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Persistence Modules vs. Quiver Representations

k: field of coefficients
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quiver representation: k— >k — >k —"> k’

quiver: o ——> ¢ ——
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e quivers and representations

e the category of representations
e the classification problem

e Gabriel's theorem(s)

e proof of Gabriel's theorem

e beyond Gabriel's theorem



Quivers and Representations

Definition: A qguiver Q consists of two sets ()y, ()1 and two maps s, :
1 — )o. The elements in )y are called the vertices of Q, while those
of ()1 are called the arrows. The source map s assigns a source s, to
every arrow a € ()1, while the target map t assigns a target t,.
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Quivers and Representations

Definition: A qguiver Q consists of two sets ()y, ()1 and two maps s, :
1 — )o. The elements in )y are called the vertices of Q, while those
of ()1 are called the arrows. The source map s assigns a source s, to
every arrow a € ()1, while the target map t assigns a target t,.
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Quivers and Representations

Definition: A representation of Q over a field k is a pair V = (V;, v,)
consisting of a set of k-vector spaces {V; | i € Qo} together with a set
of k-linear maps {v, : Vs, = Vi, |a € Q1}.

bQ/.X C/\kQ

[ J
2 C 3

Q c Repg(Q)

Note: commutativity is not required



Quivers and Representations

Definition: A morphism ¢ between two k-representations V, W of Q
s a set of k-linear maps ¢; : V; — W, such that w, o 95, = ¢, ov, for

every arrow a € Q1.

1

o N

every quadrangle associated
with a quiver edge commutes
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Quivers and Representations

Definition: A morphism ¢ between two k-representations V, W of Q
s a set of k-linear maps ¢; : V; — W, such that w, o 95, = ¢, ov, for
every arrow a € Q1.

B .on, (), (Y

k— >k’ —S>k— ">k’ — > k?

every quadrangle associated

1 (01) 1 (1 —-1) 0 with a quiver edge commutes
Y 0 Y ) Y 0 Y 0 Y
k——>k—>k——>%k > 0



The Category of Representations

The representations of a quiver Q = (Qg, Q)1), together with their mor-
phisms, form a category called Rep, (Q). This category is abelian:

e it contains a zero object, namely the trivial representation

0——m0——0——0——>0




The Category of Representations

The representations of a quiver Q = (Qg, Q)1), together with their mor-
phisms, form a category called Rep, (Q). This category is abelian:

e it contains a zero object, namely the trivial representation

e it has internal and external direct sums, defined pointwise. For any V, W, the
representation V @& W has spaces V; @ W, for ¢« € Qo and maps vg @ wg =

Va0 )fora€Q1
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The Category of Representations

The representations of a quiver @ = (Qq, 1), together with their mor-
phisms, form a category called Rep, (Q). This category is abelian:

e it contains a zero object, namely the trivial representation

e it has internal and external direct sums, defined pointwise. For any V, W, the
representation V @& W has spaces V; @ W, for ¢« € Qo and maps vg @ wg =

Va 0
( 0w, )fora€Q1

e every morphism has a kernel, an image and a cokernel, defined pointwise.

— a morphism ¢ is injective iff ker = 0, and surjective iff coker ¢ = 0.

(1)

ker & — 0 0 0

(19)

01
k%kgg — s k5 K2
]l\l/ (Ol)l 1 (1 —-1) 0
Y Y Y
k ' ok L k2 ok 0 > ()

(

3)

0 — s>k — >0 — >k —""s L

coker o = 0




The Classification Problem

Goal: Classify the representations of a given quiver Q = (Qq, Q1) up
to isomorphism.

Note: harder than for single vector spaces because no semisimplicity

(subrepresentations may not be summands)

Ve k— sk

W= 0—5k



The Classification Problem

Goal: Classify the representations of a given quiver Q = (Qo, Q1) up
to isomorphism.

— simplifying assumptions:
e  is finite and connected

e study the subcategory rep, (Q) of finite-dimensional representations

dimV = (dim V4, -+ ,dim V,,) ',

dimV = |[dim V|, = ) dimV;.

1=1



The Classification Problem

Goal: Classify the representations of a given quiver Q = (Qo, Q1) up
to isomorphism.

— simplifying assumptions:
e  is finite and connected

e study the subcategory rep, (Q) of finite-dimensional representations

Theorem: [Krull-Remak-Schmidt-Azumayal
VV € rep,(Q), 3 Vq,---,V,. indecomposable st. V=V, ® ---DV,.
The decomposition is unique up to iIsomorphism and reordering.

note: V indecomposable iff there are no U, W # 0 such that V=U o W



The Classification Problem

Goal: Classify the representations of a given quiver Q = (Qo, Q1) up
to isomorphism.

— simplifying assumptions:
e  is finite and connected

e study the subcategory rep, (Q) of finite-dimensional representations

Theorem: [Krull-Remak-Schmidt-Azumayal
VV € rep,(Q), 3 Vq,---,V,. indecomposable st. V=V, ® ---DV,.
The decomposition is unique up to iIsomorphism and reordering.

proof:
e existence: by induction on dimV

e uniqueness: show that endomorphisms ring of each V; is local (it is isomorphic to
k for interval representations of A, -type quivers), then apply Azumaya's theorem



The Classification Problem

Goal: Classify the representations of a given quiver Q = (Qq, Q1) up
to isomorphism.

— simplifying assumptions:
e  is finite and connected

e study the subcategory rep, (Q) of finite-dimensional representations

Theorem: [Krull-Remak-Schmidt-Azumayal
VV € rep,(Q), 3 Vq,---,V,. indecomposable st. V=V, ® ---DV,.
The decomposition is unique up to isomorphism and reordering.

— problem becomes to identify the indecomposable representations of Q

(# from identifying representations with no subrepresentations)

(no semisimplicity)



Gabriel's Theorem

Theorem: [Gabriel ]

Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

20
A > 1 — o — E
SUER A S A
20
n—1 ‘
) Er ° ° ° ) o — o
/ 1 3 4 5 6 7
Dyp(n > 4) :—5— — on—2 20
° E's ° ° ° ) ° °
n 1 3 4 5 6 7

0o



Gabriel's Theorem

Theorem: [Gabriel I]

Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

(does not depend on the choice of field and of arrow orientations)

20
A > 1 — e — E
SUER A S A
20
n—1 ‘
) Er ° ° ° ) o — o
/ 1 3 4 5 6 7
Dyp(n > 4) e —¢— - —en-2 20
° Es ° ° ° ° ° °
n 1 3 4 5 6 7

0o



Gabriel's Theorem

Theorem: [Gabriel ]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

Q given that Q is Dynkin, how to identify indecomposable representations?



Gabriel's Theorem

Theorem: [Gabriel ]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

Q given that Q is Dynkin, how to identify indecomposable representations?

Theorem: [Gabriel Il]

Assuming Q is Dynkin with n vertices, the map V +— dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.



Gabriel's Theorem

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

Q given that Q is Dynkin, how to identify indecomposable representations?

Theorem: [Gabriel 1]

Assuming Q i1s Dynkin with n vertices, the map V — dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

(isom. classes of indecomposables are fully characterized by their dim. vectors)



Gabriel's Theorem

Tits form: given Q = (Qo, Q1) with |Qo| =n and z = (x1,--- ,x,) € Z",

qQ (Qj) — Z'LEQO 'CE% o ZCLEQl ajsaajta°



Gabriel's Theorem
Tits form: given Q = (Qo, Q1) with |Qo| =nand z = (x1,--- ,z,) € Z",

qQ (Qj) — Z’LEQO x% o ZCLEQl xsamta°

Proposition: qq is positive definite (qg(x) > 0 Vx # 0) iff Q is Dynkin.

example: Q of type A, : . ° o

®
2 n—1

n n—1
qo(z) = Zazf — Z TiTi+1
1=1 1=1

n_
1 o 1 5 1
:E —(T; — x4 + —x] + =T
7;:12(2 'L-I-l) 21 9

=0iffz = (0,---,0)



Gabriel's Theorem

Tits form: given Q = (Qo, Q1) with |Qo| =n and z = (x1,--- ,x,) € Z",

qQ (Qj) — Z'LEQO 'CE% o ZCLEQl ajsaajta°

Root: z € Z™ \ {0} is a root if qg(z) < 1. It is positive if x; > 0 Vi.



Gabriel's Theorem

Tits form: given Q = (Qo, Q1) with |Qo| =n and z = (x1,--- ,x,) € Z",

qQ (Qj) — Z'LEQO 'CE% o ZCLEQl ajsaajta°

Root: z € Z™ \ {0} is a root if qg(z) < 1. It is positive if x; > 0 Vi.

Proposition: If Q is Dynkin, then the set of positive roots of qq is finite.



Gabriel's Theorem

Tits form: given Q = (Qo, Q1) with |Qo| =n and z = (x1,--- ,x,) € Z",

qQ (Qj) — Z'LEQO 'CE% o ZCLEQl ajsaajta°

Root: z € Z™ \ {0} is a root if qg(z) < 1. It is positive if x; > 0 Vi.

Proposition: If Q is Dynkin, then the set of positive roots of qq is finite.

proof outline:
® gq can be viewed indifferently as a quadratic form on Z™, Q™ or R"
® qq pos. definite on Z™ = qq pos. definite on Q™
e by taking limits, qq is then pos. semidefinite on R™
e gq invertible on Q™ with coeffs. in Q = ¢q invertible on R"
= qq pos. definite on R" = {x € R" | qq(x) < 1} is an ellipsoid



Gabriel's Theorem

Tits form: given Q = (Qo, Q1) with |Qo| =n and z = (x1,--- ,x,) € Z",

qQ (:’C) — Z’LEQO 'CE?? o ZCLEQl xsamta°

Root: z € Z™ \ {0} is a root if qg(z) < 1. It is positive if x; > 0 Vi.

Proposition: If Q is Dynkin, then the set of positive roots of qq is finite.

Theorem: [Gabriel Il]

Assuming Q is Dynkin with n vertices, the map V +— dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.



Gabriel's Theorem

example: Q of type A,,: o .
n n—1
DI
1 1
— Z — ZCZ—|—1 —I— 533% —+ _33?21

:1|ffx:((),--- 0,1,---,1,0,---

,0)

S@



Gabriel's Theorem

example: Q of type A,: o . "o o
n n—1
IR
1 1
= Z — Tiy1) “+ §$% + —$,,27J

:1|ffx:((),--- 0,1,---,1,0,---,0)

the corresponding indecomp. representations are isomorphic to Ig|b, d|:




Reflection Functors

Advantage: explains the fact that only the dimension vectors play a role
in the identification of indecomposable representations. In particular,
arrow orientations are irrelevant.

idea: modify quivers by reversing arrows, and study the effect on their
representations.



Reflection Functors

%5%§<

o o > @
1 4 5) \
/ \ Sink
source

. source
sink

Definition: sink = only incoming arrows; source = only outgoing arrows



Reflection Functors

o —>0< @< ° > @
1 2 3 1 5

s10Q o< 0 <—— @< ° > @
1 2 3 1 5

S o < ° > @ < ° > @
20 1 2 3 1 5
sS40 o —>0<—0—>0<—0
1 2 3 1 5

S5Q : ° >0 <———0<———0<—@
1 2 3 1 5)

Definition: reflection s; = reverse all arrows incident to sink/source ¢



Reflection Functors

o — >0 < @< ° > @

1 2 3 1 5

s10Q o< 0 <——— @< ° > @
1 2 3 1 5

S o < ° > @ < ° > @
24 1 2 3 1 5
S4Q O —0<—0 —>0<— 0
1 2 3 1 5

S5Q : ° >0 <0< @e<— @
1 2 3 1 5)

Definition: reflection functor RQ—L = functor Rep,(Q) — Rep,(s;Q)



Reflection Functors

Let V= (V;,v,) € Rep,(Q), let ¢ be a sink




Reflection Functors
Let V= (V;,v,) € Rep,(Q), let ¢ be a sink

Definition: RV = (W;, w,) is defined by :

o W; =V, forall j #i
)/— (arrows incident to %)

e W, = Vg4 foralla,géjS




Reflection Functors
Let V= (V;,v,) € Rep,(Q), let ¢ be a sink

Definition: RV = (W;, w,) is defined by :

o W; =V, forall j #i
)/— (arrows incident to %)

e W, = Vg4 foralla,géjS

o W, = kerg; : EB Vs, — Vi
aEQ"i

($Sa)a€Q7i — Z Vo (Ts,)
aEQi




Reflection Functors
Let V= (V;,v,) € Rep,(Q), let ¢ be a sink

Definition: RV = (W;, w,) is defined by :

b
e W; =V; forall j # 1 :\k
b/

(arrows incident to %)
» N Ny
1,0 q—

e w, = v, for all a & Q} / !

o W, = kerg; : EB Vs, — Vi
aEQ"i

(xsa)aEQi — Z Vo (Ts,)
aEQi

e for a € Q!, let b be the opposite arrow, and let w;, be the composition:

WSb — W’L — kel‘fz —> ®C€Q?i VSC — VSa — Wsa — Wtb

A |

(canonical inclusion) (projection to component Vg )



Reflection Functors
Let V= (V;,v,) € Rep,(Q), let ¢ be a sink

Definition: RV = (W;, w,) is defined by :

b
o W, =V, for all j #1 :\}
b/

b (arrows incident to %)
' g b
i 1o = o
® w, = v, for all a & Q} o
o W, = keré&; : EB Ve — V, intuition: W; carries the information

€0l passing through V; in V

(xsa)aEQi — Z Vo (Ts,)
aEQi

e for a € Q!, let b be the opposite arrow, and let w;, be the composition:

WSb — Wq/ — kel‘fz —> ®C€Q?i VSC — VSa — Wsa — Wtb

A |

(canonical inclusion) (projection to component Vg )



Reflection Functors

Let V= (V;,v,) € Rep,(Q), let ¢ be a state

SOUrce

Definition: =¥ = (W;, w,) is defined by :

RV
o W, =V for all j # i \‘%

)/— (arrows incident to %)

owa:vaforallagéQ’i /\

o Wi =kexlr:| P Vi, <+ Vi

coker (; acQl

e for a € Q!, let b be the opposite arrow, and let w;, be the composition:

st = Wta = ‘/ta — @CEQ?L V;gc — cokerCi = Wi = Wtb

A |

(canonical inclusion) (quotient modulo im ¢ ;)



Reflection Functors

Let V= (V;,v,) € Repi(Q), let ¢ be a state

SOUrce

Definition: =¥ = (W;, w,) is defined by :

RV
o W, =V for all j # i \‘%

)/— (arrows incident to %)

owa:vaforallagéQ’i /\

o Wi =kexlr:| P Vi, <+ Vi
coker (; acQl

intuition: this is the operation dual to
T; —> (Ua(xi))aeQ’i the previous one (take V; = ker¢;)
1

e for a € Q!, let b be the opposite arrow, and let w;, be the composition:

st — Wta — ‘/ta —> @CEQ;&L V;gc — cokerCi — Wi — Wtb

A |

(canonical inclusion) (quotient modulo im ()



R;V :

R:RIV:

Reflection Functors

Vi —— V5 < V3 < Va > V5

Up

Vi LVQ%Vgé\/}Llervd

Vg (3 Ve mod ker vy
Vi——Vo<— V3 <— V) > V4 / ker vy




Reflection Functors

V: Ve V=" Va= Yy, W
R;V: V]_LVQLVSLVALQI{GT’UCZ

(}/)“qu(l

ot Va vp Ve mod ker vy

V = RgR;rV ® SE, where r = dim V5 — rank vy




R;V:

Reflection Functors

Va Up Ve Vd
Vi —— V5 < V3 < Va > V5
Ve Vd
V1 < ker vg + vy > V3 < Vi — V5
N
T1 T3
Y




Reflection Functors

Va Vp Ve Vd
V Vi——= Vo < V3 < V4 > V5
RERIV: V . VieVs oy oy, Moy,
2 °v2 7 1 ker vg +vp 3 4 5
A
(—,0) (0,—)
Va+Up

ker vg + vpC > V1 V3 > V5



Reflection Functors

Va Up Ve Ud
Vo Vi—— Vo < V3 < Vi——Vj5
X Vb
(ék‘“roo}
Ve (
Ry R;V : %] > ke‘ilfj‘fvb < V3 <=—— V) 4y Vs
A

(—,0) (0,—)

Vg +v
ker vg + vpC > V1 V3 "> Vo

V=R, RSV @SS, where r = dim V, — rank v, + v



Reflection Functors

Theorem: [Bernstein, Gelfand, Ponomarev]

Let Q be a finite connected quiver and let V be a representation of Q. If
V=U®W, then for any source or sink 7 € (), RiiV = RfU@RfW.

If now V is indecomposable:
1. If ¢+ € Qg is a sink, then two cases are possible:

o V=L5,: In this case, RZFV — (.

o V Z §;: In this case, R;FV IS nonzero and Indecomposable,
R; RV =V, and the dimension vectors = of V and y of R,V
are related to each other by the following formula:

Zj it # 1
Ys =\ —x; + Z:L‘Sa if j =1.

acQ1
tao=1



Reflection Functors

Theorem: [Bernstein, Gelfand, Ponomarev]

Let Q be a finite connected quiver and let V be a representation of Q. If
V=U®W, then for any source or sink 7 € (), RiiV = RfU@RfW.

If now V is indecomposable:
2. If 1 € (g is a source, then two cases are possible:

o V=5;: in this case, R, V = 0.

o V 2 §;: In this case, 'R,V is nonzero and indecomposable,
R R;V =V, and the dimension vectors = of V and y of R,V
are related to each other by the following formula:

Zj it j 7



Reflection Functors

Theorem: [Bernstein, Gelfand, Ponomarev]
Let Q be a finite connected quiver and let V be a representation of Q. If

V=U®W, then for any source or sink 7 € (), R,L-iV = Rf:U@RgtW.

Corollary: Reflection Functors preserve the Tits form values except at
simple representations:

For ¢ source/sink and V indecomposable,
e cither V=5, in which case qSiQ(di_mRiiV) = 0,
o or ¢s,o(dim R; V) = gq(V).

For V arbitrary,
VeV, @ -3V, BN, = qsiq(di_meV) = qq(dimV; & ---pV,)



Reflection Functors

Example: Q of type A, i sink, V= B’_, Ig[b;, d;] € repy(Q):

/\

N



Reflection Functors

Example: Q of type A, i sink, V= B’_, Ig[b;, d;] € repy(Q):

N LY

Vi Vit
\ / +
RV
+X7 ~ r +
Rz’ V = @jzl Rz ]IQ [b]’, dj], where
r 0 if i =0b; =dj;
Is,qle +1,d;] ift=0b; <dj;
Is.qle, d;] ifi4+1=0b; <d;;
+ Cd.] — s; QLY @7 7 = %
Rilalbj dil = 10y i—1] ifb; < d; =
Is,qlbj, 7] ifb; <d; =1—1;
\ I[S,L-Q:bj,dj] otherwise.




Reflection Functors

Example: Q of type A,,, 7 sink, V = @;:1

Diamond (forced exact by RJF)/ \

1%

R;I_V = @§:1 R;FHQ [b]‘, dj], where

RjHQ[ijdj] —

Diamond Principle [Carlsson, de Silva]

9

TN N O~ S S

N

+
e

S N

- - - Q‘

]

¥

i

Iqlb;,d;] € repg(Q):

RV

ifi:bj :dj;
ifi:bj < dj;
ifi—|—1=bj de;
if b; < d; =1
ifbj de :’i—l;
otherwise.



Proof of Gabriel's Theorem (A, case)

Theorem: [Gabriel |, A,, type]
Assuming Q is of type A,,, every isomorphism class of indecomposable
representations in rep, (Q) contains Ig|b, d] for some 1 < b < d < n.



Proof of Gabriel's Theorem (A, case)

Theorem: [Gabriel |, A,, type]
Assuming Q is of type A,,, every isomorphism class of indecomposable
representations in rep, (Q) contains Ig|b, d] for some 1 < b < d < n.

What we can do:

e turn indecomposable representations of Q into indecomposable rep-
resentations of reflections of Q (or zero)

e while doing so, preserve the value of the Tits form (or zero)



Proof of Gabriel's Theorem (A, case)

Theorem: [Gabriel |, A,, type]
Assuming Q is of type A,,, every isomorphism class of indecomposable
representations in rep, (Q) contains Ig|b, d] for some 1 < b < d < n.

What we can do:

e turn indecomposable representations of Q into indecomposable rep-
resentations of reflections of Q (or zero)

e while doing so, preserve the value of the Tits form (or zero)

— idea: turn Q into itself via sequences of reflections, and observe the
evolution of the indecomposables and their Tits form values



Proof of Gabriel's Theorem (A, case)

Y

Special case: linear quiver L,,: e > o

> @
n_

Y
S@

1

Let V € rep,(L,,) indecomposable, dimV = (x1, zo, - - - ,$n_1,£0n)T

— apply reflections s1s9 - - - s,,_15,L, and observe evolution of dim V¥V



Proof of Gabriel's Theorem (A, case)

Special case: linear quiver L,,: o >~ @ > >0 — > @
1 2 n—1 n
Let V € rep,(L,,) indecomposable, dimV = (x1,22, -+, Tn_1,Tn)
dim RV =0o0r (z1,22,  + ,Tn_1,Tn_1 — Tn)
dim R RV =0o0r (z1,72,  ,Tn—2 — Tn, Tn_1 — Tn)
dl_mR; e °R;L|__1R7—1|_V = 0 or (w17a71 — Tn, " 3y n—2 — Tn,Tn—1 — xn)—r

: T
dlmRiLRéF . -R,j;_lR;tV =0or (—Tp,T1 — Tn, "+ ,Tp—-92 — Tn,Tn—1 — Tn)



Proof of Gabriel's Theorem (A, case)

Special case: linear quiver L,,: o >~ @ > >0 — > @
1 2 n—1 n
Let V € rep,(L,,) indecomposable, dimV = (x1,22, -+, Tn_1,Tn)
dim RV =0o0r (z1,22,  + ,Tn_1,Tn_1 — Tn)
dim R RV =0o0r (z1,72,  ,Tn—2 — Tn, Tn_1 — Tn)
dl_mR; e -R;t_lR;tV = 0 or (xlaxl — Tn, " 3y n—2 — Tn,Tn—1 — xn)—r

N
L
dmRRY - RI_ RIV=0or (@,wl — T, Tn—2 — Tn, Tn—1 — Tn) |

— CtTV=R R} - R RIV=0orz, =0



Proof of Gabriel's Theorem (A, case)

. : . . : ° >~ o > > @ > @
Special case: linear quiver L,, . ; "o 1
Let V € repy(L,,) indecomposable, dimV = (z1, 22, - ,Tp_1,7,) "
dimCTV =0 or (0,x1,x2, - ,a?n—Q,ZEn—l)T
d1mC+C+V: 0 or (07073317"' 7$n—37$n—2)T

dim C+"°C+V:OOF (070707"' 707$1)T
T N —

n—1 times

dimCT--.CTV=0
\—

n times



Proof of Gabriel's Theorem (A, case)

Special case: linear quiver L,,;: o > @ > >0 —> o
1 2 n—1 n
Let V € rep,(L,,) indecomposable, dimV = (x1, zo, - - - ,$n_1,$n)T
dimCTV =0 or (0,x1,x2, - ,CBn—Q,ZEn—l)T
d1mC+C+V =0 or (0707:1317 Tt 7$n—37$n—2)—r
dim CT---CTV=0o0r(0,0,0,---,0,21) "
N———
—1 ti L . .
PTEHME = Fiig, e ison,ds st RERS - RERIV =0
+ + >t
dim CT---CTV=0 Rigoy Ry Riy V7O
N———

n times



Proof of Gabriel's Theorem (A, case)

Special case: linear quiver L,,: o >~ @ > >0 —> @
1 2 n—1 n
Let V € rep,(L,,) indecomposable, dimV = (x1,22, -+, Tn_1,Tn)
p - - + o+ + 4y —
d21,%2,--- ,%5—1,1%s S.t. RisRis_1 . -RZ-QRMV =0
+ + o+
Ris_1 x 'Ring’lV #+0
— Ri_l x 72:; RZV Is indecomposable and isomorphic to S, for some 1 < r < n

\

( Reflection Functor Thm)



Proof of Gabriel's Theorem (A, case)

Special case: linear quiver L,,: o >~ @ > >0 —> @
1 2 n—1 n
Let V € rep,(L,,) indecomposable, dimV = (x1,22, -+, Tn_1,Tn)
p - - + o+ + 4y —
d21,%2,--- ,%5—1,1%s S.t. RisRis_1 . -RZ-QRMV =0
+ + o+
Ris_1 x 'Ring’lV #+0
— R,j_l x 72:; RZV Is indecomposable and isomorphic to S, for some 1 < r < n

—> qL,, (dimV) = Qs; _,siyLn (dimR,j_ ) R;;R,:V) =dqs;__

% g

'(Corollary)

"'Sian (dler) =1

1



Proof of Gabriel's Theorem (A, case)

Special case: linear quiver L,,: o >~ @ > >0 —> @
1 2 n—1 n
Let V € rep,(L,,) indecomposable, dimV = (x1,22, -+, Tn_1,Tn)
p - - + o+ + 4y —
d21,%2,--- ,%5—1,1%s S.t. RisRis_1 . -RZ-QRMV =0
+ + o+
Ris_1 x 'Ring’lV #+0
— R,j_l x 72:; RZV Is indecomposable and isomorphic to S, for some 1 < r < n

—> qL,, (dimV) = Qs; _,siyLn (dimR,j_ ) R;;R,:V) =dqs;__

S_

"'Sian (dler) =1

1

—> dimV =dimI;_[b,d] forsome 1 <b<d<n=— V=1 [bd]

\

'(Example)




Proof of Gabriel's Theorem (A, case)

A, -type quiver Q:

—@
NO
| @

— goal: find a sequence of indices 41,79, -+ ,15_1,%5 S.t.

RIRS - RIRSV=0forall Ve rep,(Q)

S@



Proof of Gabriel's Theorem (A, case)

A, -type quiver Q:

— @
NO
| @

— goal: find a sequence of indices 41,79, -+ ,15_1,%5 S.t.

RIRS - RIRIV=0forall Ve rep,(Q)

ls—1

— idea: turn Q into L,,, then use the same sequence a before

S@



Proof of Gabriel's Theorem (A, case)

A, -type quiver Q:

- embed Q in a giant pyramid

B\ o

N J

NN TN
NN 7

NSNS



Proof of Gabriel's Theorem (A, case)

A, -type quiver Q:

- embed Q in a giant pyramid

- travel down the pyramid to its bottom L,

— travelling one level down reverses the leftmost backward arrow

€e.g. S1S9253 reverses O < ®
3 4




Proof of Gabriel's Theorem (A, case)

A, -type quiver Q:

- embed Q in a giant pyramid

- travel down the pyramid to its bottom L,

— travelling one level down reverses the leftmost backward arrow

€e.g. S1S9253 reverses O < ®
3 4

- each diamond °
VAN
le
NS
®

17— @11

Is travelled down using R;F



Proof of Gabriel's Theorem (A, case)

Theorem: [Gabriel Il]

Assuming Q is Dynkin with n vertices, the map V +— dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.
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Theorem: [Gabriel Il]

Assuming Q is Dynkin with n vertices, the map V +— dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

What we know:
e the positive roots of qq are the dimension vectors of interval modules Ig|b, d|

e each isomorphism class C' of indecomposables contains > 1 interval module



Proof of Gabriel's Theorem (A, case)

Theorem: [Gabriel Il]

Assuming Q is Dynkin with n vertices, the map V +— dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

What we know:

e the positive roots of qq are the dimension vectors of interval modules Ig|b, d|

e each isomorphism class C' of indecomposables contains > 1 interval module

Additional observations:
e =~ interval modules are 2, therefore each class C' contains 1 interval module

e cach interval module is indecomposable (endomorphism ring isom. to k)




Proof of Gabriel's Theorem (general case)

Theorem: [Gabriel ]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.
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Proof of Gabriel's Theorem (general case)

Theorem: [Gabriel ]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

<—  same process as before (proves Gabriel Il as well):

e Define Coxeter functors for arbitrary (finite, connected, loop-free) quivers

e iterate Coxeter functor to eventually send every indecomposable to zero

e derive bijection between isom. classes of indecomposables to positive roots
of qq via simple representations

10



Proof of Gabriel's Theorem (general case)

Theorem: [Gabriel ]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

—>  every connected quiver that is not Dynkin contains one of these:

O L» contains indecomp. representations of arbitrary dimensions
0e

A() Oe
0
® 20
nnzl) e S A A S A
20
1 n—1 ~
° ° Er o— o ° ° ) o— o
/ 0] 1 3 4 5 6 7
Dp(n>4) 20 — — en—2 2
° ° Eg o — o ) ° ° ° °
0] n 1 3 4 5 6 7 8

10

e



Proof of Gabriel's Theorem (general case)

Theorem: [Gabriel ]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

—>  every connected quiver that is not Dynkin contains one of these:

~

O L» contains indecomp. representations of arbitrary dimensions
A() Oe

f V = (k", f) isomorphic to W = (k”, g)

k’r’%k’r

I T

g

k» ——Fk° r=sand 3¢, € Aut(k") s.t. f=1"Logog

10



Proof of Gabriel's Theorem (general case)

Theorem: [Gabriel ]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

—>  every connected quiver that is not Dynkin contains one of these:

~

O L» contains indecomp. representations of arbitrary dimensions
AO Oe

— injection from conjugacy classes of Jordan block / Al \
matrices to isomorphism classes of indecomposables \

(injection becomes bijection when k is algebraically closed) \ /
A

10



Beyond Gabriel's Theorem

Gabriel's theorem is about:
e Dynkin quivers

e finite-dimensional representations
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Beyond Gabriel's Theorem

Gabriel’'s theorem is about:
e Dynkin quivers
e finite-dimensional representations

Finite connected quivers:

Theorem: [Kac]

The set of dimension vectors of finite-dimensional indecomposable rep-
resentations of a finite connected quiver Q is precisely the set of positive
roots of its Tits form. In particular, this set is independent of the arrow
orientations in Q and of the base field.

(catch: the map V — dim V may not be injective)

11



Beyond Gabriel's Theorem

Gabriel’'s theorem is about:
e Dynkin quivers
e finite-dimensional representations

Finite disconnected quivers:

Q =Q; UQz = Repg(Q) = Repg(Q1) X Repg(Q2)

11



Beyond Gabriel's Theorem

Gabriel’'s theorem is about:
e Dynkin quivers
e finite-dimensional representations

Finite quivers, infinite-dimensional representations:

— path algebras, modules, Auslander-Reiten theory

Theorem: [Auslander+Gabriell

For a Dynkin quiver Q, every indecomposable representation in Rep, (Q)
has finite dimension, and every representation in Rep, (Q) is a direct sum
of indecomposable representations. In particular, Q has finitely many
iIsomorphism classes of indecomposable representations, and all of them
are finite-dimensional.

11



Beyond Gabriel's Theorem

Gabriel’'s theorem is about:
e Dynkin quivers
e finite-dimensional representations

Infinite quivers:

— research in progress '/

Theorem: [Webb] Decomposition of pfd rep. of the Z quiver

(pointwise finite dimensional)

e —— > —————> 0 ————> @ ————> - - -
n—1 n n+1

Theorem: [Crawley-Boevey] Decomposition of pfd rep. of the R quiver

[ > @ > @
xr

~_ 7

11



Beyond Gabriel's Theorem

Gabriel’'s theorem is about:
e Dynkin quivers
e finite-dimensional representations

Infinite quivers:
(pointwise finite dimensional)
— research in progress '/

Theorem: [Webb] Decomposition of pfd rep. of the Z quiver

e S 9 S — > 9 — > ... Theorem: [Botnan 2015]
n—1 n n+1 Arrow orientations don’'t matter

Theorem: [Crawley-Boevey] Decomposition of pfd rep. of the R quiver

o ~ o >~ o ... Theorem: [Cochoy, O. 2016]
xr

* under exactness conditions

11



