Topological Data Analysis — Exercise Session

April 07, 2016

1 Triangulation and (persistent) homology

The dunce hat is a classical example of a space that is contractible (homotopy equivalent to a point) but not collapsible (does not deformation retracts onto a point). It is obtained by indentifying the three edges of a triangle as shown in Figure 1. Our goal here is to show by a calculation that it is at least homologically equivalent to a point.

Figure 1: The Dunce Hat.

Question 1. Build a triangulation of the Dunce Hat (you may draw a picture to represent it). Beware that your triangulation must be a simplicial complex, not a general cell complex.

Question 2. Use your simplicial complex to compute the homology of the Dunce Hat. **Hint:** to avoid tedious calculations, you can proceed as follows: pick a filtration of your complex then apply the persistence algorithm; for each simplex σ_j inserted, use the following property to predict its effect at the homology level (identify the created d_j -cycle or the killed $(d_j - 1)$ -cycle):

Lemma 1. At each step j, the insertion of simplex σ_j either creates an independent d_j dimensional cycle (i.e. increases the dimension of $H_{d_j}(X_{j-1}; \mathbf{k})$ by 1) or kills a $(d_j - 1)$ dimensional cycle (i.e. decreases the dimension of $H_{d_j-1}(X_{j-1}; \mathbf{k})$ by 1), where d_j is the dimension of σ_j . The criterion to decide which scenario we are in is whether $\partial \sigma_j$ is already a boundary in $C_{d_j-1}(X_{j-1}; \mathbf{k})$ or not.

2 Persistence diagrams

Question 3. Compute the persistence diagrams of the following functions:

- the height function on a vertical torus in \mathbb{R}^3 ,
- the Gaussian curvature on a torus in \mathbb{R}^3 .

3 Reeb graph and Mapper

Consider the function f depicted in Figure 2.

Question 4. Compute the Reeb graph of f as well as the extended persistence diagram of the quotient map \tilde{f} .

Consider now the interval cover of Im f depicted on the left-hand side of Figure 2.

Question 5. Compute the corresponding Mapper and its signature.

Figure 2: The height function f on a double torus.

4 [Problem] Eccentricity-based signatures

Let (X, d_X) be a finite metric space. Define the eccentricity as follows:

$$\forall x \in X, \ \operatorname{ecc}(x) = \frac{1}{2} \ \max\{ \operatorname{d}_X(x, x') \mid x' \in X \}$$

This function takes its values in \mathbb{R}^+ . For any $t \in \mathbb{R}^+$, let X_t denote the *t*-sublevel set of ecc, that is:

$$X_t = \mathrm{ecc}^{-1}([0,t]) = \{ x \in X \mid \mathrm{ecc}(x) \le t \}.$$

Consider the filtration $\mathcal{E}(X, d_X)$ defined by:

$$\forall t \in \mathbb{R}^+, \ E_t = R_t(X_t, \mathbf{d}_X).$$

where $R_t(X_t, d_X)$ denotes the Rips complex of X_t of parameter t. Our goal here is to show that this filtration defines a stable signature, that is:

Theorem 2. For any finite metric spaces (X, d_X) and (Y, d_Y) , we have

 $d_{b}^{\infty}(\text{Dgm }\mathcal{E}(X, d_X), \text{ Dgm }\mathcal{E}(Y, d_Y)) \leq 2 d_{\text{GH}}(X, Y).$

We will use the following embedding result:

Lemma 3. Any finite metric space (Z, d_Z) embeds isometrically into $(\mathbb{R}^n, \ell^{\infty})$, where n denotes the cardinality of Z.

Question 6. Prove Lemma 3.

Hint: letting $Z = \{z_1, \dots, z_n\}$, for each point z_i consider the vector $(d_Z(z_i, z_1), d_Z(z_i, z_2), \dots, d_Z(z_i, z_n)) \in \mathbb{R}^n$.

Let (X, d_X) and (Y, d_Y) be two finite metric spaces, and let $\varepsilon > d_{GH}(X, Y)$.

Question 7. Show that (X, d_X) and (Y, d_Y) can be jointly embedded isometrically into $(\mathbb{R}^d, \ell^{\infty})$, for some d > 0, such that the Hausdorff distance between their images is at most ε . **Hint:** look at the embedding outline in Figure 3.

Figure 3: Outline of the embedding for the proof of Theorem 2.

We call respectively X' and Y' the images of X and Y through the joint isometric embedding.

Question 8. Show that $\mathcal{E}(X', \ell^{\infty})$ is isomorphic to $\mathcal{E}(X, d_X)$ as a simplicial filtration. Hint: this means that there is a bijection $X \to X'$ that induces a bijection between the simplices of the two filtrations, such that the times of appearance of the simplices are preserved.

Similarly, $\mathcal{E}(Y', \ell^{\infty})$ is isomorphic to $\mathcal{E}(Y, d_Y)$. Thus, we have:

$$d_{\mathrm{b}}^{\infty}(\operatorname{Dgm} \mathcal{E}(X, d_X), \operatorname{Dgm} \mathcal{E}(Y, d_Y)) = d_{\mathrm{b}}^{\infty}(\operatorname{Dgm} \mathcal{E}(X', \ell^{\infty}), \operatorname{Dgm} \mathcal{E}(Y', \ell^{\infty})).$$

For any finite set $S \subset \mathbb{R}^d$ and any $t \ge 0$, let S^t denote the t-offset of S in the ℓ^{∞} -norm, that is:

$$S^{t} = \{x \in \mathbb{R}^{d} \mid \min_{s \in S} \|x - s\|_{\infty} \le t\}.$$

Question 9. Show that $X'_t^t \subseteq Y'_{t+\varepsilon}^{t+\varepsilon}$ and $Y'_t^t \subseteq X'_{t+\varepsilon}^{t+\varepsilon}$ for any $t \ge 0$.

Question 10. Define a function $f_{X'} : \mathbb{R}^d \to \mathbb{R}$ whose *t*-sublevel set is X'_t^t for every $t \in \mathbb{R}^+$. Similarly, define a function $f_{Y'} : \mathbb{R}^d \to \mathbb{R}$ whose *t*-sublevel set is Y'_t^t for every $t \in \mathbb{R}^+$.

Question 11. Deduce that $||f_{X'} - f_{Y'}||_{\infty} \leq \varepsilon$.

Question 12. Deduce now that $d_b^{\infty}(\text{Dgm } f_{X'}, \text{Dgm } f_{Y'}) \leq \varepsilon$, where Dgm h denotes the persistence diagram of the filtration of the sublevel sets of h.

Question 13. Deduce now that $d_b^{\infty}(\text{Dgm } \mathcal{EC}(X', \ell^{\infty}), \text{Dgm } \mathcal{EC}(Y', \ell^{\infty})) \leq \varepsilon$, where the filtration $\mathcal{EC}(Z', \ell^{\infty})$ has the space $C_t(Z'_t, \ell^{\infty})$ for every $t \in \mathbb{R}^+$ — here C_t stands for the Čech complex of parameter t.

Hint: relate the sublevel sets of $f_{X'}$ to the unions of ℓ^{∞} -balls centered at the points of X'_t , then apply the Nerve Theorem. Same for Y'.

Question 14. Deduce finally that $d_b^{\infty}(\text{Dgm } \mathcal{E}(X', \ell^{\infty}), \text{Dgm } \mathcal{E}(Y', \ell^{\infty})) \leq 2\varepsilon$. Hint: relate the Čech and Rips filtrations to each other in $(\mathbb{R}^d, \ell^{\infty})$.

Question 15. Conclude.