Clustering

Cluster Analysis

Input: a finite set of observations: - point cloud with coordinates

- distance / (dis-)similarity matrix

Task:

partition the data points into a collection of *relevant* subsets called clusters

A Wealth of Approaches

Variational

- k-means / k-medoid
- EM
- CLARA spectral k-means
 - Normalized Cut
 - Multiway Cut

Hierarchical divisive/agglomerative

- single-linkage
- BIRCH

Density thresholding

- DBSCAN - OPTICS

Mode seeking

- Mean/Medoid/Quick Shift
- graph-based hill climbing

Valley seeking

- [JBD'79]
- NDDs [ZZZL'07]

A Wealth of Approaches

Variational

- k-means / k-medoid
- EM
- CLARA spectral k-means
 - Normalized Cut
 - Multiway Cut

Hierarchical divisive/agglomerative

- single-linkage
- BIRCH

Density thresholding

- DBSCAN - OPTICS

Mode seeking

- Mean/Medoid/Quick Shift
- graph-based hill climbing

Valley seeking

- [JBD'79]
- NDDs [ZZZL'07]

- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density

- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density

- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density

- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density

- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density

Hill-Climbing Schemes

• Iterative, e.g. D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. *IEEE Trans. on Pattern Analysis and Machine Intelligence*, 24(5):603619, May 2002.

• **Non-iterative**, e.g. W. L. Koontz, P. M. Narendra, and K. Fukunaga. A graph-theoretic approach to nonparametric cluster analysis. *IEEE Trans. on Computers*, 24:936944, September 1976.

estimate density

at the data points

estimate density

at the data points

build neighborhood graph

estimate density

at the data points

build neighborhood graph

approximate gradient

by a graph edge at each data point

• Noisy estimator

- Noisy estimator
- Neighborhood graph

- Noisy estimator
- Neighborhood graph

Solutions:

1. Be proactive: smooth-out estimator before clustering, a la Mean-Shift

 \rightarrow how much smoothing is needed?

 \rightarrow does not solve the neighborhood graph issue

- Noisy estimator
- Neighborhood graph

Solutions:

- 1. Be proactive: smooth-out estimator before clustering, a la Mean-Shift
 - \rightarrow how much smoothing is needed?
 - \rightarrow does not solve the neighborhood graph issue
- 2. Be reactive: merge clusters after clustering, to regain some stability
 - \rightarrow repeat mode-seeking until convergence (Medoid-Shift [SKK'07]) \rightarrow use topological persistence to guide a single-pass merging step

Enter Topological Persistence...

- Nested family (filtration) of superlevel-sets $f^{-1}([\alpha, +\infty))$ for $\alpha = +\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([\alpha, +\infty))$ for $\alpha = +\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([\alpha, +\infty))$ for $\alpha = +\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([\alpha, +\infty))$ for $\alpha = +\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([\alpha, +\infty))$ for $\alpha = +\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([\alpha, +\infty))$ for $\alpha = +\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([\alpha, +\infty))$ for $\alpha = +\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([\alpha, +\infty))$ for $\alpha = +\infty$ to $-\infty$.
- Track evolution of topology throughout the family.

- Nested family (filtration) of superlevel-sets $f^{-1}([\alpha, +\infty))$ for $\alpha = +\infty$ to $-\infty$.
- Track evolution of topology throughout the family.
- Finite set of intervals (barcode) encodes births/deaths of topological features.

- Nested family (filtration) of superlevel-sets $f^{-1}([\alpha, +\infty))$ for $\alpha = +\infty$ to $-\infty$.
- Track evolution of topology throughout the family.
- Finite set of intervals (barcode) encodes births/deaths of topological features.

Given an estimator \hat{f} :

Stability Theorem $\Rightarrow d_B^{\infty}(\operatorname{Dg} f, \operatorname{Dg} \hat{f}) \leq ||f - \hat{f}||_{\infty}.$

More precisely...

• Density estimator \hat{f} defines an order on the point cloud (sort data points by **decreasing** estimated density values)

More precisely...

- Density estimator \hat{f} defines an order on the point cloud (sort data points by **decreasing** estimated density values)
- Extend order to the graph edges \rightarrow upper-star filtration $(\hat{f}([u,v]) = \min{\{\hat{f}(u), \hat{f}(v)\}})$

More precisely...

- Density estimator \hat{f} defines an order on the point cloud (sort data points by **decreasing** estimated density values)
- Extend order to the graph edges \rightarrow upper-star filtration $(\hat{f}([u,v]) = \min{\{\hat{f}(u), \hat{f}(v)\}})$
- Compute the 0-dimensional persistence diagram of this filtration (apply 0-dimensional persistence algorithm \rightarrow union-find data structure)

Estimating the Correct Number of Clusters

Estimating the Correct Number of Clusters

Estimating the Correct Number of Clusters

Hypotheses:

- X a Riemmaniann manifold with positive convexity radius $\varrho(X)$,
- $f: \mathbb{X} \to \mathbb{R}$ a c-Lipschitz probability density function,

Hypotheses:

- $\mathbb X$ a Riemmaniann manifold with positive convexity radius $\varrho(\mathbb X)$,
- $f: \mathbb{X} \to \mathbb{R}$ a c-Lipschitz probability density function,
- \bullet P a finite set of n points of $\mathbb X$ sampled i.i.d. according to f,
- $\hat{f}: P \to \mathbb{R}$ a density estimator such that $\eta := \max_{p \in P} |\hat{f}(p) f(p)| < \Pi/5$,
- G = (P, E) the δ -Rips graph for some positive $\delta < \min \left\{ \varrho(\mathbb{X}), \frac{\Pi 5\eta}{5c} \right\}$.

Note: Π is the prominence of the least prominent peak of f

Hypotheses:

- \mathbb{X} a Riemmaniann manifold with positive convexity radius $\varrho(\mathbb{X})$,
- $f: \mathbb{X} \to \mathbb{R}$ a c-Lipschitz probability density function,
- \bullet P a finite set of n points of $\mathbb X$ sampled i.i.d. according to f,
- $\hat{f}: P \to \mathbb{R}$ a density estimator such that $\eta := \max_{p \in P} |\hat{f}(p) f(p)| < \Pi/5$,
- G = (P, E) the δ -Rips graph for some positive $\delta < \min \left\{ \varrho(\mathbb{X}), \frac{\Pi 5\eta}{5c} \right\}$.

Conclusion:

For any choice of τ such that $2(c\delta + \eta) < \tau < \Pi - 3(c\delta + \eta)$, the number of clusters computed by the algorithm is equal to the number of peaks of f with probability at least $1 - e^{-\Omega(n)}$.

(the Ω notation hides factors depending on c, δ and the sectional curvature of \mathbb{X})

Conclusion:

For any choice of τ such that $2(c\delta + \eta) < \tau < \Pi - 3(c\delta + \eta)$, the number of clusters computed by the algorithm is equal to the number of peaks of f with probability at least $1 - e^{-\Omega(n)}$.

(the Ω notation hides factors depending on c, δ and the sectional curvature of \mathbb{X})

Proof's main ingredient: stability theorem for persistence diagrams Note: f, \hat{f} are not defined over the same domain

- 0-dimensional persistence builds a hierarchy of the peaks of \hat{f} (merge tree)
- merge clusters according to the hierarchy (merge each cluster into its parent)

 $0 \le \tau \le \alpha - \beta$

- 0-dimensional persistence builds a hierarchy of the peaks of \hat{f} (merge tree)
- merge clusters according to the hierarchy (merge each cluster into its parent)
- given a fixed threshold $\tau \geq 0$, only merge those clusters of prominence $< \tau$

- 0-dimensional persistence builds a hierarchy of the peaks of \hat{f} (merge tree)
- merge clusters according to the hierarchy (merge each cluster into its parent)
- given a fixed threshold $\tau \geq 0$, only merge those clusters of prominence $< \tau$

$$\alpha - \beta < \tau \le \gamma - \delta$$

- 0-dimensional persistence builds a hierarchy of the peaks of \hat{f} (merge tree)
- merge clusters according to the hierarchy (merge each cluster into its parent)
- given a fixed threshold $\tau \geq 0$, only merge those clusters of prominence $< \tau$

$$\gamma - \delta < \tau \leq +\infty$$

Approximating the Basins of Attraction of \boldsymbol{f}

Approximating the Basins of Attraction of f

Partial Approximation Theorem: the cluster associated with a τ -prominent peak in the graph is the *trace* over Pof the (merged) basin of attraction of the corresponding peak in the underlying continuous domain, until that basin gets connected to the one of another τ -prominent peak.

Complexity of the Algorithm

Given a neighborhood graph with n vertices (with density values) and m edges:

1. the algorithm sorts the vertices by decreasing density values,

2. the algorithm makes a single pass through the vertex set, creating the spanning forest and merging clusters on the fly using a union-find data structure.

Complexity of the Algorithm

Given a neighborhood graph with n vertices (with density values) and m edges:

1. the algorithm sorts the vertices by decreasing density values,

2. the algorithm makes a single pass through the vertex set, creating the spanning forest and merging clusters on the fly using a union-find data structure.

- \rightarrow Running time: $O(n \log n + (n + m)\alpha(n))$
- \rightarrow Space complexity: O(n+m)
- \rightarrow Main memory usage: O(n)

Pseudo-code:

Input: simple graph G with n vertices, n-dimensional vector \tilde{f} , real parameter $\tau \geq 0$.

Sort the vertex indices $\{1, 2, \dots, n\}$ so that $\tilde{f}(1) \ge \tilde{f}(2) \ge \dots \ge \tilde{f}(n)$; Initialize a union-find data structure \mathcal{U} and two vectors g, r of size n;

for i = 1 to n do Let \mathcal{N} be the set of neighbors of *i* in *G* that have indices lower than *i*; **if** $\mathcal{N} = \emptyset$ // vertex *i* is a peak of \tilde{f} within *G* Create a new entry e in \mathcal{U} and attach vertex i to it; $r(e) \leftarrow i$ // r(e) stores the root vertex associated with the entry e**else** // vertex i is not a peak of \tilde{f} within G $g(i) \gets \mathrm{argmax}_{j \in \mathcal{N}} f(j)$ // g(i) stores the approximate gradient at vertex i $e_i \leftarrow \mathcal{U}.\mathtt{find}(q(i));$ Attach vertex i to the entry e_i ; for $j \in \mathcal{N}$ do $e \leftarrow \mathcal{U}.\mathtt{find}(j);$ if $e \neq e_i$ and $\min\{\tilde{f}(r(e)), \ \tilde{f}(r(e_i))\} < \tilde{f}(i) + \tau$ $\mathcal{U}.union(e, e_i);$ $r(e \cup e_i) \leftarrow \operatorname{argmax}_{\{r(e), r(e_i)\}} \tilde{f};$ $e_i \leftarrow e \cup e_i;$

Output: the collection of entries e of \mathcal{U} such that $\tilde{f}(r(e)) \geq \tau$.

Biological Data

Alanine-Dipeptide conformations (\mathbb{R}^{21})

RMSD distance (non-Euclidean)

Common belief: 6 metastable states PD shows anywhere between 4 and 7 clusters

Biological Data

Alanine-Dipeptide conformations (\mathbb{R}^{21})

RMSD distance (non-Euclidean)

Note: Spectral Clustering takes a week of tweaking, while ToMATo runs out-of-the-box in a few minutes

• Y. Yao, J. Sun, X. Huang, G. Bowman, G. Singh, M. Lesnick, L. Guibas, V. Pande, G. Carlsson, Topological methods for exploring low-density states in biomolecular folding pathways, *The Journal of Chemical Physics*, 2009.

Image Segmentation

Density is estimated in 3D color space (Luv) Neighborhood graph is built in image domain

Distribution of prominences does not usually show a clear unique gap

Still, relationship between choice of τ and number of obtained clusters remains explicit

Recap'

ToMATo:

- 1. graph-based mode-seeking algorithm of [KNF'76]
- 2. single-pass cluster merging phase guided by persistence

Competitors:

1. Mean-Shift and its variants (smoothing a priori)

2. ...

Recap'

- Highly generic
 - applicable in arbitrary metric spaces
 - agnostic to the choice of neighborhood graph and density estimator
- Easy to tune
 - mostly two parameters: neighborhood size, persistence threshold τ
 - PD provides insight into the correct number of clusters
- Comes with theoretical guarantees
 - number of obtained clusters versus number of prominent peaks
 - partial approximation of the basins of attraction of the peaks
- Efficient and practical
 - near linear runtime, linear main memory usage
 - can handle data sets with hundreds of thousands of points in practice

Recap'

Q Can we devise soft variants?

First idea: add randomness to the estimator

- \rightarrow soft clustering variant [Skraba et al. '10]:
 - rerun the algorithm with randomly perturbed function values
 - identify $\tau\text{-}\mathsf{prominent}$ clusters across different runs
 - assign points to clusters with probabilities depending on the outcomes of the runs

First idea: add randomness to the estimator

Pb: What is the corresponding continuous process?

- \rightarrow soft clustering variant [Skraba et al. '10]:
 - rerun the algorithm with randomly perturbed function values
 - identify $\tau\text{-}\mathsf{prominent}$ clusters across different runs
 - assign points to clusters with probabilities depending on the outcomes of the runs

Given a density $f : \mathbb{R}^d \to \mathbb{R}$ and a point $x \in \mathbb{R}^d$ s.t. f(x) > 0, consider the SDE:

$$dX_t = \nabla \log f(X_t) + \sqrt{\beta} I_d dW_t$$
$$X_0 = x$$

Given a density $f : \mathbb{R}^d \to \mathbb{R}$ and a point $x \in \mathbb{R}^d$ s.t. f(x) > 0, consider the SDE:

 $\beta=0 \rightarrow {\rm pure} \mbox{ mode seeking}$

 $\beta \to +\infty \to {\rm pure} \; {\rm diffusion}$

Given a density $f : \mathbb{R}^d \to \mathbb{R}$ and a point $x \in \mathbb{R}^d$ s.t. f(x) > 0, consider the SDE:

 $\beta=0 \rightarrow {\rm pure} \mbox{ mode seeking}$

 $\beta \to +\infty \to {\rm pure} \; {\rm diffusion}$

Our continuous process is the solution of this equation (assuming well-posedness)

Given a density $f : \mathbb{R}^d \to \mathbb{R}$ and a point $x \in \mathbb{R}^d$ s.t. f(x) > 0, consider the SDE:

$$dX_t = \nabla \log f(X_t) + \sqrt{\beta} I_d dW_t$$
$$X_0 = x$$

Pb: probability to reach a given peak of f (or any given point of \mathbb{R}^d) is 0

Given a density $f : \mathbb{R}^d \to \mathbb{R}$ and a point $x \in \mathbb{R}^d$ s.t. f(x) > 0, consider the SDE:

$$dX_t = \nabla \log f(X_t) + \sqrt{\beta} I_d dW_t$$
$$X_0 = x$$

Pb: probability to reach a given peak of f (or any given point of \mathbb{R}^d) is 0

 \rightarrow solution: replace peaks by *cluster cores*:

- belong surely to the basin of attraction of a unique peak of \boldsymbol{f}

- $\mathbb{P}(X_t \text{ eventually reaches some } C_i) > 0$

Given a density $f : \mathbb{R}^d \to \mathbb{R}$ and a point $x \in \mathbb{R}^d$ s.t. f(x) > 0, consider the SDE:

$$dX_t = \nabla \log f(X_t) + \sqrt{\beta} I_d dW_t$$
$$X_0 = x$$

Pb: probability to reach a given peak of f (or any given point of \mathbb{R}^d) is 0

 \rightarrow solution: replace peaks by *cluster cores*:

- belong surely to the basin of attraction of a unique peak of \boldsymbol{f}

- $\mathbb{P}(X_t \text{ eventually reaches some } C_i) > 0$

 $\forall C_i, \mu_i(x) = \mathbb{P}(X_t \text{ reaches } C_i \text{ first})$

 $\mu_0(x) = \mathbb{P}(X_t \text{ reaches none of the } C_i)$

Second idea (cont'd): the discrete setting

Input:

- X_1, \cdots, X_n i.i.d. random variables drawn from the density f
- density estimator \hat{f}_n
- temperature parameter β
- estimators $\hat{C}_1, \cdots, \hat{C}_k$ of the (continuous) cluster cores C_1, \cdots, C_k
Second idea (cont'd): the discrete setting

Input:

- X_1, \cdots, X_n i.i.d. random variables drawn from the density f
- density estimator \hat{f}_n
- temperature parameter β
- estimators $\hat{C}_1, \cdots, \hat{C}_k$ of the (continuous) cluster cores C_1, \cdots, C_k

Construction: Given $x \in X$, build the Markov chain $M^{h,n}$ s.t.:

- initial state = sample point nearest to x,
- transition kernel:

$$K^{h}(X_{i}, X_{j}) = \begin{cases} (1 + (\beta - 1)\frac{\hat{f}_{n}(X_{i})}{\hat{f}_{n}(X_{j})})Z_{i} & \text{if } ||X_{i} - X_{j}||^{2} \leq h \\ 0 & \text{otherwise} \end{cases}$$

where Z_i is the appropriate renormalization factor, so $\sum_{j=1}^n K^h(X_i, X_j) = 1$

Second idea (cont'd): guarantees

Hypotheses: (let $X = \{x \in \mathbb{R}^d \mid f(x) > 0\}$)

- f is $C^1\text{-}\mathrm{continuous}$ over \mathbb{R}^d
- $\lim_{\|x\|_2 \to +\infty} f(x) = 0$,
- $\forall \alpha_0 > 0$, $\exists \alpha < \alpha_0$ s.t. $\forall x \in X$, $f(x) = \alpha \Rightarrow \nabla f(x) \neq 0$,
- the SDE over \boldsymbol{X} is well-posed,
- $\lim_{n\to\infty} \mathbb{P}(\|f \hat{f}_n\|_{\infty} \ge \varepsilon) = 0$,
- $\forall \delta > 0$, $\lim_{n \to \infty} \mathbb{P}(C_i^{-\delta} \subseteq \hat{C}_i \subseteq C_i^{\delta}) = 1$.

Second idea (cont'd): guarantees

Hypotheses: (let $X = \{x \in \mathbb{R}^d \mid f(x) > 0\}$)

$$\begin{array}{ll} -f \text{ is } C^1 \text{-continuous over } \mathbb{R}^d & (\text{regularity of the density}) \\ -\lim_{\|x\|_2 \to +\infty} f(x) = 0, & \\ -\forall \alpha_0 > 0, \ \exists \alpha < \alpha_0 \text{ s.t. } \forall x \in X, \ f(x) = \alpha \Rightarrow \nabla f(x) \neq 0, \end{array} \right] & (\text{to avoid leaving } X) \\ -\text{ the SDE over } X \text{ is well-posed,} & \\ -\lim_{n \to \infty} \mathbb{P}(\|f - \hat{f}_n\|_{\infty} \ge \varepsilon) = 0, & (\text{provided by estimator}) \\ -\forall \delta > 0, \ \lim_{n \to \infty} \mathbb{P}(C_i^{-\delta} \subseteq \hat{C}_i \subseteq C_i^{\delta}) = 1. & (\text{provided by ToMATo}) \end{array}$$

Second idea (cont'd): guarantees

Hypotheses: (let $X = \{x \in \mathbb{R}^d | f(x) > 0\}$)

$$\begin{array}{ll} -f \text{ is } C^1 \text{-continuous over } \mathbb{R}^d & (\text{regularity of the density}) \\ -\lim_{\|x\|_2 \to +\infty} f(x) = 0, & \\ -\forall \alpha_0 > 0, \ \exists \alpha < \alpha_0 \text{ s.t. } \forall x \in X, \ f(x) = \alpha \Rightarrow \nabla f(x) \neq 0, \end{array} \right] & (\text{to avoid leaving } X) \\ -\text{ the SDE over } X \text{ is well-posed,} & \\ -\lim_{n \to \infty} \mathbb{P}(\|f - \hat{f}_n\|_{\infty} \ge \varepsilon) = 0, & (\text{provided by estimator}) \\ -\forall \delta > 0, \ \lim_{n \to \infty} \mathbb{P}(C_i^{-\delta} \subseteq \hat{C}_i \subseteq C_i^{\delta}) = 1. & (\text{provided by ToMATo}) \end{array}$$

Conclusions:

- the discrete process $M^{h,n}$ converges weakly to the solution of the SDE,

- the $\hat{\mu}_i^{h,n}$ derived from $M^{h,n}$ converge in probability to the μ_i derived from the solution of the SDE: $\forall U \subset X$ compact, $\forall \varepsilon > 0$, $\exists h_0$ s.t. $\forall h \leq h_0$, $\lim_{n\to\infty} \mathbb{P}\left(\sup_{x\in X} |\hat{\mu}_i^{h,n}(x) - \mu_i(x)| \geq \varepsilon\right) = 0.$

Experiments

Experiments

hard clusters (ToMATo)

 $\beta = 0.2$

Weak Convergence

- "the discrete process $M^{h,n}$ converges weakly to the solution of the SDE,"

Formally: given a fixed h, there is an s(h) such that $M_{s\lfloor t/s \rfloor}^{h,n}$ converges weakly to the solution X_t of the SDE, i.e.:

For any $T, \varepsilon > 0$, for any $U \subset X$ compact, for any Borel set B in the Skorokhod space of trajectories $D([0,T], \mathbb{R}^d)$, there exists $h_0 > 0$ such that $\forall h \leq h_0$, $\lim_{n \to \infty} \mathbb{P}\left(\sup_{x \in U} |\mathbb{P}(M^{x,n,h}_{s|t/s|} \in B) - \mathbb{P}(X^x_t \in B)| \geq \varepsilon\right) = 0.$