Topological Signatures

Input: set of data points with metric or (dis-)similarity measure

Input: set of data points with metric or (dis-)similarity measure

Input: set of data points with metric or (dis-)similarity measure

Input: set of data points with metric or (dis-)similarity measure

Comparisons between geometric data sets or parts thereof occur in:

• classification (organizing large databases)

Princeton Shape Retrieval and Analysis Group Princeton Shape Benchmark

Shape Benchmark

Comparisons between geometric data sets or parts thereof occur in:

- classification (organizing large databases)
- retrieval (searching in databases)

Comparisons between geometric data sets or parts thereof occur in:

- classification (organizing large databases)
- retrieval (searching in databases)
- partial/global matching (finding the *best* mapping between data sets)

Comparisons between geometric data sets or parts thereof occur in:

- classification (organizing large databases)
- retrieval (searching in databases)
- partial/global matching (finding the *best* mapping between data sets)
- segmentation and labelling

Comparisons between geometric data sets or parts thereof occur in:

- classification (organizing large databases)
- retrieval (searching in databases)
- partial/global matching (finding the *best* mapping between data sets)
- segmentation and labelling

data comparison is the basic building block

• geometric data set \equiv compact metric space

• geometric data set \equiv compact metric space

- geometric data set \equiv compact metric space
- distance between data sets \equiv Gromov-Hausdorff (GH) distance

- geometric data set \equiv compact metric space
- distance between data sets \equiv Gromov-Hausdorff (GH) distance

- geometric data set \equiv compact metric space
- distance between data sets \equiv Gromov-Hausdorff (GH) distance

- geometric data set \equiv compact metric space
- distance between data sets \equiv Gromov-Hausdorff (GH) distance

- geometric data set \equiv compact metric space
- distance between data sets \equiv Gromov-Hausdorff (GH) distance
- signature \equiv persistence diagram (choose the filtration)
 - **multi-scale** \equiv reflects the structure of the shape across scales
 - global/local \equiv attached to the whole shape / to a base point(s)
 - **stable** \equiv variations with GH-distance and base point location are controlled

Some descriptors for images / 3d shapes / metric spaces:

- diameter
- curvature (mean, Gaussian, sectional)
- shape context (distribution of distances)
- heat kernel signature (heat diffusion)
- wave kernel signature (Maxwell's equations)
- spin image (local neighborhood parametrization)
- SIFT features (local distribution of gradient orientations)
- etc.

Outline

1. Global topological signatures

2. Local topological signatures

3. Kernels for topological signatures

Outline

1. Global topological signatures

2. Local topological signatures

3. Kernels for topological signatures

Global Topological Signatures

Input: a compact metric space (X, d_X)

Signature: dgm $\mathcal{F}(X, d_X)$, where $\mathcal{F}(X, d_X)$ is some simplicial filtration over X derived from d_X (proxy for union of balls)

Global Topological Signatures

Input: a compact metric space (X, d_X)

Signature: dgm $\mathcal{F}(X, d_X)$, where $\mathcal{F}(X, d_X)$ is some simplicial filtration over X derived from d_X (proxy for union of balls)

Global Topological Signatures

Input: a compact metric space (X, d_X)

Signature: dgm $\mathcal{F}(X, d_X)$, where $\mathcal{F}(X, d_X)$ is some simplicial filtration over X derived from d_X (proxy for union of balls)

Examples

Signatures of some elementary shapes (approximated from finite samples):

Examples

Signatures of some elementary shapes (approximated from finite samples):

Examples

Signatures of some elementary shapes (approximated from finite samples):

Theorem: [Chazal, de Silva, O. 2013] For any compact metric spaces (X, d_X) and (Y, d_Y) , $d_B^{\infty}(\operatorname{dgm} \mathcal{R}(X, d_X), \operatorname{dgm} \mathcal{R}(Y, d_Y)) \leq 2d_{\operatorname{GH}}(X, Y).$

Variants and extensions:

- Čech / Nerve filtrations
- Witness complex filtrations (landmarks fixed)
- precompact metric spaces
- (dis-)similarity measures

Theorem: [Chazal, de Silva, O. 2013] For any compact metric spaces (X, d_X) and (Y, d_Y) , $d_B^{\infty}(\operatorname{dgm} \mathcal{R}(X, d_X), \operatorname{dgm} \mathcal{R}(Y, d_Y)) \leq 2d_{\operatorname{GH}}(X, Y).$

The bound is worst-case tight...

 $d_{\mathrm{GH}}(X,Y) = \varepsilon$ $dgm \mathcal{R}(X, d_X) = \{(0,\infty), (0,1)\}$ $dgm \mathcal{R}(Y, d_Y) = \{(0,\infty), (0,1+2\varepsilon)\}$ $\Rightarrow d_{\mathrm{B}}^{\infty}(dgm \mathcal{R}(X, d_X), dgm \mathcal{R}(Y, d_Y)) = 2\varepsilon$

Theorem: [Chazal, de Silva, O. 2013] For any compact metric spaces (X, d_X) and (Y, d_Y) , $d_B^{\infty}(\operatorname{dgm} \mathcal{R}(X, d_X), \operatorname{dgm} \mathcal{R}(Y, d_Y)) \leq 2d_{\operatorname{GH}}(X, Y).$

The bound is worst-case tight... but it is still only an upper bound

$$d_{GH}(X, Y) = \frac{1}{2}$$

$$dgm \mathcal{R}(X, d_X) = \{(0, \infty), (0, 1), (0.1)\}$$

$$dgm \mathcal{R}(Y, d_Y) = \{(0, \infty), (0, 1), (0, 1)\}$$

$$\Rightarrow d_B^{\infty}(dgm \mathcal{R}(X, d_X), dgm \mathcal{R}(Y, d_Y)) = 0$$

Theorem: [Chazal, de Silva, O. 2013] For any compact metric spaces (X, d_X) and (Y, d_Y) , $d_B^{\infty}(\operatorname{dgm} \mathcal{R}(X, d_X), \operatorname{dgm} \mathcal{R}(Y, d_Y)) \leq 2d_{\operatorname{GH}}(X, Y).$

Proof outline:

finite

Convergence Rates

 (X, d_X) : compact metric space

 \mathcal{P} : proba. measures μ on X satisfying the (a,b)-standard condition:

 $\forall x \in \operatorname{supp} \mu, \ \forall r > 0, \ \mu(B(x, r) \ge \min\{1, ar^b\}.$

Convergence Rates

 (X, d_X) : compact metric space

 \mathcal{P} : proba. measures μ on X satisfying the (a,b)-standard condition:

 $\forall x \in \operatorname{supp} \mu, \ \forall r > 0, \ \mu(B(x, r) \ge \min\{1, ar^b\}.$

Given $\mu \in \mathcal{P}$, let $\hat{X}_n = \{X_1, \cdots, X_n\}$ be sampled i.i.d. according to μ .

Theorem. [Chazal, Glisse, Labruère, Michel 2014]

$$\sup_{\mu \in \mathcal{P}} \mathbb{E} \left[d_{B} \left(\operatorname{dgm} \mathcal{R}(\hat{X}_{n}), \operatorname{dgm} \mathcal{R}(\operatorname{supp} \mu) \right) \right] \leq C \left(\frac{\log n}{n} \right)^{1/b},$$

where C depends only on a, b. Moreover, the estimator $\operatorname{dgm} \mathcal{R}(\hat{X}_n)$ is minimax optimal on the space \mathcal{P} up to a $\log n$ factor.

Convergence Rates

 (X, d_X) : compact metric space

 \mathcal{P} : proba. measures μ on X satisfying the (a,b)-standard condition:

 $\forall x \in \operatorname{supp} \mu, \ \forall r > 0, \ \mu(B(x, r) \ge \min\{1, ar^b\}.$

Given $\mu \in \mathcal{P}$, let $\hat{X}_n = \{X_1, \cdots, X_n\}$ be sampled i.i.d. according to μ .

Theorem. [Chazal, Glisse, Labruère, Michel 2014]

$$\sup_{\mu \in \mathcal{P}} \mathbb{E} \left[d_{\mathrm{B}} \left(\operatorname{dgm} \mathcal{R}(\hat{X}_{n}), \ \operatorname{dgm} \mathcal{R}(\operatorname{supp} \mu) \right) \right] \leq C \left(\frac{\log n}{n} \right)^{1/b},$$

where C depends only on a, b. Moreover, the estimator $\operatorname{dgm} \mathcal{R}(\hat{X}_n)$ is minimax optimal on the space \mathcal{P} up to a $\log n$ factor.

Proof:

- upper bound: Hausdorff estimation of $\operatorname{supp} \mu$ + stability
- lower bound: Le Cam's lemma
Application: Unsupervised Classification

Application: Unsupervised Classification

Application: Unsupervised Classification

Outline

1. Global topological signatures

2. Local topological signatures

3. Kernels for topological signatures

Local Topological Signatures

Local Topological Signatures

Local Topological Signatures

Input: a compact Riemannian manifold (X, d_X) , a basepoint $x \in X$

Construction: filtration of the sublevel sets of $d_{x_0}(\cdot) = d_X(x_0, \cdot)$

Signature: the persistence diagram of the filtration, denoted $\operatorname{dgm} \operatorname{d}_{x_0}$

Stability

Stability

Theorem: [Carrière, O., Ovsjanikov 2015] Let (X, d_X) and (Y, d_Y) be compact Riemannian manifolds. Let $x_0 \in X$ and $y_0 \in Y$. If $d_{GH}((X, x_0), (Y, y_0)) \leq \frac{1}{20} \min\{\varrho(X), \varrho(Y)\}$, then $d_B^{\infty}(\operatorname{dgm} d_{x_0}, \operatorname{dgm} d_{y_0}) \leq 20 d_{GH}((X, x_0), (Y, y_0))$.

Prerequisite: $d_{GH}(X, Y) < \frac{1}{20} \min\{\varrho(X), \varrho(Y)\}$

 $d_{\rm GH}(X,Y) < \infty = \varrho(Y)$

 $\mathrm{d}^\infty_\mathrm{B}(\mathrm{dgm}\,f,\mathrm{dgm}\,g)=\infty$

- input: shapes from the TOSCA database, in mesh form
- select a few base points by hand on each shape
- approximate geodesic distances to base points using the 1-skeleton graph
- use the PDs of the PL interpolations over the meshes as signatures

Outline

1. Global topological signatures

2. Local topological signatures

3. Kernels for topological signatures

Persistence Diagrams as Signatures

- topological signatures carry complementary information
- stability properties, e.g. $d^{\infty}_{B}(\mathcal{R}(X), \mathcal{R}(Y)) \leq 2d_{GH}(X, Y)$

Persistence Diagrams as Signatures

- topological signatures carry complementary information
- stability properties, e.g. $d^{\infty}_{B}(\mathcal{R}(X), \mathcal{R}(Y)) \leq 2d_{GH}(X, Y)$

Cons:

- the space of persistence diagrams is not a Hilbert space
- signatures are slow to compute and (more importantly) to compare

Persistence Diagrams as Signatures

- topological signatures carry complementary information
- stability properties, e.g. $d^{\infty}_{B}(\mathcal{R}(X), \mathcal{R}(Y)) \leq 2d_{GH}(X, Y)$

Cons:

• the space of persistence diagrams is not a Hilbert space

 \rightarrow define kernels on the space of diagrams

• signatures are slow to compute and (more importantly) to compare

 \rightarrow explicit mapping to feature space

 $\mathcal{X}:$ be a space in which we want to compare/classify elements

- feature map $\phi: \mathcal{X} \to \mathcal{H}$ equipped with inner product $< \cdot, \cdot >_{\mathcal{H}}$
- \bullet lift training/testing data to ${\mathcal H}$ through ϕ then solve learning problem

 \mathcal{X} : be a space in which we want to compare/classify elements

- feature map $\phi: \mathcal{X} \to \mathcal{H}$ equipped with inner product $< \cdot, \cdot >_{\mathcal{H}}$
- \bullet lift training/testing data to ${\mathcal H}$ through ϕ then solve learning problem
- observation: many learning methods use only inner product \rightarrow do not lift the data, instead compute the $k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$

 \mathcal{X} : be a space in which we want to compare/classify elements

- feature map $\phi: \mathcal{X} \to \mathcal{H}$ equipped with inner product $< \cdot, \cdot >_{\mathcal{H}}$
- \bullet lift training/testing data to ${\mathcal H}$ through ϕ then solve learning problem
- observation: many learning methods use only inner product \rightarrow do not lift the data, instead compute the $k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$
- **Def.:** A reproducing kernel is a map $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that $k(\cdot, \cdot) = \langle \phi(\cdot), \phi(\cdot) \rangle_{\mathcal{H}}$ for some pair (ϕ, \mathcal{H}) .

Thm.: [Moore, Aronszajn] A pair (ϕ, \mathcal{H}) exists whenever k is *positive semidefinite*, i.e. $\sum_{i,j=1}^{n} c_i c_j k(x_i, x_j) \ge 0$ for all $n \in \mathbb{N}, c_1, \cdots, c_n \in \mathbb{R}$, and $x_1, \cdots, x_n \in \mathcal{X}$.

Kernels for Persistence Diagrams

View persistence diagrams as:

- landscapes [Bubenik 2012] [Bubenik, Dłotko 2015]
- empirical measures:
 - \rightarrow histogram [Bendich et al. 2014]
 - \rightarrow density estimator [Chepushtanova et al. 2015]
 - \rightarrow heat diffusion [Bauer et al. 2015]
- metric spaces [Carrière, O., Ovsjanikov 2015]
- roots of polynomials [Di Fabio, Ferri 2015]

Side-by-side Comparison

landscapes

[Bubenik 2012]

feature space: $L^2(\mathbb{N} imes \mathbb{R}) o L^2(\mathbb{R}^2)$

feature map: explicit (comb. construction)

complexity on n-points diagrams:

kernel(s): linear, Gaussian, etc.

- feature map: $O(n^2)$ - kernel: $O(n^2)$

stability: $\| \cdot \|_{\infty} \leq O(\mathbf{d}_{\mathbf{B}}^{\infty})$ $\| \cdot \|_{p} \leq O(\text{Pers } \mathbf{d}_{\mathbf{B}}^{\infty}(\cdot))$

injective feature map

 \rightarrow pd kernel?

kernels on diagrams are not additive

empirical measures

[Bauer et al. 2015]

feature space: $L^2(\mathbb{R}^2)$

feature map: explicit (closed form solution)

kernel(s): k_{σ}

complexity on n-points diagrams: - feature map: N/A (or discretize...) - kernel: $O(n^2)$

stability: $\|\cdot\|_2 \leq O(\mathrm{d}^1_\mathrm{B}(\cdot))$

injective feature map \rightarrow pd kernel? kernel is additive

metric spaces

[Carrière, O. , Ovsjanikov 2015]

feature space: $\ell^p \to (\mathbb{R}^D, \ell^p)$

feature map: explicit (comb. construction)

kernel(s): linear Gaussian, etc.

complexity on n-points diagrams:

- feature map: $O(n^2)$ - kernel: O(D)

stability: $\| \cdot \|_{\infty} \leq O(\mathbf{d}_{\mathbf{B}}^{\infty})$ $\| \cdot \|_{p} \leq O(D^{1/p} \mathbf{d}_{\mathbf{B}}^{\infty}(\cdot))$

non-injective feature map \rightarrow psd kernel kernels on diagrams are not additive

Side-by-side Comparison

landscapes

[Bubenik 2012]

feature space: $L^2(\mathbb{N} imes \mathbb{R}) o L^2(\mathbb{R}^2)$

feature map: explicit (comb. construction) kernel(s): linear, Gaussian, etc.

complexity on n-points diagrams:

- feature map: $O(n^2)$ - kernel: $O(n^2)$

stability: $\| \cdot \|_{\infty} \leq O(\mathbf{d}_{\mathbf{B}}^{\infty})$ $\| \cdot \|_{p} \leq O(\operatorname{Pers} \mathbf{d}_{\mathbf{B}}^{\infty}(\cdot))$

injective feature map

 \rightarrow pd kernel?

kernels on diagrams are not additive

empirical measures

[Bauer et al. 2015]

feature space: $L^2(\mathbb{R}^2)$

feature map: explicit (closed form solution)

kernel(s): k_{σ}

complexity on n-points diagrams: - feature map: N/A (or discretize...) - kernel: $O(n^2)$

stability: $\|\cdot\|_2 \leq O(\mathrm{d}^1_\mathrm{B}(\cdot))$

injective feature map \rightarrow pd kernel? kernel is additive

metric spaces

[Carrière, O. , Ovsjanikov 2015]

feature space: $\ell^p \to (\mathbb{R}^D, \ell^p)$

feature map: explicit (comb. construction)

kernel(s): linear Gaussian, etc.

complexity on n-points diagrams:

- feature map: $O(n^2)$ - kernel: O(D)

stability: $\| \cdot \|_{\infty} \leq O(\mathbf{d}_{\mathbf{B}}^{\infty})$ $\| \cdot \|_{p} \leq O(D^{1/p} \mathbf{d}_{\mathbf{B}}^{\infty}(\cdot))$

non-injective feature map → psd kernel kernels on diagrams are not additive

finite metric space

finite metric space

 $\Phi = \phi_4 \circ \phi_3 \circ \phi_2 \circ \phi_1$

Stability Properties $\Phi = \phi_4 \circ \phi_3 \circ \phi_2 \circ \phi_1$

Stability Properties $\Phi = \phi_4 \circ \phi_3 \circ \phi_2 \circ \phi_1$

Stability Properties $\Phi = \phi_4 \circ \phi_3 \circ \phi_2 \circ \phi_1$

Adding the diagonal

Adding the diagonal

Adding the diagonal

$$\mathbf{d}_{\mathbf{B}}^{\infty} = \inf_{m:X\leftrightarrow Y} \max\left\{\sup_{p \text{ matched}} \|p - m(p)\|_{\infty}, \sup_{p \text{ unmatched}} \|p - \bar{p}\|_{\infty}\right\}$$

Adding the diagonal

$$d_{B}^{\infty} = \inf_{m:X\leftrightarrow Y} \max\left\{\sup_{p \text{ matched}} \|p - m(p)\|_{\infty}, \sup_{p \text{ unmatched}} \|p - \bar{p}\|_{\infty}\right\}$$

Problem: generates instability in distance matrix ($d_B^{\infty} \ll W_{\infty}$) Solution: change the metric Adding the diagonal $\Phi = \phi_4 \circ \phi_3 \circ \phi_2 \circ \phi_1$

Stability

Theorem: [Carrière et al. 2015] For any persistence diagrams X, Y, for any feature space dimension D, $\|\Phi(X) - \Phi(Y)\|_{\infty} \leq 2d_{B}^{\infty}(X, Y)$

Stability

Theorem: [Carrière et al. 2015] For any persistence diagrams X, Y, for any feature space dimension D, $\|\Phi(X) - \Phi(Y)\|_{\infty} \leq 2d_{B}^{\infty}(X,Y)$ $\forall p \geq 1$, $\|\Phi(X) - \Phi(Y)\|_{p} \leq 2D^{1/p}d_{B}^{\infty}(X,Y)$

Stability

Theorem: [Carrière et al. 2015] For any persistence diagrams X, Y, for any feature space dimension D, $\|\Phi(X) - \Phi(Y)\|_{\infty} \leq 2d_{B}^{\infty}(X,Y)$ $\forall p \geq 1$, $\|\Phi(X) - \Phi(Y)\|_{p} \leq 2D^{1/p}d_{B}^{\infty}(X,Y)$

• case $p = \infty$ useful for retrieval and NN-classifiers (fast proximity queries)

• case p = 2 useful for linear / kernel-based classifiers (scalar product)

Application: supervised segmentation

Approach 1: use k-NN classifier in feature space $(\mathbb{R}^D, \ell^{\infty})$

Application: supervised segmentation

Approach 1: use k-NN classifier in feature space $(\mathbb{R}^D, \ell^{\infty})$

Approach 2: use linear classifier (SVM) in feature space (\mathbb{R}^D, ℓ^2)

+ graph cut [Kalogerakis et al. 2010]

Application: supervised segmentation

Approach 1: use k-NN classifier in feature space $(\mathbb{R}^D, \ell^{\infty})$

Approach 2: use linear classifier (SVM) in feature space (\mathbb{R}^D, ℓ^2)

+ graph cut [Kalogerakis et al. 2010]

	SB5	SB5+PDs
Human	21.3	11.3
Cup	10.6	10.1
Glasses	21.8	25.0
Airplane	18.7	9.3
Ant	9.7	1.5
Chair	15.1	7.3
Octopus	5.5	3.4
Table	7.4	2.5
Teddy	6.0	3.5
Hand	21.1	12.0

	SB5	SB5+PDs
Plier	12.3	9.2
Fish	20.9	7.7
Bird	24.8	13.5
Armadillo	18.4	8.3
Bust	35.4	22.0
Mech	22.7	17.0
Bearing	25.0	11.2
Vase	26.4	17.8
FourLeg	25.6	15.8

percentage of mislabelling (100-rand index)

Approach: use framework of *functional maps* [Ovsjanikov et al. 2012]

- compute an optimal linear map that best preserves a set of signatures (vectors)

- derive a point-to-point correspondence from this map (via indicator functions)

- evaluate the quality of the correspondence

Approach: use framework of *functional maps* [Ovsjanikov et al. 2012]

Approach: use framework of *functional maps* [Ovsjanikov et al. 2012]

correspondences in flat regions are improved by topological signatures

Wrap-Up

• topological descriptors are **provably stable**

feature vector

- they provide **complementary information**
- they can be computed and mapped to feature spaces efficiently