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Persistence Modules vs. Quiver Representations

•
1

a // •
2

b // •
3

c // •
4

d // •
5

k
( 1
0 )
// k2 ( 0 1 ) // k

( 1
1 )
// k2

( 1 0
1 1 )
// k2

k: field of coefficients

persistence module:

underlying graph:
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k: field of coefficients
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Outline

• quivers and representations

• the category of representations

• the classification problem

• Gabriel’s theorem(s)

• proof of Gabriel’s theorem

• beyond Gabriel’s theorem



roughly speaking, a quiver is a (potentially infinite) directed multigraph

3

Quivers and Representations

Definition: A quiver Q consists of two sets Q0, Q1 and two maps s, t :
Q1 → Q0. The elements in Q0 are called the vertices of Q, while those
of Q1 are called the arrows. The source map s assigns a source sa to
every arrow a ∈ Q1, while the target map t assigns a target ta.

Ln(n ≥ 1) •
1

// •
2

// · · · // •
n−1

// •
n



roughly speaking, a quiver is a (potentially infinite) directed multigraph

3

Quivers and Representations

Definition: A quiver Q consists of two sets Q0, Q1 and two maps s, t :
Q1 → Q0. The elements in Q0 are called the vertices of Q, while those
of Q1 are called the arrows. The source map s assigns a source sa to
every arrow a ∈ Q1, while the target map t assigns a target ta.
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Quivers and Representations

•1

•
2

a

??
b

--
c

// •
3

d

__
e

__

Q

k

k

1

@@

1

--
( 1
0 )

// k2
0

__
( 0 1 )

__

Definition: A representation of Q over a field k is a pair V = (Vi, va)
consisting of a set of k-vector spaces {Vi | i ∈ Q0} together with a set
of k-linear maps {va : Vsa → Vta | a ∈ Q1}.

∈ Repk(Q)

Note: commutativity is not required
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Quivers and Representations

Definition: A morphism φ between two k-representations V,W of Q
is a set of k-linear maps φi : Vi →Wi such that wa ◦ φsa = φta ◦ va for
every arrow a ∈ Q1.

projection onto first coordinate
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??
b

--
c

// •
3

d

__
e

__

Q

k

k

1

@@

1

--
( 1
0 )

// k2
0

__
( 0 1 )

__

∈ Repk(Q)

k

k

−1
@@

1

--
( 1
0 )

// k2
( 1 0 )

__
( 1 −1 )

__
(
0 0
0 1

)−1
1

every quadrangle associated
with a quiver edge commutes
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Quivers and Representations

Definition: A morphism φ between two k-representations V,W of Q
is a set of k-linear maps φi : Vi →Wi such that wa ◦ φsa = φta ◦ va for
every arrow a ∈ Q1.

k

(
1
0

)
//

1

��

k2
( 0 1 ) //

( 0 1 )

��

k

(
1
1

)
//

1

��

k2

(
1 0
1 1

)
//

( 1 −1 )

��

k2

0

��
k

0 // k 1 // k 0 // k 0 // 0

every quadrangle associated
with a quiver edge commutes
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The Category of Representations

The representations of a quiver Q = (Q0, Q1), together with their mor-
phisms, form a category called Repk(Q). This category is abelian:

0 // 0 // 0 // 0 // 0

• it contains a zero object, namely the trivial representation
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The Category of Representations

The representations of a quiver Q = (Q0, Q1), together with their mor-
phisms, form a category called Repk(Q). This category is abelian:

• it contains a zero object, namely the trivial representation

• it has internal and external direct sums, defined pointwise. For any V,W, the
representation V ⊕W has spaces Vi ⊕Wi for i ∈ Q0 and maps va ⊕ wa =(

va 0
0 wa

)
for a ∈ Q1

k

(
1
0

)
// k2

( 0 1 ) // k

(
1
1

)
// k2

(
1 0
1 1

)
// k2

⊕
k

0 // 0 0 // k 1 // k 0 // 0

=

k2

(
1 0
0 0

)
// k2

(
0 1
0 0

)
// k2

(
1 0
1 0
0 1

)
// k3

(
1 0 0
1 1 0

)
// k2
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The Category of Representations

The representations of a quiver Q = (Q0, Q1), together with their mor-
phisms, form a category called Repk(Q). This category is abelian:

• it contains a zero object, namely the trivial representation

• it has internal and external direct sums, defined pointwise. For any V,W, the
representation V ⊕W has spaces Vi ⊕Wi for i ∈ Q0 and maps va ⊕ wa =(

va 0
0 wa

)
for a ∈ Q1

• every morphism has a kernel, an image and a cokernel, defined pointwise.

→ a morphism φ is injective iff kerφ = 0, and surjective iff cokerφ = 0.

k

(
1
0

)
//

1

��

k2
( 0 1 ) //

( 0 1 )

��

k

(
1
1

)
//

1

��

k2

(
1 0
1 1

)
//

( 1 −1 )

��

k2

0

��
k

0 // k 1 // k 0 // k 0 // 0

kerφ = 0
0 // k 0 // 0 0 // k

(
1
2

)
// k2 cokerφ = 0
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The Classification Problem

Goal: Classify the representations of a given quiver Q = (Q0, Q1) up
to isomorphism.

many of the nice properties of vector spaces carry over to quiver representations. However, not all of them do, e.g. semisimplicity (basis completion theorem).
Note: harder than for single vector spaces because no semisimplicity

V = k
1 // k

W = 0
0 // k

(subrepresentations may not be summands)



dimV = (dimV1, · · · ,dimVn)>,

dimV = ‖dimV‖1 =
n∑
i=1

dimVi.

5

The Classification Problem

Goal: Classify the representations of a given quiver Q = (Q0, Q1) up
to isomorphism.

→ simplifying assumptions:

• Q is finite and connected

• study the subcategory repk(Q) of finite-dimensional representations



this is our first non-trivial result

5

The Classification Problem

Goal: Classify the representations of a given quiver Q = (Q0, Q1) up
to isomorphism.

→ simplifying assumptions:

• Q is finite and connected

• study the subcategory repk(Q) of finite-dimensional representations

Theorem: [Krull-Remak-Schmidt-Azumaya]
∀V ∈ repk(Q), ∃ V1, · · · ,Vr indecomposable s.t. V ∼= V1 ⊕ · · · ⊕ Vr.
The decomposition is unique up to isomorphism and reordering.

note: V indecomposable iff there are no U,W 6= 0 such that V ∼= U⊕W



If V is indecomposable then it is its own decomposition. Otherwise, V = U⊕W with non-trivial U and W, so their total dimensions are stricly smaller than that of V, so by the induction hypothesis they both admit a decomposition. The direct sum of the two decompositions gives a decomposition for V.

the connection between decomposition and locality of the endomorphism ring is the following: if V = U⊕W, then let πU be the projection onto U in the direction of W, and πV be the projection onto W in the direction of U. Then, πU and πW are not invertible (none of the submodules is trivial), but their sum is the identity of V and therefore invertible, hence the endomorphism ring of V is not local. Conversely, we can prove that the endomorphism ring of V is local whenever V is indecomposable, using Fitting’s lemma. Azumaya’s theorem guarantees then the uniqueness of the decomposition.

5

The Classification Problem

Goal: Classify the representations of a given quiver Q = (Q0, Q1) up
to isomorphism.

→ simplifying assumptions:

• Q is finite and connected

• study the subcategory repk(Q) of finite-dimensional representations

Theorem: [Krull-Remak-Schmidt-Azumaya]
∀V ∈ repk(Q), ∃ V1, · · · ,Vr indecomposable s.t. V ∼= V1 ⊕ · · · ⊕ Vr.
The decomposition is unique up to isomorphism and reordering.

proof:

• existence: by induction on dimV

• uniqueness: show that endomorphisms ring of each Vi is local (it is isomorphic to
k for interval representations of An-type quivers), then apply Azumaya’s theorem



thus, problem is harder than for single vector spaces

5

The Classification Problem

Goal: Classify the representations of a given quiver Q = (Q0, Q1) up
to isomorphism.

→ simplifying assumptions:

• Q is finite and connected

• study the subcategory repk(Q) of finite-dimensional representations

Theorem: [Krull-Remak-Schmidt-Azumaya]
∀V ∈ repk(Q), ∃ V1, · · · ,Vr indecomposable s.t. V ∼= V1 ⊕ · · · ⊕ Vr.
The decomposition is unique up to isomorphism and reordering.

→ problem becomes to identify the indecomposable representations of Q

(6= from identifying representations with no subrepresentations)

(no semisimplicity)
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Gabriel’s Theorem

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.

•2

An(n ≥ 1) •
1

•
2

· · · •
n−1

•
n

E6 •
1

•
3

•
4

•
5

•
6

•2

•
n−1

E7 •
1

•
3

•
4

•
5

•
6

•
7

Dn(n ≥ 4) •
1

•
2

· · · •n−2 •2

•
n

E8 •
1

•
3

•
4

•
5

•
6

•
7

•
8



This result introduces a dichotomy between the finite connected quivers. The Dynkin ones, for which classifying indecomposable representations is ”easy”, and the rest, for which the classification is ”harder”. Unfortunately, there are very few Dynkin quivers.

6

Gabriel’s Theorem

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.
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An(n ≥ 1) •
1

•
2

· · · •
n−1

•
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E6 •
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•
4

•
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•
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•
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E7 •
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•
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•
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•
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•
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•
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•
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•
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•
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•
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•
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•
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(does not depend on the choice of field and of arrow orientations)
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Gabriel’s Theorem

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.

Q given that Q is Dynkin, how to identify indecomposable representations?



6

Gabriel’s Theorem

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.

Q given that Q is Dynkin, how to identify indecomposable representations?

Theorem: [Gabriel II]
Assuming Q is Dynkin with n vertices, the map V 7→ dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.



6

Gabriel’s Theorem

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.

Q given that Q is Dynkin, how to identify indecomposable representations?

Theorem: [Gabriel II]
Assuming Q is Dynkin with n vertices, the map V 7→ dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

(isom. classes of indecomposables are fully characterized by their dim. vectors)



6

Gabriel’s Theorem

Tits form: given Q = (Q0, Q1) with |Q0| = n and x = (x1, · · · , xn) ∈ Zn,

qQ(x) =
∑
i∈Q0

x2i −
∑
a∈Q1

xsaxta .



the positive-definiteness of the Tits form characterizes the Dynkin quivers

6

Gabriel’s Theorem

Tits form: given Q = (Q0, Q1) with |Q0| = n and x = (x1, · · · , xn) ∈ Zn,

qQ(x) =
∑
i∈Q0

x2i −
∑
a∈Q1

xsaxta .

Proposition: qQ is positive definite (qQ(x) > 0 ∀x 6= 0) iff Q is Dynkin.

example: Q of type An: •
1

•
2

· · · •
n−1

•
n

qQ(x) =
n∑
i=1

x2i −
n−1∑
i=1

xixi+1

=

n−1∑
i=1

1

2
(xi − xi+1)

2 +
1

2
x21 +

1

2
x2n

= 0 iff x = (0, · · · , 0)
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Gabriel’s Theorem

Tits form: given Q = (Q0, Q1) with |Q0| = n and x = (x1, · · · , xn) ∈ Zn,

qQ(x) =
∑
i∈Q0

x2i −
∑
a∈Q1

xsaxta .

Root: x ∈ Zn \ {0} is a root if qQ(x) ≤ 1. It is positive if xi ≥ 0 ∀i.
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Gabriel’s Theorem

Tits form: given Q = (Q0, Q1) with |Q0| = n and x = (x1, · · · , xn) ∈ Zn,

qQ(x) =
∑
i∈Q0

x2i −
∑
a∈Q1

xsaxta .

Root: x ∈ Zn \ {0} is a root if qQ(x) ≤ 1. It is positive if xi ≥ 0 ∀i.

Proposition: If Q is Dynkin, then the set of positive roots of qQ is finite.



therefore the set {x ∈ Rn | qQ(x) ≤ 1} = {x ∈ Rn | qQ(x) ≤ 1} ∩ Zn is finite

6

Gabriel’s Theorem

Tits form: given Q = (Q0, Q1) with |Q0| = n and x = (x1, · · · , xn) ∈ Zn,

qQ(x) =
∑
i∈Q0

x2i −
∑
a∈Q1

xsaxta .

Root: x ∈ Zn \ {0} is a root if qQ(x) ≤ 1. It is positive if xi ≥ 0 ∀i.

Proposition: If Q is Dynkin, then the set of positive roots of qQ is finite.

proof outline:

• qQ can be viewed indifferently as a quadratic form on Zn, Qn or Rn

• by taking limits, qQ is then pos. semidefinite on Rn

• qQ invertible on Qn with coeffs. in Q ⇒ qQ invertible on Rn

• qQ pos. definite on Zn ⇒ qQ pos. definite on Qn

⇒ qQ pos. definite on Rn ⇒ {x ∈ Rn | qQ(x) ≤ 1} is an ellipsoid



thus, we know that when Q is Dynkin, its Tits form is positive definite with finitely many positive roots in Zn. The second part of Gabriel’s theorem establishes then the dimension vector assignment as a bijection between the set of isomorphism classes of (finite-dimensional) indecomposable representations of Q and the set of positive roots of qQ.

6

Gabriel’s Theorem

Tits form: given Q = (Q0, Q1) with |Q0| = n and x = (x1, · · · , xn) ∈ Zn,

qQ(x) =
∑
i∈Q0

x2i −
∑
a∈Q1

xsaxta .

Root: x ∈ Zn \ {0} is a root if qQ(x) ≤ 1. It is positive if xi ≥ 0 ∀i.

Proposition: If Q is Dynkin, then the set of positive roots of qQ is finite.

Theorem: [Gabriel II]
Assuming Q is Dynkin with n vertices, the map V 7→ dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.



there can be two ”jumps” 0→ 1 and 1→ 0 in the sum, or only one jump and x1 = 1 or xn = 1, or zero jump and x1 = xn = 1.

6

Gabriel’s Theorem

example: Q of type An: •
1

•
2

· · · •
n−1

•
n

qQ(x) =
n∑
i=1

x2i −
n−1∑
i=1

xixi+1

=
n−1∑
i=1

1

2
(xi − xi+1)2 +

1

2
x21 +

1

2
x2n

= 1 iff x = (0, · · · , 0, 1, · · · , 1, 0, · · · , 0)



the maps between copies of k are either isomorphisms or zero. If one of them (say vi : Vi ↔ Vi+1) is zero, then the representation V is decomposable into V v[1, i]⊕ V[i+ 1, n].

there can be two ”jumps” 0→ 1 and 1→ 0 in the sum, or only one jump and x1 = 1 or xn = 1, or zero jump and x1 = xn = 1.

6

Gabriel’s Theorem

example: Q of type An: •
1

•
2

· · · •
n−1

•
n

qQ(x) =
n∑
i=1

x2i −
n−1∑
i=1

xixi+1

=
n−1∑
i=1

1

2
(xi − xi+1)2 +

1

2
x21 +

1

2
x2n

= 1 iff x = (0, · · · , 0, 1, · · · , 1, 0, · · · , 0)

the corresponding indecomp. representations are isomorphic to IQ[b, d]:

0
0 · · · 0

0
0

k
1 · · · 1

k
0

0
0 · · · 0

0︸ ︷︷ ︸
[1, b−1]

︸ ︷︷ ︸
[b, d]

︸ ︷︷ ︸
[d+1, n]



A good part of the remaining time will be devoted to proving Gabriel’s theorem, at least in the special case of An-type quivers, which is the one of utmost interest to us. Several proofs exist, including the original one of Gabriel’s. I want to give you the proof by Bernstein, Gelfand and Ponomarev, which introduces a key ingredient that proved useful far beyond Gabriel’s theorem in the theory of representations. Furthermore, I strongly believe it can be of use for persistence theory.

7

Reflection Functors

Advantage: explains the fact that only the dimension vectors play a role
in the identification of indecomposable representations. In particular,
arrow orientations are irrelevant.

idea: modify quivers by reversing arrows, and study the effect on their
representations.
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Reflection Functors

•
1

// •
2

•
3

oo •
4

oo // •
5

source
source

sink

sink

Definition: sink = only incoming arrows; source = only outgoing arrows
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Reflection Functors

•
1

// •
2

•
3

oo •
4

oo // •
5

s1Q : •
1

•
2

oo •
3

oo •
4

oo // •
5

s2Q : •
1

•
2

oo // •
3

•
4

oo // •
5

s4Q : •
1

// •
2

•
3

oo // •
4

•
5

oo

s5Q : •
1

// •
2

•
3

oo •
4

oo •
5

oo

Definition: reflection si = reverse all arrows incident to sink/source i



the functor turns representations of Q into representations of siQ. The + or - sign indicates whether node i was a sink (+) or a source (-) initially. The functor’s definition depends on this sign. The transformation of representations is functorial and it preserves direct sum decompositions, so the role of the functor is to cast the decomposition problem on one quiver onto the one on the reflected quiver.

7

Reflection Functors

•
1

// •
2

•
3

oo •
4

oo // •
5

s1Q : •
1

•
2

oo •
3

oo •
4

oo // •
5

s2Q : •
1

•
2

oo // •
3

•
4

oo // •
5

s4Q : •
1

// •
2

•
3

oo // •
4

•
5

oo

s5Q : •
1

// •
2

•
3

oo •
4

oo •
5

oo

Definition: reflection functor R±i = functor Repk(Q)→ Repk(siQ)



7

Reflection Functors

i

Let V = (Vi, va) ∈ Repk(Q), let i be a sink



7

Reflection Functors

i

Let V = (Vi, va) ∈ Repk(Q), let i be a sink

Definition: R+
i V = (Wi, wa) is defined by :

• Wj = Vj for all j 6= i

• wa = va for all a /∈ Qi1

(arrows incident to i)
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Reflection Functors

i

Let V = (Vi, va) ∈ Repk(Q), let i be a sink

(xsa )a∈Qi1
7−→

∑
a∈Qi1

va(xsa )

• Wi = ker ξi :
⊕
a∈Qi1

Vsa −→ Vi

Definition: R+
i V = (Wi, wa) is defined by :

• Wj = Vj for all j 6= i

• wa = va for all a /∈ Qi1

(arrows incident to i)
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Reflection Functors

i

Let V = (Vi, va) ∈ Repk(Q), let i be a sink

(xsa )a∈Qi1
7−→

∑
a∈Qi1

va(xsa )

• Wi = ker ξi :
⊕
a∈Qi1

Vsa −→ Vi

Definition: R+
i V = (Wi, wa) is defined by :

• Wj = Vj for all j 6= i

• wa = va for all a /∈ Qi1

• for a ∈ Qi1, let b be the opposite arrow, and let wb be the composition:

Wsb =Wi = ker ξi ↪−→
⊕
c∈Qi1

Vsc −→ Vsa =Wsa =Wtb

(canonical inclusion) (projection to component Vsa )

(arrows incident to i)

a
b

a′

b′



this is best seen when i has 2 incoming arrows. In that case, Wi is the kernel of the sum of the incoming maps, i.e. it measures how much the two maps are redundent, i.e. how much information passes through i. In fact, it also contains the information lost while entering Vi. The only info it does not carry is the one stored at Vi only. Specific examples will be given shortly

7

Reflection Functors

i

Let V = (Vi, va) ∈ Repk(Q), let i be a sink

(xsa )a∈Qi1
7−→

∑
a∈Qi1

va(xsa )

• Wi = ker ξi :
⊕
a∈Qi1

Vsa −→ Vi

Definition: R+
i V = (Wi, wa) is defined by :

• Wj = Vj for all j 6= i

• wa = va for all a /∈ Qi1

• for a ∈ Qi1, let b be the opposite arrow, and let wb be the composition:

Wsb =Wi = ker ξi ↪−→
⊕
c∈Qi1

Vsc −→ Vsa =Wsa =Wtb

(canonical inclusion) (projection to component Vsa )

intuition: Wi carries the information
passing through Vi in V

(arrows incident to i)

a
b

a′

b′



ζi simply ”pushes” xi through all the incident maps at once

7

Reflection Functors

Let V = (Vi, va) ∈ Repk(Q), let i be a sink

• Wi = ker ξi :
⊕
a∈Qi1

Vsa −→ Vi

Definition: R+
i V = (Wi, wa) is defined by :

• Wj = Vj for all j 6= i

• wa = va for all a /∈ Qi1

• for a ∈ Qi1, let b be the opposite arrow, and let wb be the composition:

i

source

R−i V

coker ζi

xi 7−→ (va(xi))a∈Qi1

←−

Wsb =Wta = Vta ↪−→
⊕
c∈Qi1

Vtc −→ coker ζi =Wi =Wtb

(arrows incident to i)

(canonical inclusion) (quotient modulo im ζi)

a
b

a′

b′



when Vi = ker ξi, the quotient of
⊕
a∈Qi1

Vta modulo the cokernel of ζi is isomorphic to the image of ξi, so Wi really contains the information carried originally (before even applying R+
i ) minus the one stored at index i only. Let us give specific examples to illustrate this property.

ζi simply ”pushes” xi through all the incident maps at once

7

Reflection Functors

Let V = (Vi, va) ∈ Repk(Q), let i be a sink

• Wi = ker ξi :
⊕
a∈Qi1

Vsa −→ Vi

Definition: R+
i V = (Wi, wa) is defined by :

• Wj = Vj for all j 6= i

• wa = va for all a /∈ Qi1

• for a ∈ Qi1, let b be the opposite arrow, and let wb be the composition:

i

source

R−i V

coker ζi

xi 7−→ (va(xi))a∈Qi1

←−

Wsb =Wta = Vta ↪−→
⊕
c∈Qi1

Vtc −→ coker ζi =Wi =Wtb

(arrows incident to i)

(canonical inclusion) (quotient modulo im ζi)

a
b

a′

b′

intuition: this is the operation dual to
the previous one (take Vi = ker ξi)
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Reflection Functors

V : V1
va // V2 V3

vboo V4
vcoo vd // V5

R+
5 V : V1

va // V2 V3
vboo V4

vcoo ker vd? _oo

R−5 R
+
5 V : V1

va // V2 V3
vboo V4

vcoo mod ker vd // V4/ ker vd



we have R−5 R
+
5 V ∼= V whenever V5 = im vd. Otherwise, V decomposes into R−5 R

+
5 V plus a number of copies of the simple representation S5 having k at node 5 and 0 at every other node

7

Reflection Functors

V : V1
va // V2 V3

vboo V4
vcoo vd // V5

R+
5 V : V1

va // V2 V3
vboo V4

vcoo ker vd? _oo

R−5 R
+
5 V : V1

va // V2 V3
vboo V4

vcoo mod ker vd // V4/ ker vd

V ∼= R−5 R
+
5 V⊕ Sr5, where r = dimV5 − rank vd

∼= im vd
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Reflection Functors

V : V1
va // V2 V3

vboo V4
vcoo vd // V5

R+
2 V : V1 ker va + vboo //

_�

��

V3 V4
vcoo vd // V5

V1 ⊕ V3

π1

bb

π3

<<



the new space at node 2 is defined as the cokernel of the (previous vertical) canonical inclusion. Thus, the new space is isomorphic to the image of va + vb. Note that the new vertical map is the quotient modulo the kernel of va + vb

7

Reflection Functors

V : V1
va // V2 V3

vboo V4
vcoo vd // V5

R−2 R
+
2 V : V1 //

(−,0)

��

V1⊕V3
ker va+vb

V3oo

(0,−)

��

V4
vcoo vd // V5

ker va + vb
� � // V1 ⊕ V3

OO

va+vb // V2



we have R−2 R
+
2 V ∼= V whenever V2 = im va + vb. Otherwise, V decomposes into R−2 R

+
2 V plus a number of copies of the simple representation S2 having k at node 2 and 0 at every other node

the new space at node 2 is defined as the cokernel of the (previous vertical) canonical inclusion. Thus, the new space is isomorphic to the image of va + vb. Note that the new vertical map is the quotient modulo the kernel of va + vb

7

Reflection Functors

V : V1
va // V2 V3

vboo V4
vcoo vd // V5

R−2 R
+
2 V : V1 //

(−,0)

��

V1⊕V3
ker va+vb

V3oo

(0,−)

��

V4
vcoo vd // V5

ker va + vb
� � // V1 ⊕ V3

OO

va+vb // V2

V ∼= R−2 R
+
2 V⊕ Sr2, where r = dimV2 − rank va + vb

∼= im va +
vb



at node i, Vi is replaced by Wi = ker ξi, whose dimension is dim⊕a∈Qi1Vsa − dim im
∑
a∈Qi1

va, where here the image is the entire space Vi since V is indecomposable

the theorem also provides rules to match the indecomposables (or rather their dimension vectors)

the functor preserves direct sum decompositions

7

Reflection Functors

Theorem: [Bernstein, Gelfand, Ponomarev]
Let Q be a finite connected quiver and let V be a representation of Q. If
V ∼= U⊕W, then for any source or sink i ∈ Q0, R±i V ∼= R

±
i U⊕R

±
i W.

If now V is indecomposable:
1. If i ∈ Q0 is a sink, then two cases are possible:

• V ∼= Si: in this case, R+
i V = 0.

• V � Si: in this case, R+
i V is nonzero and indecomposable,

R−i R
+
i V ∼= V, and the dimension vectors x of V and y of R+

i V
are related to each other by the following formula:

yj =


xj if j 6= i;

−xi +
∑
a∈Q1

ta=i

xsa if j = i.



here again, the formula is given by dimension considerations at node i. Indeed, Vi is replaced by Wi = coker ζi, whose dimension is dim⊕a∈Qi1Vsa − dim im ζi, where here the image is isomorphic to Vi since V is indecomposable

7

Reflection Functors

Theorem: [Bernstein, Gelfand, Ponomarev]
Let Q be a finite connected quiver and let V be a representation of Q. If
V ∼= U⊕W, then for any source or sink i ∈ Q0, R±i V ∼= R

±
i U⊕R

±
i W.

If now V is indecomposable:
2. If i ∈ Q0 is a source, then two cases are possible:

• V ∼= Si: in this case, R−i V = 0.

• V � Si: in this case, R−i V is nonzero and indecomposable,
R+
i R
−
i V ∼= V, and the dimension vectors x of V and y of R−i V

are related to each other by the following formula:

yj =


xj if j 6= i;

−xi +
∑
a∈Q1

sa=i

xta if j = i.



this is because reflection functors preserve direct sums, and the dimension vector of a direct sum is the sum of the dimension vectors of the terms

7

Reflection Functors

Theorem: [Bernstein, Gelfand, Ponomarev]
Let Q be a finite connected quiver and let V be a representation of Q. If
V ∼= U⊕W, then for any source or sink i ∈ Q0, R±i V ∼= R

±
i U⊕R

±
i W.

[...]

Corollary: Reflection Functors preserve the Tits form values except at
simple representations:

For i source/sink and V indecomposable,

• either V ∼= Si, in which case qsiQ(dimR±i V) = 0,

• or qsiQ(dimR±i V) = qQ(V).

For V arbitrary,
V ∼= V1 ⊕ · · · ⊕ Vr ⊕ Ssi =⇒ qsiQ(dimR±i V) = qQ(dimV1 ⊕ · · · ⊕ Vr)



7

Reflection Functors

Vi

V1 · · · Vi−1

<<

Vi+1

bb

· · · Vn

Wi

bb <<

Example: Q of type An, i sink, V ∼=
⊕r

j=1 IQ[bj , dj ] ∈ repk(Q):

V

R+
i V
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Reflection Functors

Vi

V1 · · · Vi−1

<<

Vi+1

bb

· · · Vn

Wi

bb <<

Example: Q of type An, i sink, V ∼=
⊕r

j=1 IQ[bj , dj ] ∈ repk(Q):

V

R+
i V

R+
i V ∼=

⊕r
j=1R

+
i IQ[bj , dj ], where

R+
i IQ[bj , dj ] =



0 if i = bj = dj ;
IsiQ[i+ 1, dj ] if i = bj < dj ;
IsiQ[i, dj ] if i+ 1 = bj ≤ dj ;
IsiQ[bj , i− 1] if bj < dj = i;
IsiQ[bj , i] if bj ≤ dj = i− 1;
IsiQ[bj , dj ] otherwise.
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Reflection Functors

Vi

V1 · · · Vi−1

<<

Vi+1

bb

· · · Vn

Wi

bb <<

Example: Q of type An, i sink, V ∼=
⊕r

j=1 IQ[bj , dj ] ∈ repk(Q):

V

R+
i V

R+
i V ∼=

⊕r
j=1R

+
i IQ[bj , dj ], where

R+
i IQ[bj , dj ] =



0 if i = bj = dj ;
IsiQ[i+ 1, dj ] if i = bj < dj ;
IsiQ[i, dj ] if i+ 1 = bj ≤ dj ;
IsiQ[bj , i− 1] if bj < dj = i;
IsiQ[bj , i] if bj ≤ dj = i− 1;
IsiQ[bj , dj ] otherwise.

Diamond (forced exact by R+
i )

Diamond Principle [Carlsson, de Silva]



This is what we want to prove. This statement implies Gabriel’s Theorem I for An-type quivers because an interval representation cannot be in two isomorphism classes at a time (equivalence relation), and since there are finitely many interval representations, the number of isomorphism classes of indecomposable representations of Q must then be finite.

8

Proof of Gabriel’s Theorem (An case)

Theorem: [Gabriel I, An type]
Assuming Q is of type An, every isomorphism class of indecomposable
representations in repk(Q) contains IQ[b, d] for some 1 ≤ b ≤ d ≤ n.



This is what we want to prove. This statement implies Gabriel’s Theorem I for An-type quivers because an interval representation cannot be in two isomorphism classes at a time (equivalence relation), and since there are finitely many interval representations, the number of isomorphism classes of indecomposable representations of Q must then be finite.

8

Proof of Gabriel’s Theorem (An case)

Theorem: [Gabriel I, An type]
Assuming Q is of type An, every isomorphism class of indecomposable
representations in repk(Q) contains IQ[b, d] for some 1 ≤ b ≤ d ≤ n.

What we can do:

• turn indecomposable representations of Q into indecomposable rep-
resentations of reflections of Q (or zero)

• while doing so, preserve the value of the Tits form (or zero)



This is what we want to prove. This statement implies Gabriel’s Theorem I for An-type quivers because an interval representation cannot be in two isomorphism classes at a time (equivalence relation), and since there are finitely many interval representations, the number of isomorphism classes of indecomposable representations of Q must then be finite.

8

Proof of Gabriel’s Theorem (An case)

Theorem: [Gabriel I, An type]
Assuming Q is of type An, every isomorphism class of indecomposable
representations in repk(Q) contains IQ[b, d] for some 1 ≤ b ≤ d ≤ n.

What we can do:

• turn indecomposable representations of Q into indecomposable rep-
resentations of reflections of Q (or zero)

• while doing so, preserve the value of the Tits form (or zero)

→ idea: turn Q into itself via sequences of reflections, and observe the
evolution of the indecomposables and their Tits form values



8

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

→ apply reflections s1s2 · · · sn−1snLn and observe evolution of dimV



for the first line, go back to the formula given in the Reflection Functor Theorem

8

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

dimR+
nV = 0 or (x1, x2, · · · , xn−1, xn−1 − xn)>

dimR+
n−1R

+
nV = 0 or (x1, x2, · · · , xn−2 − xn, xn−1 − xn)>

· · ·

dimR+
2 · · ·R

+
n−1R

+
nV = 0 or (x1, x1 − xn, · · · , xn−2 − xn, xn−1 − xn)>

dimR+
1 R

+
2 · · ·R

+
n−1R

+
nV = 0 or (−xn, x1 − xn, · · · , xn−2 − xn, xn−1 − xn)>



This functor is called the Coxeter functor, due to its connection to the Coxeter transformations in Lie group theory. Let us now iterate the process and still observe the evolution of the dimension vector.

for the first line, go back to the formula given in the Reflection Functor Theorem

8

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

dimR+
nV = 0 or (x1, x2, · · · , xn−1, xn−1 − xn)>

dimR+
n−1R

+
nV = 0 or (x1, x2, · · · , xn−2 − xn, xn−1 − xn)>

· · ·

dimR+
2 · · ·R

+
n−1R

+
nV = 0 or (x1, x1 − xn, · · · , xn−2 − xn, xn−1 − xn)>

dimR+
1 R

+
2 · · ·R

+
n−1R

+
nV = 0 or (−xn, x1 − xn, · · · , xn−2 − xn, xn−1 − xn)>

=⇒ C+V = R+
1 R

+
2 · · ·R

+
n−1R

+
nV = 0 or xn = 0

≤
0



The first line is where we are standing right now in the process. Note: to continue the process, we need the dimension vector to be nonzero, therefore we must have xn = 0. Then, the new dimension vector is the same as the initial one, with all coordinates shifted to the right.

8

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

dim C+V = 0 or (0, x1, x2, · · · , xn−2, xn−1)
>

dim C+C+V = 0 or (0, 0, x1, · · · , xn−3, xn−2)
>

· · ·

dim C+ · · · C+︸ ︷︷ ︸
n−1 times

V = 0 or (0, 0, 0, · · · , 0, x1)>

dim C+ · · · C+︸ ︷︷ ︸
n times

V = 0



The sequence of indices can be with repetitions. If we choose a minimal sequence taking V to 0, then we have that the truncated sequence sends V to a nonzero decomposable representation, and by the Reflection Functor Theorem, this representation must be a simple representation Sr.

The first line is where we are standing right now in the process. Note: to continue the process, we need the dimension vector to be nonzero, therefore we must have xn = 0. Then, the new dimension vector is the same as the initial one, with all coordinates shifted to the right.

8

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

dim C+V = 0 or (0, x1, x2, · · · , xn−2, xn−1)
>

dim C+C+V = 0 or (0, 0, x1, · · · , xn−3, xn−2)
>

· · ·

dim C+ · · · C+︸ ︷︷ ︸
n−1 times

V = 0 or (0, 0, 0, · · · , 0, x1)>

dim C+ · · · C+︸ ︷︷ ︸
n times

V = 0

⇒ ∃i1, i2, · · · , is−1, is s.t. R+
is
R+
is−1

· · ·R+
i2
R+
i1
V = 0

R+
is−1

· · ·R+
i2
R+
i1
V 6= 0
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Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

∃i1, i2, · · · , is−1, is s.t. R+
is
R+
is−1

· · ·R+
i2
R+
i1
V = 0

R+
is−1

· · ·R+
i2
R+
i1
V 6= 0

=⇒ R+
is−1

· · ·R+
i2
R+
i1
V is indecomposable and isomorphic to Sr for some 1 ≤ r ≤ n

(Reflection Functor Thm)
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Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

∃i1, i2, · · · , is−1, is s.t. R+
is
R+
is−1

· · ·R+
i2
R+
i1
V = 0

R+
is−1

· · ·R+
i2
R+
i1
V 6= 0

=⇒ R+
is−1

· · ·R+
i2
R+
i1
V is indecomposable and isomorphic to Sr for some 1 ≤ r ≤ n

=⇒ qLn (dimV) = qsis−1
···si1 Ln (dimR

+
is−1

· · ·R+
i2
R+
i1
V) = qsis−1

···si1 Ln (dim Sr) = 1

(Corollary)



8

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

∃i1, i2, · · · , is−1, is s.t. R+
is
R+
is−1

· · ·R+
i2
R+
i1
V = 0

R+
is−1

· · ·R+
i2
R+
i1
V 6= 0

=⇒ R+
is−1

· · ·R+
i2
R+
i1
V is indecomposable and isomorphic to Sr for some 1 ≤ r ≤ n

=⇒ qLn (dimV) = qsis−1
···si1 Ln (dimR

+
is−1

· · ·R+
i2
R+
i1
V) = qsis−1

···si1 Ln (dim Sr) = 1

=⇒ dimV = dim ILn [b, d] for some 1 ≤ b ≤ d ≤ n =⇒ V ∼= ILn [b, d]

(Example)

�



then we can take a minimal such sequence for any given indecomposable representation V, and unfold the same reasoning as before
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Proof of Gabriel’s Theorem (An case)

An-type quiver Q: •
1

•
2

· · · •
n−1

•
n

→ goal: find a sequence of indices i1, i2, · · · , is−1, is s.t.

R+
is
R+
is−1
· · ·R+

i2
R+
i1
V = 0 for all V ∈ repk(Q)



then we can take a minimal such sequence for any given indecomposable representation V, and unfold the same reasoning as before

8

Proof of Gabriel’s Theorem (An case)

An-type quiver Q: •
1

•
2

· · · •
n−1

•
n

→ goal: find a sequence of indices i1, i2, · · · , is−1, is s.t.

R+
is
R+
is−1
· · ·R+

i2
R+
i1
V = 0 for all V ∈ repk(Q)

→ idea: turn Q into Ln, then use the same sequence a before
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Proof of Gabriel’s Theorem (An case)

An-type quiver Q:
•

•

__

•

??

•

__

•

__ ??

•

__

•

??

•

__ ??

•

__

•

__ ??

•

__ ??

•

??

•

__ ??

•

__ ??

•

??

1 2 3 4 5

QQ

- embed Q in a giant pyramid
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Proof of Gabriel’s Theorem (An case)

An-type quiver Q:
•

•

__

•

??

•

__

•

__ ??

•

__

•

??

•

__ ??

•

__

•

__ ??

•

__ ??

•

??

•

__ ??

•

__ ??

•

??

1 2 3 4 5

Q

Ln

Q

- embed Q in a giant pyramid

- travel down the pyramid to its bottom Ln

→ travelling one level down reverses the leftmost backward arrow

e.g. s1s2s3 reverses •
3

•
4

oo
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Proof of Gabriel’s Theorem (An case)

An-type quiver Q:
•

•

__

•

??

•

__

•

__ ??

•

__

•

??

•

__ ??

•

__

•

__ ??

•

__ ??

•

??

•

__ ??

•

__ ??

•

??

1 2 3 4 5

Q

Ln

Q

- embed Q in a giant pyramid

- travel down the pyramid to its bottom Ln

- each diamond •

•i−1

??

• i+1

__

•
i

__ ??

→ travelling one level down reverses the leftmost backward arrow

e.g. s1s2s3 reverses •
3

•
4

oo

is travelled down using R+
i



Theorem: [Gabriel II]
Assuming Q is Dynkin with n vertices, the map V 7→ dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

9

Proof of Gabriel’s Theorem (An case)
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a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.
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Proof of Gabriel’s Theorem (An case)

What we know:

• the positive roots of qQ are the dimension vectors of interval modules IQ[b, d]

• each isomorphism class C of indecomposables contains ≥ 1 interval module



Theorem: [Gabriel II]
Assuming Q is Dynkin with n vertices, the map V 7→ dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

9

Proof of Gabriel’s Theorem (An case)

What we know:

• the positive roots of qQ are the dimension vectors of interval modules IQ[b, d]

• each isomorphism class C of indecomposables contains ≥ 1 interval module

Additional observations:

• 6= interval modules are �, therefore each class C contains 1 interval module

• each interval module is indecomposable (endomorphism ring isom. to k)

�
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Proof of Gabriel’s Theorem (general case)

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.



technically, this requires a full order of the vertices that is compatible with the arrow orientations, so there must be no oriented cycle in the quiver

10

Proof of Gabriel’s Theorem (general case)

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.

⇐ same process as before (proves Gabriel II as well):

• iterate Coxeter functor to eventually send every indecomposable to zero

• Define Coxeter functors for arbitrary (finite, connected, loop-free) quivers

• derive bijection between isom. classes of indecomposables to positive roots
of qQ via simple representations



These diagrams are the so-called Euclidean diagrams. Each one of them has at least a 1-dimensional variety of representations

10

Proof of Gabriel’s Theorem (general case)

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.

⇒
Ã0 •0 •0

•0 •2

Ãn(n ≥ 1) •
1

•
2

· · · •
n−1

•
n

Ẽ6 •
1

•
3

•
4

•
5

•
6

•2

•1 •
n−1

Ẽ7 •
0

•
1

•
3

•
4

•
5

•
6

•
7

D̃n(n ≥ 4) •2 · · · •n−2 •2

•
0

•
n

Ẽ8 •
1

•
3

•
4

•
5

•
6

•
7

•
8

•
0

every connected quiver that is not Dynkin contains one of these:

contains indecomp. representations of arbitrary dimensions



These diagrams are the so-called Euclidean diagrams. Each one of them has at least a 1-dimensional variety of representations
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Proof of Gabriel’s Theorem (general case)

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.

⇒
Ã0 •0 •0

•0 •2

Ãn(n ≥ 1) •
1

•
2

· · · •
n−1

•
n

Ẽ6 •
1

•
3

•
4

•
5

•
6

•2

•1 •
n−1

Ẽ7 •
0

•
1

•
3

•
4

•
5

•
6

•
7

D̃n(n ≥ 4) •2 · · · •n−2 •2

•
0

•
n

Ẽ8 •
1

•
3

•
4

•
5

•
6

•
7

•
8

•
0

every connected quiver that is not Dynkin contains one of these:

contains indecomp. representations of arbitrary dimensions

V = (kr, f) isomorphic to W = (ks, g)

⇔

r = s and ∃φ, ψ ∈ Aut(kr) s.t. f = ψ−1 ◦ g ◦ φ

kr
f //

φ

��

kr

ψ

��
ks

g // ks



Note: this is the specificity of Euclidean quivers: they have countably many 1-dimensional varieties of isomorphism classes of indecomposable representations. This brings up the trichotomy: - Dynkin quivers: positive definite Tits form, finitely many isom. classes of indecomp. - Euclidean quivers: positive semidefinite Tits form, countably many 1-d varieties of isom. classes of indecomp. - Wild quivers: indefinite Tits form, higher-dimensional varieties of isom. classes of indecomp.

These diagrams are the so-called Euclidean diagrams. Each one of them has at least a 1-dimensional variety of representations
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Proof of Gabriel’s Theorem (general case)

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.

⇒
Ã0 •0 •0

•0 •2

Ãn(n ≥ 1) •
1

•
2

· · · •
n−1

•
n

Ẽ6 •
1
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7

D̃n(n ≥ 4) •2 · · · •n−2 •2

•
0

•
n

Ẽ8 •
1

•
3

•
4

•
5

•
6

•
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8
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0

every connected quiver that is not Dynkin contains one of these:

contains indecomp. representations of arbitrary dimensions


λ 1

1

λ


→ injection from conjugacy classes of Jordan block
matrices to isomorphism classes of indecomposables

(injection becomes bijection when k is algebraically closed)
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Beyond Gabriel’s Theorem

Gabriel’s theorem is about:

• Dynkin quivers

• finite-dimensional representations

Finite connected quivers:

Theorem: [Kac]
The set of dimension vectors of finite-dimensional indecomposable rep-
resentations of a finite connected quiver Q is precisely the set of positive
roots of its Tits form. In particular, this set is independent of the arrow
orientations in Q and of the base field.

(catch: the map V 7→ dimV may not be injective)



the category of representations of Q is isomorphic to the product category of representations of Q1 and Q2. The objects in the product category are pairs of representations, one for each quiver, and the morphisms are pairs of morphisms acting each on one component of the pair separately
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Beyond Gabriel’s Theorem

Gabriel’s theorem is about:

• Dynkin quivers

• finite-dimensional representations

Finite disconnected quivers:

Q = Q1 t Q2 =⇒ Repk(Q) ∼= Repk(Q1)× Repk(Q2)



Auslander’s result tells that a module over such algebras can be decomposed into indecomposables that are all finitely generated, provided only finitely many finitely generated indecomposable modules exist, which is guaranteed precisely by Gabriel’s theorem

finite quivers can be viewed as algebras over the base field. The basis of this algebra is the set of all oriented paths in the quiver, and the product is induced by concatenations of (concatenable) paths
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Beyond Gabriel’s Theorem

Gabriel’s theorem is about:

• Dynkin quivers

• finite-dimensional representations

Finite quivers, infinite-dimensional representations:

→ path algebras, modules, Auslander-Reiten theory

Theorem: [Auslander+Gabriel]
For a Dynkin quiver Q, every indecomposable representation in Repk(Q)
has finite dimension, and every representation in Repk(Q) is a direct sum
of indecomposable representations. In particular, Q has finitely many
isomorphism classes of indecomposable representations, and all of them
are finite-dimensional.



The R quiver is a bit special. It represents the poset (R,≤), with one vertex per real number, one edge per couple (i, j) with i < j, and commutativity relations Crawley-Boevey’s proof use the functorial filtrations introduced by Ringel in 1975 to identify summands in the persistence module.
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Beyond Gabriel’s Theorem

Gabriel’s theorem is about:

• Dynkin quivers

• finite-dimensional representations

Infinite quivers:

→ research in progress

Theorem: [Webb] Decomposition of pfd rep. of the Z quiver

Theorem: [Crawley-Boevey] Decomposition of pfd rep. of the R quiver

· · · // •
n−1

// •
n

// •
n+1

// · · ·

· · · •
x

// 77•
y

// •
z

· · ·

(pointwise finite dimensional)
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Theorem: [Botnan 2015]
Arrow orientations don’t matter

Theorem: [Cochoy, O. 2016]
Arrow orientations don’t matter∗
∗ under exactness conditions


