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April 07, 2016

1 Triangulation and (persistent) homology

The dunce hat is a classical example of a space that is contractible (homotopy equivalent to
a point) but not collapsible (does not deformation retracts onto a point). It is obtained by
indentifying the three edges of a triangle as shown in Figure 1. Our goal here is to show by a
calculation that it is at least homologically equivalent to a point.
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Figure 1: The Dunce Hat.

Question 1. Build a triangulation of the Dunce Hat (you may draw a picture to represent it).
Beware that your triangulation must be a simplicial complex, not a general cell complex.

Question 2. Use your simplicial complex to compute the homology of the Dunce Hat.
Hint: to avoid tedious calculations, you can proceed as follows: pick a filtration of your complex
then apply the persistence algorithm; for each simplex σj inserted, use the following property to
predict its effect at the homology level (identify the created dj-cycle or the killed (dj−1)-cycle):

Lemma 1. At each step j, the insertion of simplex σj either creates an independent dj-
dimensional cycle (i.e. increases the dimension of Hdj (Xj−1;k) by 1) or kills a (dj − 1)-
dimensional cycle (i.e. decreases the dimension of Hdj−1(Xj−1;k) by 1), where dj is the di-
mension of σj. The criterion to decide which scenario we are in is whether ∂σj is already a
boundary in Cdj−1(Xj−1;k) or not.

2 Persistence diagrams

Question 3. Compute the persistence diagrams of the following functions:

• the height function on a vertical torus in R3,

• the Gaussian curvature on a torus in R3.
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3 Reeb graph and Mapper

Consider the function f depicted in Figure 2.

Question 4. Compute the Reeb graph of f as well as the extended persistence diagram of the
quotient map f̃ .

Consider now the interval cover of Im f depicted on the left-hand side of Figure 2.

Question 5. Compute the corresponding Mapper and its signature.
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Figure 2: The height function f on a double torus.

4 [Problem] Eccentricity-based signatures

Let (X,dX) be a finite metric space. Define the eccentricity as follows:

∀x ∈ X, ecc(x) =
1

2
max{dX(x, x′) | x′ ∈ X}.

This function takes its values in R+. For any t ∈ R+, let Xt denote the t-sublevel set of ecc,
that is:

Xt = ecc−1([0, t]) = {x ∈ X | ecc(x) ≤ t}.

Consider the filtration E(X,dX) defined by:

∀t ∈ R+, Et = Rt(Xt, dX).

where Rt(Xt, dX) denotes the Rips complex of Xt of parameter t. Our goal here is to show that
this filtration defines a stable signature, that is:
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Theorem 2. For any finite metric spaces (X,dX) and (Y, dY ), we have

d∞b (Dgm E(X,dX), Dgm E(Y, dY )) ≤ 2 dGH(X,Y ).

We will use the following embedding result:

Lemma 3. Any finite metric space (Z, dZ) embeds isometrically into (Rn, `∞), where n denotes
the cardinality of Z.

Question 6. Prove Lemma 3.
Hint: letting Z = {z1, · · · , zn}, for each point zi consider the vector (dZ(zi, z1), dZ(zi, z2),
· · · , dZ(zi, zn)) ∈ Rn.

Let (X,dX) and (Y, dY ) be two finite metric spaces, and let ε > dGH(X,Y ).

Question 7. Show that (X,dX) and (Y,dY ) can be jointly embedded isometrically into (Rd, `∞),
for some d > 0, such that the Hausdorff distance between their images is at most ε.
Hint: look at the embedding outline in Figure 3.
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Figure 3: Outline of the embedding for the proof of Theorem 2.

We call respectivelyX ′ and Y ′ the images of X and Y through the joint isometric embedding.

Question 8. Show that E(X ′, `∞) is isomorphic to E(X,dX) as a simplicial filtration.
Hint: this means that there is a bijection X → X ′ that induces a bijection between the simplices
of the two filtrations, such that the times of appearance of the simplices are preserved.

Similarly, E(Y ′, `∞) is isomorphic to E(Y,dY ). Thus, we have:

d∞b (Dgm E(X,dX),Dgm E(Y, dY )) = d∞b (Dgm E(X ′, `∞),Dgm E(Y ′, `∞)).

For any finite set S ⊂ Rd and any t ≥ 0, let St denote the t-offset of S in the `∞-norm, that is:

St = {x ∈ Rd | min
s∈S
‖x− s‖∞ ≤ t}.

Question 9. Show that X ′tt ⊆ Y ′
t+ε
t+ε and Y ′tt ⊆ X ′

t+ε
t+ε for any t ≥ 0.

Question 10. Define a function fX′ : Rd → R whose t-sublevel set is X ′tt for every t ∈ R+.
Similarly, define a function fY ′ : Rd → R whose t-sublevel set is Y ′tt for every t ∈ R+.

Question 11. Deduce that ‖fX′ − fY ′‖∞ ≤ ε.
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Question 12. Deduce now that d∞b (Dgm fX′ ,Dgm fY ′) ≤ ε, where Dgm h denotes the persis-
tence diagram of the filtration of the sublevel sets of h.

Question 13. Deduce now that d∞b (Dgm EC(X ′, `∞),Dgm EC(Y ′, `∞)) ≤ ε, where the fil-
tration EC(Z ′, `∞) has the space Ct(Z

′
t, `
∞) for every t ∈ R+ — here Ct stands for the Čech

complex of parameter t.
Hint: relate the sublevel sets of fX′ to the unions of `∞-balls centered at the points of X ′t, then
apply the Nerve Theorem. Same for Y ′.

Question 14. Deduce finally that d∞b (Dgm E(X ′, `∞),Dgm E(Y ′, `∞)) ≤ 2ε.
Hint: relate the Čech and Rips filtrations to each other in (Rd, `∞).

Question 15. Conclude.
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