Topological Data Analysis — Exercise Session

April 07, 2016

1 Triangulation and (persistent) homology

The dunce hat is a classical example of a space that is contractible (homotopy equivalent to
a point) but not collapsible (does not deformation retracts onto a point). It is obtained by
indentifying the three edges of a triangle as shown in Figure 1. Our goal here is to show by a
calculation that it is at least homologically equivalent to a point.
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Figure 1: The Dunce Hat.

Question 1. Build a triangulation of the Dunce Hat (you may draw a picture to represent it).
Beware that your triangulation must be a simplicial complex, not a general cell complex.

Question 2. Use your simplicial complex to compute the homology of the Dunce Hat.

Hint: to avoid tedious calculations, you can proceed as follows: pick a filtration of your complex
then apply the persistence algorithm; for each simplex o; inserted, use the following property to
predict its effect at the homology level (identify the created d;-cycle or the killed (d; —1)-cycle):

Lemma 1. At each step j, the insertion of simplex o; either creates an independent d;-
dimensional cycle (i.e. increases the dimension of Hy,(X;j-1;k) by 1) or kills a (dj — 1)-
dimensional cycle (i.e. decreases the dimension of Hq; 1(X;-1;k) by 1), where d; is the di-
mension of oj. The criterion to decide which scenario we are in is whether Ocj is already a
boundary in Cq;_1(X;-1;k) or not.

2 Persistence diagrams

Question 3. Compute the persistence diagrams of the following functions:

e the height function on a vertical torus in R?,

e the Gaussian curvature on a torus in R3.



3 Reeb graph and Mapper

Consider the function f depicted in Figure 2.

Question 4. Compute the Reeb graph of f as well as the extended persistence diagram of the
quotient map f.

Consider now the interval cover of Im f depicted on the left-hand side of Figure 2.

Question 5. Compute the corresponding Mapper and its signature.

Figure 2: The height function f on a double torus.

4 [Problem]| Eccentricity-based signatures

Let (X,dx) be a finite metric space. Define the eccentricity as follows:
1
Vo € X, ecc(x) = B max{dy(z,2') | ' € X}.

This function takes its values in R*. For any t € R™, let X; denote the t-sublevel set of ecc,
that is:
X; = ecc 1([0,t]) = {z € X | ecc(x) < t}.

Consider the filtration £(X,dx) defined by:
Vvt € RY, By = Ry(Xy,dx).

where Ry (Xy,dx) denotes the Rips complex of X; of parameter ¢. Our goal here is to show that
this filtration defines a stable signature, that is:



Theorem 2. For any finite metric spaces (X,dx) and (Y,dy), we have
dgo(ng 5(X, dx), ng 5(}/, dy)) < QdGH(X, Y)
We will use the following embedding result:

Lemma 3. Any finite metric space (Z,dz) embeds isometrically into (R™,£>°), where n denotes
the cardinality of Z.

Question 6. Prove Lemma 3.
Hint: letting Z = {z1,---,2,}, for each point z; consider the vector (dz(z;,21), dz(z, 22),
s dZ(zi,zn)) c R".

Let (X,dx) and (Y,dy) be two finite metric spaces, and let € > dgu(X,Y).

Question 7. Show that (X, dx) and (Y, dy) can be jointly embedded isometrically into (R?, £>°),
for some d > 0, such that the Hausdorff distance between their images is at most ¢.
Hint: look at the embedding outline in Figure 3.
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Figure 3: Outline of the embedding for the proof of Theorem 2.

We call respectively X’ and Y’ the images of X and Y through the joint isometric embedding.

Question 8. Show that £(X’,¢>°) is isomorphic to £(X,dx) as a simplicial filtration.
Hint: this means that there is a bijection X — X’ that induces a bijection between the simplices
of the two filtrations, such that the times of appearance of the simplices are preserved.

Similarly, £(Y’, ¢>°) is isomorphic to £(Y,dy). Thus, we have:
45 (Dgm £(X,dx), Dgm £(Y.dy)) = &3 (Dgm £(X', £°), Dgm £(Y", ).
For any finite set S C R? and any t > 0, let S* denote the t-offset of S in the ¢*°-norm, that is:

St = {z € R | min |z — s|le < t}.
ses

Question 9. Show that X’y C Y’} 1% and Y’} C X';Z% for any ¢ > 0.

Question 10. Define a function fx+ : R? — R whose t-sublevel set is X'} for every t € R.
Similarly, define a function fy+ : R* — R whose t-sublevel set is Y’ f; for every t € RT.

Question 11. Deduce that ||fx/ — fy/]|co < €.



Question 12. Deduce now that dp°(Dgm fx/, Dgm fys) < e, where Dgm h denotes the persis-
tence diagram of the filtration of the sublevel sets of h.

Question 13. Deduce now that d°(Dgm EC(X’,¢>°),Dgm EC(Y’,£>°)) < e, where the fil-
tration £C(Z’,¢>) has the space Cy(Z},(>) for every t € R — here C; stands for the Cech
complex of parameter t.

Hint: relate the sublevel sets of fx/ to the unions of /*°-balls centered at the points of X}, then
apply the Nerve Theorem. Same for Y.

Question 14. Deduce finally that d°(Dgm £(X’,¢>°),Dgm E(Y’, >°)) < 2e.
Hint: relate the Cech and Rips filtrations to each other in (R?, £>°).

Question 15. Conclude.



