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Abstract

Given a real-valued function f defined over a manifold M embedded in Rd, we are interested
in recovering structural information about f from the sole information of its values on a finite
sample P ⊂ M. Existing methods provide approximation to the persistence diagram of f when
the noise is bounded in both the functional and geometric domains. However, they fail in the
presence of aberrant values, also called outliers, both in theory and practice.

We propose a new algorithm that deals with outliers. We handle aberrant functional values
with a method inspired from the k-nearest neighbors regression and the local median filtering,
while the geometric outliers are handled using the distance to a measure. Combined with topo-
logical results on nested filtrations, our algorithm performs robust topological analysis of scalar
fields in a wider range of noise models than handled by current methods. We provide theoretical
guarantees on the quality of our approximation and some experimental results illustrating its
behavior.
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1 Introduction1

Consider a network of sensors measuring a quantity such as the temperature, the humidity,2

or the elevation. These sensors also compute their positions and communicate these data3

to others. However, they are not perfect and can make mistakes such as providing some4

aberrant values. Can we still recover the topological structure of the measured quantity?5

This is an instance of a scalar field analysis problem. Given a manifold M embedded6

in Rd and a scalar field f : M → R, we want to extract the topological information of f ,7

knowing only its values on a finite set of points P sampled from M. The topology of a8

function could refer to features such as peaks (local maxima) and pits (local minima). In9

addition, it is also interesting to be able to evaluate the prominence of these features which10

is the same notion geographers use to distinguish between a summit and a local maximum in11

its shadow. Such information can be captured by the so-called topological persistence, which12

studies the sub-level sets f−1(]−∞, α]) of a function f and the way their topology evolves13

with the parameter α. In the case of geography, we can use the function minus-elevation to14

study the topography. Peaks will appear depending on their altitude and will merge into15

other topological features at saddle points. This provides a persistence diagram describing16

the lifespan of features where the prominent ones have the long lifespans.17

When the domain M of the function f is triangulated, one classical way of computing18

this diagram is to linearly interpolate the function f on each simplex and then apply the19

standard persistence algorithm to this piecewise-linear function [18]. For cases where we20

only have pairwise distances between input points, one can build a family of complexes and21

infer the persistent homology of the input function f from them [5] (this construction will22

be detailed in Section 2).23

Both of these two approaches can provably infer correct topology when the input points24

admit a bounded noise model: in particular, the Haussdorf distance between P and M is25

bounded and the error on the observed value of f is also bounded. What happens if the26

noise is unbounded? A faulty sensor can provide completely wrong information or a bad27

position. Previous methods no longer work in this setting. Moreover, a sensor with a good28

functional value but a bad position can become an outlier in function value at its measured29

position (see Section 3.1 for an example). In this paper, we study the problem of scalar30

field analysis in the presence of unbounded noise both in the geometry and in the functional31

values. To the best of our knowledge, there is no other method to handle such combined32

unbounded geometric and functional noise with theoretical guarantees.33

Contributions34

We consider a general noise model. Intuitively, a sample (P, f̃) of a function f : M → R35

respects our noise model if: (i) the domain M is sampled densely enough and there is36

no cluster of noisy samples outside M (roughly speaking, no area outside M has a higher37

sampling density than on M), and (ii) for any point of P , at least half of its k nearest38

neighbors have a functional value with an error less than a threshold s. This model allows39

functional outliers that may have a value arbitrarily far away from the true one. This noise40

model encompasses the previous bounded noise model as well as other noise models such41

as bounded Wasserstein distance for geometry, or generative models like convolution with a42

Gaussian. Connection to some of these classical noise models can be found in Appendices A43

and B.44

We show how to infer the persistence diagram of f knowing only f̃ on the set P . This45

comes with theoretical guarantees when the sampling respects the new noise model. We46
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achieve this goal through three main steps:47

1. Using the observations f̃ , we provide a new estimator f̂ to approximate f . This estimator48

is inspired by the k-nearest neighbours regression technique but differs from it in an49

essential way.50

2. We filter geometric outliers using a distance to a measure function.51

3. We combine both techniques in a unified framework to estimate the persistence diagram52

of f .53

The two sources of noise are not independent. The interdependency is first acknowledged by54

assuming appropriate noise models and then untangled by separate steps in our algorithm.55

Related work.56

As mentioned earlier, a framework has been previously proposed in [5] for scalar field to-57

pology inference with theoretical guarantees. However, it is limited to a bounded noise58

assumption, which we aim to relax.59

For handling the functional noise only, the traditional non-parametric regression mostly60

uses kernel-based or k-NN estimators. The k-NN methods are more versatile [13]. Neverthe-61

less, the kernel-based estimators are preferred when there is structure in the data. However,62

the functional outliers destroys the structure on which kernel-based estimators rely. These63

functional outliers can arise as a result of geometric outliers (see Section 3.1). Thus, in a64

way, it is essential to be able to handle functional outliers when the input has geometric65

noise. Functional outliers can also introduce a bias that hampers the robustness of a k-NN66

regression. For example, if all outliers’ values are greater than the target value, a k-NN67

regression will shift towards a larger value. Our approach leverages the k-NN regression68

idea while trying to avoid the sensitivity to this bias.69

Various methods for geometric denoising have also been proposed in the literature. If70

the generative model for noise is known a priori, one can use de-convolution to remove71

noise. Some methods have been specifically adapted to using topological information for72

such denoising [14]. In our case where the generative model is unknown, we use a filtering73

by the value of the distance to a measure, which has been successfully applied to infer the74

topology of a domain under unbounded noise [4].75

2 Preliminaries for Scalar Field Analysis76

In [5], Chazal et al. presented an algorithm to analyze the scalar field topology using per-77

sistent homology which can handle bounded Hausdorff noise both in geometry and in ob-78

served function values. Our approach follows the same high level framework. Hence in this79

section, we introduce necessary preliminaries along with some of the results from [5].80

Riemannian manifold and its sampling.81

Consider a compact Riemannian manifold M. Let dM denote the Riemannian metric on M.82

Consider the open Riemannian ball BM(x, r) := {y ∈ M | dM(x, y) < r} centered at x ∈ M.83

BM(x, r) is strongly convex if for any pair (y, y′) in the closure of BM(x, r), there exists a84

unique minimizing geodesic between y and y′ whose interior is contained in BM(x, r). Given85

any x ∈ M, let %(x) denote the supremum of the value of r such that BM(x, r) is strongly86

convex. As M is compact, the infimum of all %(x) is positive and we denote it by %(M),87

which is called the strong convexity radius of M.88
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A point set P ⊆ M is a geodesic ε-sampling of M if for any point x of M, the distance89

from x to P is less than ε in the metric dM. Given a c-Lipschitz scalar function f : M→ R,90

we aim to study the topological structure of f . However, the scalar field f : M→ R is only91

approximated by a discrete set of sample points P and a function f̃ : P → R. The goal of92

this paper is to retrieve the topological structure of f from f̃ when some forms of noise are93

present both in the positions of P and in the function values of f̃ .94

Persistent homology.95

As in [5], we infer the topology of f using persistent homology of well-chosen persistence96

modules. A filtration {Fα}α∈R is a family of sets Fα totally ordered by inclusions Fα ⊂ Fβ .97

Following [3], a persistence module is a family of vector spaces {Φα}α∈R with a family of98

homomorphisms φβα : Φα → Φβ such that for all α ≤ β ≤ γ, φγα = φγβ ◦φβα. Given a filtration99

F = {Fα}α∈R and α ≤ β, the canonical inclusion Fα ↪→ Fβ induces a homomorphism at the100

homology level H∗(Fα)→ H∗(Fβ). These homomorphisms and the homology groups of Fα101

form a persistence module called the persistence module of F .102

The persistence module of the filtration F = {Fα}α∈R is said to be q-tame when all103

the homomorphisms H∗(Fα) → H∗(Fβ) have finite rank [2]. Its algebraic structure can104

then be described by the persistence diagram Dgm(F), which is a multiset of points in R2
105

describing the lifespan of the homological features in the filtration F . For technical reasons,106

Dgm(F) also contains the diagonal y = x with infinite multiplicity. See [10] for a more107

formal discussion of the persistence diagrams.108

Persistence diagrams can be compared using the bottleneck distance dB [7]. Given two109

multisets with the same cardinality, possibly infinite, D and E in R2, we consider the set110

B of all bijections between D and E. The bottleneck distance (under L∞-norm) is then111

defined as:112

dB(D,E) = inf
b∈B

max
x∈D
||x− b(x)||∞. (1)

Two filtrations {Uα} and {Vα} are said to be ε-interleaved if, for any α, we have Uα ⊂113

Vα+ε ⊂ Uα+2ε. Recent work in [2, 3] shows that two “nearby” filtrations (as measured by114

the interleaving distance) will induce close persistence diagrams in the bottleneck distance.115

I Theorem 2.1. Let U and V be two q-tame and ε-interleaved filtrations. Then the persis-116

tence diagrams of these filtrations verify dB(Dgm(U),Dgm(V )) ≤ ε.117

Nested filtrations.118

The scalar field topology of f : M→ R is studied via the topological structure of the sub-level119

sets filtration of f . More precisely, the sub-level sets of f are defined as Fα = f−1(]−∞, α])120

for any α ∈ R. The collection of sub-level sets form a filtration F = {Fα}α∈R connected121

by natural inclusions Fα ⊆ Fβ for any α ≤ β. Our goal is to approximate the persistence122

diagram Dgm(F) from the observed scalar field f̃ : P → R. We now describe the results123

of [5] for approximating Dgm(F) when P is a geodesic ε-sampling of M. These results will124

later be useful for our approach.125

To simulate the sub-level sets filtration {Fα} of f , we introduce Pα = f̃−1(]−∞, α]) ⊂ P126

for any α ∈ R. The points in Pα intuitively sample the sub-level set Fα. To estimate the127

topology of Fα from these discrete samples Pα, we consider the δ-offset P δ of the point set P128

i.e. we grow geodesic balls of radius δ around the points of P . This gives us a union of balls129

that serves as a proxy for f−1(]−∞, α) and whose nerve is known as the Čech complex, Cδ(P ).130
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It has many interesting properties but becomes difficult to compute in high dimensions. We131

consider an easier to compute complex called the Vietoris-Rips complex Rδ(P ), defined as132

the maximal simplicial complex with the same 1-skeleton as the Čech complex. The Čech133

and Rips complexes are related in any metric space: ∀δ > 0, Cδ(P ) ⊂ Rδ(P ) ⊂ C2δ(P ).134

Even though no Vietoris-Rips complex might capture the topology of the manifold M,135

it was shown in [6] that a structure of nested complexes can recover it from the filtration136

{Pα} using the inclusions Rδ(Pα) ↪→ R2δ(Pα). Specifically, for a fixed δ > 0, consider the137

following commutative diagram induced by inclusions, for α ≤ β:138

H∗(Rδ(Pβ))H∗(Rδ(Pα))

H∗(R2δ(Pα)) H∗(R2δ(Pβ))

139

As the diagram commutes for all α ≤ β, {Φα, φβα} defines a persistence module. We call it the140

persistent homology module of the filtration of the nested pairs {Rδ(Pα) ↪→ R2δ(Pα)}α∈R.141

This construction can also be done for any filtration of nested pairs. Using this construction,142

one of the main results of [5] is:143

I Theorem 2.2 (Theorems 2 and 6 of [5]). Let M be a compact Riemannian manifold and144

let f : M→ R be a c-Lipschitz function. Let P be a geodesic ε-sampling of M. If ε < 1
4%(M),145

then for any δ ∈
[
2ε, 1

2%(M)
)
, the persistent homology modules of f and of the filtration of146

nested pairs {Rδ(Pα) ↪→ R2δ(Pα)} are 2cδ-interleaved. Therefore, the bottleneck distance147

between their persistence diagrams is at most 2cδ.148

Furthermore, the k-dimensional persistence diagram for the filtrations of nested pairs149

{Rδ(Pα) ↪→ R2δ(Pα)} can be computed in O(|P |kN + N logN + N3) time, where N is the150

number of simplices of {R2δ(P∞)}, and |P | denotes the cardinality of the sample set P .151

It has been observed that in practice, the persistence algorithm often has a running time152

linear in the number of simplices, which reduces the above complexity to O(|P |+N logN)153

in a practical setting.154

We say that f̃ has a precision of ξ over P if |f̃(p)−f(p)| ≤ ξ for any p ∈ P . We then have155

the following result for the case when only this Hausdorff-type functional noise is present:156

I Theorem 2.3 (Theorem 3 of [5]). Let M be a compact Riemannian manifold and let157

f : M→ R be a c-Lipschitz function. Let P be a geodesic ε-sampling of M such that the va-158

lues of f on P are known with precision ξ. If ε < 1
4%(M), then for any δ ∈

[
2ε, 1

2%(M)
)
, the159

persistent homology modules of f and of the filtration of nested pairs {Rδ(Pα) ↪→ R2δ(Pα)}160

are (2cδ + ξ)-interleaved. Therefore, the bottleneck distance between their persistence dia-161

grams is at most 2cδ + ξ.162

Geometric noise was considered in the form of bounded noise in the estimate of the163

geodesic distances between points in P . It translated into a relation between the measured164

pairwise distances and the real ones. With only geometric noise, [5] provided the following165

stability result. It was stated in this form in the conference version of the paper.166

I Theorem 2.4 (Theorem 4 of [5]). Let M, f be defined as previously and P be an ε-sample167

of M in its Riemannian metric. Assume that, for a parameter δ > 0, the Rips complexes168

Rδ(·) are defined with respect to a metric d̃(·, ·) which satisfies ∀x, y ∈ P, dM(x,y)
λ ≤ d̃(x, y) ≤169

ν+µdM(x,y)
λ , where λ ≥ 1 is a sclaing factor, µ ≥ 1 is a relative error and ν ≥ 0 an additive170

error. Then, for any δ ≥ ν + 2µ ελ and any δ′ ∈ [ν + 2µδ, 1
λ%(M)], the persistent homology171

modules of f and of the filtration of nested pairs {Rδ(Pα) ↪→ Rδ′(Pα)} are cλδ′-interleaved.172

Therefore, the bottleneck distance between their persistence diagrams is at most cλδ′.173
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3 Functional Noise174

In this section, we focus on the case where we have only functional noise in the observed175

function f̃ . Suppose we have a scalar function f defined on a manifold M embedded in a176

metric space X (such as the Euclidean space Rd). We are given a geodesic ε-sample P ⊂ M,177

and a noisy observed function f̃ : P → R. Our goal is to approximate the persistence178

diagram Dgm(F) of the sub-level set filtration F = {Fα = f−1((−∞, α])}α from f̃ . We179

assume that f is c-Lipschitz with respect to the intrinsic metric of the manifold M. Note180

that this does not imply a Lipschitz condition on f̃ .181

3.1 Functional noise model182

Previous work on functional noise usually focuses on Hausdorff-type bounded noise (e.g, [5])183

or statistical noise with zero-mean (e.g, [15]). However, we observe that there are many184

practical scenarios where the observed function f̃ may contain these previously considered185

types of noise mixed with aberrant function values in f̃ . Hence, we propose below a more186

general noise model that allows such a mixture.187

Motivating examples.188

First, we provide some motivating examples for the need of handling aberrant function values189

in f̃ , where f̃(p) at some sample point p can be totally unrelated to the true value f(p).190

Consider a sensor network, where each node returns some measures. Such measurements191

can be imprecise, and in addition to that, a sensor may experience failure and return a192

completely wrong measure that has no relation with the true value of f . Similarly, an image193

could be corrupted with white noise where there are random pixels with aberrant function194

values, such as random white or black dots.195

More interestingly, outliers in function values can naturally appear as a result of (ex-196

trinsic) geometric noise present in the discrete samples. For example, imagine that we have197

a process that can measure the function value f : M → R with no error. However, the198

geometric location p̃ of a point p ∈ M can be wrong. In particular, p̃ can be close to other199

parts of the manifold, thereby although p̃ has the correct function value f(p), it becomes200

a functional outlier among its neighbors (due to the wrong location of p̃). See Figure 1201

for an illustration, where the two sides of the narrow neck of this bone-structure have very202

different function values. Now, suppose that the points are sampled uniformly on M and203

their position is then convolved with a Gaussian noise. Then points from one side of this204

neck can be sent closer to the other side, causing aberrant values in the observed function.205

In fact, even if we assume that we have a “magic filter” that can project each sample206

back onto the underlying manifold M, the result is a new set of samples where all points207

are on the manifold and thus can be seen as having no geometric noise; however, this point208

set now contains functional noise which is actually caused by the original geometric noise.209

Note that such a magic filter is the goal of many geometric denoising methods. This implies210

that a denoising algorithm perfect in the sense of geometric noise cannot remove or may211

even cause more aberrant functional noise. This motivates the need for handling functional212

outliers (in addition to traditional functional noise) as well as processing noise that combines213

geometric and functional noise together and that is not necessarily centered. Figure 1 shows214

a bone-like curve and a function defined as the curvilinear abscissa. The Gaussian noise215

applied to the example creates outliers even after applying a projection onto the original216

object.217
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Another case where our approach is useful concerns missing data. Assuming that some218

of the functional values are missing, we can replace them by anything and act as if they219

were outliers. Without modifying the algorithm, we obtain a way to handle the local loss of220

information.221

Bone without noise Bone with gaussian noise Bone after magical filter

Figure 1 Bone example after applying Gaussian perturbation and magical filter

Functional noise model.222

To allow both aberrant and more traditional functional noise, we introduce the following
noise model. Let P ⊂ M be a geodesic ε-sample of the underlying manifold M. Intuitively,
our noise model requires that for any point p ∈ P , locally there is a sufficient number of
sample points with reasonably good function values. Specifically, we fix two parameters k
and k′ with the condition that k ≥ k′ > 1

2k. Let NNk
P (p) denote the set of the k-nearest

neighbors of p in P in the extrinsic metric. We say that a discrete scalar field f̃ : P → R is
a (k, k′,∆)-functional-sample of f : M→ R if the following holds:

∀p ∈ P,
∣∣∣{q ∈ NNk

P (p)
∣∣ |f̃(q)− f(p)| ≤ ∆

}∣∣∣ ≥ k′ (2)

Intuitively, this noise model allows up to k − k′ samples around a point p to be outliers223

(whose function values deviates from f(p) by at least ∆). In Appendix A, we consider two224

common functional noise models used in the statistical learning community and look at what225

they correspond to in our setting.226

3.2 Functional Denoising227

Given a scalar field f̃ : P → R which is a (k, k′,∆)-functional-sample of f : M → R, we228

now aim to compute a denoised function f̂ : P → R from the observed function f̃ , and we229

will later use f̂ to infer the topology of f : M→ R. Below we describe two ways to denoise230

the noisy observation f̃ : one of which is well-known, and the other one is new. As we will231

see later, these two treatments lead to similar theoretical guarantees in terms of topology232

inference. However, they have different characteristics in practice, which are discussed in233

the experimental illustration of Appendix C.234

k-median.235

In the k-median treatment, we simply perform the following: given any point p ∈ P , we set236

f̂(p) to be the median value of the set of f̃ values for the k-nearest neighbors NNk
P (p) ⊆ P237

of p. We call f̂ the k-median denoising of f̃ . The following observation is straightforward:238

I Observation 1. If f̃ : P → R is a (k, k′,∆)-functional-sample of f : M→ R with k′ ≥ k/2,239

then we have |f̂(p)− f(p)| ≤ ∆ for any p ∈ P , where f̂ is the k-median denoising of f̃ .240
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Discrepancy.241

In the k-median treatment, we choose a single value from the k-nearest neighbors of a sample242

point p and set it to be the denoised value f̂(p). This value, while within ∆ distance to the243

true value f(p) when k′ ≥ k/2, tends to have greater variability among neighboring sample244

points. Intuitively, taking the average (such as k-means) makes the function f̂(p) smoother,245

but it is sensitive to outliers. We combine these ideas together, and use the following concept246

of discrepancy to help us identify a subset of points from the k-nearest neighbors of a sample247

point p to estimate f̂(p).248

Given a set Y = {x1, . . . , xm} of m sample points from P , we define its discrepancy
w.r.t. f̃ as:

φ(Y ) = 1
m

m∑
i=1

(f̃(xi)− µ(Y ))2, where µ(Y ) = 1
m

m∑
i=1

f̃(xi).

µ(Y ) and φ(Y ) are respectively the average and the variance of the observed function values
for points from Y . Intuitively, φ(Y ) measures how tight the function values (f̃(xi)) are
clustered. Now, given a point p ∈ P , we define

Ŷp = argmin
Y⊆NNk

P
(p),|Y |=k′

φ(Y ), and ẑp = µ(Ŷp).

That is, Ŷp is the subset of k′ points from the k-nearest neighbors of p that has the smallest249

discrepancy and ẑp is its mass center. It turns out that Ŷp and ẑp can be computed by the250

following sliding-window procedure: (i) Sort NNk
P (p) = {x1, . . . , xk} according to f̃(xi). (ii)251

For every k′ consecutive points Yi = {xi, . . . , xi+k′−1} with i ∈ [1, k − k′ + 1], compute its252

discrepancy φ(Yi). (iii) Set Ŷp = argminYi,i∈[1,k−k′] φ(Yi), and return µ(Ŷp) as ẑp.253

In the discrepancy-based denoising approach, we simply set f̂(p) := ẑp as computed254

above. The correctness of f̂ to approximate f is given by the following Lemma.255

I Lemma 3.1. If f̃ : P → R is a (k, k′,∆)-functional-sample of f : M → R with k′ ≥ k
2 ,256

then we have |f̂(p)− f(p)| ≤
(

1 + 2
√

k−k′
2k′−k

)
∆ for any p ∈ P , where f̂ is the discrepancy-257

based denoising of f̃ . In particular, if k′ ≥ 2
3k, then |f̂(p) − f(p)| ≤ 3∆ for any p ∈ P .258

259

Proof. Let Y∆ = {x ∈ NNk
P (p) : |f̃(x) − f(p)| ≤ ∆} be the set of points in NNk

P (p) whose
observed function values are at most ∆ distance away from f(p). Since f̃ is a (k, k′,∆)-
functional-sample of f , it is clear that |Y∆| ≥ k′. Let Y ′∆ ⊂ Y∆ be a subset with k′

elements, Y ′∆ = {x′i}k
′

i=1. By the definitions of Y∆ and Y ′∆, one can immediately check that
|f̃(x′i) − µ(Y ′∆)| ≤ 2∆ where µ(Y ′∆) = 1

k′

∑k′

i=1 f̃(x′i). This inequality then gives an upper
bound of the discrepancy φ(Y ′∆),

φ(Y ′∆) = 1
k′

∑k′

i=1(f̃(x′i)− µ(Y ′∆))2

≤ 1
k′

∑k′

i=1(2∆)2

= 4∆2
.

Recall from the sliding window procedure that Ŷp = argminYi,i∈[1,k−k′] φ(Yi) and ẑp =
µ(Ŷp). Denote A1 = Ŷp ∩ Y∆ and A2 = Ŷp \ A1. Since f̃ is a (k, k′,∆)-functional-sample
of f , the size of A2 is at most k − k′ and |A1| ≥ 2k′ − k. If |ẑp − f(p)| ≤ ∆, nothing
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needs to be proved. Without loss of generality, one can assume that f(p) + ∆ ≤ ẑp. Denote
δ = ẑp − (f(p) + ∆). The discrepancy of φ(Ŷp) can be estimated as follows.

φ(Ŷp) = 1
k′

(∑
x∈A1

(f̃(x)− ẑp)2 +
∑
x∈A2

(f̃(x)− ẑp)2)
≥ 1

k′

(
|A1|δ2 +

∑
x∈A2

(f̃(x)− ẑp)2)
≥ 1

k′

(
|A1|δ2 + 1

|A2| (
∑
x∈A2

f̃(x)− |A2|ẑp)2
)

= 1
k′

(
|A1|δ2 + 1

|A2| (
∑
x∈A1

f̃(x)− |A1|ẑp)2
)

≥ 1
k′

(
|A1|δ2 + 1

|A2| (|A1|δ)2
)

≥ 1
k′ δ

2
(
k′|A1|
|A2|

)
≥ 2k′−k

k−k′ δ
2

where the third line uses the inequality
∑n
i=1 a

2
i ≥ 1

n (
∑n
i=1 ai)2, and the fourth line uses the

fact that (|A1| + |A2|)ẑp =
∑
x∈Ŷp

f̃(x). Since Ŷp = argminYi,i∈[1,k−k′] φ(Yi), it holds that
φ(Ŷp) ≤ φ(Y ′∆). Therefore,

2k′ − k
k − k′

δ2 ≤ 4∆2.

It then follows that δ ≤ 2
√

k−k′
2k′−k∆. Hence, |f̂(p) − f(p)| ≤

(
1 + 2

√
k−k′
2k′−k

)
∆ since ẑp =260

f̂(p). If k′ ≥ 2
3k, then 1 + 2

√
k−k′
2k′−k ≤ 1 + 2 = 3, meaning that |f̂(p) − f(p)| ≤ 3∆ in this261

case.262

J263

I Corollary 3.2. Given a (k, k′,∆)-functional-sample of f : M → R with k′ ≥ k/2, we can264

compute a new function f̂ : P → R such that |f̂(p)− f(p)| ≤ ξ∆ for any p ∈ P , where ξ = 1265

under k-median denoising, and ξ =
(

1 + 2
√

k−k′
2k′−k

)
under the discrepancy-based denoising.266

Hence after the k-median denoising or the discrepancy-based denoising, we obtain a new267

function f̂ whose value at each sample point is within ξ precision to the true function value.268

We can now apply the scalar field topology inference framework from [5] (as introduced in269

Section 2) using f̂ as input. In particular, set Lα = {p ∈ P | f̂(p) ≤ α}, and let Rδ(X)270

denote the Rips complex over points in X with parameter δ. We approximate the persistence271

diagram induced by the sub-level sets filtration of f : M→ R from the filtrations of nested272

pairs {Rδ(Lα) ↪→ R2δ(Lα)}α. It follows from Theorem 2.3 that:273

I Theorem 3.3. Let M be a compact Riemannian manifold and let f : M → R be a c-274

Lipschitz function. Let P be a geodesic ε-sampling of M, and f̃ : P → R a (k, k′,∆)-275

functional-sample of f . Set ξ = 1 if Pα is obtained via k-median denoising, and ξ =276 (
1 + 2

√
k−k′
2k′−k

)
if Pα is obtained via discrepancy-based denoising. If ε < 1

4%(M), then for277

any δ ∈
[
2ε, 1

2%(M)
)
, the persistent homology modules of f and the filtration of nested pairs278

{Rδ(Pα) ↪→ R2δ(Pα)} are (2cδ+ ξ∆)-interleaved. Therefore, the bottleneck distance between279

their persistence diagrams is at most 2cδ + ξ∆.280

The above theoretical results are similar for k-median and discrepancy-based methods281

with a slight advantage for the k-median. However, interesting experimental results can be282

obtained when the Lipschitz condition on the function is removed, for example with images,283

where the discrepancy based method appear to be more resisilient to large amounts of noise,284

than the k-median denoising method. Illustrating examples can be found in Appendix C.285
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4 Geometric noise286

In the previous section, we assumed that we have no geometric noise in the input. In287

this section, we deal with the case where there is only geometric noise in the input, but288

no functional noise of any kind. Specifically, for any point p ∈ P , we assume that the289

observed value f̃(p) is equal to the true function value f(π(p)) where π(p) is the orthogonal290

projection of p to the manifold. If p is on the medial axis of M, the projection π is arbitrary291

to one of the possible sites. As we have alluded before, general geometric noise implicitly292

introduces functional noise because the point p might have become a functional aberration293

of its orthogonal projection π(p). This error will be ultimately captured in Section 5 when294

we combine the results from the previous section on pure functional noise with the results295

in this section on pure geometric noise.296

4.1 Noise model297

Distance to a measure.298

The distance to a measure is a tool introduced to deal with geometrically noisy datasets,
which are modelled as probability measures [4]. Given a probability measure µ we define
the pseudo-distance δm(x) for any point x ∈ Rd and a mass parameter m ∈]0, 1] as δm(x) =
inf{r ∈ R|µ(B(x, r)) ≥ m}. The distance to a measure is then defined by averaging this
quantity:

dµ,m(x) =

√
1
m

∫ m

0
δl(x)2 dl.

The Wasserstein distance is a standard tool to compare two measures. Given two pro-
bability measures µ and ν on a metric space M , a transport plan π is a probability measure
over M ×M such that for any A×B ⊂M ×M , π(A×M) = µ(A) and π(M ×B) = ν(B).
Let Γ(µ, ν) be the set of all transport plans between between measures µ and ν. The
Wassserstein distance is then defined as the minimum transport cost over Γ(µ, ν):

W2(µ, ν) =

√
min

π∈Γ(µ,ν)

∫
M×M

dM (x, y)2 dπ(x, y),

where dM (x, y) is the distance between x and y in the metric space M . The distance to a299

measure is stable with respect to the Wasserstein distance as shown in [4]:300

I Theorem 4.1 (Theorem 3.5 of [4]). Let µ and ν be two probability measures on Rd and301

m ∈]0, 1]. Then, ||dµ,m − dν,m||∞ ≤ 1√
m
W2(µ, ν).302

We will mainly use the distance to empirical measures in this paper. (See [4] for more
details on distance to a measure and its approximation.) Given a finite point set P , its
associated empirical measure µP is defined as the sum of Dirac masses: µP = 1

|P |
∑
p∈P δp.

The distance to this empirical measure for a point x can then be expressed as an average of
its distances to the k = m|P | nearest neighbors where m is the parameter of mass. For the
sake of simplicity, k will be assumed to be an integer. The results also hold for other values
of k but the k-th nearest neighbor requires a specific treatment in every equation. Denoting
by pi(x) the i-th nearest neighbors of x in P , one can write:

dµP ,m(x) =

√√√√1
k

k∑
i=1

d(pi(x), x)2.
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Our geometric noise model.303

Our noise model treats the input point data as a measure and relates it to the manifold304

(where input points are sampled from) via distance-to-measures with the help of two para-305

meters.306

I Definition 4.2. Let P ⊂ Rn be a discrete sample and M ⊂ Rn a smooth manifold. Let µ307

denote the empirical measure of P . For a fixed mass parameter m > 0, we say that P is an308

(ε, r)-sample of M if the following holds:309

∀x ∈ M, dµ,m(x) ≤ ε; and (3)
310

∀x ∈ Rn, dµ,m(x) < r =⇒ d(x,M) ≤ dµ,m(x) + ε. (4)

The parameter ε captures the distance to the empirical measure for points in M and intui-311

tively tells us how dense P is in relation to the manifold M. The parameter r intuitively312

indicates how far away we can deviate from the manifold, while keeping the noise sparse313

enough so as not to be mistaken for signal. We remark that if a point set is an (ε, r)-sample314

of M then it is an (ε′, r′)-sample of M for any ε′ ≥ ε and r′ ≤ r. In general, the smaller ε is315

and the bigger r is, the better an (ε, r)-sample is.316

For convenience, denote the distance function to the manifold M by dπ : Rn → R,
x 7→ d(x,M). We have the following interleaving relation:

∀α < r − ε, d−1
π (]−∞, α]) ⊂ d−1

µ,m(]−∞, α+ ε]) ⊂ d−1
π (]−∞, α+ 2ε]) (5)

To see why this interleaving relation holds, let x be a point such that d(x,M) ≤ α. Thus317

d(π(x), x) ≤ α. Using the hypothesis (3), we get that dµ,m(π(x)) ≤ ε. Given that the318

distance to a measure is a 1-Lipschitz function we then obtain that dµ,m(x) ≤ ε+ α.319

Now let x be a point such that dµ,m(x) ≤ α+ ε ≤ r. Using the condition on r in (4) we320

get that d(x,M) ≤ dµ,m(x) + ε ≤ α+ 2ε which concludes the proof of Eqn (5).321

Eqn (5) gives an interleaving between the sub-level sets of the distance to the measure µ
and the offsets of the manifold M. By Theorem 2.1, this implies the proximity between the
persistence modules of their respective sub-level sets filtrations . Observe that this relation is
in some sense analogous to the one obtained when two compact sets A and B have Hasudorff
distance of at most ε:

∀α, d−1
A (]−∞, α]) ⊂ d−1

B (]−∞, α+ ε]) ⊂ d−1
A (]−∞, α+ 2ε]). (6)

Relation to other noise models.322

Our noise model encompasses several other existing noise models. While the parameter ε is323

natural, the parameter r may appear to be artificial. It bounds the distances at which we324

can observe the manifold through the scope of the distance to a measure. In most classical325

noise models, r is equal to ∞ and thus we obtain a similar relation as for the classical326

Hausdorff noise model in Eqn (6).327

One notable noise model where r 6= ∞ is when there is an uniform background noise328

in the ambient space Rd, sometimes called clutter noise. In this case, r will depend on the329

difference between the density of the relevant data and the density of the noise. For other330

noise models like Wassertein, Gaussian, Hausdorff noise models, r equals to ∞. Detailed331

relations and proofs for the Wasserstein noise model can be found in Appendix B.332
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4.2 Scalar field analysis under geometric noise333

In the rest of the paper, we assume that M is a manifold with positive reach ρM and whose
curvature is bounded by cM. Assume that the input P is an (ε, r)-sample of M for any value
of m satisfying the bound in Theorem 2.1, where

ε ≤ ρM
6 , and r > 2ε. (7)

As discussed at the beginning of this section, we assume that there is no intrinsic functional334

noise in the sense that for any p ∈ P , the observed function value f̃(p) = f(π(p)) is the same335

as the true value for the projection π(p) ∈ M of this point. Our goal now is to show how to336

recover the persistence diagram induced by f : M → R from its observations f̃ : P → R on337

P .338

Taking advantage of the interleaving (5), we can use the distance to the empirical measure
to filter the points of P to remove geometric noise. In particular, we consider the set

L = P ∩ d−1
µ,m(]−∞, η]) where η ≥ 2ε. (8)

We will then use a similar approach as the one from [5] for this set L. The optimal choice339

for the parameter η is 2ε. However, any value with η ≤ r and η + ε < ρM works as long as340

there exist δ and δ′ satisfying the conditions stated in Theorem 2.4.341

Let L̄ = {π(x)|x ∈ L} denote the orthogonal projection of L onto M. To simulate sub-342

level sets f−1(]−∞, α] of f : M→ R, consider the restricted sets Lα := L∩(f◦π)−1(]−∞, α])343

and let L̄α = π(Lα). By our assumption on the observed function f̃ : P → R, we have:344

Lα = {x ∈ L|f̃(x) ≤ α}.345

Let us first recall a result about the relation between Riemannian and Euclidian me-
trics [8]. For any two points x, y ∈ M with d(x, y) ≤ ρM

2 one has:

d(x, y) ≤ dM(x, y) ≤
(

1 + 4d(x, y)2

3ρ2
M

)
d(x, y) ≤ 4

3d(x, y). (9)

As a direct consequence of our noise model, for any point x ∈ M, there exists a point346

p ∈ L at distance less than 2ε: Indeed, for any x ∈ M, since dµ,m(x) ≤ ε, there must exist347

a point p ∈ P such that d(x, p) ≤ ε. On the other hand, since the distance to measure is 1-348

Lipschitz, we have dµ,m(p) ≤ dµ,m(x)+d(x, p) ≤ 2ε. Hence p ∈ L as long as η ≥ 2ε. We will349

use the extrinsic Vietoris-Rips complex built on top points from L to infer the scalar field350

topology. Using the previous relation Eqn (9), we obtain the following result which states351

that for points in L, the Euclidean distance for nearby points approximates the Riemannian352

metric on M.353

I Proposition 4.3. Let λ = 4
3

ρM
ρM−(η+ε) , and assume that 2ε ≤ η ≤ r and ε + η < ρM. Let

x, y ∈ L be two points from L such that d(x, y) ≤ ρM
2 −

η+ε
2 . Then,

dM(π(y), π(x))
λ

≤ d(x, y) ≤ 2(η + ε) + dM(π(x), π(y)).

354

Proof. Let x and y be two points of L such that d(x, y) ≤ ρM
2 −

η+ε
2 . As dµ,m(x) ≤ η ≤ r,355

Eqn (4) implies d(π(x), x) ≤ η + ε. Therefore d(π(x), π(y)) ≤ ρM
ρM−(η+ε)d(x, y) [11, Theorem356

4.8,(8)]. This implies d(π(x), π(y)) ≤ ρM
2 and following (9), dM(π(x), π(y)) ≤ 4

3d(π(x), π(y)).357

This proves the left inequality in the Proposition. The right inequality follows from

d(x, y) ≤ d(π(x), x) + d(π(y), y) + dM(π(x), π(y)) ≤ 2(η + ε) + dM(π(x), π(y)).

J358
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I Theorem 4.4. Let M be a compact Riemannian manifold and let f : M → R be a c-359

Lipschitz function. Let P be an (ε, r)-sample of M , and L introduced in Eqn (8). Assume360

ε ≤ ρM
6 , r > 2ε, and 2ε ≤ η ≤ r. Then, for any δ ≥ 2η + 6ε and any δ′ ∈361 [

2η + 2ε+ 8
3

ρM
ρM−(η+ε)δ,

3
4
ρM−(η+ε)

ρM
%(M)

]
, H∗(f) and H∗(Rδ(Lα) ↪→ Rδ′(Lα)) are 4

3
cρMδ

′

ρM−(η+ε) -362

interleaved.363

Proof. First, note that L̄ is a 2ε-samle of M in its Riemannian metric. This is because that364

for any point x ∈ M, we know that there exists some p ∈ L such that d(x, p) ≤ dµ,m(x) ≤ ε.365

Hence d(x, π(p)) ≤ d(x, p) + d(p, π(x)) ≤ 2d(x, p) ≤ 2ε. Now we apply Theorem 2.4 to L̄ by366

using d̃(π(x), π(y)) := d(x, y); and setting λ = µ = 4
3

ρM
ρM−(η+ε) , ν = 2(η+ε): the requirement367

on the distance function d̃ in Theorem 2.4 is satisfied due to Proposition 4.3. The claim368

then follows. J369

Since M is compact, f is bounded due to the Lipschitz condition. We can look at370

the limit when α → ∞. There exists a value T such that for any α ≥ T , Lα = L and371

f−1(]−∞, α]) = M. The above interleaving means that H∗(M) and H∗(Rδ(L)) ↪→ Rδ′(L))372

are interleaved. However, both objects do not depend on α and this gives the following373

inference result:374

I Corollary 4.5. H∗(M) and H∗(Rδ(L)) ↪→ Rδ′(L)) are isomorphic under conditions speci-375

fied in Theorem 4.4.376

5 Scalar Field Topology Inference under Geometric and Functional377

Noise378

Our constructions can be combined to analyze scalar fields in a more realistic setting. Our
combined noise model follows conditions (3) and (4) for the geometry. We adapt condition (2)
to take into account the geometry and we assume that there exist η ≥ 2ε and s such that:

∀p ∈ d−1
µ,m(]−∞, η, ]), |{q ∈ NNk(p)| |f̃(q)− f(π(p))| ≤ s}| ≥ k′ (10)

Note that in (10), we are using f(π(p)) as the “true" function value at a sample p which379

is off the manifold M. The condition on the functional noise is only for points close to the380

manifold (under the distance to a measure). Combining the methods from the previous two381

sections, we obtain the combined noise algorithm where η is a parameter greater than 2ε.382

We propose the following 3-steps algortihm. It starts by handling outliers in the geometry383

then it makes a regression on the function values to obtain a smoothed function f̂ before384

running the existing algorithm for scalar field analysis [5] on the filtration L̂α = {p ∈385

L|f̂(p) ≤ α}.

Combined noise algorithm

1. Compute L = P ∩ d−1
µ,m(]−∞, η]).

2. Replace functional values f̃ by f̂ for points in L using either k-median or discrepancy
based method.

3. Run the scalar field analysis algorithm from [5] on (L, f̂).

386
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I Theorem 5.1. Let M be a compact smooth manifold embedded in Rd and f a c-Lipschitz387

function on M. Let P ⊂ Rd be a point set and f̃ : P → R observed function values such that388

hypotheses (3), (4), (7) and (10) are satisfied. For η ≥ 2ε, the combined noise algorithm389

has the following guarantees:390

For any δ ∈
[
2η + 6ε, %(M)

2

]
and any δ′ ∈

[
2η + 2ε+ 8

3
ρM

ρM−(η+ε)δ,
3
4
ρM−(η+ε)

ρM
%(M)

]
, H∗(f)391

and H∗(Rδ(L̂α) ↪→ Rδ′(L̂α)) are
(

4
3

cρMδ
′

ρM−(η+ε) + ξs
)
-interleaved where ξ = 1 if we use the392

k-median and ξ =
(

1 + 2
√

k−k′
2k′−k

)
if we use the discrepancy method for Step 2.393

Proof. First, consider the filtration induced by Lα = {x ∈ L|f(π(x)) ≤ α}; that is, we first394

imagine that all points in L have correct function value (equals to the true value of their pro-395

jection on M). By Theorem 4.4, for δ ∈
[
2η + 6ε, %(M)

2

]
and δ′ ∈

[
2η + 2ε+ 8

3
ρM

ρM−(η+ε)δ,
3
4
ρM−(η+ε)

ρM
%(M)

]
,396

H∗(f) and H∗(Rδ(Lα) ↪→ Rδ′(Lα)) are 4
3

cρMδ
′

ρM−(η+ε) -interleaved.397

Next, consider L̂α = {p ∈ L|f̂(p) ≤ α}, which leads to a filtration based on the smoothed398

function values f̂ (not observed values). Recall that our algorithm returns H∗(Rδ(L̂α) ↪→399

Rδ′(L̂α)). We aim to relate this persistence module with H∗(Rδ(Lα) ↪→ Rδ′(Lα)). Specifi-400

cally, fix α and let (x, y) be an an edge of Rδ(Lα). This means that d(x, y) ≤ 2δ, f(π(x)) ≤ α,401

f(π(y)) ≤ α. Corollary 3.2 can be applied to the function f ◦π due to hypothesis (10). Hence402

|f̂(x)− f(π(x))| ≤ ξs and |f̂(y)− f(π(y))| ≤ ξs. Thus (x, y) ∈ Rδ(L̂α+ξs). One can reverse403

the role of f̂ and f and get an ξs-interleaving of {Rδ(Lα)} and {Rδ(L̂α)}. This gives rise404

to the following commutative diagram since all arrows are induced by inclusions.405

H∗(Rδ(Lα)) H∗(Rδ(Lα+2ξs)) H∗(Rδ(Lα+4ξs))

H∗(Rδ(L̂α+ξs)) H∗(Rδ(L̂α+3ξs)) H∗(Rδ(L̂α+5ξs))

H∗(Rδ′(Lα)) H∗(Rδ′(Lα+2ξs)) H∗(Rδ′(Lα+4ξs))

H∗(Rδ′(L̂α+ξs)) H∗(Rδ′(L̂α+3ξs)) H∗(Rδ′(L̂α+5ξs))

406

Thus the two persistence modules induced by filtrations of nested pairs {Rδ(Lα) ↪→ Rδ′(Lα)}407

and {Rδ(L̂α) ↪→ Rδ′(L̂α)} are ξs-interleaved. Combining this with the interleaving between408

H∗(Rδ(Lα) ↪→ Rδ′(Lα)) and H∗(f), the theorem follows. J409

We note that while this theorem assumes a setting where we can ensure theoretical410

guarantees, the algorithm can be applied in a more general setting and still produce good411

results.412
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A Relations between our functional noise model and classical noise452

models453

Bounded noise model.454

The standard “bounded noise” model assumes that all observed function values are within455

some δ distance away from the true function values: that is, |f̃(p)− f(p)| ≤ δ for all p ∈ P .456

Hence this bounded noise model simply corresponds to a (1, 1, δ)-functional-sample.457

Gaussian noise model.458

Under the popular Gaussian noise model, for any x ∈ M, its observed function value f̃(x)459

is drawn from a normal distribution N (f(x), σ), that is a probability measure with density460

g(y) = 1
σ
√
π
e−

(y−f(x))2

σ2 . We say that a point q ∈ P is a-accurate if |f̃(q)− f(q)| ≤ a. For the461

Gaussian noise model, we will first bound the quantity µ(k, k′) defined as the smallest value462

such that at least k′ out of the k nearest neighbors of p in NNk
P (p) are µ(k, k′)-accurate. We463

claim the following statement.464

I Claim 1.1. With probability at least 1− e− k−k
′

6 , µ(k, k′) ≤ σ
√

ln 2k
k−k′ .465

Proof. First note that for b
σ ≥ 1, we have that:∫ +∞

b

e−
t2
σ2 dt ≤

∫ +∞

b

t

σ
e−

t2
σ2 dt = 1

σ

∫ +∞

b

te−
t2
σ2 dt = −σ2 e

− t2
σ2
∣∣∞
b

= σ

2 e
− b2
σ2 .

Now we introduce I(a) = 1
σ
√
π

∫ a
−a e

− x2
σ2 dx. Since 1

σ
√
π

∫∞
−∞ e−

x2
σ2 dx = 1, we thus obtain that

for a ≥ σ:

1− 1√
π
e−( aσ )2

< 1− e−( aσ )2
≤ I(a) (= 1− 2

σ
√
π

∫ +∞

a

e−
x2
σ2 dx). (11)

Now set δ = k−k′
k ≤ 1

2 and s = σ
√

ln 2k
k−k′ ≥ σ. Let p1, . . . , pk denote the k nearest

neighbors of some point, say p1. For each pi, let Zi = 1 if pi is not s-accurate, and Zi = 0
otherwise. Hence Z =

∑k
i=1 Zi denotes the total number of points from these k nearest

neighbors that are not s-accurate. By Equation (11), we know that

Prob[Zi = 1] = 1− I(s) ≤ e−( sσ )2
.

It then follows that the expected value of Z satisfies:

E(Z) ≤ ke−( sσ )2
= δk

2 .

Now set ρ = δk
2E(Z) . Since E(Z) ≤ δk

2 , it follows that (1 + ρ)E(Z) ≤ δk. Using Chernoff’s
bound [1], we obtain

Prob [Z ≥ k − k′] = Prob [Z ≥ δk] ≤ Prob [Z ≥ (1 + ρ)E(Z)]

≤ e−
ρ2E(Z)

2+ρ = e
− δ2k2

4E(Z) ·
1

2+ δk
2E(Z) ≤ e− δ

2k2
6δk = e−

k−k′
6 .

The claim then follows, that is, with probability at least 1 − e− k−k
′

6 , at least k′ number of466

points out of any k points are s = σ
√

ln 2k
k−k′ ≥ σ-accurate. J467
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Next, we convert the value µ(k, k′) to the value ∆ as in Equation (2). In particular,468

being a (k, k′,∆)-functional-sample means that for any p ∈ P , there are at least k′ samples469

q from NNk
P (p) such that |f̃(q)−f(p)| ≤ ∆. Now assume that the furthest geodesic distance470

from any point in NNk
P (p) to p is λ. Then since f is a c-Lipschitz function, we have471

maxq∈NNk
P

(p) |f(q)− f(p)| ≤ cλ.472

We note that Claim 1.1 is valid for any point p of P . Using the union bound, the relation473

holds for all points in P with probability at least 1− ne− k−k
′

6 . Note that if k− k′ ≥ 12 lnn,474

then this probability is at least 1− 1
n , that is, the relation holds with high probability. Thus,475

with probability at least 1 − ne− k−k
′

6 , the input function f̃ : P → R under Gaussian noise476

model is a (k, k′,∆)-functional-sample with ∆ = σ
√

ln 2k
k−k′ + cλ.477

B Relations between our geometric noise model and the Wasserstein478

noise model479

The Wasserstein noise model assumes that the empirical measure µ = µP for P is close to
the uniform measure µM on M under the Wasserstein distance. Let M be a d′-Riemannian
manifold whose curvature is bounded from above by cM and has a positive strong convexity
radius %(M). Let VM denote the volume of M. Writing, Γ the Gamma function, let us set
CcM
d′ to be the following constant:

CcM
d′ = 4

d′
Γ
(

1
2

)d′
Γ
(
d′

2

)−1(√cM

π

)d′−1
, (12)

I Theorem 2.1. Let P be a set of points whose empirical measure µ satisfiesW2(µ, µM) ≤ σ,

where µM is the uniform measure on M. Then, for any m ≤
CcM
d′

(
π
cM

)d′
VM

, P is an (ε, r)-sample
under our noise model for

ε ≥ 1√
1 + 2

d′

(
mVM
CcM
d′

) 1
d′

+ σ√
m
, and r =∞.

Proof. Fixing a point x ∈ M, we can lower bound the volume of the Riemannian ball of480

radius a, centered at x, using the Günther-Bishop Theorem:481

I Theorem 2.2 (Günther-Bishop). Assuming that the sectional curvature of a manifold M is482

always less than cM and a is less than the strong convexity radius of M, then for any point483

x ∈ M, the volume V(x, a) of the geodesic ball centred on x and of radius a is greater than484

V cM
d′ (a) where d′ is the intrinsic dimension of M and V cM

d′ (a) is the volume of the Riemannian485

ball of radius a on a surface with constant curvature cM.486

We explicitly bound the value of V(x, a), with the following technical lemma:487

I Lemma 2.3. Let M be a Riemannian manifold with curvature upper bounded by cM, then
for any x ∈ M and a ≤ min(%(M); π√

cM
), the volume V(x, a) of the geodesic ball centred at x

and of radius a verifies:
V(x, a) ≥ CcM

d′ a
d′

where CcM
d′ is a constant independent of x and a.488
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Proof. Given a ≤ min(%(M), π√
cM

), we want to bound the volume V cM
d′ (a). Consider the

sphere of dimension d′ and curvature cM. The surface Sd′−1
cM

of the border of a ball of radius
a ≤ π√

cM
on this sphere is given by [12]:

Sd
′−1
cM

(a) = 2Γ
(

1
2

)d′
Γ
(
d′

2

)−1
c
− 1

2 (d′−1)
M sind

′−1(cMa)

We can bound the value of V cM
d′ (a) :

V cM
d′ (a) =

∫ a

0
Sd
′−1(l)dl

=
∫ a

0
2Γ
(

1
2

)d′
Γ
(
d′

2

)−1
c
− 1

2 (d′−1)
M sind

′−1(cMl)dl

≥ 2Γ
(

1
2

)d′
Γ
(
d′

2

)−1
c
− 1

2 (d′−1)
M 2

∫ a
2

0

(
2cMl

π

)d′−1
dl

= 4Γ
(

1
2

)d′
Γ
(
d′

2

)−1
c
− 1

2 (d′−1)
M

π

2cM

∫ cMa
π

0
ud
′−1du

Writing

CcM
d′ = 4

d′
Γ
(

1
2

)d′
Γ
(
d′

2

)−1(√cM

π

)d′−1
,

and using the Günther-Bishop Theorem, we have for any a ≤ min(%(M); π√
cM

) and any
x ∈ M,

V(x, a) ≥ CcM
d′ a

d′ .

J489

We next prove that the empirical measure µ of P satisfies the two conditions in Eqns (3)
and (4) for the value of ε and r specified in Theorem 2.1. Specifically, recall that µM be the
uniform measure on M and µ is a measure such that W2(µ, µM) ≤ σ. Now consider a point
x ∈ M and the Euclidean ball B(x, a) centred in x and of radius a. By definition of µM, for
any a ≤ π

cM
:

µM(B(x, a)) = Vol(x, a)
VM

≥
CcM
d′ a

d′

VM

By the definition of the pseudo-distance δm(x), we can then bound it, for anym ≤
CcM
d′

(
π
cM

)d′
VM

,
as follows:

δm(x) ≤
(
m VM
CcM
d′

) 1
d′

.

This in turn produces an upper bound on the distance to the measure µM:

dµM,m(x) ≤ 1√
m

√∫ m

0

(
VM
CcM
d′
l

) 2
d′

dl ≤ 1√
1 + 2

d′

(
VMm

CcM
d′

) 1
d′

By Theorem 4.1, it then follows that for any x ∈ M:

dµ,m(x) ≤ 1√
1 + 2

d′

(
VMm

CcM
d′

) 1
d′

+ σ√
m
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The first part of our noise model (i.e., Eqn (3)) is hence verified for any ε ≥ 1√
1+ 2

d′

(
VMm
CcM
d′

) 1
d′

+
σ√
m
. Moreover, for any x ∈ Rd, dµM,m(x) ≥ d(x,M) because M is the support of µM. Thus:

d(x,M) ≤ dµM,m(x) ≤ dµ,m(x) + σ√
m
≤ dµ,m(x) + ε

holds with no constraints on the value of dµ,m(x). That is, for r =∞, µ verifies the second490

part of our noise model (Eqn (4). This completes the proof of Theorem 2.1. J491

C Experimental illustration for functional noise492

Here, we present results obtained by applying our methods to cases where there is only493

functional noise. Our goals are to demonstrate the denoising power of both the k-median494

and the discrepancy-based approaches and to illustrate the differences between the practical495

performances of the k-median and discrepancy-based denoising methods. We compare our496

denoising results with the popular k-NN algorithm, which simply sets the function at point497

p to be the mean of the observed function values of its k nearest neighbours. Note that,498

when k′ = k, our discrepancy-based method is equivalent to the k-NN algorithm.499

Going back to the bone example from section 3.1, we apply our algorithm to the 10-500

nearest neighbours and k′ = 8. Using 100 sampling of the Bone with 1000 points each, we501

compute the average maximal error made by the various methods. The discrepancy-based502

method commits a maximal error of 10% on average, while the median-based method reco-503

vers the values with an error of 2% and the simple k-NN regression gives a maximal error504

of 16%, with most error concentrated around the neck region, see Figure 2. These results505

translate into the persistence diagrams that are more robust with the use of the discre-506

pancy (blue squares) or the k-median (red diamond) instead of the k-NN regression (green507

circles), see Figure 3. Both methods retrieve the 1-dimensional topological feature. The508

k-NN regression keeps some prominent 0-dimensional feature through the diagram instead509

of having a unique component, result obtained by using the discrepancy or the median. The510

persistence diagram of the original bone is given in red and contains only one feature.511

Bone without noise Bone after projection and k-NN

Bone after projection and discrepancy Bone after projection and median

Figure 2 Bone example after applying Gaussian perturbation, magical filter and a regression
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Figure 3 Persistence diagrams in dimension 0 for the Bone example: red, green and blue points
constitute the 0-th persistence diagram produced from clean (noise-less) data, from the denoised
data by using k-NN regression, and from the denoised data by using discrepancy method, respec-
tively.

As indicated by the theoretical results, the discrepancy-based method improves the clas-512

sic k-NN regression but the median-based algorithm performs slightly better. The discre-513

pancy however displays a better empirical behaviour when the Lipschitz condition on the514

input scalar field is relaxed, and/or the amount of noise becomes large. Additional illustra-515

tions can be found in the appendix.516

Image denoising517

We use a practical application: image denoising. We take the greyscale image Lena as the518

target scalar field f . In Figure 4, we use two ways to generate a noisy input scalar field519

f̃ . The first type of noisy input is generated by adding uniform random noise as follows:520

with probability p, each pixel will receive a uniformly distributed random value in range521

[0, 255] as its function value; otherwise, it is unchanged. Results under random noises are522

in the second and third rows of Figure 4. We also consider what we call outlier noise: with523

probability p, each pixel will be a outlier meaning that its function value is a fixed constant,524

which is set to be 200 in our experiments. This outlier noise is to simulate the aberrant525

function values caused by say, a broken sensor. The denoising results under the outlier-noise526

are shown in the last row of Figure 4.527

First, we note that kNN approach tends to smooth out function values. In addition to528

the blurring artifact, its denoising capability is limited when the amount of noise is high529

(where imprecise values become dominant). As expected, both k-median and discrepancy530

based methods outperform the kNN approach. Indeed, they demonstrate robust recovery of531

the input image even with 50% amount of random noise are added.532

While both k-median and discrepancy based methods are more resilient against noise,533

there are interesting difference between their practical performances. From a theoretical534

point of view, when the input scalar field is indeed a (k, k′,∆)-functional-sample, k-median535

method gives a slightly better error bound (Observation 1) as compared to the discrepancy536

based method (Lemma 3.1). However, when (k, k′,∆)-sampling condition is not satisfied,537

the median value can be quite arbitrary. By taking the average of a subset of points, the538

discrepancy method, on the other hand, is more robust against large amount of noise. This539

difference is evident in the third and last row of Figure 4.540
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Original Lena The 0-th persistence diagram

10% random noise kNN: k = 9 k-median, k = 9 discrepancy, k = 9, k′ = 5

50% random noise kNN: k = 25 k-median, k = 25 discrepancy, k = 25, k′ = 13

40% outlier noise kNN: k = 25 k-median, k = 25 discrepancy, k = 25, k′ = 13

Figure 4 The denoised images after kNN, k-median, and discrepancy denoising approaches. The
first row shows the original image and its 0-th persistence diagram. Second and third rows are
under random noise of input, while fourth row are under outlier-noise as described in the text. The
fifth row provides the 0-th persistence diagrams on images in the fourth row, which are computed
by the scalar field analysis algorithm from [5] .
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Moreover, the application to persistent homology which was our primary goal is much541

cleaner after the discrepancy-based method. The structure of the beginning of the diagrams542

is almost perfectly retrieved by both the median and discrepancy-based methods. However,543

the median induces a shrinking phenomenon to the diagram. This means that the width544

of the diagram is reduced ans so are the lifespans of topological features, making it more545

difficult to distinguish between noise and relevant information. We remark that the classic k-546

NN approach shrinks the diagram even more, to the point that it is very hard to distinguish547

the information from the noise.548

The standard indicator to measure the quality of a denoising is the Peak Signal over
Noise Ratio (PSNR). Given a grey scale input image I and an output image O with the
grey scale between 0 and 255, it is defined by

PSNR(I,O) = 10 log10

(
2562

1
ij

∑
i

∑
j(I[i][j]−O[i][j])2

)
.

Figure 5 shows the quality of the denoising for a set of Lena images with increasing quantity549

of noise. The curves are obained using the median (M) and different values of k′ in the550

discrepancy while k is fixed at 25. The median is better when the noise ratio is small but as551

we increase the number of outliers, the discrepancy obtains better results. This also shows552

that the optimal k′ depends on the noise ratio. It also depends on the image we consider553

and thus makes it difficult to find an easy way to choose it automatically. Heuristically, it554

is better to take k′ around 2
3k, especially when there is a lot of noise.555

10

15

20

25

30

35

0% 10% 20% 30% 40% 50%

noise ratio

P
SN

R

median

k′ = 25
k′ = 21
k′ = 19
k′ = 17
k′ = 13

Figure 5 PSNR for Lena images depending on the choice of k′ and the quantity of noise

State of the art results in computer vision obtain better experimental results (e.g. [9,556

16, 17]). However, these results assume that the noise model is known and they can start557

by detecting and removing noisy points before rebuilding the image. Our methods are free558

from assumptions on the generative model of the image. The algorithms do not change559

depending on the type of noise.560

Persistence diagram computation561

We consider a more topological example from real data. We consider an elevation map of562

an area near Corte in the French island of Corsica. The true measures of elevation are given563
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in the left image of Figure 6. The topography can be analysed by looking at the function564

minus-altitude. We add random faulty sensors that give false results with a 20% probability565

to simulate malfunctioning equipments. The area covers a square of 2 minutes of arc in566

both latitude and longitude. We apply our algorithm with the following parameters: k = 9,567

k′ = 7, η = .05 minute and δ = .025 minute. We show the recovered persistence diagrams568

in Figure 7, where the prominent peaks of the original elevation map are highlighted. The569

“gap” stands for the ratio between the shortest living relevant feature, highlighted in red,570

and the longest feature created by the noise.571

Without noise With 20% background noise

Figure 6 Elevation map around Corte

2500 0

0
−∞

gap=2.96
2500 0

0
−∞

gap=0.75
2500 0

0
−∞

gap=2.17

Without noise With 20% background noise After kNN regression with k = 9

2500 0

0
−∞

gap=2.91
2500 0

0
−∞

gap=3.34

After Discrepancy regression with k = 9, k′ = 7 After median regression with k = 9

Figure 7 Persistence diagrams of Corte Elevation map

We note that the gap in the case of the noisy point cloud (before denoising) is less than572

1. This means that some relevant topological feature has a shorter lifespan than one caused573

by noise. Intuitively, this means that it is difficulty to tell true features from noise from this574

persistence diagram, without performing denoising. We also show the persistence diagrams,575

as well as the “gap" values, for the denoised data after the three denoising method: k-NN576

regression, k-median and our discrepancy based method. In the case of the k-NN regression,577

the topological feature are in the right order. However, the prominence given by the gap is578

significantly smaller than the one from the original point cloud. Both the discrepancy based579
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method and the median provides gaps on par with the non-noisy input and thus allow a580

good recovery of the correct topology.581
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