Persistence Modules vs. Quiver Representations

k: field of coefficients

persistence module:

$$k \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} k^2 \xrightarrow{\begin{pmatrix} 0 & 1 \end{pmatrix}} k \xrightarrow{\begin{pmatrix} 1 \\ 1 \end{pmatrix}} k^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}} k^2$$

Persistence Modules vs. Quiver Representations

k: field of coefficients

quiver representation:

$$k \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} k^2 \xrightarrow{\begin{pmatrix} 0 & 1 \end{pmatrix}} k \xrightarrow{\begin{pmatrix} 1 \\ 1 \end{pmatrix}} k^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}} k^2$$

Outline

- quivers and representations
- the category of representations
- the classification problem
- Gabriel's theorem(s)
- proof of Gabriel's theorem
- beyond Gabriel's theorem

Definition: A quiver Q consists of two sets Q_0, Q_1 and two maps $s, t : Q_1 \to Q_0$. The elements in Q_0 are called the *vertices* of Q, while those of Q_1 are called the *arrows*. The *source map* s assigns a source s_a to every arrow $a \in Q_1$, while the *target map* t assigns a target t_a .

Definition: A quiver Q consists of two sets Q_0, Q_1 and two maps $s, t : Q_1 \to Q_0$. The elements in Q_0 are called the *vertices* of Q, while those of Q_1 are called the *arrows*. The *source map* s assigns a source s_a to every arrow $a \in Q_1$, while the *target map* t assigns a target t_a .

Definition: A representation of Q over a field k is a pair $\mathbb{V} = (V_i, v_a)$ consisting of a set of k-vector spaces $\{V_i \mid i \in Q_0\}$ together with a set of k-linear maps $\{v_a : V_{s_a} \to V_{t_a} \mid a \in Q_1\}$.

Note: commutativity is not required

Definition: A morphism ϕ between two k-representations \mathbb{V}, \mathbb{W} of \mathbb{Q} is a set of k-linear maps $\phi_i : V_i \to W_i$ such that $w_a \circ \phi_{s_a} = \phi_{t_a} \circ v_a$ for every arrow $a \in Q_1$.

every quadrangle associated with a quiver edge commutes

Definition: A morphism ϕ between two k-representations \mathbb{V}, \mathbb{W} of \mathbb{Q} is a set of k-linear maps $\phi_i : V_i \to W_i$ such that $w_a \circ \phi_{s_a} = \phi_{t_a} \circ v_a$ for every arrow $a \in Q_1$.

every quadrangle associated with a quiver edge commutes

The Category of Representations

The representations of a quiver $Q = (Q_0, Q_1)$, together with their morphisms, form a category called $\operatorname{Rep}_{k}(Q)$. This category is **abelian**:

• it contains a zero object, namely the *trivial representation*

The Category of Representations

The representations of a quiver $Q = (Q_0, Q_1)$, together with their morphisms, form a category called $\operatorname{Rep}_{k}(Q)$. This category is **abelian**:

• it contains a zero object, namely the *trivial representation*

• it has internal and external direct sums, defined *pointwise*. For any \mathbb{V}, \mathbb{W} , the representation $\mathbb{V} \oplus \mathbb{W}$ has spaces $V_i \oplus W_i$ for $i \in Q_0$ and maps $v_a \oplus w_a =$ $k \xrightarrow{0} 0 \xrightarrow{0} k \xrightarrow{1} k \xrightarrow{0} 0$ = $\mathbf{k}^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}} \mathbf{k}^2 \xrightarrow{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}} \mathbf{k}^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}} \mathbf{k}^3 \xrightarrow{\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 \end{pmatrix}} \mathbf{k}^2$

The Category of Representations

The representations of a quiver $Q = (Q_0, Q_1)$, together with their morphisms, form a category called $\operatorname{Rep}_{k}(Q)$. This category is **abelian**:

- it contains a zero object, namely the *trivial representation*
- it has internal and external direct sums, defined *pointwise*. For any \mathbb{V}, \mathbb{W} , the representation $\mathbb{V} \oplus \mathbb{W}$ has spaces $V_i \oplus W_i$ for $i \in Q_0$ and maps $v_a \oplus w_a = \begin{pmatrix} v_a & 0 \\ 0 & w_a \end{pmatrix}$ for $a \in Q_1$
- every morphism has a *kernel*, an *image* and a *cokernel*, defined *pointwise*. \rightarrow a morphism ϕ is injective iff ker $\phi = 0$, and surjective iff coker $\phi = 0$.

Goal: Classify the representations of a given quiver $\mathbf{Q} = (Q_0, Q_1)$ up to isomorphism.

Note: harder than for single vector spaces because no semisimplicity (subrepresentations may not be summands)

$$\mathbb{V}=\;k\stackrel{\mathbb{1}}{\longrightarrow}k$$

$$\mathbb{W} = 0 \xrightarrow{0} \mathbf{k}$$

Goal: Classify the representations of a given quiver $Q = (Q_0, Q_1)$ up to isomorphism.

- \rightarrow simplifying assumptions:
 - $\bullet~{\tt Q}$ is finite and connected
 - \bullet study the subcategory $\mathrm{rep}_{\boldsymbol{k}}(\mathtt{Q})$ of finite-dimensional representations

$$\underline{\dim} \mathbb{V} = (\dim V_1, \cdots, \dim V_n)^\top,$$
$$\dim \mathbb{V} = \|\underline{\dim} \mathbb{V}\|_1 = \sum_{i=1}^n \dim V_i.$$

Goal: Classify the representations of a given quiver $Q = (Q_0, Q_1)$ up to isomorphism.

- \rightarrow simplifying assumptions:
 - $\bullet~{\tt Q}$ is finite and connected
 - \bullet study the subcategory $\mathrm{rep}_{\boldsymbol{k}}(\mathtt{Q})$ of *finite-dimensional* representations

Theorem: [Krull-Remak-Schmidt-Azumaya] $\forall \mathbb{V} \in \operatorname{rep}_{k}(\mathbb{Q}), \exists \mathbb{V}_{1}, \dots, \mathbb{V}_{r}$ indecomposable s.t. $\mathbb{V} \cong \mathbb{V}_{1} \oplus \dots \oplus \mathbb{V}_{r}$. The decomposition is unique up to isomorphism and reordering.

note: $\mathbb V$ indecomposable iff there are no $\mathbb U,\mathbb W\neq 0$ such that $\mathbb V\cong\mathbb U\oplus\mathbb W$

Goal: Classify the representations of a given quiver $Q = (Q_0, Q_1)$ up to isomorphism.

- \rightarrow simplifying assumptions:
 - $\bullet~{\tt Q}$ is finite and connected
 - study the subcategory $\operatorname{rep}_{\boldsymbol{k}}(\mathtt{Q})$ of *finite-dimensional* representations

Theorem: [Krull-Remak-Schmidt-Azumaya] $\forall \mathbb{V} \in \operatorname{rep}_{k}(\mathbb{Q}), \exists \mathbb{V}_{1}, \dots, \mathbb{V}_{r}$ indecomposable s.t. $\mathbb{V} \cong \mathbb{V}_{1} \oplus \dots \oplus \mathbb{V}_{r}$. The decomposition is unique up to isomorphism and reordering.

proof:

- \bullet existence: by induction on $\dim \mathbb V$
- uniqueness: show that endomorphisms ring of each \mathbb{V}_i is local (it is isomorphic to k for interval representations of A_n -type quivers), then apply Azumaya's theorem

Goal: Classify the representations of a given quiver $Q = (Q_0, Q_1)$ up to isomorphism.

- \rightarrow simplifying assumptions:
 - $\bullet~{\tt Q}$ is finite and connected
 - \bullet study the subcategory $\mathrm{rep}_{\boldsymbol{k}}(\mathtt{Q})$ of *finite-dimensional* representations

Theorem: [Krull-Remak-Schmidt-Azumaya] $\forall \mathbb{V} \in \operatorname{rep}_{\boldsymbol{k}}(\mathbb{Q}), \exists \mathbb{V}_1, \dots, \mathbb{V}_r \text{ indecomposable s.t. } \mathbb{V} \cong \mathbb{V}_1 \oplus \dots \oplus \mathbb{V}_r.$ The decomposition is unique up to isomorphism and reordering.

 \rightarrow problem becomes to identify the indecomposable representations of Q (\neq from identifying representations with no subrepresentations) (no semisimplicity)

Theorem: [Gabriel I] Assuming Q is finite and connected, there are finitely many isomorphism classes of indecomposable representations in $\operatorname{rep}_{\boldsymbol{k}}(Q)$ iff Q is Dynkin.

Theorem: [Gabriel I] Assuming Q is finite and connected, there are finitely many isomorphism classes of indecomposable representations in $rep_k(Q)$ iff Q is Dynkin.

(does not depend on the choice of field and of arrow orientations)

Theorem: [Gabriel I] Assuming Q is finite and connected, there are finitely many isomorphism classes of indecomposable representations in $rep_k(Q)$ iff Q is Dynkin.

Q given that **Q** is Dynkin, how to identify indecomposable representations?

Theorem: [Gabriel I] Assuming Q is finite and connected, there are finitely many isomorphism classes of indecomposable representations in $rep_k(Q)$ iff Q is Dynkin.

Q given that **Q** is Dynkin, how to identify indecomposable representations?

Theorem: [Gabriel II]

Assuming Q is Dynkin with n vertices, the map $\mathbb{V} \mapsto \underline{\dim} \mathbb{V}$ induces a bijection between the set of isomorphism classes of indecomposable representations of Q and the set of *positive roots* of the *Tits form* of Q.

Theorem: [Gabriel I] Assuming Q is finite and connected, there are finitely many isomorphism classes of indecomposable representations in $rep_k(Q)$ iff Q is Dynkin.

Q given that **Q** is Dynkin, how to identify indecomposable representations?

Theorem: [Gabriel II]

Assuming Q is Dynkin with n vertices, the map $\mathbb{V} \mapsto \underline{\dim} \mathbb{V}$ induces a bijection between the set of isomorphism classes of indecomposable representations of Q and the set of *positive roots* of the *Tits form* of Q.

(isom. classes of indecomposables are fully characterized by their dim. vectors)

Tits form: given $Q = (Q_0, Q_1)$ with $|Q_0| = n$ and $x = (x_1, \dots, x_n) \in \mathbb{Z}^n$,

$$q_{\mathbf{Q}}(x) = \sum_{i \in Q_0} x_i^2 - \sum_{a \in Q_1} x_{s_a} x_{t_a}.$$

Tits form: given $Q = (Q_0, Q_1)$ with $|Q_0| = n$ and $x = (x_1, \dots, x_n) \in \mathbb{Z}^n$,

$$q_{\mathbf{Q}}(x) = \sum_{i \in Q_0} x_i^2 - \sum_{a \in Q_1} x_{s_a} x_{t_a}.$$

Proposition: q_{Q} is *positive definite* $(q_{Q}(x) > 0 \ \forall x \neq 0)$ iff Q is Dynkin.

Tits form: given $Q = (Q_0, Q_1)$ with $|Q_0| = n$ and $x = (x_1, \dots, x_n) \in \mathbb{Z}^n$,

$$q_{\mathbf{Q}}(x) = \sum_{i \in Q_0} x_i^2 - \sum_{a \in Q_1} x_{s_a} x_{t_a}.$$

Root: $x \in \mathbb{Z}^n \setminus \{0\}$ is a *root* if $q_{\mathbb{Q}}(x) \leq 1$. It is *positive* if $x_i \geq 0 \ \forall i$.

Tits form: given $Q = (Q_0, Q_1)$ with $|Q_0| = n$ and $x = (x_1, \dots, x_n) \in \mathbb{Z}^n$,

$$q_{\mathbf{Q}}(x) = \sum_{i \in Q_0} x_i^2 - \sum_{a \in Q_1} x_{s_a} x_{t_a}.$$

Root: $x \in \mathbb{Z}^n \setminus \{0\}$ is a *root* if $q_{\mathbb{Q}}(x) \leq 1$. It is *positive* if $x_i \geq 0 \ \forall i$.

Proposition: If Q is Dynkin, then the set of positive roots of q_Q is finite.

Tits form: given $Q = (Q_0, Q_1)$ with $|Q_0| = n$ and $x = (x_1, \cdots, x_n) \in \mathbb{Z}^n$,

$$q_{\mathbf{Q}}(x) = \sum_{i \in Q_0} x_i^2 - \sum_{a \in Q_1} x_{s_a} x_{t_a}.$$

Root: $x \in \mathbb{Z}^n \setminus \{0\}$ is a *root* if $q_{Q}(x) \leq 1$. It is *positive* if $x_i \geq 0 \ \forall i$.

Proposition: If Q is Dynkin, then the set of positive roots of q_Q is finite.

proof outline:

- $q_{\mathtt{Q}}$ can be viewed indifferently as a quadratic form on \mathbb{Z}^n , \mathbb{Q}^n or \mathbb{R}^n
- q_{Q} pos. definite on $\mathbb{Z}^n \Rightarrow q_{Q}$ pos. definite on \mathbb{Q}^n
- ullet by taking limits, $q_{ extsf{Q}}$ is then pos. semidefinite on \mathbb{R}^n
- q_{Q} invertible on \mathbb{Q}^{n} with coeffs. in $\mathbb{Q} \Rightarrow q_{Q}$ invertible on \mathbb{R}^{n}

 $\Rightarrow q_{\mathbb{Q}}$ pos. definite on $\mathbb{R}^n \Rightarrow \{x \in \mathbb{R}^n \mid q_{\mathbb{Q}}(x) \leq 1\}$ is an ellipsoid

Tits form: given $Q = (Q_0, Q_1)$ with $|Q_0| = n$ and $x = (x_1, \dots, x_n) \in \mathbb{Z}^n$,

$$q_{\mathbf{Q}}(x) = \sum_{i \in Q_0} x_i^2 - \sum_{a \in Q_1} x_{s_a} x_{t_a}.$$

Root: $x \in \mathbb{Z}^n \setminus \{0\}$ is a *root* if $q_{\mathbb{Q}}(x) \leq 1$. It is *positive* if $x_i \geq 0 \ \forall i$.

Proposition: If Q is Dynkin, then the set of positive roots of q_Q is finite.

Theorem: [Gabriel II] Assuming Q is Dynkin with n vertices, the map $\mathbb{V} \mapsto \underline{\dim} \mathbb{V}$ induces a bijection between the set of isomorphism classes of indecomposable representations of Q and the set of *positive roots* of the *Tits form* of Q.

$$q_{\mathbf{Q}}(x) = \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n-1} x_i x_{i+1}$$

= $\sum_{i=1}^{n-1} \frac{1}{2} (x_i - x_{i+1})^2 + \frac{1}{2} x_1^2 + \frac{1}{2} x_n^2$
= 1 iff $x = (0, \dots, 0, 1, \dots, 1, 0, \dots, 0)$

$$q_{\mathbf{Q}}(x) = \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n-1} x_i x_{i+1}$$

= $\sum_{i=1}^{n-1} \frac{1}{2} (x_i - x_{i+1})^2 + \frac{1}{2} x_1^2 + \frac{1}{2} x_n^2$
= 1 iff $x = (0, \dots, 0, 1, \dots, 1, 0, \dots, 0)$

the corresponding indecomp. representations are isomorphic to $\mathbb{I}_{Q}[b,d]$:

Advantage: explains the fact that only the dimension vectors play a role in the identification of indecomposable representations. In particular, arrow orientations are irrelevant.

idea: modify quivers by reversing arrows, and study the effect on their representations.

Definition: sink = only incoming arrows; source = only outgoing arrows

Definition: reflection s_i = reverse all arrows incident to sink/source i

Definition: reflection functor $\mathcal{R}_i^{\pm} = \text{functor } \operatorname{Rep}_{\boldsymbol{k}}(\mathbb{Q}) \to \operatorname{Rep}_{\boldsymbol{k}}(s_i\mathbb{Q})$

Let $\mathbb{V} = (V_i, v_a) \in \operatorname{Rep}_{k}(\mathbb{Q})$, let *i* be a sink

Let $\mathbb{V} = (V_i, v_a) \in \operatorname{Rep}_{k}(\mathbb{Q})$, let i be a sink

Definition: $\mathcal{R}_i^+ \mathbb{V} = (W_i, w_a)$ is defined by :

•
$$W_j = V_j$$
 for all $j \neq i$
• $w_a = v_a$ for all $a \notin Q_1^i$ (arrows incident to i)

Let $\mathbb{V} = (V_i, v_a) \in \operatorname{Rep}_{k}(\mathbb{Q})$, let i be a sink

Definition: $\mathcal{R}_i^+ \mathbb{V} = (W_i, w_a)$ is defined by :

•
$$W_j = V_j$$
 for all $j \neq i$
• $w_a = v_a$ for all $a \notin Q_1^i$
• $W_i = \ker \xi_i : \left| \bigoplus_{a \in Q_1^i} V_{s_a} \longrightarrow V_i \right|_{a \in Q_1^i} \left| (x_{s_a})_{a \in Q_1^i} \longmapsto \sum_{a \in Q_1^i} v_a(x_{s_a}) \right|_{a \in Q_1^i}$

Let $\mathbb{V} = (V_i, v_a) \in \operatorname{Rep}_{k}(\mathbb{Q})$, let i be a sink

Definition: $\mathcal{R}_i^+ \mathbb{V} = (W_i, w_a)$ is defined by :

•
$$W_j = V_j$$
 for all $j \neq i$
• $w_a = v_a$ for all $a \notin Q_1^i$ (arrows incident to i)
• $W_i = \ker \xi_i : \left| \bigoplus_{a \in Q_1^i} V_{s_a} \longrightarrow V_i \right|_{a \in Q_1^i} ||_{(x_{s_a})_{a \in Q_1^i}} \mapsto \sum_{a \in Q_1^i} v_a(x_{s_a})||_{(x_{s_a})_{a \in Q_1^i}} \mapsto \sum_{a \in Q_1^i} v_a(x_{s_a})||_{(x_{s_a})_{a \in Q_1^i}} ||_{(x_{s_a})_{a \in Q_1^i}} ||_{(x_{s_a})_{a \in Q_1^i}} + \sum_{a \in Q_1^i} v_a(x_{s_a})||_{(x_{s_a})_{a \in Q_1^i}} ||_{(x_{s_a})_{a \in Q_1^i}} ||_{(x_{s_a})_{a \in Q_1^i}} ||_{(x_{s_a})_{a \in Q_1^i}} + \sum_{a \in Q_1^i} v_a(x_{s_a})||_{(x_{s_a})_{a \in Q_1^i}} + \sum_{a \in Q_1^i} v_a(x_{s$

• for $a \in Q_1^i$, let b be the opposite arrow, and let w_b be the composition:

$$W_{s_b} = W_i = \ker \xi_i \hookrightarrow \bigoplus_{c \in Q_1^i} V_{s_c} \longrightarrow V_{s_a} = W_{s_a} = W_{t_b}$$
(canonical inclusion) (projection to component)

 V_{sa})

Let $\mathbb{V} = (V_i, v_a) \in \operatorname{Rep}_k(\mathbb{Q})$, let i be a sink

Definition: $\mathcal{R}_i^+ \mathbb{V} = (W_i, w_a)$ is defined by :

• $W_j = V_j$ for all $j \neq i$ • $w_a = v_a$ for all $a \notin Q_1^i$ (arrows incident to i)

•
$$W_i = \ker \xi_i : \left| \bigoplus_{a \in Q_1^i} V_{s_a} \longrightarrow V_i \right|$$
 intuition in the pass of $(x_{s_a})_{a \in Q_1^i} \longmapsto \sum_{a \in Q_1^i} v_a(x_{s_a}) \right|$

intuition: W_i carries the information passing through V_i in \mathbb{V}

$$ullet$$
 for $a\in Q_1^i$, let b be the opposite arrow, and let w_b be the composition

$$W_{s_b} = W_i = \ker \xi_i \hookrightarrow \bigoplus_{c \in Q_1^i} V_{s_c} \longrightarrow V_{s_a} = W_{s_a} = W_{t_b}$$
(canonical inclusion) (projection to component

 V_{sa})

(arrows incident to i)

Let $\mathbb{V} = (V_i, v_a) \in \operatorname{Rep}_{k}(\mathbb{Q})$, let i be a sink source

Definition: $\frac{\mathcal{R}^+_i \mathbb{V}}{\mathcal{R}^-_i \mathbb{V}} = (W_i, w_a)$ is defined by :

•
$$W_j = V_j$$
 for all $j \neq i$

•
$$w_a = v_a$$
 for all $a \notin Q_1^i$

•
$$W_i = \frac{\ker \xi_i}{\operatorname{coker} \zeta_i} : \left| \begin{array}{c} \bigoplus_{a \in Q_1^i} V_{s_a} \leftarrow V_i \\ x_i \mapsto (v_a(x_i))_{a \in Q_1^i} \end{array} \right|_{a \in Q_1^i}$$

• for $a \in Q_1^i$, let b be the opposite arrow, and let w_b be the composition:

$$W_{s_b} = W_{t_a} = V_{t_a} \hookrightarrow \bigoplus_{c \in Q_1^i} V_{t_c} \longrightarrow \operatorname{coker} \zeta_i = W_i = W_{t_b}$$
(canonical inclusion) (quotient modulo im ζ_i)

Let $\mathbb{V} = (V_i, v_a) \in \operatorname{Rep}_{k}(\mathbb{Q})$, let *i* be a sink source

Definition: $\mathcal{R}_{i}^{+W} = (W_{i}, w_{a})$ is defined by : $\mathcal{R}_{i}^{i} \mathbb{V}$

•
$$W_j = V_j$$
 for all $j \neq i$

(arrows incident to i)

•
$$w_a = v_a$$
 for all $a \notin Q_1^i$

•
$$W_i = \frac{\ker \xi_i}{\operatorname{coker} \zeta_i}$$
: $\bigoplus_{a \in Q_1^i} V_{s_a} \leftarrow V_i$
 $x_i \longmapsto (v_a(x_i))_{a \in Q_1^i}$

intuition: this is the operation dual to the previous one (take $V_i = \ker \xi_i$)

• for $a \in Q_1^i$, let b be the opposite arrow, and let w_b be the composition:

$$W_{s_b} = W_{t_a} = V_{t_a} \hookrightarrow \bigoplus_{c \in Q_1^i} V_{t_c} \longrightarrow \operatorname{coker} \zeta_i = W_i = W_{t_b}$$
(canonical inclusion) (quotient modulo im ζ_i

$$\mathbb{V}: \qquad V_1 \xrightarrow{v_a} V_2 \xleftarrow{v_b} V_3 \xleftarrow{v_c} V_4 \xrightarrow{v_d} V_5$$

$$\mathcal{R}_5^+ \mathbb{V}: \qquad V_1 \xrightarrow{v_a} V_2 \xleftarrow{v_b} V_3 \xleftarrow{v_c} V_4 \xleftarrow{v_d} \ker v_d$$

 $\mathcal{R}_5^- \mathcal{R}_5^+ \mathbb{V}: \qquad V_1 \xrightarrow{v_a} V_2 \xleftarrow{v_b} V_3 \xleftarrow{v_c} V_4 \xrightarrow{\text{mod } \ker v_d} V_4 / \ker v_d$

 $\mathbb{V} \cong \mathcal{R}_5^- \mathcal{R}_5^+ \mathbb{V} \oplus \mathbb{S}_5^r$, where $r = \dim V_5 - \operatorname{rank} v_d$

 $\mathbb{V} \cong \mathcal{R}_2^- \mathcal{R}_2^+ \mathbb{V} \oplus \mathbb{S}_2^r$, where $r = \dim V_2 - \operatorname{rank} v_a + v_b$

Theorem: [Bernstein, Gelfand, Ponomarev] Let Q be a finite connected quiver and let \mathbb{V} be a representation of Q. If $\mathbb{V} \cong \mathbb{U} \oplus \mathbb{W}$, then for any source or sink $i \in Q_0$, $\mathcal{R}_i^{\pm} \mathbb{V} \cong \mathcal{R}_i^{\pm} \mathbb{U} \oplus \mathcal{R}_i^{\pm} \mathbb{W}$.

If now \mathbb{V} is indecomposable:

1. If $i \in Q_0$ is a sink, then two cases are possible:

•
$$\mathbb{V} \cong \mathbb{S}_i$$
: in this case, $\mathcal{R}_i^+ \mathbb{V} = 0$.

• $\mathbb{V} \ncong \mathbb{S}_i$: in this case, $\mathcal{R}_i^+ \mathbb{V}$ is nonzero and indecomposable, $\mathcal{R}_i^- \mathcal{R}_i^+ \mathbb{V} \cong \mathbb{V}$, and the dimension vectors x of \mathbb{V} and y of $\mathcal{R}_i^+ \mathbb{V}$ are related to each other by the following formula:

$$y_{j} = \begin{cases} x_{j} & \text{if } j \neq i; \\ -x_{i} + \sum_{\substack{a \in Q_{1} \\ t_{a} = i}} x_{s_{a}} & \text{if } j = i. \end{cases}$$

Theorem: [Bernstein, Gelfand, Ponomarev] Let Q be a finite connected quiver and let \mathbb{V} be a representation of Q. If $\mathbb{V} \cong \mathbb{U} \oplus \mathbb{W}$, then for any source or sink $i \in Q_0$, $\mathcal{R}_i^{\pm} \mathbb{V} \cong \mathcal{R}_i^{\pm} \mathbb{U} \oplus \mathcal{R}_i^{\pm} \mathbb{W}$.

If now \mathbb{V} is indecomposable:

2. If $i \in Q_0$ is a source, then two cases are possible:

- $\mathbb{V} \cong \mathbb{S}_i$: in this case, $\mathcal{R}_i^- \mathbb{V} = 0$.
- $\mathbb{V} \ncong \mathbb{S}_i$: in this case, $\mathcal{R}_i^- \mathbb{V}$ is nonzero and indecomposable, $\mathcal{R}_i^+ \mathcal{R}_i^- \mathbb{V} \cong \mathbb{V}$, and the dimension vectors x of \mathbb{V} and y of $\mathcal{R}_i^- \mathbb{V}$ are related to each other by the following formula:

$$y_{j} = \begin{cases} x_{j} & \text{if } j \neq i; \\ -x_{i} + \sum_{\substack{a \in Q_{1} \\ s_{a} = i}} x_{t_{a}} & \text{if } j = i. \end{cases}$$

Theorem: [Bernstein, Gelfand, Ponomarev] Let Q be a finite connected quiver and let \mathbb{V} be a representation of Q. If $\mathbb{V} \cong \mathbb{U} \oplus \mathbb{W}$, then for any source or sink $i \in Q_0$, $\mathcal{R}_i^{\pm} \mathbb{V} \cong \mathcal{R}_i^{\pm} \mathbb{U} \oplus \mathcal{R}_i^{\pm} \mathbb{W}$. [...]

Corollary: Reflection Functors preserve the Tits form values except at simple representations:

For i source/sink and \mathbb{V} indecomposable,

• either $\mathbb{V} \cong \mathbb{S}_i$, in which case $q_{s_i \mathbb{Q}}(\underline{\dim} \mathcal{R}_i^{\pm} \mathbb{V}) = 0$,

• or
$$q_{s_i \mathbf{Q}}(\underline{\dim} \, \mathcal{R}_i^{\pm} \mathbb{V}) = q_{\mathbf{Q}}(\mathbb{V}).$$

For \mathbb{V} arbitrary, $\mathbb{V} \cong \mathbb{V}_1 \oplus \cdots \oplus \mathbb{V}_r \oplus \mathbb{S}_i^s \Longrightarrow q_{s_i \mathbb{Q}}(\underline{\dim} \, \mathcal{R}_i^{\pm} \mathbb{V}) = q_{\mathbb{Q}}(\underline{\dim} \, \mathbb{V}_1 \oplus \cdots \oplus \mathbb{V}_r)$

Example: Q of type A_n , $i \operatorname{sink}$, $\mathbb{V} \cong \bigoplus_{j=1}^r \mathbb{I}_{\mathbb{Q}}[b_j, d_j] \in \operatorname{rep}_{k}(\mathbb{Q})$:

Example: Q of type A_n , $i \operatorname{sink}$, $\mathbb{V} \cong \bigoplus_{j=1}^r \mathbb{I}_{\mathbb{Q}}[b_j, d_j] \in \operatorname{rep}_{k}(\mathbb{Q})$:

 $\mathcal{R}_i^+ \mathbb{V} \cong \bigoplus_{j=1}^r \mathcal{R}_i^+ \mathbb{I}_{\mathbb{Q}}[b_j, d_j]$, where

$$\mathcal{R}_{i}^{+}\mathbb{I}_{\mathbb{Q}}[b_{j},d_{j}] = \begin{cases} 0 & \text{if } i = b_{j} = d_{j}; \\ \mathbb{I}_{s_{i}\mathbb{Q}}[i+1,d_{j}] & \text{if } i = b_{j} < d_{j}; \\ \mathbb{I}_{s_{i}\mathbb{Q}}[i,d_{j}] & \text{if } i+1 = b_{j} \leq d_{j}; \\ \mathbb{I}_{s_{i}\mathbb{Q}}[b_{j},i-1] & \text{if } b_{j} < d_{j} = i; \\ \mathbb{I}_{s_{i}\mathbb{Q}}[b_{j},i] & \text{if } b_{j} \leq d_{j} = i-1; \\ \mathbb{I}_{s_{i}\mathbb{Q}}[b_{j},d_{j}] & \text{otherwise.} \end{cases}$$

-1;

Example: Q of type A_n , $i \operatorname{sink}$, $\mathbb{V} \cong \bigoplus_{j=1}^r \mathbb{I}_{\mathbb{Q}}[b_j, d_j] \in \operatorname{rep}_k(\mathbb{Q})$:

 $\mathcal{R}_{i}^{+}\mathbb{I}_{Q}$

 $\mathcal{R}_i^+ \mathbb{V} \cong \bigoplus_{j=1}^r \mathcal{R}_i^+ \mathbb{I}_{\mathbb{Q}}[b_j, d_j]$, where

$$b_{j}, d_{j}] = \begin{cases} 0\\ \mathbb{I}_{s_{i}\mathbb{Q}}[i+1, d_{j}]\\ \mathbb{I}_{s_{i}\mathbb{Q}}[i, d_{j}]\\ \mathbb{I}_{s_{i}\mathbb{Q}}[b_{j}, i-1]\\ \mathbb{I}_{s_{i}\mathbb{Q}}[b_{j}, i]\\ \mathbb{I}_{s_{i}\mathbb{Q}}[b_{j}, d_{j}] \end{cases}$$

if
$$i = b_j = d_j$$
;
if $i = b_j < d_j$;
if $i + 1 = b_j \le d_j$;
if $b_j < d_j = i$;
if $b_j \le d_j = i - 1$;
otherwise.

Diamond Principle [Carlsson, de Silva]

Theorem: [Gabriel I, A_n type] Assuming Q is of type A_n , every isomorphism class of indecomposable representations in rep_k(Q) contains $\mathbb{I}_{Q}[b,d]$ for some $1 \le b \le d \le n$.

Theorem: [Gabriel I, A_n type] Assuming Q is of type A_n , every isomorphism class of indecomposable representations in rep_k(Q) contains $\mathbb{I}_{Q}[b,d]$ for some $1 \le b \le d \le n$.

What we can do:

- \bullet turn indecomposable representations of Q into indecomposable representations of reflections of Q (or zero)
- while doing so, preserve the value of the Tits form (or zero)

Theorem: [Gabriel I, A_n type] Assuming Q is of type A_n , every isomorphism class of indecomposable representations in rep_k(Q) contains $\mathbb{I}_{Q}[b,d]$ for some $1 \le b \le d \le n$.

What we can do:

- \bullet turn indecomposable representations of Q into indecomposable representations of reflections of Q (or zero)
- while doing so, preserve the value of the Tits form (or zero)

 \rightarrow idea: turn Q into itself via sequences of reflections, and observe the evolution of the indecomposables and their Tits form values

Special case: linear quiver L_n : $\bullet_1 \longrightarrow \bullet_2 \longrightarrow \cdots \longrightarrow \bullet_{n-1} \bullet_n$

Let $\mathbb{V} \in \operatorname{rep}_{\mathbf{k}}(L_n)$ indecomposable, $\underline{\dim} \mathbb{V} = (x_1, x_2, \cdots, x_{n-1}, x_n)^\top$

 \rightarrow apply reflections $s_1s_2\cdots s_{n-1}s_nL_n$ and observe evolution of $\underline{\dim} \mathbb{V}$

Special case: linear quiver L_n : $\underbrace{\bullet}_1 \longrightarrow \underbrace{\bullet}_2 \longrightarrow \cdots \longrightarrow \underbrace{\bullet}_{n-1} \longrightarrow \underbrace{\bullet}_n$ Let $\mathbb{V} \in \operatorname{rep}_k(L_n)$ indecomposable, $\underline{\dim} \mathbb{V} = (x_1, x_2, \cdots, x_{n-1}, x_n)^\top$ $\underline{\dim} \mathcal{R}_n^+ \mathbb{V} = 0$ or $(x_1, x_2, \cdots, x_{n-1}, x_{n-1} - x_n)^\top$

$$\underline{\dim} \mathcal{R}_{n-1}^+ \mathcal{R}_n^+ \mathbb{V} = 0 \text{ or } (x_1, x_2, \cdots, x_{n-2} - x_n, x_{n-1} - x_n)^\top$$

$$\underline{\dim} \, \mathcal{R}_2^+ \cdots \mathcal{R}_{n-1}^+ \mathcal{R}_n^+ \mathbb{V} = 0 \text{ or } (x_1, x_1 - x_n, \cdots, x_{n-2} - x_n, x_{n-1} - x_n)^\top$$

 $\underline{\dim} \, \mathcal{R}_1^+ \mathcal{R}_2^+ \cdots \mathcal{R}_{n-1}^+ \mathcal{R}_n^+ \mathbb{V} = 0 \text{ or } (-x_n, x_1 - x_n, \cdots, x_{n-2} - x_n, x_{n-1} - x_n)^\top$

Special case: linear quiver L_n : $\underbrace{\bullet}_1 \longrightarrow \underbrace{\bullet}_2 \longrightarrow \cdots \longrightarrow \underbrace{\bullet}_{n-1} \longrightarrow \underbrace{\bullet}_n$ Let $\mathbb{V} \in \operatorname{rep}_k(L_n)$ indecomposable, $\underline{\dim} \mathbb{V} = (x_1, x_2, \cdots, x_{n-1}, x_n)^\top$ $\underline{\dim} \mathcal{R}_n^+ \mathbb{V} = 0$ or $(x_1, x_2, \cdots, x_{n-1}, x_{n-1} - x_n)^\top$

$$\underline{\dim} \mathcal{R}_{n-1}^+ \mathcal{R}_n^+ \mathbb{V} = 0 \text{ or } (x_1, x_2, \cdots, x_{n-2} - x_n, x_{n-1} - x_n)^\top$$

 $\underline{\dim} \, \mathcal{R}_2^+ \cdots \mathcal{R}_{n-1}^+ \mathcal{R}_n^+ \mathbb{V} = 0 \text{ or } (x_1, x_1 - x_n, \cdots, x_{n-2} - x_n, x_{n-1} - x_n)^\top$

 $\underline{\dim} \, \mathcal{R}_1^+ \mathcal{R}_2^+ \cdots \mathcal{R}_{n-1}^+ \mathcal{R}_n^+ \mathbb{V} = 0 \text{ or } (\overbrace{-x_n}^{\not \downarrow^\circ}, x_1 - x_n, \cdots, x_{n-2} - x_n, x_{n-1} - x_n)^\top$ $\implies \mathcal{C}^+ \mathbb{V} = \mathcal{R}_1^+ \mathcal{R}_2^+ \cdots \mathcal{R}_{n-1}^+ \mathcal{R}_n^+ \mathbb{V} = 0 \text{ or } x_n = 0$

Special case: linear quiver L_n : $\bullet_1 \longrightarrow \bullet_2 \longrightarrow \cdots \longrightarrow \bullet_{n-1} \bullet_n$ Let $\mathbb{V} \in \operatorname{rep}_{\mathbf{k}}(L_n)$ indecomposable, $\underline{\dim} \mathbb{V} = (x_1, x_2, \cdots, x_{n-1}, x_n)^\top$ $\dim \mathcal{C}^+ \mathbb{V} = 0 \text{ or } (0, x_1, x_2, \cdots, x_{n-2}, x_{n-1})^\top$ $\dim \mathcal{C}^+ \mathcal{C}^+ \mathbb{V} = 0 \text{ or } (0, 0, x_1, \cdots, x_{n-3}, x_{n-2})^\top$ $\underline{\dim} \ \mathcal{C}^+ \cdots \mathcal{C}^+ \mathbb{V} = 0 \text{ or } (0, 0, 0, \cdots, 0, x_1)^\top$ n-1 times $\underline{\dim} \, \underbrace{\mathcal{C}^+ \cdots \mathcal{C}^+}_{} \mathbb{V} = 0$

n times

Special case: linear quiver L_n : $\bullet_1 \longrightarrow \bullet_2 \longrightarrow \cdots \longrightarrow \bullet_{n-1} \to \bullet_n$ Let $\mathbb{V} \in \operatorname{rep}_{\mathbf{k}}(L_n)$ indecomposable, $\underline{\dim} \mathbb{V} = (x_1, x_2, \cdots, x_{n-1}, x_n)^\top$ $\dim \mathcal{C}^+ \mathbb{V} = 0 \text{ or } (0, x_1, x_2, \cdots, x_{n-2}, x_{n-1})^\top$ $\dim \mathcal{C}^+ \mathcal{C}^+ \mathbb{V} = 0 \text{ or } (0, 0, x_1, \cdots, x_{n-3}, x_{n-2})^\top$ $\underline{\dim} \ \mathcal{C}^+ \cdots \mathcal{C}^+ \ \mathbb{V} = 0 \text{ or } (0, 0, 0, \cdots, 0, x_1)^\top$ n-1 times $\Rightarrow \exists i_1, i_2, \cdots, i_{s-1}, i_s \text{ s.t. } \mathcal{R}_{i_s}^+ \mathcal{R}_{i_{s-1}}^+ \cdots \mathcal{R}_{i_2}^+ \mathcal{R}_{i_1}^+ \mathbb{V} = 0$ $\mathcal{R}^+_{i_2-1}\cdots\mathcal{R}^+_{i_2}\mathcal{R}^+_{i_1}\mathbb{V}\neq 0$ $\underline{\dim} \ \underline{\mathcal{C}^+ \cdots \mathcal{C}^+} \ \mathbb{V} = 0$ n times

Special case: linear quiver L_n : $\bullet_1 \longrightarrow \bullet_2 \longrightarrow \cdots \longrightarrow \bullet_{n-1} \bullet_n$

Let $\mathbb{V} \in \operatorname{rep}_{\mathbf{k}}(L_n)$ indecomposable, $\underline{\dim} \mathbb{V} = (x_1, x_2, \cdots, x_{n-1}, x_n)^\top$

$$\exists i_1, i_2, \cdots, i_{s-1}, i_s \text{ s.t. } \mathcal{R}^+_{i_s} \mathcal{R}^+_{i_{s-1}} \cdots \mathcal{R}^+_{i_2} \mathcal{R}^+_{i_1} \mathbb{V} = 0$$
$$\mathcal{R}^+_{i_{s-1}} \cdots \mathcal{R}^+_{i_2} \mathcal{R}^+_{i_1} \mathbb{V} \neq 0$$

 $\implies \mathcal{R}^+_{i_{s-1}} \cdots \mathcal{R}^+_{i_2} \mathcal{R}^+_{i_1} \mathbb{V} \text{ is indecomposable and isomorphic to } \mathbb{S}_r \text{ for some } 1 \leq r \leq n$ (Reflection Functor Thm)

Special case: linear quiver L_n : $\bullet_1 \longrightarrow \bullet_2 \longrightarrow \cdots \longrightarrow \bullet_{n-1} \bullet_n$

Let $\mathbb{V} \in \operatorname{rep}_{\mathbf{k}}(L_n)$ indecomposable, $\underline{\dim} \mathbb{V} = (x_1, x_2, \cdots, x_{n-1}, x_n)^\top$

$$\exists i_1, i_2, \cdots, i_{s-1}, i_s \text{ s.t. } \mathcal{R}^+_{i_s} \mathcal{R}^+_{i_{s-1}} \cdots \mathcal{R}^+_{i_2} \mathcal{R}^+_{i_1} \mathbb{V} = 0$$
$$\mathcal{R}^+_{i_{s-1}} \cdots \mathcal{R}^+_{i_2} \mathcal{R}^+_{i_1} \mathbb{V} \neq 0$$

 $\implies \mathcal{R}_{i_{s-1}}^{+} \cdots \mathcal{R}_{i_{2}}^{+} \mathcal{R}_{i_{1}}^{+} \mathbb{V} \text{ is indecomposable and isomorphic to } \mathbb{S}_{r} \text{ for some } 1 \leq r \leq n$

 $\implies q_{\mathbf{L}_{n}}(\underline{\dim}\,\mathbb{V}) = q_{s_{i_{s-1}}\cdots s_{i_{1}}\mathbf{L}_{n}}(\underline{\dim}\,\mathcal{R}^{+}_{i_{s-1}}\cdots \mathcal{R}^{+}_{i_{2}}\mathcal{R}^{+}_{i_{1}}\mathbb{V}) = q_{s_{i_{s-1}}\cdots s_{i_{1}}\mathbf{L}_{n}}(\underline{\dim}\,\mathbb{S}_{r}) = 1$ (Corollary)

Special case: linear quiver L_n : $\bullet_1 \longrightarrow \bullet_2 \longrightarrow \cdots \longrightarrow \bullet_{n-1} \bullet_n$

Let $\mathbb{V} \in \operatorname{rep}_{\mathbf{k}}(L_n)$ indecomposable, $\underline{\dim} \mathbb{V} = (x_1, x_2, \cdots, x_{n-1}, x_n)^\top$

$$\exists i_1, i_2, \cdots, i_{s-1}, i_s \text{ s.t. } \mathcal{R}^+_{i_s} \mathcal{R}^+_{i_{s-1}} \cdots \mathcal{R}^+_{i_2} \mathcal{R}^+_{i_1} \mathbb{V} = 0$$
$$\mathcal{R}^+_{i_{s-1}} \cdots \mathcal{R}^+_{i_2} \mathcal{R}^+_{i_1} \mathbb{V} \neq 0$$

 $\implies \mathcal{R}_{i_{s-1}}^+ \cdots \mathcal{R}_{i_2}^+ \mathcal{R}_{i_1}^+ \mathbb{V} \text{ is indecomposable and isomorphic to } \mathbb{S}_r \text{ for some } 1 \leq r \leq n$

$$\implies q_{\mathsf{L}_n}(\underline{\dim}\,\mathbb{V}) = q_{s_{i_{s-1}}\cdots s_{i_1}\mathsf{L}_n}(\underline{\dim}\,\mathcal{R}^+_{i_{s-1}}\cdots \mathcal{R}^+_{i_2}\mathcal{R}^+_{i_1}\mathbb{V}) = q_{s_{i_{s-1}}\cdots s_{i_1}\mathsf{L}_n}(\underline{\dim}\,\mathbb{S}_r) = 1$$

 $\implies \underline{\dim} \mathbb{V} = \underline{\dim} \mathbb{I}_{L_n} [b, d] \text{ for some } 1 \le b \le d \le n \implies \mathbb{V} \cong \mathbb{I}_{L_n} [b, d]$ (Example)

- A_n -type quiver Q: $\bullet_1 \cdots \bullet_{n-1} \bullet_n$
- \rightarrow goal: find a sequence of indices $i_1, i_2, \cdots, i_{s-1}, i_s$ s.t.

 $\mathcal{R}_{i_s}^+ \mathcal{R}_{i_{s-1}}^+ \cdots \mathcal{R}_{i_2}^+ \mathcal{R}_{i_1}^+ \mathbb{V} = 0 \text{ for all } \mathbb{V} \in \operatorname{rep}_{\boldsymbol{k}}(\mathbb{Q})$

- A_n -type quiver Q: $\bullet_1 \cdots \bullet_n \bullet_n 1 \bullet_n$
- \rightarrow goal: find a sequence of indices $i_1, i_2, \cdots, i_{s-1}, i_s$ s.t.

 $\mathcal{R}_{i_s}^+ \mathcal{R}_{i_{s-1}}^+ \cdots \mathcal{R}_{i_2}^+ \mathcal{R}_{i_1}^+ \mathbb{V} = 0 \text{ for all } \mathbb{V} \in \operatorname{rep}_{\boldsymbol{k}}(\mathbb{Q})$

 \rightarrow idea: turn Q into L_n, then use the same sequence a before

 A_n -type quiver Q:

- embed Q in a giant pyramid

 A_n -type quiver Q:

- embed Q in a giant pyramid

- travel down the pyramid to its bottom L_n

ightarrow travelling one level down reverses the leftmost backward arrow

 A_n -type quiver Q:

- embed Q in a giant pyramid

- travel down the pyramid to its bottom L_n

ightarrow travelling one level down reverses the leftmost backward arrow

Theorem: [Gabriel II]

Assuming Q is Dynkin with n vertices, the map $\mathbb{V} \mapsto \underline{\dim} \mathbb{V}$ induces a bijection between the set of isomorphism classes of indecomposable representations of Q and the set of *positive roots* of the *Tits form* of Q.

Theorem: [Gabriel II]

Assuming Q is Dynkin with n vertices, the map $\mathbb{V} \mapsto \underline{\dim} \mathbb{V}$ induces a bijection between the set of isomorphism classes of indecomposable representations of Q and the set of *positive roots* of the *Tits form* of Q.

What we know:

- the positive roots of q_{Q} are the dimension vectors of interval modules $\mathbb{I}_{Q}[b,d]$
- \bullet each isomorphism class C of indecomposables contains ≥ 1 interval module

Theorem: [Gabriel II]

Assuming Q is Dynkin with n vertices, the map $\mathbb{V} \mapsto \underline{\dim} \mathbb{V}$ induces a bijection between the set of isomorphism classes of indecomposable representations of Q and the set of *positive roots* of the *Tits form* of Q.

What we know:

- the positive roots of q_{Q} are the dimension vectors of interval modules $\mathbb{I}_{Q}[b,d]$
- \bullet each isomorphism class C of indecomposables contains ≥ 1 interval module

Additional observations:

- \neq interval modules are \cong , therefore each class C contains 1 interval module
- ullet each interval module is indecomposable (endomorphism ring isom. to k)

Proof of Gabriel's Theorem (general case)

Theorem: [Gabriel I]

Assuming Q is finite and connected, there are finitely many isomorphism classes of indecomposable representations in $rep_k(Q)$ iff Q is Dynkin.

Proof of Gabriel's Theorem (general case)

Theorem: [Gabriel I]

Assuming Q is finite and connected, there are finitely many isomorphism classes of indecomposable representations in $rep_k(Q)$ iff Q is Dynkin.

same process as before (proves Gabriel II as well):

- Define Coxeter functors for arbitrary (finite, connected, loop-free) quivers
- iterate Coxeter functor to eventually send every indecomposable to zero
- derive bijection between isom. classes of indecomposables to positive roots of $q_{\rm Q}$ via simple representations
Proof of Gabriel's Theorem (general case)

Theorem: [Gabriel I] Assuming Q is finite and connected, there are finitely many isomorphism classes of indecomposable representations in $rep_k(Q)$ iff Q is Dynkin.

Proof of Gabriel's Theorem (general case)

Theorem: [Gabriel I]

Assuming Q is finite and connected, there are finitely many isomorphism classes of indecomposable representations in $rep_k(Q)$ iff Q is Dynkin.

 \Rightarrow every connected quiver that is not Dynkin contains one of these: \tilde{A}_0 \tilde{A}_0 \tilde{A}_0 \tilde{A}_0 \tilde{A}_0 \tilde{A}_0

$$\begin{array}{cccc} \boldsymbol{k}^{r} & \stackrel{f}{\longrightarrow} \boldsymbol{k}^{r} \\ \phi \middle| & & & \downarrow \psi \\ \boldsymbol{k}^{s} & \stackrel{g}{\longrightarrow} \boldsymbol{k}^{s} \end{array}$$

$$\mathbb{V} = (\mathbf{k}^r, f)$$
 isomorphic to $\mathbb{W} = (\mathbf{k}^s, g)$
 \Leftrightarrow
 $r = s \text{ and } \exists \phi, \psi \in \operatorname{Aut}(\mathbf{k}^r) \text{ s.t. } f = \psi^{-1} \circ g \circ \phi$

Proof of Gabriel's Theorem (general case)

Theorem: [Gabriel I]

Assuming Q is finite and connected, there are finitely many isomorphism classes of indecomposable representations in $rep_k(Q)$ iff Q is Dynkin.

 \Rightarrow every connected quiver that is not Dynkin contains one of these: \tilde{A}_0 \tilde{A}_0 \tilde{A}_0 \tilde{A}_0 \tilde{A}_0 \tilde{A}_0

 \rightarrow injection from conjugacy classes of Jordan block matrices to isomorphism classes of indecomposables

(injection becomes bijection when k is algebraically closed)

Gabriel's theorem is about:

- Dynkin quivers
- finite-dimensional representations

Gabriel's theorem is about:

- Dynkin quivers
- finite-dimensional representations

Finite connected quivers:

Theorem: [Kac]

The set of dimension vectors of finite-dimensional indecomposable representations of a finite connected quiver Q is precisely the set of positive roots of its Tits form. In particular, this set is independent of the arrow orientations in Q and of the base field.

(catch: the map $\mathbb{V} \mapsto \underline{\dim} \mathbb{V}$ may not be injective)

Gabriel's theorem is about:

- Dynkin quivers
- finite-dimensional representations

Finite disconnected quivers:

 $\mathsf{Q} = \mathsf{Q}_1 \sqcup \mathsf{Q}_2 \Longrightarrow \operatorname{Rep}_{\boldsymbol{k}}(\mathsf{Q}) \cong \operatorname{Rep}_{\boldsymbol{k}}(\mathsf{Q}_1) \times \operatorname{Rep}_{\boldsymbol{k}}(\mathsf{Q}_2)$

Gabriel's theorem is about:

- Dynkin quivers
- finite-dimensional representations

Finite quivers, infinite-dimensional representations:

 \rightarrow path algebras, modules, Auslander-Reiten theory

Theorem: [Auslander+Gabriel]

For a Dynkin quiver Q, every indecomposable representation in $\operatorname{Rep}_{\boldsymbol{k}}(Q)$ has finite dimension, and every representation in $\operatorname{Rep}_{\boldsymbol{k}}(Q)$ is a direct sum of indecomposable representations. In particular, Q has finitely many isomorphism classes of indecomposable representations, and all of them are finite-dimensional.

Gabriel's theorem is about:

- Dynkin quivers
- finite-dimensional representations

Gabriel's theorem is about:

- Dynkin quivers
- finite-dimensional representations

