability confirm this insight

Metastability

Rank Prominence Metastability
1 +00 0.99982
2 3827 1.91865
3 1334 2.8813
4 557 3.76217
5 85 4.73838
6 32 5.65553
7 26 6.50757
8 7.2 6.8193
9 3.0 -

10 2.2 -

3 4
Number of clusters

5 6 I

16



Experimental Results

Biological Data

Alanine-Dipeptide conformations (R?!)

RMSD distance (non-Euclidean)

Note: Spectral Clustering takes a week of tweaking,
while ToMATo runs out-of-the-box in a few minutes

e Y. Yao, J. Sun, X. Huang, G. Bowman, G. Singh, M. Lesnick, L. Guibas, V. Pande,
G. Carlsson, Topological methods for exploring low-density states in biomolecular
folding pathways, The Journal of Chemical Physics, 20009.
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xperimental Results

Image Segmentation
Density is estimated in 3D color space (Luv)

Neighborhood graph is built in image domain

Distribution of prominences does not usually
show a clear unique gap

Still, relationship between choice of 7 and
number of obtained clusters remains explicit




Recap’

ToMATo:

1. graph-based mode-seeking algorithm of [KNF'76]

2. single-pass cluster merging phase guided by persistence

Competitors:

1. Mean-Shift and its variants (smoothing a priori)

2. ...

18



Recap’

e Highly generic
- applicable in arbitrary metric spaces

- agnostic to the choice of neighborhood graph and density estimator

e Easy to tune
- mostly two parameters: neighborhood size, persistence threshold 7

- PD provides insight into the correct number of clusters

e Comes with theoretical guarantees
- number of obtained clusters versus number of prominent peaks

- partial approximation of the basins of attraction of the peaks

e Efficient and practical
- near linear runtime, linear main memory usage

- can handle data sets with hundreds of thousands of points in practice
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Recap’

Q Can we devise

SO

ft variants?
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First idea: add randomness to the

STABLE

UNSTABLE

— soft clustering variant [Skraba et al. '10]:

- rerun the algorithm with randomly perturbed function values ._H,..},

- identify 7-prominent clusters across different runs

- assign points to clusters with probabilities depending
on the outcomes of the runs

estimator
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First idea: add randomness to the

estimator

STABLE

UNSTABLE

Pb: What is the corresponding continuous process?

— soft clustering variant [Skraba et al. '10]:

- rerun the algorithm with randomly perturbed function values = -

- identify 7-prominent clusters across different runs

- assign points to clusters with probabilities depending
on the outcomes of the runs

l"

Ny




Second idea: add randomness to gradient ascent

Given a density f : R* — R and a point x € R% s.t. f(x) > 0, consider the SDE:

dX, = Vlog f(X:) + VBLsdW,
XO — X
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Xy

gradient term temperature isotropic diffusion term

B = 0 — pure mode seeking

£ — +o00 — pure diffusion
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Second idea: add randomness to gradient ascent

Given a density f : R* — R and a point x € R% s.t. f(x) > 0, consider the SDE:
4X, = log (XD VW)

Xy

gradient term temperature isotropic diffusion term

B = 0 — pure mode seeking

£ — +o00 — pure diffusion

Our continuous process is the solution of this equation (assuming well-posedness)

20
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Pb: probability to reach a given peak of f (or any given point of R%) is 0
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of a unique peak of f

- P(X: eventually reaches some C;) > 0




Second idea: add randomness to gradient ascent

Given a density f : R* — R and a point x € R% s.t. f(x) > 0, consider the SDE:

dX; = Vlog f(X;) + /BIadW,
X() — X

Pb: probability to reach a given peak of f (or any given point of R%) is 0

— solution: replace peaks by cluster cores:

- belong surely to the basin of attraction
of a unique peak of f

- P(X: eventually reaches some C;) > 0

VC;, wi(x) = P(X: reaches C; first)

to(x) = P(X; reaches none of the C})




Second idea (cont'd): the discrete setting

Input:

- X1,--+,X, i.i.d. random variables drawn from the density f
- density estimator fn
- temperature parameter (3

- estimators C1, - -+, C} of the (continuous) cluster cores C', - - -, Ck
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Second idea (cont'd): the discrete setting

Input:

- X1,--+,X, i.i.d. random variables drawn from the density f
- density estimator fn
- temperature parameter (3

- estimators C1, - -+, C} of the (continuous) cluster cores C', - - -, Ck

Construction: Given z € X, build the Markov chain M™"™ s.t.:
- initial state = sample point nearest to z,
- transition kernel:

(1+ (8- 1)%)@ if |X; — X5° <h

K" X, X;) = .
0 otherwise

where Z; is the appropriate renormalization factor, so 2?21 KhMX;, X)) =1

21



Second idea (cont'd): guarantees

Hypotheses: (let X = {x € R | f(z) > 0})

- fis C'*-continuous over R?

- limyg )y 100 f2) =0,

-Vao >0, da< aps.t. Ve € X, f(z) =a = Vf(x) #0,
- the SDE over X is well-posed,

- limy o0 P(||f = falloo =€) =0,

-6 >0, limp 0 P(C;° C C; CCP) =1.
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Second idea (cont'd): guarantees

Hypotheses: (let X = {x € R | f(z) > 0})

- f is C*-continuous over R4 (regularity of the density)

- lim||x||2_>+oo f(fl?) = 0, (tO avoid
-Vap >0, Ja< ap s.t. Ve € X, f(x) =a = Vf(x) #0, leaving X)

- the SDE over X is well-posed,
- iMoo P(||f — fulloe > €) =0, (provided by estimator)
-6 >0, limp 0 P(C;° C C; CCP) =1. (provided by ToMATOo)
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Second idea (cont'd): guarantees

Hypotheses: (let X = {x € R | f(z) > 0})

- f is C*-continuous over R4 (regularity of the density)

- lim||x||2_>+oo f(fl?) = 0, (tO avoid
-Vap >0, Ja< ap s.t. Ve € X, f(x) =a = Vf(x) #0, leaving X)

- the SDE over X is well-posed,
- iMoo P(||f — fulloe > €) =0, (provided by estimator)
-6 >0, limp 0 P(C;° C C; CCP) =1. (provided by ToMATOo)

Conclusions:

- the discrete process M"™™ converges weakly to the solution of the SDE,

- the ,EL?’” derived from M™™ converge in probability to the p; derived from
the solution of the SDE: YU C X compact, Ve > 0, dho s.t. Vh < hg,

limy, o0 P (SuprX " (x) — ()] > 5) = 0.
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Experiments

1 (spectral)
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Weak Convergence

- "the discrete process M"™"™ converges weakly to the solution of the SDE,”

Formally: given a fixed h, there is an s(h) such that Msh|_’tn/sj converges weakly

to the solution X; of the SDE, i.e.:
Forany 1, e > 0, forany U C X compact, for any Borel set B in the Skorokhod

space of trajectories D(]0, T],Rd), there exists hg > 0 such that Vh < hyo,
lim,,_, o0 P (Super P(MZ7" € B) — P(XF € B)| > g) _0.



