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Cluster Analysis
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Input: a finite set of observations:

Task:

partition the data points into a collection of relevant subsets called clusters

- point cloud with coordinates

- distance / (dis-)similarity matrix



transition: of course the notion of relevance for a cluster is ill-defined, and since cluster analysis is such a fundamental topic in computer science, it is no surprise that the literature on the subject is rich and abundant. Here I give a glimpse at it.

This algorithm by Zhang, Zhang, Zhang and Li uses Normalized Density Derivatives (LDDs) to build a neighborhood graph within which valleys are then detected.

A variant of [KNF’76] where points climb down hills in the direction opposite to the estimated gradient. The thus obtained valley points act as separators between clusters.

A Wealth of Approaches

3

Variational

- k-means / k-medoid
- EM

Mode seeking

- Mean/Medoid/Quick Shift

- graph-based hill climbing

Spectral

Density thresholding

- DBSCAN
- OPTICS

- BIRCH

Hierarchical divisive/agglomerative

- single-linkage

- Normalized Cut

- CLARA

- Multiway Cut

Valley seeking

- [JBD’79]

- NDDs [ZZZL’07]

spectral k-means
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Mode-Seeking Paradigm

• Assume the data points are sampled from some unknown probability distribution

• Partition the data according to the basins of attraction of the peaks of the density
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Hill-Climbing Schemes

• Iterative, e.g. D. Comaniciu and P. Meer. Mean shift: A robust
approach toward feature space analysis. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 24(5):603619, May 2002.

• Non-iterative, e.g. W. L. Koontz, P. M. Narendra, and K. Fuku-
naga. A graph-theoretic approach to nonparametric cluster analysis.
IEEE Trans. on Computers, 24:936944, September 1976.
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[Koontz, Narendra, Fukunaga’76] in a Nutshell
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typically, one uses a Gaussian kernel estimator in practice
estimate density

at the data points

[Koontz, Narendra, Fukunaga’76] in a Nutshell
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typically, one builds a Rips or k-NN graph in practice, since these only require to use distance computations

typically, one uses a Gaussian kernel estimator in practice
estimate density

at the data points

[Koontz, Narendra, Fukunaga’76] in a Nutshell

build neighborhood graph
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typically, one connects each vertex to its graph neighbor with highest density value. This neighbor is called the parent of the current vertex. If no neighbor is higher than the current vertex, then the latter is declared a peak. Note that [KNF’76] normalizes the difference in height by the edge length.

the set of pseudo-gradient edges forms a spanning forest of the graph, where each tree represents a cluster and its root is a (estimated) density peak within the graph and acts as cluster center

typically, one builds a Rips or k-NN graph in practice, since these only require to use distance computations

typically, one uses a Gaussian kernel estimator in practice
estimate density

at the data points

approximate gradient

by a graph edge

[Koontz, Narendra, Fukunaga’76] in a Nutshell

at each data point

build neighborhood graph
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The main reason why we got a wrong result here is that our estimator is very noisy, with many local peaks in the plane that create local peaks within the graph. Generally speaking, differential quantities like peaks and gradients are very unstable under C0 perturbations of the function, which is what happens when a density estimator is used.

transition: the result obtained depends on your choice of estimator, neighborhood graph and gradient approximation strategy.Why things are likely to go ill

estimated
density

• Noisy estimator
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The main reason why we got a wrong result here is that our estimator is very noisy, with many local peaks in the plane that create local peaks within the graph. Generally speaking, differential quantities like peaks and gradients are very unstable under C0 perturbations of the function, which is what happens when a density estimator is used.

But it is not the only reason. Even with a perfect estimator (i.e. the original density function, as shown below), the fact that we work in some neighborhood graph instead of the ambient space may create artificial peaks, such as for instance the saddle point on the edge of the crater which turns into a peak in the graph, or the actual peak of the crater which is duplicated into 3 peaks.
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in fact, it may even worsen the neighborhood graph issue, since smoothing the estimator tends to enlarge the areas where the norm of the gradient is small, which are typically the areas where the neighborhood graph may have spurious peaks.

The main reason why we got a wrong result here is that our estimator is very noisy, with many local peaks in the plane that create local peaks within the graph. Generally speaking, differential quantities like peaks and gradients are very unstable under C0 perturbations of the function, which is what happens when a density estimator is used.

But it is not the only reason. Even with a perfect estimator (i.e. the original density function, as shown below), the fact that we work in some neighborhood graph instead of the ambient space may create artificial peaks, such as for instance the saddle point on the edge of the crater which turns into a peak in the graph, or the actual peak of the crater which is duplicated into 3 peaks.

transition: the result obtained depends on your choice of estimator, neighborhood graph and gradient approximation strategy.Why things are likely to go ill

• Noisy estimator

• Neighborhood graph

Solutions:

1. Be proactive: smooth-out estimator before clustering, a la Mean-Shift

→ how much smoothing is needed?

→ does not solve the neighborhood graph issue
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more precisely: after the (non-iterative) mode-seeking step, move each point to its cluster center, then restart the process with this new, smaller, point cloud , thus obtaining a new spanning forest. Continue until no further changes occur. Note that the underlying neighborhood graph remains the complete graph throughout the process. This iterative process is applied blindly, with no control over the final number of clusters. Therefore proving anything regarding the quality of the output is difficult, and in the original Medoid-Shift paper [Sheikh, Khan, Kanade 2007] they merely prove a similar behavior to Mean-Shift asymptotically, i.e. as the number of data points tends to infinity.

in fact, it may even worsen the neighborhood graph issue, since smoothing the estimator tends to enlarge the areas where the norm of the gradient is small, which are typically the areas where the neighborhood graph may have spurious peaks.

The main reason why we got a wrong result here is that our estimator is very noisy, with many local peaks in the plane that create local peaks within the graph. Generally speaking, differential quantities like peaks and gradients are very unstable under C0 perturbations of the function, which is what happens when a density estimator is used.

But it is not the only reason. Even with a perfect estimator (i.e. the original density function, as shown below), the fact that we work in some neighborhood graph instead of the ambient space may create artificial peaks, such as for instance the saddle point on the edge of the crater which turns into a peak in the graph, or the actual peak of the crater which is duplicated into 3 peaks.

transition: the result obtained depends on your choice of estimator, neighborhood graph and gradient approximation strategy.Why things are likely to go ill

• Noisy estimator

• Neighborhood graph

Solutions:

1. Be proactive: smooth-out estimator before clustering, a la Mean-Shift

→ how much smoothing is needed?

→ does not solve the neighborhood graph issue

2. Be reactive: merge clusters after clustering, to regain some stability

→ use topological persistence to guide a single-pass merging step
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→ repeat mode-seeking until convergence (Medoid-Shift [SKK’07])



Enter Topological Persistence...
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Persistence for Mode Seeking

Given a probability density f :
• Nested family (filtration) of superlevel-sets f−1([α,+∞)) for α = +∞ to −∞.

• Track evolution of topology throughout the family.
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Persistence for Mode Seeking

Given a probability density f :
• Nested family (filtration) of superlevel-sets f−1([α,+∞)) for α = +∞ to −∞.

• Track evolution of topology throughout the family.

• Finite set of intervals (barcode) encodes births/deaths of topological features.
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Persistence for Mode Seeking

α

β

Given a probability density f :

α

β

−∞

• Nested family (filtration) of superlevel-sets f−1([α,+∞)) for α = +∞ to −∞.

• Track evolution of topology throughout the family.

• Finite set of intervals (barcode) encodes births/deaths of topological features.
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Persistence for Mode Seeking

X

R

−∞ +∞

+∞

Stability Theorem ⇒ d∞B (Dg f,Dg f̂) ≤ ‖f − f̂‖∞.

Given an estimator f̂ :



Transition: here is how we apply persistence in our context.

More precisely...

• Density estimator f̂ defines an order on the point cloud

(sort data points by decreasing estimated density values)
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Transition: here is how we apply persistence in our context.

More precisely...

• Density estimator f̂ defines an order on the point cloud

(sort data points by decreasing estimated density values)

• Extend order to the graph edges → upper-star filtration

(f̂([u, v]) = min{f̂(u), f̂(v)})

• Compute the 0-dimensional persistence diagram of this filtration

(apply 0-dimensional persistence algorithm → union-find data structure)

0

-∞
0
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each point in the diagram represents a peak of the density in the neighborhood graph, and the vertical distance of thie point to the diagonal gives the prominence of the peak.

0

-∞
0

10

Estimating the Correct Number of Clusters



These peaks are born from the noise in the estimator plus the use of a neighborhood graph. Their prominences are small and so they are identified as topological noise in the PD.

0

-∞
0

topological

noise
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Estimating the Correct Number of Clusters



These peaks are born from the disconnectness of the neighborhood graph in low-density areas. They have small heights (hence appear lately in the diagram) and their clusters last forever as independent connected components. They are identified as background noise in the diagram.

0

-∞
0 background noise
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Estimating the Correct Number of Clusters



These peaks correspond to the peaks of the underlying density function, even though they may not lie at the same locations in space.

0

-∞
0

6 prominent

peaks
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Estimating the Correct Number of Clusters



Any prominence threshold τ within the range of the prominence gap will separate the relevant peaks from the topological and background noise.
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Estimating the Correct Number of Clusters

Hypotheses:

• X a Riemmaniann manifold with positive convexity radius %(X),

• f : X→ R a c-Lipschitz probability density function,
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Estimating the Correct Number of Clusters

Hypotheses:

• X a Riemmaniann manifold with positive convexity radius %(X),

• f : X→ R a c-Lipschitz probability density function,

• P a finite set of n points of X sampled i.i.d. according to f ,

Note: Π is the prominence of the least prominent peak of f

• f̂ : P → R a density estimator such that η := maxp∈P |f̂(p)− f(p)| < Π/5,

• G = (P,E) the δ-Rips graph for some positive δ < min
{
%(X), Π−5η

5c

}
.

11



the sectional curvature of X arise when the Bishop-Gunther inequality is invoked to lower-bound the volumes of geodesic balls

Estimating the Correct Number of Clusters

For any choice of τ such that 2(cδ + η) < τ < Π− 3(cδ + η),
the number of clusters computed by the algorithm is equal to the num-
ber of peaks of f with probability at least 1− e−Ω(n).

Hypotheses:

• X a Riemmaniann manifold with positive convexity radius %(X),

• f : X→ R a c-Lipschitz probability density function,

• P a finite set of n points of X sampled i.i.d. according to f ,

• f̂ : P → R a density estimator such that η := maxp∈P |f̂(p)− f(p)| < Π/5,

• G = (P,E) the δ-Rips graph for some positive δ < min
{
%(X), Π−5η

5c

}
.

Conclusion:

(the Ω notation hides factors depending on c, δ and the sectional curvature of X)
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In pictures: - the leftmost diagram is the one of the underlying density f in X, - the
rightmost diagram is the one of the estimator f̃ in the δ-Rips graph - the peaks of f
have prominence at least Π and so their corresponding points in Dg f lie in the dark
grey region - the stability of persistence diagrams enables us to control the way the
points in the diagram are moved when going from f to f̃ : their images lie in the union
of the dark grey region and of the lower pink region - the upper pink region represents
topological noise and background noise that may appear when we go from f to f̃ -
their exist suitable values of the prominence threshod τ when the two pink regions are
disjoint, i.e. when 2(cδ + η) < Π − 3(cδ + η) - note that there is a twist here: the
diagonals are not merely shifted vertically by the change from f to f̃ , as is classically
the case. This is because the regions of low density may not be well-sampled by the
input point cloud P , therefore the interleavings between the various filtrations involved
in the analysis may not go all the way down to 0. Thus, the weird shapes of the pink
regions. Moreover, the probabilistic nature of the conclusion comes from the fact that
the superlevel-set F cδ+η is densely sampled by P with a certain probability only.
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(the Ω notation hides factors depending on c, δ and the sectional curvature of X)
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Proof’s main ingredient: stability theorem for persistence diagrams

Note: f, f̂ are not defined over the same domain



Merging Clusters
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• 0-dimensional persistence builds a hierarchy of the peaks of f̂ (merge tree)

• merge clusters according to the hierarchy (merge each cluster into its parent)
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• 0-dimensional persistence builds a hierarchy of the peaks of f̂ (merge tree)

• given a fixed threshold τ ≥ 0, only merge those clusters of prominence < τ

γ − δ < τ ≤ +∞
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s

• merge clusters according to the hierarchy (merge each cluster into its parent)



left: view from the side; center: vue from the top; right: view from a low angle The function has 3 peaks and 3 saddles: s1 and s2 (the latter duplicated by symmetry). The hights of the saddles are arbitrarily close to each other, so infinitesimal perturbations of f can change their order.

The situation is so unstable that even using different neighborhood sizes can result in different merge patterns, without perturbing the function. This shows that we cannot hope for any stability of the clusters below f(s1).

The instability of the merge of Bm in the underlying continuous setting results in the same instability for the merge of the associated clusters in the output of the algorithm.

First, let us go through an example, to see what we can hope for on this frontApproximating the Basins of Attraction of f
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f : [0, 1]2 → R



Here, by ”merged” basin of attraction we mean the merger of the peaks own basin with the basins of its children of prominence less than τ in the hierarchy.

First, let us go through an example, to see what we can hope for on this frontApproximating the Basins of Attraction of f
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Partial Approximation Theorem: the cluster associated
with a τ -prominent peak in the graph is the trace over P
of the (merged) basin of attraction of the corresponding
peak in the underlying continuous domain, until that basin
gets connected to the one of another τ -prominent peak.
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We purposefully omit the density estimation and neighborhood graph computation from our complexity analysis, to stress how fast the clustering per se is. In practice, density estimation and neighborhood graph computation are clearly the pacing steps.

Complexity of the Algorithm

14

Given a neighborhood graph with n vertices (with density values) and m edges:

1. the algorithm sorts the vertices by decreasing density values,

2. the algorithm makes a single pass through the vertex set, creating the span-
ning forest and merging clusters on the fly using a union-find data structure.



We purposefully omit the density estimation and neighborhood graph computation from our complexity analysis, to stress how fast the clustering per se is. In practice, density estimation and neighborhood graph computation are clearly the pacing steps.

This is mainly interesting for sparse graphs, e.g. k-NNs graphs

Nevertheless, even for dense graphs, it is interesting to note that only a linear amount of main memory is used, since only the graph neighborhood of the current vertex is inspected at each iteration. The size of this neighborhood is at most linear in n, and in many cases it remains in fact constant.

The first term corresponds to sorting the data points according to their density values. Assigning values to edges and sorting them then takes linear time. The second term corresponds to the 0-dimensional persistence algorithm, which performs one find per data point and per graph edge to determine the cluster memberships, then possibly one union per edge to perform the merges.

Complexity of the Algorithm

14

→ Running time: O(n log n+ (n+m)α(n))

Given a neighborhood graph with n vertices (with density values) and m edges:

→ Space complexity: O(n+m)

→ Main memory usage: O(n)

1. the algorithm sorts the vertices by decreasing density values,

2. the algorithm makes a single pass through the vertex set, creating the span-
ning forest and merging clusters on the fly using a union-find data structure.



for i = 1 to n do
Let N be the set of neighbors of i in G that have indices lower than i;
if N = ∅ // vertex i is a peak of f̃ within G

Create a new entry e in U and attach vertex i to it;
r(e)← i // r(e) stores the root vertex associated with the entry e

else // vertex i is not a peak of f̃ within G

g(i)← argmaxj∈N f̃(j) // g(i) stores the approximate gradient at vertex i

ei ← U .find(g(i));
Attach vertex i to the entry ei;
for j ∈ N do

e← U .find(j);
if e 6= ei and min{f̃(r(e)), f̃(r(ei))} < f̃(i) + τ
U .union(e, ei);
r(e ∪ ei)← argmax{r(e), r(ei)}f̃ ;
ei ← e ∪ ei;

Sort the vertex indices {1, 2, · · · , n} so that f̃(1) ≥ f̃(2) ≥ · · · ≥ f̃(n);
Initialize a union-find data structure U and two vectors g, r of size n;

Pseudo-code:
Input: simple graph G with n vertices, n-dimensional vector f̃ , real parameter τ ≥ 0.

Output: the collection of entries e of U such that f̃(r(e)) ≥ τ .



By contrast, the spectrum of the graph Laplacian does not show any significant gap, and in fact the result of spectral clustering is ruined due to the presence of background noise, which dooms the k-means step in eigenspace.

Experimental Results
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Synthetic Data
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Spectral clustering

(k-means in eigenspace)



We first run the algorithm with an arbitrary value for τ = 0, and we look at the output PD.

Experimental Results
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Synthetic Data

−∞

τ = 0

ToMATo



Then we re-run the algorithm with this choice of parameter τ , to obtain 2 clusters

Experimental Results
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τ
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The trend of having two prominent peaks and topological noise is amplified when the number of data increases from 20k to 100k. We used the Delaunay graph as neighborhood graph, to reduce the size and speed up the computation.

Experimental Results
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Synthetic Data
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−∞



It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.

Note: the PD is plotted on a log/log scale, to avoid scaling effects. So actual differences in prominence are orders of magnitude, as the next view shows.

Experimental Results
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Common belief: 6 metastable states

PD shows anywhere between 4 and 7 clusters



It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.
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Biological Data

Alanine-Dipeptide conformations (R21)

RMSD distance (non-Euclidean)

Common belief: 6 metastable states

PD shows anywhere between 4 and 7 clusters
1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

Number of clusters

M
et
as
ta
bi
lit
y

MetastabilityRank Prominence

1 +∞ 0.99982
2 3827 1.91865
3 1334 2.8813
4 557 3.76217
5 85 4.73838
6 32 5.65553
7 26 6.50757
8 7.2 6.8193
9 3.0 -

10 2.2 -

Measures of metastability confirm this insight



For reference on the data set and spectral approach, please refer to the following paper

It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.
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Biological Data

Alanine-Dipeptide conformations (R21)

RMSD distance (non-Euclidean)

• Y. Yao, J. Sun, X. Huang, G. Bowman, G. Singh, M. Lesnick, L. Guibas, V. Pande,
G. Carlsson, Topological methods for exploring low-density states in biomolecular
folding pathways, The Journal of Chemical Physics, 2009.

Note: Spectral Clustering takes a week of tweaking,
while ToMATo runs out-of-the-box in a few minutes



The segments are shown in fake colors, for a clearer visualization. Note the presence of black points: these are not a cluster per se, but were discarded from the point cloud as outliers during the density estimation step: this improved the result quite a bit. → advice: for image segmentation, perform a preliminary outliers detection and removal for better results down the road.

This operation is very fast. The output clusters are sensitive to the location in the image, thus the different colors on the two eyes and two cheeks.

This observation suggests that the correct number of segments in the image is usually not readily available, which follows the general idea that image segmentation is an ill-posed problem.

Experimental Results
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Image Segmentation
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Density is estimated in 3D color space (Luv)

Neighborhood graph is built in image domain

Distribution of prominences does not usually
show a clear unique gap

Still, relationship between choice of τ and
number of obtained clusters remains explicit
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ToMATo:

1. graph-based mode-seeking algorithm of [KNF’76]

2. single-pass cluster merging phase guided by persistence

Competitors:

1. Mean-Shift and its variants (smoothing a priori)

2. ...



Recap’

18

• Highly generic

- applicable in arbitrary metric spaces

- agnostic to the choice of neighborhood graph and density estimator

• Easy to tune

- mostly two parameters: neighborhood size, persistence threshold τ

- PD provides insight into the correct number of clusters

• Comes with theoretical guarantees

- number of obtained clusters versus number of prominent peaks

- partial approximation of the basins of attraction of the peaks

• Efficient and practical

- near linear runtime, linear main memory usage

- can handle data sets with hundreds of thousands of points in practice



Recap’
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Q Can we devise soft variants?



basically, point p is assigned to cluster C with probability (number of runs where p fell into C) / (total number of runs).

This task is possible since some parts of the τ -prominent clusters remain stable across runs (including the peaks themselves, which may no longer be peaks but still belong to the same cluster).

Here, SOCG does not mean Symposium on Computational geometry, but rather Skraba, Ovsjanikov, Chazal and Guibas. The paper was presented at NORDIA 2010.

First idea: add randomness to the estimator

19
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→ soft clustering variant [Skraba et al. ’10]:

- rerun the algorithm with randomly perturbed function values

- identify τ -prominent clusters across different runs

- assign points to clusters with probabilities depending

on the outcomes of the runs
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→ soft clustering variant [Skraba et al. ’10]:

- rerun the algorithm with randomly perturbed function values

- identify τ -prominent clusters across different runs

- assign points to clusters with probabilities depending

on the outcomes of the runs

Pb: What is the corresponding continuous process?



Second idea: add randomness to gradient ascent

20

dXt = ∇ log f(Xt) +
√
βIddWt

X0 = x

Given a density f : Rd → R and a point x ∈ Rd s.t. f(x) > 0, consider the SDE:
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Second idea: add randomness to gradient ascent

20

dXt = ∇ log f(Xt) +
√
βIddWt

X0 = x

gradient term temperature isotropic diffusion term

β = 0 → pure mode seeking

β → +∞ → pure diffusion

Our continuous process is the solution of this equation (assuming well-posedness)

Given a density f : Rd → R and a point x ∈ Rd s.t. f(x) > 0, consider the SDE:



Second idea: add randomness to gradient ascent
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dXt = ∇ log f(Xt) +
√
βIddWt

X0 = x

Pb: probability to reach a given peak of f (or any given point of Rd) is 0

Given a density f : Rd → R and a point x ∈ Rd s.t. f(x) > 0, consider the SDE:



Second idea: add randomness to gradient ascent

20

dXt = ∇ log f(Xt) +
√
βIddWt

X0 = x

Pb: probability to reach a given peak of f (or any given point of Rd) is 0

→ solution: replace peaks by cluster cores:

- P(Xt eventually reaches some Ci) > 0

- belong surely to the basin of attraction
of a unique peak of f

Given a density f : Rd → R and a point x ∈ Rd s.t. f(x) > 0, consider the SDE:



Imporant: this assumes we know the number of clusters and ”good” cluster cores → luckily, this is precisely what ToMATo provides

Second idea: add randomness to gradient ascent

20

dXt = ∇ log f(Xt) +
√
βIddWt

X0 = x

Pb: probability to reach a given peak of f (or any given point of Rd) is 0

→ solution: replace peaks by cluster cores:

- P(Xt eventually reaches some Ci) > 0

- belong surely to the basin of attraction
of a unique peak of f

∀Ci, µi(x) = P(Xt reaches Ci first)

µ0(x) = P(Xt reaches none of the Ci)

Given a density f : Rd → R and a point x ∈ Rd s.t. f(x) > 0, consider the SDE:



this implies in particular that we know the number of clusters

Second idea (cont’d): the discrete setting

21

- X1, · · · , Xn i.i.d. random variables drawn from the density f

Input:

- density estimator f̂n

- temperature parameter β

- estimators Ĉ1, · · · , Ĉk of the (continuous) cluster cores C1, · · · , Ck



note that the underlying graph is the h-Rips (or h-neighborhood) graph

this implies in particular that we know the number of clusters

Second idea (cont’d): the discrete setting

21

- X1, · · · , Xn i.i.d. random variables drawn from the density f

Input:

- density estimator f̂n

- temperature parameter β

- estimators Ĉ1, · · · , Ĉk of the (continuous) cluster cores C1, · · · , Ck

Construction: Given x ∈ X, build the Markov chain Mh,n s.t.:

- initial state = sample point nearest to x,

- transition kernel:

Kh(Xi, Xj) =

 (1 + (β − 1) f̂n(Xi)

f̂n(Xj)
)Zi if ‖Xi −Xj‖2 ≤ h

0 otherwise

where Zi is the appropriate renormalization factor, so
∑n
j=1 K

h(Xi, Xj) = 1



Second idea (cont’d): guarantees
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Hypotheses:

- f is C1-continuous over Rd

- lim‖x‖2→+∞ f(x) = 0,

- ∀α0 > 0, ∃α < α0 s.t. ∀x ∈ X, f(x) = α ⇒ ∇f(x) 6= 0,

- the SDE over X is well-posed,

- limn→∞ P(‖f − f̂n‖∞ ≥ ε) = 0,

- ∀δ > 0, limn→∞ P(C−δi ⊆ Ĉi ⊆ Cδi ) = 1.

(let X = {x ∈ Rd | f(x) > 0})
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Hypotheses:

- f is C1-continuous over Rd

- lim‖x‖2→+∞ f(x) = 0,

- ∀α0 > 0, ∃α < α0 s.t. ∀x ∈ X, f(x) = α ⇒ ∇f(x) 6= 0,

- the SDE over X is well-posed,

- limn→∞ P(‖f − f̂n‖∞ ≥ ε) = 0,

- ∀δ > 0, limn→∞ P(C−δi ⊆ Ĉi ⊆ Cδi ) = 1. (provided by ToMATo)

(provided by estimator)

(to avoid
leaving X)

(let X = {x ∈ Rd | f(x) > 0})

(regularity of the density)



Formally: given a fixed h, there is an s(h) such that Mh,n
sbt/sc converges weakly to the solution Xt of the SDE, i.e.: For any T, ε > 0, for any U ⊂ X compact, for any Borel set B in the Skorokhod space of trajectories D([0, T ],Rd), there exists h0 > 0 such that ∀h ≤ h0, limn→∞ P

(
supx∈U |P(Mx,n,h

sbt/sc ∈ B)− P(Xx
t ∈ B)| ≥ ε

)
= 0.

pour tout choix de compact U ⊂ X et d’amplitude maximale d’erreur ε > 0, il existe un seuil h0 sur la largeur de bande du noyau Kh tel que la probabilite de commettre une erreur plus grande que ε sur les probabilites µi tend vers 0 quand n tend vers l’infini.

Second idea (cont’d): guarantees

22

Hypotheses:

- f is C1-continuous over Rd

- lim‖x‖2→+∞ f(x) = 0,

- ∀α0 > 0, ∃α < α0 s.t. ∀x ∈ X, f(x) = α ⇒ ∇f(x) 6= 0,

- the SDE over X is well-posed,

- limn→∞ P(‖f − f̂n‖∞ ≥ ε) = 0,

Conclusions:

- ∀δ > 0, limn→∞ P(C−δi ⊆ Ĉi ⊆ Cδi ) = 1.

- the discrete process Mh,n converges weakly to the solution of the SDE,

- the µ̂h,ni derived from Mh,n converge in probability to the µi derived from
the solution of the SDE: ∀U ⊂ X compact, ∀ε > 0, ∃h0 s.t. ∀h ≤ h0,

limn→∞ P
(

supx∈X |µ̂
h,n
i (x)− µi(x)| ≥ ε

)
= 0.

(provided by ToMATo)

(provided by estimator)

(to avoid
leaving X)

(let X = {x ∈ Rd | f(x) > 0})

(regularity of the density)
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β = 0 (ToMATo)

β = 0.4 β = 1 (spectral) β = 10

dataset + density
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β = 0 (ToMATo)

β = 0.3 β = 1 (spectral)

dataset + density
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21-d dataset (projected onto T 2)

β = 0.2

hard clusters (ToMATo)



Weak Convergence

Formally: given a fixed h, there is an s(h) such that Mh,n
sbt/sc converges weakly

to the solution Xt of the SDE, i.e.:
For any T, ε > 0, for any U ⊂ X compact, for any Borel set B in the Skorokhod
space of trajectories D([0, T ],Rd), there exists h0 > 0 such that ∀h ≤ h0,

limn→∞ P
(

supx∈U |P(Mx,n,h
sbt/sc ∈ B)− P(Xx

t ∈ B)| ≥ ε
)

= 0.

- ”the discrete process Mh,n converges weakly to the solution of the SDE,”


