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Abstract

The notion of ε-sample, introduced by Amenta and Bern, has proven to be a key concept
in the theory of sampled surfaces. Of particular interest is the fact that, if E is an ε-sample
of a C2-continuous surface S for a sufficiently small ε, then the Delaunay triangulation of E
restricted to S is a good approximation of S, both in a topological and in a geometric sense.
Hence, if one can construct an ε-sample, one also gets a good approximation of the surface.
Moreover, correct reconstruction is ensured by various algorithms.

In this paper, we introduce the notion of loose ε-sample. We show that the set of loose ε-
samples contains and is asymptotically identical to the set of ε-samples. The main advantage of
loose ε-samples over ε-samples is that they are easier to check and to construct. We also present
a simple algorithm that constructs provably good surface samples and meshes. Given a C2-
continuous surface S without boundary, the algorithm generates a sparse ε-sample E and at the
same time a triangulated surface Del|S(E). The triangulated surface has the same topological
type as S, is close to S for the Hausdorff distance and can provide good approximations of
normals, areas and curvatures. A notable feature of the algorithm is that the surface needs
only to be known through an oracle that, given a line segment, detects whether the segment
intersects the surface and, in the affirmative, returns the intersection points. This makes the
algorithm useful in a wide variety of contexts and for a large class of surfaces.
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triangulation, mesh refinement

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve,
surface, solid, and object representations

∗Corresponding author. Fax: +33-492-387-643.



1 Introduction

Meshing and reconstructing surfaces are two fundamental problems in geometry processing. In
surface reconstruction, a finite set of points E on a surface S is given and one wants to compute a
good approximation of S from E. This is of course only possible if E is a good sample of S in some
sense. In surface mesh generation, the problem is somehow opposite. A surface S is known and
we want to compute a triangulated surface that suitably approximates S. Clearly, the vertices of
the triangulated surface have to sample correctly S. Hence, in both applications and also in many
others, including the new arena of point set surfaces [1, 2], the notion of good sample is crucial.

The notion of ε-sample, introduced by Amenta and Bern [3], has proven to be a key concept
in the theory of sampled surfaces. Roughly, an ε-sample E of a surface S is a (non necessarily
uniform) point set that is sufficiently dense with respect to the distance to the medial axis of S –
see Section 2. Of particular interest is the fact that if E is an ε-sample of a C2-continuous surface
S for a sufficiently small ε, the Delaunay triangulation of E restricted to S, Del|S(E), is a good
approximation of S, both in a topological and in a geometric sense – see Section 2 for more details.
Hence, given an ε-sample of a surface, it is easy to get a good approximation of the surface.

This result (and variants of it) plays a central role in the analysis of all surface reconstruction
algorithms that offer theoretical guarantees [8]. In particular, if E is an ε-sample of a surface S for
a sufficiently small ε, these algorithms can reconstruct a surface that has the same topology type
as S and is close to S.

One drawback of the concept of ε-sample is the fact that it is difficult to check whether a sample is
an ε-sample of a given surface, and even more difficult to construct a (preferably sparse) ε-sample
of a given surface. This is due to the fact that a direct application of the definition of an ε-sample
leads to complicated operations like cutting the surface with balls.

In this paper, we introduce the notion of loose ε-sample. The set of loose ε-samples contains and
is asymptotically identical to the set of ε-samples. The main advantage of loose ε-samples over
ε-samples is that they are easier to check and to construct. Indeed, checking that a sample is a loose
ε-sample reduces to checking whether a finite number of spheres are small enough with respect to
the distance from their centers to the medial axis of the surface.

We also present a construction algorithm which derives from Chew’s surface meshing algorithm [17].
Given a C2-continuous surface S without boundary, the algorithm generates a sparse ε-sample E
and at the same time a triangulated surface Del|S(E). The triangulated surface has the same
topological type as S, is close to S for the Hausdorff distance and can provide good approximations
of normals, areas and curvatures. A notable feature of the algorithm is that the surface needs only
to be known through an oracle that, given a line segment, detects whether the segment intersects
the surface and, in the affirmative, returns the intersection points. This makes the algorithm useful
in a wide variety of contexts and for a large class of surfaces.

The paper is organized as follows. After the recall of several useful concepts and the introduction
of the notion of loose ε-sample (Section 2), the paper is divided in two parts:
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• The first part deals with the structural properties of loose ε-samples. In Section 3, we present
some of their local properties that are used in Section 4 to establish our main results. We
prove that, for sufficiently small ε, Del|S(E) is a 2-manifold without boundary that is ambient
isotopic to S and whose Hausdorff distance to S is O(ε2). We also prove that S is covered
by the so-called surface Delaunay balls, and that loose ε-samples are ε(1 + 8.5 ε)-samples. In
Section 5, we bound the size of loose ε-samples.

• The second part of the paper presents our surface mesh generator, as an application of the
theoretical results introduced in the first part. We describe our algorithm in Sections 6 and
7, and we perform its analysis in Section 8. In Section 9, we present several improvements
that can be made to the algorithm, either to speed it up or to enhance the quality of its
output. Section 10 deals with the computation of the distance to the medial axis of the
surface, which plays a central role in the context of ε-sampling. Finally, in Section 11 we
present our implementation as well as some experimental results.

Readers mainly interested in the algorithm can skip the first part of the paper in a first reading. For
completeness, we recall a few well-known results in appendix. In the body of the paper, references
to these results begin with an “A” (Theorem A.1, Lemma A.2 etc.).

2 Definitions and preliminary observations

In the paper, S denotes a compact, orientable, C2-continuous surface without boundary. S will be
called a smooth closed surface for short. By −→n (p) we denote the surface normal at point p ∈ S,
and by T (p) the plane tangent to S at p.

Our analysis uses the fact that locally a smooth closed surface is the graph of a function. More
precisely, given an orthonormal frame (O, x, y, z) of R

3, a subset of R
3 is said to be xy-monotone if

it is the graph of a function of the two variables x and y. A terrain is a surface that is xy-monotone
in some frame (O, x, y, z) of R

3. Similarly, given an orthonormal frame (O, x, y) of R
2, a subset of

R
2 is said to be x-monotone if it is the graph of a function of variable x.

2.1 Restricted Delaunay triangulation

In the paper, E denotes a finite point sample of S and Del(E) the 3-dimensional Delaunay trian-
gulation of E. By V(E) we denote the set of all edges of the Voronoi diagram of E.

We call Delaunay triangulation of E restricted to S, and we note Del|S(E), the sub-complex of
Del(E) that consists of the facets of Del(E) whose dual Voronoi edges intersect S – see figure 11
(color section). An edge or vertex of Del(E) belongs to Del|S(E) if it is incident to at least one
facet of Del|S(E). Notice that we depart from the usual definition [17, 22] and do not consider
vertices and edges with no incident facet of Del|S(E). See Figure 1 for an illustration.

A facet (resp. edge, vertex) of Del|S(E) is called a restricted Delaunay facet (resp. restricted
Delaunay edge, restricted Delaunay vertex). For a restricted Delaunay facet f , we call surface
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Delaunay ball of f any ball circumscribing f centered at some point of S ∩ f∗, where f∗ is the
Voronoi edge dual to f . We call surface Delaunay patch the intersection of a surface Delaunay ball
with S. Notice that the centers of the surface Delaunay balls are precisely the intersection points
of S and V(E).

2.2 Loose ε-samples and ε-samples

The medial axis of S, denoted by M , is the topological closure of the set of points of R
3 that have

more than one nearest neighbour in S.

For a point x ∈ R
3, we call distance to the medial axis at x, and write dM (x), the Euclidean distance

from x to the medial axis of S.

As noticed by Amenta and Bern [3], dM is 1-Lipschitz, i.e. |dM (x) − dM (y)| ≤ ‖x − y‖.

We define dinf
M = inf {dM (x), x ∈ S} and dsup

M = sup {dM (x), x ∈ S}. Since S is a smooth closed
surface, both dinf

M and dsup
M are finite positive constants.

We borrow from Amenta and Bern [3] the notion of ε-sample, defined below. In the whole paper,
B(c, r) denotes the ball of center c and radius r.

Definition 2.1 E is an ε-sample of S if ∀x ∈ S, E ∩ B(x, ε dM (x)) 6= ∅.

For sufficiently small values of ε, ε-samples enjoy many beautiful properties. We recall the most
important ones in our context.

– Normals: the angle between the normal to a facet f of Del|S(E) and the normal to S at the
vertices of f is O(ε) [3].

– Area: the area of Del|S(E) approximates the area of S [28].

– Curvatures: the curvature tensor of S can be estimated from Del|S(E) [18].

– Homeomorphism: Del|S(E) is homeomorphic to S [3].

– Hausdorff distance: the Hausdorff distance between S and Del|S(E) is O(ε2) (Theorem 4.5).

– Reconstruction: several algorithms can reconstruct from E a surface that is homeomorphic
[3, 4, 8, 19] or even ambient isotopic [5] to S.

We will show that these properties hold for loose ε-samples as well.

Definition 2.2 E is a loose ε-sample of S if the two following conditions are verified:
1. ∀x ∈ S ∩ V(E), E ∩ B(x, ε dM (x)) 6= ∅
2. Del|S(E) has vertices on all the connected components of S
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Since the centers of the surface Delaunay balls are precisely the intersection points of S with the
Voronoi edges, Condition 1 of Definition 2.2 is verified if and only if every surface Delaunay ball
B(c, r) has a radius of at most ε dM (c).

Observe that Condition 1 alone is not sufficient to control the density of E. Indeed, according to
our definition of the restricted Delaunay triangulation, a point of E is a vertex of Del|S(E) only if
at least one edge of the boundary of its Voronoi cell intersects S. It follows that some of the points
of E may not be vertices of Del|S(E). In some situations (see Figure 1 for an example), Del|S(E)
may even be empty, in which case Condition 1 is trivially verified for any value of ε.

Figure 1: A case when Del|S(E) is empty: the four points of E are placed on a torus, such that the
Voronoi edges pass through the hole.

Loose ε-samples and ε-samples are closely related but not identical concepts. The next lemma
follows from Definitions 2.1 and 2.2, and from Theorem 2 of [3].

Lemma 2.3 If E is an ε-sample of S, with ε < 0.1, then it is also a loose ε-sample of S.

Proof Clearly, Condition 1 of Definition 2.2 is automatically verified when E is an ε-sample of S.
To show that Condition 2 is also verified, we use Theorem 2 of [3], which states that, when ε < 0.1,
every k-face of Vor(E) either does not intersect S or intersects S along a (k − 1)-topological ball.
Hence, the Voronoi cell p∗ of any point p ∈ E intersects S along a topological disk whose boundary
lies in the boundary of p∗ since S has no boundary. Moreover, the boundary of S ∩ p∗ cannot lie
inside a single facet of the boundary of p∗, since otherwise this facet would intersect S along a
topological circle, and not along a topological arc. It follows that at least one edge of the boundary
of p∗ intersects S, which means that p is a vertex of Del|S(E). Moreover, since ε < 1, E has some
points on all the connected components of S. Condition 2 of Definition 2.2 is therefore fulfilled. �

The converse of Lemma 2.3 is true asymptotically, as we will see in Section 4.3 (Corollary 4.10).
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Since adding points to an ε-sample results in another ε-sample, we cannot hope for an upper bound
on ε-samples without making some additional assumptions. The same observation can also be
made for loose ε-samples since ε-samples are loose ε-samples, by Lemma 2.3. This motivates the
following definition.

Definition 2.4 Given a positive constant κ and a positive 1-Lipschitz function φ, a point sample
E of S is said to be (κ, φ)-sparse if ∀x ∈ E, dist(x, E \ {x}) ≥ κ φ(x).

Notice that (κ, φ)-sparse samples are not assumed to be ε-samples nor loose ε-samples. In Section
5.2 (Theorem 5.4), we will give an upper bound on the size of (κ, φ)-sparse samples, which will lead
to a sufficient (local) condition for loose ε-samples and ε-samples to have an optimal size.

2.3 Other notations

The following constants are used in the paper:
• ε0 ≈ 0.091 is the smallest positive value of ε such that 2ε

1−8ε + arcsin ε
1−ε ≥ π

4 .

• ε1 ≈ 0.096 is the smallest positive value of ε such that 2ε
1−7ε + arcsin ε

√
3

1−ε ≥ π
4 .

• ε2 = π
4+9π ≈ 0.097.

• ε3 ≈ 0.12 is the smallest positive value of ε such that 2ε
1−4ε + arcsin ε

√
3

1−ε ≥ π
4 .

• ε4 ≈ 0.17 is the smallest positive value of ε such that ε
1−5ε + arcsin ε

√
3

1−ε ≥ π
2 .

• ε5 ≈ 0.065 is the smallest positive value of ε such that ε(1 + 8.5 ε) ≥ 0.1.

We also use the notation (−→u ,−→v ) to denote the modulus of the angle (measured in [−π, π]) between
vectors −→u and −→v of R

3, and −→u .−→v to denote their dot-product.
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Part I

Properties of loose ε-samples

3 Local properties of loose ε-samples

In this section, we prove that surface Delaunay balls of sufficiently small radii keep important
properties of planar disks. In particular, we show that they intersect S along topological disks
whose boundaries pairwise intersect in at most two points (Proposition 3.10).

3.1 Technical lemmas

In this paragraph, we introduce two technical results (Lemmas 3.5 and 3.6) that will be useful in
the remainder of the paper. Their proofs rely on the following statements by Amenta and Bern [3]
on one hand, Mederos, Velho and Figueiredo [27] on the other hand.

Lemma 3.1 Let f be a facet of Del|S(E). Assume that some surface Delaunay ball B(c, r) of f is

such that r ≤ ρ dM (c), with ρ < 1
7 . Let a be a vertex of f . If a has an inner angle of at least π/3,

then the smaller angle between the line normal to f and the normal to S at a is at most arcsin ρ
√

3
1−ρ .

Otherwise, the smaller angle between the line normal to f and the normal to S at a is at most
2ρ

1−7ρ + arcsin ρ
√

3
1−ρ .

Proof By assumption, the radius of B(c, r) is r ≤ ρ dM (c), which is at most ρ (dM (a) + ‖c − a‖)
since dM is 1-Lipschitz. Since B(c, r) circumscribes f , we have ‖c− a‖ = r. Thus, r ≤ ρ

1−ρ dM (a).
It follows that the proof of Lemma 7 of [3] holds here. �

Lemma 3.2 For any two points p and q on S with ‖p − q‖ ≤ ρ dM (p), the smaller angle between
the line segment pq and the surface normal at p is at least π

2 − arcsin ρ
2 .

Lemma 3.3 For any two points p and q on S with ‖p−q‖ ≤ ρ min {dM (p), dM (q)}, for any ρ < 1
3 ,

the modulus of the angle between the normals to S at p and at q is at most ρ
1−3ρ .

Lemma 3.4 Let f and f ′ be two facets of Del|S(E) with a common edge. If f and f ′ are cir-
cumscribed respectively by surface Delaunay balls B(c, r) and B(c′, r′), such that r < ε3 dM (c) and
r′ < ε3 dM (c′), then the dihedral angle formed by f and f ′ is greater than π

2 .

Proof This result is a consequence of Theorem 1 of [27], which states that the dihedral angle

formed by f and f ′ is at least π − 2
(

2ε3

1−4ε3
+ arcsin ε3

√
3

1−ε3

)

, which is greater than π
2 . �

Using the above statements, we can now prove our technical results.
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Lemma 3.5 Let c and c′ be two points of S such that ‖c− c′‖ ≤ ε (dM (c) + dM (c′)), where ε < 1
8 .

There exists a vector −→v orthogonal to
−→
cc′, such that the angle between −→v and the normal to S at

any point of S ∩ B(c, 2ε dM (c)) is at most 2ε
1−8ε + arcsin ε

1−ε . Hence, if ε ≤ ε0, this angle is at
most π

4 .

Proof Let B+ = B(c, 2ε dM (c)). We have

∀x ∈ B+ ∩ S, ‖x − c‖ ≤ 2ε dM (c) (1)

thus
∀x ∈ B+ ∩ S, dM (x) ≥ dM (c) − ‖x − c‖

≥ (1 − 2ε) dM (c)
(2)

(1) and (2) give

∀x ∈ B+ ∩ S, ‖x − c‖ ≤ 2ε

1 − 2ε
min {dM (c), dM (x)}

which implies, according to Lemma 3.3,

∀x ∈ B+ ∩ S, (−→n (x),−→n (c)) ≤ 2ε/(1 − 2ε)

1 − 6ε/(1 − 2ε)
=

2ε

1 − 8ε

By hypothesis, ‖c − c′‖ ≤ ε dM (c) + ε dM (c′) ≤ 2ε dM (c) + ε ‖c − c′‖, hence ‖c − c′‖ ≤ 2ε
1−ε dM (c).

Lemma 3.2 then tells that

min {(
−→
cc′,−→n (c)), (

−→
c′c,−→n (c))} ≥ π

2
− arcsin

ε

1 − ε
(3)

Inside plane (c,
−→
cc′,−→n (c)), let −→v be the unitary vector that is orthogonal to

−→
cc′ and has a positive

dot-product with −→n (c). According to (3) we have (−→n (c),−→v ) ≤ arcsin ε
1−ε . Thus,

∀x ∈ S ∩ B+, (−→n (x),−→v ) ≤ (−→n (x),−→n (c)) + (−→n (c),−→v )
≤ 2ε

1−8ε + arcsin ε
1−ε

�

Lemma 3.6 An edge of Vor(E) cannot intersect S in more than one point x such that dist(x, E) <
1
7 dM (x). Moreover, in such a point the intersection is transversal.

Proof Let ε < 1
7 . Let e be an edge of Vor(E) and f its dual Delaunay facet. We assume that e

intersects S in at least one point x such that dist(x, E) ≤ ε dM (x). By definition, x is the center of
a surface Delaunay ball of f . Let a be the vertex of f that has the largest inner angle. The value
of this angle is at least π

3 , hence Lemma 3.1 says that

(−→n (a),−→n f ) ≤ arcsin
ε
√

3

1 − ε
(4)
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where −→n f denotes the unitary vector orthogonal to f that makes the smaller angle with −→n (a). Let
Ba be the ball B(a, ε

1−ε dM (a)). For any point x as above, we have

‖x − a‖ = dist(x, E) ≤ ε dM (x)
≤ ε (dM (a) + ‖x − a‖)

Hence, ‖x − a‖ ≤ ε
1−ε dM (a). In other words, x lies in Ba. We now show that Ba ∩ S is a terrain

over the plane Πf that supports f . For any y ∈ Ba ∩ S, we have

‖y − a‖ ≤ ε

1 − ε
dM (a) ≤ ε

1 − ε
(dM (y) + ‖y − a‖)

which implies ‖y − a‖ ≤ ε
1−2ε dM (y). According to Lemma 3.3, we then have

(−→n (y),−→n (a)) ≤ ε/(1 − 2ε)

1 − 3ε/(1 − 2ε)
=

ε

1 − 5ε
(5)

(4) and (5) give

(−→n (y),−→n f ) ≤ (−→n (y),−→n (a)) + (−→n (a),−→n f ) ≤ ε

1 − 5ε
+ arcsin

ε
√

3

1 − ε

which is less than π
2 since ε < 1

7 < ε4. Thus, by Lemma A.4, Ba ∩S is a terrain over Πf . Since e is
orthogonal to Πf , it cannot intersect Ba ∩ S more than once, nor tangentially. The result follows
since, as shown above, every point x ∈ e ∩ S such that dist(x, E) ≤ ε dM (x) lies in Ba. �

3.2 Topological disks and terrains

Lemma 3.7 ([7]) Let B be a ball that intersects S. If the intersection is not a topological disk,
then B contains a point of the medial axis of S. As a consequence, if E is a loose ε-sample, with
ε < 1, then surface Delaunay patches are topological disks.

Lemma 3.8 If E is a loose ε-sample, with ε < ε2, then, for every surface Delaunay ball B =
B(c, r), for any point x ∈ S ∩ B, S ∩ B(x, 2r) is a topological disk and a terrain over T (x).

Proof Since E is a loose ε-sample, we have r ≤ ε dM (c) ≤ ε(dM (x) + ‖x − c‖) ≤ ε(dM (x) + r),
that is, r ≤ ε

1−ε dM (x). Thus, 2r < dM (x) since ε < ε2 < 1
3 . According to Lemma 3.7, S ∩B(x, 2r)

is thus a topological disk.

In addition, since r ≤ ε
1−ε dM (x), we have

∀y ∈ B(x, 2r), ‖y − x‖ ≤ 2r ≤ 2ε
1−ε dM (x)

≤ 2ε
1−ε (dM (y) + ‖y − x‖)
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which implies that ‖y − x‖ ≤ 2ε
1−3ε dM (y). It follows that ‖y − x‖ ≤ ρ min {dM (y), dM (x)}, with

ρ = 2ε
1−3ε . Thus, according to Lemma 3.3,

∀y ∈ B(x, 2r), (−→n (y),−→n (x)) ≤ ρ

1 − 3ρ
=

2ε

1 − 9ε

Since ε < ε2, we have 2ε
1−9ε < π

2 , hence S ∩ B(x, 2r) is a terrain by Lemma A.4. �

3.3 Pseudo-disks

Definition 3.9 Topological disks are pseudo-disks if they pairwise intersect along topological disks
(that may be empty or reduced to a point) and if their boundaries pairwise intersect in at most two
points.

Observe that the boundaries of two pseudo-disks either do not intersect, or intersect in one point
tangentially, or intersect in two points transversally.

The aim of this section is to prove the following proposition:

Proposition 3.10 If E is a loose ε-sample, with ε ≤ ε0, then surface Delaunay patches are pseudo-
disks.

To assist the reader, the proof is organized in a hierarchical way, with several lemmas and claims
with independent proofs. These proofs can be skipped in a first reading.

Proof of Proposition 3.10
Let B = B(c, r) and B′ = B(c′, r′) be two surface Delaunay balls. According to Lemma 3.7,
D = B ∩ S and D′ = B′ ∩ S are topological disks, since ε ≤ ε0 < 1. Their boundaries C and C ′

are topological circles. Let us assume that balls B and B′ intersect, the other case being trivial.
Notice that none of them can be contained in the other one, since they are Delaunay balls. Thus,
their bounding spheres ∂B and ∂B′ also intersect. Let Γ be the circle ∂B ∩ ∂B′, ρ its radius
(ρ < min {r, r′}) and P its supporting plane. We define ∆ = B ∩P and notice that Γ = ∂∆. Since
S is a closed surface, we have C ⊂ ∂B and C ′ ⊂ ∂B′, which implies that

C ∩ C ′ ⊆ S ∩ Γ (6)

Let B+ = B(c, 2r). Since ‖c− c′‖ ≤ r + r′ ≤ ε dM (c) + ε dM (c′), with ε ≤ ε0, Lemma 3.5 says that

there exists a vector −→v orthogonal to
−→
cc′ such that

∀x ∈ S ∩ B+, (−→n (x),−→v ) ≤ π

4
(7)

Let us choose in R
3 a reference frame with origin c, y-axis directed along

−→
c′c, and z-axis directed

along −→v . We call Ll and Lr the two lines of P , parallel to the z-axis, that are tangent to Γ. The
region of P bounded by Ll and Lr is called G (see Figure 2). In the following, ξ denotes S∩B+∩G.
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Figure 2: Definitions of G and G′

Lemma 3.11 ξ is a connected x-monotone arc.

Proof According to (7), we have ∀x ∈ S ∩ B+, (−→n (x),−→v ) ≤ π
4 . Thus, by Lemma A.4, B+ ∩ S

is xy-monotone, which implies that ξ is x-monotone. Moreover, according to Lemma A.5, B+ ∩ S
lies outside the cone of apex c ∈ S, of vertical axis and of half-angle π

4 . The equation of the cone in

our frame is z2 = x2 + y2. It intersects P along two hyperbolic arcs of equations z = ±
√

x2 + d2,
where d ≤ r is the distance from c to P . Consider the subregion G′ of G that is bounded vertically
by the two hyperbolic arcs (see Figure 2). Since S ∩ B+ lies outside the cone, ξ is included in G′.

The points of G′ that are farthest from c are the points (±ρ,−d,±
√

ρ2 + d2). Their distance to c
is

√

2(ρ2 + d2) < 2r

In other words, G′ ⊂ int(B+). It follows that ξ is included in int(B+) and cannot intersect ∂B+.
Its endpoints must then lie on the vertical lines Lr and Ll. But there can be only one endpoint per
vertical line, since ξ is x-monotone. Hence, ξ has at most two endpoints and is thus connected. �

Lemma 3.12 |S ∩ Γ| ≤ 2.

Proof Let us assume for a contradiction that |S ∩Γ| > 2. First, we show that there exists a point
where the curvature of ξ is high and hence the distance to the medial axis M is small. Then we
work out a contradiction with the fact that E is a loose ε-sample, with ε ≤ ε0.

Claim 3.12.1 There exists a point q at which the curvature of ξ is at least 1
ρ .

Proof We made the assumption that |S ∩ Γ| > 2. Since Γ ⊂ G and Γ ⊂ B+, ξ also intersects
Γ more than twice. And since ξ is connected by Lemma 3.11, there is a subarc ab of ξ that lies
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outside ∆ and whose endpoints a and b lie on Γ. This subarc may be reduced to a point (a = b),
since ξ may be tangent to Γ. But in this case, in the vicinity of a, ξ is locally included in ∆ and
tangent to Γ at a. Thus, its curvature at a is at least 1

ρ , which proves the claim with q = a. So
now we assume that arc ab of ξ is not reduced to a point. Since ξ is x-monotone by Lemma 3.11,
a and b lie on the same half of Γ, upper half or lower half (say upper half). Thus, the smaller arc
of Γ that joins a and b is also x-monotone. Then, by Lemma A.3, there is a point q of arc ab of ξ
at which the curvature of ξ is at least 1

ρ , which proves the claim. �

Claim 3.12.2 dM (q) ≤ ρ
√

2.

Proof Let −→n ξ(q) be the normal to planar curve ξ at point q. By (7), −→n (q) is not orthogonal to
P , thus −→n ξ(q) is oriented along the projection of −→n (q) onto P . Hence, by Lemma A.2, we have
(−→n (q),−→n ξ(q)) ≤ (−→n (q),−→v ) which is at most π

4 by (7). According to Theorem A.1, we then have
at q

II(ξ′, ξ′) ≥ cos
π

4
‖ξ′′‖

ξ′ is the unit tangent vector of ξ at q and ‖ξ′′‖ is the curvature of ξ at q, which is more than 1
ρ

according to Claim 3.12.1. So, at q we have

II(ξ′, ξ′) ≥ 1

ρ
√

2
(8)

Recall that II is a symmetric bilinear form, thus it can be diagonalized in an orthonormal frame, and
its eigenvalues are the minimum and maximum curvatures of S at q. Let us call these values κmin(q)
and κmax(q) respectively. Since ξ′ is a unit vector, we have II(ξ′, ξ′) ≤ max {|κmin(q)|, |κmax(q)|}. It
follows, according to (8), that max {|κmin(q)|, |κmax(q)|} ≥ 1

ρ
√

2
, or, equivalently, that the minimal

radius of curvature of S at q is at most ρ
√

2. The claim follows. �

The end of the proof of Lemma 3.12 is now immediate. We have

dM (c) ≤ dM (q) + ‖c − q‖
≤ ρ

√
2 + 2r

≤ r(
√

2 + 2)

So, the radius of ball B is at least 1√
2+2

dM (c), which contradicts the assumption that E is a loose

ε-sample, with ε ≤ ε0 < 1√
2+2

. This ends the proof of Lemma 3.12. �

From Lemma 3.12, it immediately follows that |C ∩ C ′| ≤ 2, by (6).

Lemma 3.13 S ∩ ∆ is not reduced to two points.

Proof Let us assume that S intersects ∆ in two points exactly, say a and b. Then, the subarc
of ξ that joins points a and b lies outside ∆. It follows, by the same reasoning as in the proof of
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Claim 3.12.1, that there exists some point q of ξ at which the curvature of ξ is at least 1
ρ . It follows

by Claim 3.12.2 that dM (q) ≤ ρ
√

2, which leads to a contradiction, as in the end of the proof of
Lemma 3.12. �

We can now complete the proof of Proposition 3.10. It follows from Lemmas 3.12 and 3.13 that D
and D′ intersect along a topological disk. The result is clear if D ⊆ D′ or if D′ ⊆ D. Otherwise,
we have |C ∩ C ′| ≤ 2, by Lemma 3.12. If |C ∩ C ′| = 0, then D ∩ D′ is empty. If |C ∩ C ′| = 1, then
D ∩ D′ is reduced to a point. If |C ∩ C ′| = 2, then D ∩ D′ is either a topological disk or equal
to C ∩ C ′. But if D ∩ D′ = C ∩ C ′, then S ∩ ∆ = C ∩ C ′ since C ∩ C ′ ⊆ S ∩ ∆ ⊆ D ∩ D′. This
contradicts Lemma 3.13. Hence, D ∩ D′ is not equal to C ∩ C ′ and is therefore a topological disk.
This ends the proof of Proposition 3.10. �

4 Global properties of loose ε-samples

In this section, E is a loose ε-sample of S, with ε ≤ ε0. Using the results of the previous section,
we prove that Del|S(E) is a manifold without boundary (Theorem 4.3), ambient isotopic to S
(Theorem 4.4), at Hausdorff distance O(ε2) from S (Theorem 4.5). From the latter we deduce that
E is an ε(1 + 8.5 ε)-sample of S (Corollary 4.10). We also prove that the surface Delaunay balls
cover S (Theorem 4.12).

4.1 Manifold

We first prove that every edge of Del|S(E) is incident to exactly two facets of Del|S(E). We then
prove that every vertex of Del|S(E) has only one umbrella. An umbrella of a vertex v is a subset
of facets of Del|S(E) incident to v whose adjacency graph is a cycle.

Since E is a loose ε-sample of S, with ε ≤ ε0, every point x ∈ S ∩ V(E) is at distance less than
1
7 dM (x) from E. Thus, by Lemma 3.6, the dual of any facet f of Del|S(E) intersects S only once.
We denote by Bf = (cf , rf ) the only surface Delaunay ball that circumscribes f . The surface
Delaunay patch of f , S ∩ Bf , is denoted by Df . Let Cf = ∂Df .

Proposition 4.1 Every edge of Del|S(E) is incident to exactly two facets of Del|S(E).

Proof Let e be an edge of Del|S(E). We denote by e∗ the Voronoi face dual to e. Since S has no
boundary, its intersection with Aff(e∗) (the affine hull of e∗) is a collection of simple closed curves,
none of which intersects the boundary ∂e∗ of e∗ tangentially, by Lemma 3.6. Thus, by the Jordan
curve theorem, each component of S∩Aff(e∗) intersects ∂e∗ in an even number of points. It follows
that S intersects ∂e∗ in an even number of points. Moreover, by Lemma 3.6, each edge of ∂e∗ is
intersected at most once by S. Thus, S intersects an even number of edges of ∂e∗, and e is incident
to an even number of restricted Delaunay facets.

In addition, two restricted Delaunay facets incident to e make a dihedral angle greater than π
2 , by

lemma 3.4. It follows that e may be incident to at most three restricted Delaunay facets.
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In conclusion, the number of facets of Del|S(E) incident to e is even, at least one and at most three.
The result follows. �

It follows from the above proposition that the restricted Delaunay facets incident to a vertex of
Del|S(E) form a set of umbrellas.

Proposition 4.2 Every vertex of Del|S(E) has exactly one umbrella.

Proof Let v be a vertex of Del|S(E). Let F (v) be the set of all facets of Del|S(E) that are incident
to v. Let fv be the facet of F (v) that has the surface Delaunay ball of largest radius. We call rfv

this radius. Then B(v, 2rfv
) contains the surface Delaunay balls of all facets of F (v). Moreover,

by lemma 3.8, S ∩ B(v, 2rfv
) is a topological disk and a terrain over T (v), the tangent plane

of S at v. Hence, the orthogonal projection of S ∩ B(v, 2rfv
) onto T (v) is one-one and therefore

preserves several topological properties, such as pseudo-disks or the fact that the interiors of surface
Delaunay patches are empty of points of E. For simplicity of notations, we identify objects with
their projection onto T (v). Let F1(v) be one of the umbrellas formed by the facets of F (v). We
call U1(v) the union of the facets of F1(v), and R1(v) the union of the surface Delaunay patches
associated with the facets of F1(v).

Claim 4.2.1 v ∈ int(R1(v)).

Proof If v ∈ int(U1(v)), then it is clear that v ∈ int(R1(v)), since surface Delaunay patches are
pseudo-disks, by proposition 3.10. Therefore, it suffices to prove that v ∈ int(U1(v)). Let us assume
the contrary. Let [vu] be an edge of the boundary of U1(v) that is incident to v. [vu] is incident to
two facets of F1(v), say (v, u, w) and (v, u, w′). These facets both lie on the same side of [vu], which
is a boundary edge of U1(v). Since surface Delaunay patches are pseudo-disks by proposition 3.10,
either w is included in the interior of the surface Delaunay patch of (v, u, w′) or w′ is included in
the interior of the surface Delaunay patch of (v, u, w), which contradicts the fact that these patches
are empty of points of E. This ends the proof of the claim. �

We will now prove that F1(v) is the only umbrella of v. We assume for a contradiction that there
exists a restricted Delaunay facet f = (v, u, w) /∈ F1(v) that is incident to v. Vertices u and w lie
outside int(R1(v)), whereas v lies inside int(R1(v)), by Claim 4.2.1. It follows that Cf intersects
the boundary of R1(v), at some point z that lies on the boundary of the surface Delaunay patch
of some facet f ′ = (v, u′, w′) of F1(v). By proposition 3.10, Cf and Cf ′ intersect at points v and z
only. By the same proposition, open arcs (v, u′) and (v, w′) of Cf ′ are included in int(R1(v)). Since
v ∈ int(R1(v)), z lies on arc (u′, w′) of Cf ′ . If z 6= u′ and z 6= w′, then u′ and w′ lie on different
sides of Cf , hence one of them lies in int(Df ), which violates the Delaunay property. Otherwise
(say z = u′), w′ must lie outside Df . In this case, consider the facet f ′′ = (a, u′, w′′) of F1(u) that
is incident to f ′ through edge [a, u′]. By proposition 3.10, Cf intersects arc (u′, w′′) of Cf ′′ at point
u′ only, thus u′ and w′′ lie on different sides of Cf . Hence, either u′ or w′′ lies in int(Df ), which
contradicts the fact that int(Df ) is empty of points of E. �

The next theorem follows from Propositions 4.1 and 4.2.
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Theorem 4.3 Let S be a smooth closed surface and E a loose ε-sample of S. If ε ≤ ε0 ≈ 0.091,
then Del|S(E) is a 2-manifold without boundary.

Since Del|S(E) is a closed 2-manifold embedded in R
3, we can orient the normals of its facets

consistently. For instance, they can be chosen so as to point to the unbounded component of
R

3 \ Del|S(E).

4.2 Homeomorphism and ambient isotopy

Let π : R
3 → S map each point of R

3 to the closest point of S. In [4], the authors have shown
that the restriction of π to a 2-simplicial complex W whose vertices lie on S is a homeomorphism
between W and S, provided that:

H0 W is a manifold without boundary.

H1 W has vertices on all the connected components of S.

H2 The angle between the oriented normals of two facets of W sharing a vertex is lower than π
2 .

H3 (Small Triangle Condition) every facet f of W has a surface Delaunay ball of radius at
most 0.113 min {dM (v), v vertex of f}.

H4 (Flat Triangle Condition) for every facet f of W , the line normal to f makes an angle
of at most 0.375 radians with −→n (v), where v is the vertex of f of largest inner angle.

We will show that, since E is a loose ε-sample of S, with ε ≤ ε0, Assertions H0-H4 are verified
by W = Del|S(E). H0 has already been stated for Del|S(E) in Theorem 4.3. H1 is guaranteed by
Condition 2 of Definition 2.2.

Proof of H2

Let v be a vertex of Del|S(E) and let F (v) be the umbrella of v. By Lemma 3.1, the smaller angle

between −→n (v) and the line normal to any facet of F (v) is at most 2ε
1−7ε + arcsin ε

√
3

1−ε , which is less
than π

4 since ε < ε1. It follows that the angle between −→n (v) and the oriented normal of the facet
is less than π

4 or greater than 3π
4 . Moreover, any two consecutive facets in the umbrella of v make

a dihedral angle greater than π
2 , by Lemma 3.4, thus the angles between −→n (v) and the oriented

normals of the facets of F (v) are all less than π
4 , or they are all greater than 3π

4 . It follows that the
angle between the oriented normals of any two facets of F (v) is less than π

2 . �

Proof of H3
Since E is a loose ε-sample, every facet f of Del|S(E) has a surface Delaunay ball Bf = B(cf , rf ) of
radius rf ≤ ε dM (cf ). Let v be any vertex of f . We have dM (cf ) ≤ dM (v)+‖v− cf‖ ≤ dM (v)+ rf ,
thus rf ≤ ε

1−ε dM (v), which is less than 0.113 dM (v) since ε < 0.1. �

Proof of H4

Let f ∈ Del|S(E) and let v be the vertex of f of largest inner angle. By Lemma 3.1, −→n (v) and
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the line normal to f make an angle of at most arcsin ε
√

3
1−ε , which is less than 0.375 radians since

ε < 0.17. �

We can now state the main result of this section.

Theorem 4.4 Let S be a smooth closed surface and E a loose ε-sample of S, with ε ≤ ε0 ≈
0.091. The restriction of the mapping π to Del|S(E) is a homeomorphism between Del|S(E) and S.
Moreover, Del|S(E) and S are ambient isotopic.

Proof The fact that π|Del|S(E) is a homeomorphism follows directly from H0-H4 and from Theorem

19 of [4]. Moreover, since the Small Triangle Condition (H3) is verified by the facets of
Del|S(E), Lemma 12 of [4] says that ∀x ∈ Del|S(E), ‖x − π(x)‖ < 0.165 dM (π(x)). It follows that
Del|S(E) and S are ambient isotopic, by Theorem 9 of [5]. �

4.3 Hausdorff distance

Theorem 4.5 Let S be a smooth closed surface and E a loose ε-sample of S, with ε ≤ ε0 ≈ 0.091.
The Hausdorff distance between S and Del|S(E) is at most 4.5 ε2 dsup

M .

The idea is to bound the distance from Del|S(E) to S, and then to use the surjectivity of π to prove
that the bound also holds for the distance from S to Del|S(E).

Lemma 4.6 Let c ∈ S. For any point x ∈ S at distance at most ε dM (c) from c, the distance from
x to T (c) is at most 1

2ε2dM (c).

Proof Let B1 and B2 be the two balls of radius dM (c), tangent to S at c. Their interiors cannot
intersect S and therefore do not contain x. Let x′ be the intersection point other than c of the
segment [c, x] with the boundary of B1 ∪ B2. Let h be the distance of x to T (c) and θ the angle
between −→cx and T (c). We have

‖c − x′‖ = 2dM (c) sin θ ≤ ‖c − x‖ ≤ εdM (c)

Therefore, sin θ ≤ ε
2 and h = ‖c − x‖ sin θ ≤ 1

2ε2dM (c). �

Lemma 4.7 Let c ∈ S and let y be a point of T (c) at distance at most ε dM (c) from c. The
distance of y to S is at most 4ε2 dM (c).

Proof Let z be the point of S closest to y, t the projection of z onto T (c) and φ = ∠yzt, which is
also the angle between the normals to S in c and in z. We have

‖c − z‖ ≤ ‖c − y‖ + ‖y − z‖ ≤ 2‖c − y‖ ≤ 2ε dM (c) (9)
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It then follows from Lemma 4.6 that ‖z−t‖ ≤ 2ε2 dM (c). Moreover, since dM (c) ≤ dM (z)+‖c−z‖,
(9) implies that ‖c− z‖ ≤ 2ε

1−2εdM (z). It follows from Lemma 3.3 that φ ≤ 2ε
1−8ε . Since ε < 0.1, we

have 2ε
1−8ε ≤ 1, thus φ ≤ 1. It follows that 1

cos φ ≤ 1

1−φ2

2

≤ 1 + φ2, from which we deduce

‖y − z‖ = ‖z−t‖
cos φ ≤ 2ε2 dM (c)

(

1 +
(

2ε
1−8ε

)2
)

≤ 4ε2 dM (c)

�

Using Lemmas 4.6 and 4.7, we can bound the distance from Del|S(E) to S.

Proposition 4.8 Every point x ∈ Del|S(E) is at distance at most 4.5 ε2dM (c) ≤ 4.5 ε2dsup
M from

S, where c is the center of the surface Delaunay ball of the facet that contains x.

Proof Let x ∈ Del|S(E). Let f be a facet of Del|S(E) on which x lies, and let B(c, r) be the surface
Delaunay ball of f . Let x′ be the orthogonal projection of x onto T (c). We have ‖x− c‖ ≤ r, which
is at most ε dM (c) since E is a loose ε-sample. Thus, by Lemma 4.6, the distance from x to T (c) is
at most 1

2ε2 dM (c). Hence, ‖x−x′‖ ≤ 1
2ε2 dM (c). In addition, we have ‖x′−c‖ ≤ ‖x−c‖ ≤ ε dM (c).

Thus, by Lemma 4.7, the distance from x′ to S is at most 4ε2 dM (c). It follows that the distance
from x to S is at most 4.5 ε2 dM (c) ≤ 4.5 ε2 dsup

M . �

We can now bound the distance from S to Del|S(E), which completes the proof of Theorem 4.5.

Proposition 4.9 Every point x ∈ S is at distance at most min {4.5 ε2dsup
M , 5.3 ε2dM (x)} from

Del|S(E).

Proof Let x ∈ S. Since the restriction of π to Del|S(E) is surjective, we have π−1
|Del|S(E)(x) 6= ∅.

Let x′ ∈ π−1
|Del|S(E)(x). According to Proposition 4.8, ‖x − x′‖ ≤ 4.5 ε2dM (c) ≤ 4.5 ε2dsup

M , where c

is the center of the surface Delaunay ball of a facet that contains x′.

In addition, we have ‖x′ − c‖ ≤ ε dM (c), since E is a loose ε-sample. Thus, ‖x − c‖ ≤ (ε +

4.5 ε2)dM (c) ≤ (ε + 4.5 ε2)(dM (x) + ‖x − c‖). It follows that ‖x − c‖ ≤ ε+4.5 ε2

1−ε−4.5 ε2 dM (x), which is
at most 0.17 dM (x) since ε < 0.1. Hence,

‖x − x′‖ ≤ 4.5 ε2dM (c) ≤ 4.5 ε2(dM (x) + ‖x − c‖) ≤ 5.3 ε2dM (x)

�

By Lemma 2.3, we know that ε-samples are loose ε-samples, for a sufficiently small value of ε.
The converse is not true, but the following corollary shows that loose ε-samples are close to being
ε-samples.

Corollary 4.10 Let S be a smooth closed surface and E a loose ε-sample of S, with ε ≤ ε0 ≈ 0.091.
E is an ε(1 + 8.5 ε)-sample of S.
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Proof By Proposition 4.9, any point x ∈ S is at distance at most 5.3 ε2 dM (x) from Del|S(E).
Let x′ be the point of Del|S(E) closest to x, and f a facet of Del|S(E) that contains x′. We call c
the center of the surface Delaunay ball of f , and c′ the center of the circumcircle of f . Let v be the
vertex of f closest to x′. Since x′ belongs to f , we have ‖x′ − v‖ ≤ ‖c′ − v‖ ≤ ‖c − v‖. Moreover,
‖c − v‖ ≤ ε dM (c) ≤ ε(dM (v) + ‖c − v‖), hence ‖c − v‖ ≤ ε

1−εdM (v). Thus,

‖x − v‖ ≤ ‖x − x′‖ + ‖x′ − v‖
≤ 5.3 ε2 dM (x) + ε

1−ε dM (v)

≤ 5.3 ε2 dM (x) + ε
1−ε (dM (x) + ‖x − v‖)

It follows that

‖x − v‖ ≤ 5.3(1 − ε)

1 − 2ε
ε2 dM (x) +

ε

1 − 2ε
dM (x)

Since ε < 0.1, we have 5.3(1−ε)
1−2ε ≤ 6 and 1

1−2ε ≤ 1 + 2.5 ε, thus

‖x − v‖ ≤ 6 ε2 dM (x) + ε(1 + 2.5 ε) dM (x)

�

4.4 Covering

Let
⋃

f∈Del|S(E) Bf (or
⋃

f Bf , for short) denote the union of the surface Delaunay balls.

Let f0 be a facet of Del|S(E). Our goal is to prove that Cf0
⊂ int

(

⋃

f Bf

)

. In fact, we will prove

a slightly more precise result, stated as Lemma 4.11.

Let F (f0) be the set of all facets of Del|S(E) that share a vertex with f0, including f0 itself. Since
ε ≤ ε0, Del|S(E) is a manifold without boundary, by Theorem 4.3. Hence, F (f0) \ {f0} contains
one facet of Del|S(E) adjacent to f0 through each edge of f0. We define R(f0) as the union of all
surface Delaunay patches associated with facets of F (f0).

Lemma 4.11 Cf0
⊆ int(R(f0)).

Proof Let u, v and w be the vertices of f0. We call fuv, fvw and fwu the three facets of F (f0)
that are incident to f0 through edges uv, vw and wu respectively. By Proposition 3.10, arcs uv,
vw and wu of Cf0

are included in Dfuv
, Dfvw

and Dfwu
respectively, and only their endpoints may

possibly lie on Cfuv
, Cfvw

or Cfwu
. Thus, the three arcs are included in the interior of R(f0), except

for their endpoints which may possibly lie on the boundary of R(f0).

We claim that u, v and w also belong to int(R(f0)). Let F (u) be the umbrella of facets of Del|S(E)
incident to u, and R(u) the union of the surface Delaunay patches of all facets of F (u). Notice that
R(u) ⊆ R(f0), since F (u) ⊆ F (f0). Let B(c, r) be the ball of biggest radius, among the surface
Delaunay balls of the facets of F (u). For every point x ∈ R(u), we have ‖x − u‖ ≤ 2r, hence
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R(u) is included in S ∩ B(u, 2r), which is a terrain over T (u), by Lemma 3.8. It follows that the
surface Delaunay patches of the facets of F (u), which are pseudo-disks in R

3, are also pseudo-disks
in projection onto T (u). Then, the projection of u lies inside the projection of int(R(u)), by Claim
4.2.1. It follows that u ∈ int(R(u)), since R(u) is a terrain over T (u). Thus, u ∈ int(R(f0)). The
reasoning holds for v and w as well, which completes the proof of the lemma. �

Theorem 4.12 Let S be a smooth closed surface and E a loose ε-sample of S, with ε ≤ ε0 ≈ 0.091.
S is included in

⋃

f Bf .

Proof By Lemma 4.11, the union of all surface Delaunay patches has no boundary. Thus, S does
not intersect the boundary of

⋃

f Bf . Moreover, since Del|S(E) has vertices on all the connected
components of S,

⋃

f Bf intersects all the connected components of S. It follows that S cannot
exit

⋃

f Bf . �

Recall that our definition of Del|S(E) excludes edges and vertices with no incident restricted De-
launay facet. Hence there might exist points of E that are not vertices of Del|S(E). In fact, this
cannot happen, as stated in the following corollary of Theorem 4.12.

Corollary 4.13 Let S be a smooth closed surface and let E be a loose ε-sample of S, with ε ≤
ε0 ≈ 0.091. Every point of E is a vertex of Del|S(E).

Proof Let p be a point of E. By Theorem 4.12, S ⊆ ⋃

f Bf , thus p belongs to the surface Delaunay
ball Bf = B(c, r) of some facet f of Del|S(E). Let u, v and w be the vertices of f . Since Bf is
a Delaunay ball, p, u, v and w belong to its bounding sphere. If p ∈ {u, v, w}, then f is incident
to p, thus p is a vertex of Del|S(E). Otherwise, (p, u, v, w) is a Delaunay tetrahedron, whose dual
Voronoi vertex is c ∈ S. Then, every facet of (p, u, v, w) is a restricted Delaunay facet, and here
again p is a vertex of Del|S(E). �

5 Size of loose ε-samples

5.1 Lower bound

Erickson [24] has shown that Ω
(

µ(S)
ε2

)

, with µ(S) =
∫∫

S
dx

d2

M
(x)

, is a lower bound on the number of

points of any ε-sample of S, with ε < 1
5 . This bound holds for loose ε-samples as well, by Corollary

4.10. However, in the following we rewrite Erickson’s proof in the case of loose ε-samples directly
and improve on the constant.

Theorem 5.1 Let S be a smooth closed surface and let E be a loose ε-sample of S, with ε ≤ ε0 ≈
0.091. We have |E| ≥ 2(1 − g) + 2

5π
µ(S)
ε2 , where g is the genus of S.
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Proof By Theorem 4.12, we have S ⊆ ⋃

f∈Del|S(E) Bf . Thus,

µ(S) =

∫∫

S

dx

d2
M (x)

≤
∑

f∈Del|S(E)

∫∫

Df

dx

d2
M (x)

(10)

Moreover, since E is a loose ε-sample, we have ∀f ∈ Del|S(E), ∀x ∈ Df , ‖x − cf‖ ≤ εdM (cf ). It
follows that ‖x− cf‖ ≤ ε

1−εdM (x) and that dM (x) ≥ (1− ε)dM (cf ), since dM is 1-Lipschitz. Thus,

∀f ∈ Del|S(E),

∫∫

Df

dx

d2
M (x)

≤ Area(Df )

(1 − ε)2d2
M (cf )

(11)

Since ∀x ∈ Df , ‖x − cf‖ ≤ εdM (cf ) and ‖x − cf‖ ≤ ε
1−εdM (x), by Lemma 3.3 we have ∀x ∈ Df ,

(−→n (x),−→n (cf )) ≤ ε
1−4ε , which is less than π

2 since ε ≤ ε0 < π
2+4π . Thus, by Lemma A.4, Df is a

terrain over T (cf ), the plane tangent to S at cf . We can then bound the area of Df by projecting
it orthogonally onto T (cf ). Let us call proj the orthogonal projection onto T (cf ). Since proj(Df )
is included in the disk of radius εdM (cf ) centered at cf , we have

Area(Df ) ≤ Area(proj(Df ))

min
x∈Df

cos (−→n (x),−→n (cf ))
≤ πε2d2

M (cf )

cos ε
1−4ε

(12)

It follows from (10), (11) and (12) that

µ(S) =

∫∫

S

dx

d2
M (x)

≤ πε2

(1 − ε)2 cos ε
1−4ε

m

where m is the number of facets of Del|S(E). According to Theorem 4.4, Del|S(E) is homeomorphic
to S, thus the number of vertices of Del|S(E) is 2(1 − g) + m

2 , by Euler’s formula. Hence, |E| ≥
2(1− g)+ m

2 ≥ 2(1− g)+ 1
2π (1− ε)2 cos ε

1−4ε
µ(S)
ε2 , which is at least 2(1− g)+ 2

5π
µ(S)
ε2 since ε ≤ ε0. �

5.2 Upper bound

In this paragraph, we give an upper bound on the size of (κ, φ)-sparse samples, which a priori are
not assumed to be ε-samples nor loose ε-samples. Let E be a (κ, φ)-sparse sample of S. According
to Definition 2.4, E is a fortiori (κ′, φ′)-sparse, for any κ′ ≤ κ and any φ′ ≤ φ. Therefore, we may
assume for convenience that κ < 2 and φ ≤ dM .

For every point x ∈ E, we define Bx as the open ball centered in x of radius κ
2 φ(x). Since E is

(κ, φ)-sparse, κ
2 φ(x) is smaller than 1

2 dist(x, E \ {x}), which implies that the balls (Bx)x∈E are
pairwise disjoint.

Lemma 5.2 For every point x ∈ E, Bx is included in the Voronoi cell of x in Vor(E).
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Proof Let z be a point of Bx. We have ‖z − x‖ ≤ κ
2 φ(x). Since E is (κ, φ)-sparse, every point

y of E \ {x} is at distance at least κ φ(x) from x. Thus, ‖y − x‖ ≥ 2‖z − x‖, which implies that
‖z − x‖ ≤ ‖z − y‖, by the triangle inequality. �

Before bounding the size of E, we prove that every ball Bx intersects S along a topological disk of
large size.

Lemma 5.3 For every point x ∈ E, we have Area(S ∩ Bx) ≥ 3
16πκ2 φ2(x).

Proof By definition, the radius of Bx is κ
2 phi(x), which is less than dM (x) since κ < 2 and

φ ≤ dM . Thus, Bx ∩ M = ∅. It follows that S ∩ Bx is a topological disk, by Lemma 3.7. It follows
also that S does not intersect the open balls B(y, κ

2 dM (x)) and B(z, κ
2 dM (x)), where y and z are

the intersection points of the normal of S in x with the bounding sphere of Bx. Hence, S ∩Bx lies
outside B(y, κ

2 dM (x)) ∪ B(z, κ
2 dM (x)), which contains B(y, κ

2 φ(x)) ∪ B(z, κ
2 φ(x)).

d  (x)
M

y z

area through
which S may pass

x

Bx

κ

2

S

Moreover, since S has no boundary, the boundary of S ∩ Bx lies on the bounding sphere of Bx.
Thus, proj (S ∩ Bx), the orthogonal projection of S ∩ Bx onto T (x), contains the projection of

Bx ∩ B
(

y, κ
2 φ(x)

)

, which is a disk of radius κ
√

3
4 φ(x).

Hence,
Area(S ∩ Bx) ≥ Area (proj(S ∩ Bx))

≥ 3
16 π κ2 φ2(x)

�

Theorem 5.4 Let S be a smooth closed surface and let E be a (κ, φ)-sparse point sample of S.
We have |E| ≤ 64

3π
1
κ2

∫∫

S
dx

φ2(x)
.

Proof We proceed as in the case of planar meshes [23, 30] and bound the integral over S of 1/φ2(t).
Since S ∩ Bx ⊆ S for every point x ∈ E, we have

∫∫

S

dt

φ2(t)
≥

∫∫

⋃

x∈E

(Bx ∩ S)

dt

φ2(t)
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Moreover, the balls (Bx)x∈E are pairwise disjoint, thus

∫∫

⋃

x∈E

(Bx ∩ S)

dt

φ2(t)
=

∑

x∈E

∫∫

(Bx∩S)

dt

φ2(t)

In addition, since φ is 1-Lipschitz, ∀y ∈ Bx, φ(y) ≤ φ(x) + ‖y − x‖≤ (1 + κ
2 ) φ(x). It follows that

∑

x∈E

∫∫

(Bx∩S)

dy

φ2(y)
≥

∑

x∈E

Area(Bx ∩ S)
(

1 + κ
2

)2
φ2(x)

Since Area(Bx ∩ S) ≥ 3
16πκ2φ2(x) by Lemma 5.3, we have

∑

x∈E

Area(Bx ∩ S)
(

1 + κ
2

)2
φ2(x)

≥
∑

v∈E

3
16πκ2 φ2(x)

(

1 + κ
2

)2
φ2(x)

=
3

16
(

1 + κ
2

)2 π κ2 |E|

which is greater than 3
64πκ2 |E| since κ < 2. The result follows. �

It follows from Theorem 5.4 that every loose ε-sample of S that is (κ, dM )-sparse, for some κ = Ω(ε),

has a size O
(

µ(S)
ε2

)

, which is optimal in view of the bound of Theorem 5.1. This gives a sufficient

(local) condition for a loose ε-sample to have an optimal size.
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Part II

Application to surface sampling and meshing

We are given a smooth closed surface S. From the previous sections (specifically from Theorems 4.4
and 4.5), we know that, if we can construct a loose ε-sample E of S, for an ε ≤ ε0, then Del|S(E)
will be a good approximation of S, both in a topological and in a geometric sense. In Sections
6 and 7, we present an algorithm that produces such a sample E and computes its restricted
Delaunay triangulation Del|S(E). Its analysis is done in Section 8. In Section 9, we present several
improvements that can be made to the algorithm, either to speed it up or to enhance the quality
of its output. Section 10 deals with the computation of the distance to the medial axis of the
surface, which plays a central role in the context of ε-sampling. Finally, in Section 11 we present
our implementation as well as some experimental results.

6 Our Algorithm

The algorithm is greedy and derives from Chew’s surface meshing algorithm [17]. It takes as input
the surface S and it is parameterized by some user-defined function σ : S → R that is positive
and 1-Lipschitz. The algorithm starts with a small initial point sample E and, at each iteration, it
inserts a new point of S into E and updates Del|S(E). Each point inserted into E is the center of
a bad surface Delaunay ball, i.e. a surface Delaunay ball B(c, r) such that r > σ(c). The algorithm
stops when there are no more bad surface Delaunay balls, which will eventually happen since σ
does not vanish on S, as shown in Section 8, Lemma 8.1.

The surface is known only through an oracle that, given a line segment s, computes all the points
of s ∩ S, which generically are finitely many. Del|S(E) is stored as a subcomplex of Del(E) and
computed by detecting the intersections of the Voronoi edges with S, thanks to the oracle. At each
step of the algorithm, only the part of Vor(E) that has changed after the point insertion is tested.
As for the bad surface Delaunay balls, they are stored in a list L.

The initial point sample is constructed in such a way that the output point set verifies Condition
2 of Definition 2.2, i.e. that its restricted Delaunay triangulation has vertices on all the connected
components of S. The details of the construction are given in Section 7. Once the initial point
sample has been constructed, the algorithm computes Del|S(E) and stores the bad surface Delaunay
balls in L. Then, the algorithm executes the following loop:
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while L is not empty {
take an element B(c, r) from L;
insert c into E and update Del(E);
update Del|S(E) by testing all the Voronoi edges that have changed or appeared:

delete from Del|S(E) the Delaunay facets whose dual Voronoi edges no longer intersect S;

add to Del|S(E) the new Delaunay facets whose dual Voronoi edges intersect S;

update L by
deleting all the elements of L which are no longer bad surface Delaunay balls;
adding all the new surface Delaunay balls that are bad;

}
The algorithm stops at the end of the loop and returns E as well as Del|S(E).

7 Construction of the initial point sample

As explained in Section 6, our purpose here is to construct, at the beginning of the algorithm, an
initial point sample such that the output point set is guaranteed to verify Condition 2 of Definition
2.2. For clarity, Ei and Eo will denote respectively the initial point sample and the output point
set.

Let us assume that Del|S(Ei) contains a facet fi circumscribed by a surface Delaunay ball Bi =

B(ci, ri) such that ri ≤ 1
3σ(ci). Such a facet will be called a persistent facet. Persistent facets are

interesting in our context because they share a nice persistence property, illustrated in Figure 3
and stated in the following lemma.

Figure 3: Meshing of a torus: the persistent facet (shown in the upper-left corner) remains in the
restricted Delaunay triangulation throughout the process. In compensation, the final mesh has
smaller triangles in its vicinity.

Lemma 7.1 Every persistent facet remains a restricted Delaunay facet throughout the course of
the algorithm. In other words, all persistent facets are facets of Del|S(Eo).
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Proof Let fi be a persistent facet and Bi = B(ci, ri) a surface Delaunay ball circumscribing fi

such that ri ≤ 1
3σ(ci). Assume that, at the end of the algorithm, fi /∈ Del|S(Eo). This implies that,

at some stage, the algorithm inserts some point x in the interior of Bi. Hence, ‖x − ci‖ < 1
3σ(ci),

which gives σ(x)≥ σ(ci) − ‖x − ci‖> 2
3σ(ci), since σ is 1-Lipschitz. Let v be one of the vertices of

fi. Since v and x both lie in Bi, we have ‖v − x‖ ≤ 2ri≤ 2
3σ(ci)< σ(x). Now, since x is inserted by

the algorithm, it is the center of some bad surface Delaunay ball B, whose radius is greater than
σ(x). It follows that v belongs to the interior of B, which contradicts the fact that the latter is a
Delaunay ball. �

To guarantee that Eo verifies Condition 2 of Definition 2.2, it suffices to construct Ei in such a
way that each connected component of S contains at least one vertex of a persistent facet. Here is
how we proceed: we pick up at least one point on each connected component of S, and we insert
the collected points in a set called E′

i. For each point x ∈ E′
i, we consider a ball Bx centered at

x of radius less than min {1
6dist(x, E′

i \ {x}), dM (x), 1
6σ(x)}. By shooting rays repeatedly inside

Bx, we pick up three points (ux, vx, wx) of S ∩ Bx such that the line orthogonal to the plane
Aff(ux, vx, wx) (affine hull of ux, vx, wx)) and passing through the center of the circumcircle of
(ux, vx, wx) intersects S ∩Bx. We insert ux, vx and wx in Ei, which will be the initial point sample
of the algorithm. After doing this for each point of E′

i, we have |Ei| = 3 |E′
i|.

Lemma 7.2 For any x ∈ E′
i, the points (ux, vx, wx) picked up from Bx∩S lie on the same connected

component of S as x and form a persistent facet of Del(Ei).

Proof As explained in the construction of Ei, the line orthogonal to the plane Aff(ux, vx, wx) and
passing through the center of the circumcircle of (ux, vx, wx) intersects S ∩Bx. Let x′ be a point of
intersection, and Bx′ the ball centered at x′ that circumscribes (ux, vx, wx). Since x′ and ux both
lie in Bx, the radius of Bx′ is at most twice the radius rx of Bx.

In the same manner, for any y ∈ E′
i \ {x}, the radius of By′ is at most 2ry. Since rx and ry are

both less than 1
6‖x− y‖, and since ‖x′ − x‖ ≤ rx and ‖y′ − y‖ ≤ ry, we have ‖x′ − y′‖ > 2

3 ‖x− y‖,
which is greater than the sum of the radii of Bx′ and By′ . It follows that Bx′ ∩By′ = ∅. Since this
is true for any y ∈ E′

i, Bx′ is a Delaunay ball of Ei because every point of Ei belongs to some By,
y ∈ E′

i.

In addition, the radius of Bx′ is at most 2rx, which is less than 1
3σ(x), thus (ux, vx, wx) is a persistent

facet of Del(Ei). Moreover, ux, vx and wx lie on the same connected component of S as x, since
they belong to Bx, whose radius is less than dM (x). �

Since this is true for every x ∈ E′
i, and since E′

i intersects all the connected components of S, Ei

contains at least three points per connected component of S that form a persistent facet. It follows,
by Lemma 7.1, that Eo verifies Condition 2 of Definition 2.2.

8 Termination and output guarantees

Lemma 8.1 The algorithm terminates.
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Proof Notice that, since σ is Lipschitz, it is continuous. Moreover, σ does not vanish on S, which
is compact; thus, there exists some constant σ0 > 0 such that σ(x) ≥ σ0 ∀x ∈ S.

Since the construction of the initial point set takes a finite amount of time, the only thing to prove
here is that the main loop of the algorithm terminates. At each iteration, the center of some bad
surface Delaunay ball B(c, r) is inserted. At this time, the distance from c to E is r, which is greater
than σ(c) ≥ σ0 since B(c, r) is bad. Therefore, the distance between any two points inserted during
the main loop is at least σ0 > 0, and, as a consequence, the open balls of radius σ0

2 , centered at the
points inserted during the main loop, are pairwise disjoint. Since S is compact, there can be only
a finite number of such balls. Thus, a finite number of points are inserted during the main loop of
the algorithm, which terminates since it inserts one point at each iteration. �

Lemma 8.2 If σ ≤ ε dM , then, upon termination of the algorithm, E is a loose ε-sample of S.

Proof When the algorithm stops, all surface Delaunay balls are good. Since a surface Delaunay
ball B(c, r) is good if r ≤ σ(c) ≤ ε dM (c), E verifies Condition 1 of Definition 2.2.

In addition, according to Section 7, once the initial point set has been constructed, every connected
component of S contains at least one vertex of a persistent facet. Therefore, upon termination,
Del|S(E) has at least one vertex on each connected component of S, by Lemma 7.1, and hence E
verifies Condition 2 of Definition 2.2. �

It follows from Theorem 4.4, Theorem 4.5 and Lemma 8.2, that, if σ < ε0 dM ≈ 0.091 dM , then
the algorithm outputs a good approximation of S, in terms of topology and geometry.

From now on, we assume that E′
i, the point set from which the initial point sample is constructed

(see Section 7), contains at most c points per connected component of S, where c is a constant that
does not depend on S.

Lemma 8.3 If σ ≤ dM , then the size of the output point sample is O
(

∫∫

S
dx

σ2(x)

)

.

Proof For convenience, we call Ei the initial point sample constructed at the beginning of the
algorithm, and Eo the output point sample. Since the algorithm is greedy, we have Ei ⊆ Eo. Eo\Ei

is the set of the points that are inserted during the main loop of the algorithm. To bound the size
of Eo, it suffices to bound independently the sizes of Ei and of Eo \ Ei.

As explained in Section 7, we have |Ei| = 3 |E′
i|. Moreover, by assumption, |E′

i| ≤ c |S|, where
|S| is the number of connected components of S. Thus, |Ei| ≤ 3c |S|.

Claim 8.3.1 |S| ≤ 32
3π µ(S), where µ(S) =

∫∫

S
dx

d2

M
(x)

.

Proof For each connected component Si of S, we define δi as the diameter of Si. Let ai, bi ∈ Si

such that ‖ai − bi‖ = δi. Let ES =
⋃

i{ai, bi}. We have |ES | = 2 |S|.

Since the balls B(ai, δi) and B(bi, δi) both contain Si, we have ‖ai−bi‖= δi≥max {dM (ai), dM (bi)},
by Lemma 3.7. Moreover, for any j 6= i, ‖ai−aj‖ ≥ dM (ai) since ai and aj lie on different connected
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components of S. It follows that ES is (κ, dM )-sparse, with κ = 1. Hence, |ES | ≤ 64
3π µ(S), by

Theorem 5.4. This proves the claim. �

It follows from Claim 8.3.1 that |Ei| ≤ 32c
π

∫∫

S
dx

dM
2(x)

= O
(

∫∫

S
dx

σ2(x)

)

.

We now bound the size of Eo\Ei. Every point x inserted during the main loop of the algorithm is at
distance at least σ(x) from E at the time when it is inserted, since it is the center of some bad surface
Delaunay ball. It follows that, for any two points x and y of Eo \ Ei, we have ‖x − y‖ ≥ σ(x)
or ‖x − y‖ ≥ σ(y), depending on whether x is inserted last or not. In both cases, we have
‖x− y‖ ≥ 1

2 σ(x), since σ is 1-Lipschitz. Thus, Eo \Ei is (κ, σ)-sparse, with κ = 1
2 . It follows that

|Eo \ Ei| = O
(

∫∫

S
dx

σ2(x)

)

, by Theorem 5.4. This ends the proof of Lemma 8.3. �

The next result follows from Lemmas 8.2 and 8.3. It gives an upper bound on the size of the output
point sample, which is optimal in view of Theorem 5.1.

Lemma 8.4 If σ = ε dM , with ε ≤ 1, then, upon termination of the algorithm, E is a loose

ε-sample of S of size O
(

µ(S)
ε2

)

, where µ(S) =
∫∫

S
dx

d2

M
(x)

.

9 Improvements

In this section, we introduce several modifications that can be made to the algorithm to enhance
the aspect ratio of the facets of the output mesh (Section 9.1) or to speed up the process (Section
9.2). We also present a way to avoid the use of persistent facets in the construction of the initial
point sample (Section 9.3). This latter change comes with no guarantee on the size of the output
point sample, but still with guarantees on the termination of the algorithm and on the topological
and geometric properties of its output mesh.

9.1 Removing the skinny facets

Once an ε-sample Eε of S has been obtained (or is given), one can remove the skinny facets from
the mesh, simply by running the algorithm with Eε as the initial point sample and by using a new
definition of a bad surface Delaunay ball. From now on and until the end of Section 9.1, a surface
Delaunay ball is said bad if the restricted Delaunay facet it circumscribes is skinny, i.e. one of
its inner angles is less than a user-defined value θ. The output point sample Ēε of the algorithm
contains Eε and hence is an ε-sample of S. Moreover, all the facets of Del|S(Ēε) are well-shaped,
i.e. no angle is less than θ. Some results are reported in Figure 9.

For every point x of Ēε, we call r(x) the distance from x to the point sample E (maintained by the
algorithm) right before its insertion. If x ∈ Eε, then r(x) = dist(x, Eε \ {x}). In addition, we call
local feature size of x, or simply lfs(x), the distance from x to its second nearest neighbor in Eε. If
x ∈ Eε, then we have lfs(x) = dist(x, Eε \ {x}) = r(x). It is proved in [30] that lfs is 1-Lipschitz
and does not vanish anywhere. From now on, we assume that θ < π

6 .
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Lemma 9.1 ∀x ∈ Ēε, we have r(x) ≥ β−1
β lfs(x), where β = 1

2 sin θ > 1.

Proof We reason by induction. We first prove that the result holds for every point of Eε, then we
show that it holds also for every point inserted by the algorithm.

• Let x ∈ Eε. By definition we have r(x) = lfs(x), which is greater than β−1
β lfs(x) since β > 1.

• Let x ∈ Ēε\Eε. When x is inserted in E, it is the center of a ball of Del|S(E) that circumscribes a
facet f whose smallest inner angle θf is less than θ. Let e be the smallest edge of f , and v the vertex
of e that was inserted last (if both vertices of e belong to Eε, then, without loss of generality, we
choose v to be either one of them). A quick computation shows that the sine of the smallest inner
angle θf of f (which is opposite to e) is greater than half the ratio between |e| and the circumradius

of f . Therefore, we have sin θ ≥ 1
2

r(v)
r(x) , since |e| ≥ r(v) and since the circumradius of f is at most

r(x). It follows that r(x) ≥ β r(v).

Now, according to the induction hypothesis, we have r(v) ≥ β−1
β lfs(v), which is at least β−1

β (lfs(x)−
‖x − v‖) since lfs is 1-Lipschitz. Hence, r(x) ≥ β β−1

β (lfs(x) − r(x)), i.e. r(x) ≥ β−1
β lfs(x). �

Corollary 9.2 Ēε is
(

β−1
2β−1 , lfs

)

-sparse.

Proof Let x and y be two points of Ēε. If x has been inserted after y by the algorithm, or if x
and y both belong to Eε, then we have ‖x− y‖ ≥ r(x), which is at least β−1

β lfs(x), by Lemma 9.1.

Thus ‖x − y‖ ≥ β−1
2β−1 lfs(x), since β > 1. Otherwise, y has been inserted after x by the algorithm,

hence ‖x − y‖ ≥ r(y), which is at least β−1
β lfs(y), by Lemma 9.1. Since lfs is 1-Lipschitz, we have

β−1
β lfs(y) ≥ β−1

β (lfs(x) − ‖x − y‖). Thus, ‖x − y‖ ≥ β−1
2β−1 lfs(x). The result follows, since this is

true for any pair (x, y) of points of Ēε. �

It follows from Corollary 9.2 and Theorem 5.4 that1

|Ēε| = O

(

1

(β − 1)2

∫∫

S

dx

lfs2(x)

)

(13)

In particular, the algorithm terminates, since lfs does not vanish anywhere and since the algorithm
inserts one point per iteration. Moreover, if Eε is a sparse ε-sample of S, then by definition we
have ∀x ∈ Eε, lfs(x) = Ω(ε)dM (x), which implies that ∀x ∈ S, lfs(x) = Ω(ε)dM (x). It follows

that |Ēε| = O
(

1
(β−1)2

µ(S)
ε2

)

, by (13). This quantity is O
(

1
(β−1)2

|Eε|
)

, by Theorem 5.1, hence the

algorithm for skinny facets increases the amount of points by a factor of O
(

1
(β−1)2

)

.

9.2 Speeding up the oracle

As stated in Section 6, the algorithm relies on an oracle that is able to compute all the intersection
points between a line segment and the surface. This oracle is called the intersection oracle in the

1Notice that Theorem 5.4 assumes that lfs ≤ dM , which is the case here since Eε is an ε-sample.
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sequel. In practice, e.g. for implicit surfaces, computing all the intersection points can be quite
time-consuming. We can reduce the requirements for the oracle as follows: given a line segment s,
the oracle is now supposed to be only able to:

• compute the parity of the number of transversal intersections between s and S

• find one point of s ∩ S when s intersects S transversally an odd number of times.

On several types of surfaces, in particular implicit surfaces, the two above operations are much
easier to perform than the former ones – see Section 11.1 for more details. However, the new
oracle knows that a given Voronoi edge e intersects S only when e intersects S transversally an odd
number of times. Such an edge is called bipolar, because its two endpoints lie in different connected
components of R

3 \ S. Its dual Delaunay facet is called a bipolar Delaunay facet. The subcomplex
of Del|S(E) made of the bipolar Delaunay facets is called the bipolar Delaunay triangulation and

denoted by Delb|S(E). The new oracle, which discriminates only the bipolar elements among the
set of all Voronoi edges, is called bipolar oracle, as opposed to the intersection oracle which detects
all restricted Delaunay edges. A Delaunay ball centered at some point computed by the bipolar
oracle is called a bipolar ball.

To build the initial point sample, we perform the construction described in Section 7, which provides
us with one persistent facet per connected component of S. However, some of the persistent facets
may not be bipolar at this stage. Let f be one of them. We insert in E the centers of all the surface
Delaunay balls of f , except the ones whose center c and radius r verify r ≤ 1

3 σ(c). We do this for
all the persistent facets, and we take the result as the initial point sample of the algorithm.

Since Delb|S(E) is a subcomplex of Del|S(E), the proof of Lemma 8.1 holds when the algorithm is
run with the bipolar oracle instead of the intersection oracle. Hence, the algorithm terminates.

Lemma 9.3 If σ ≤ ε0 dM , then, upon termination of the algorithm, Delb|S(E) has the topological
and geometric properties stated in Section 4 for Del|S(E).

The proof relies on some results of Sections 3 and 4. Hence, it can be skipped in a first reading.

Proof It suffices to check that Delb|S(E) verifies Assertions H0-H4 of Section 4.2.

Proof of H0

Since bipolar balls are surface Delaunay balls and since they have small radii upon termination of
the algorithm, all the results of Section 3 that are stated for surface Delaunay balls and restricted
Delaunay facets hold here for bipolar balls and bipolar facets.

The proof of Proposition 4.1 does not hold since it relies on the observation that, when all the
surface Delaunay balls are small, a Voronoi edge cannot intersect S more than once, which is not
true when only bipolar balls are small. However, it suffices to change the sentences Moreover, by
Lemma 3.6, each edge of ∂e∗ is intersected at most once by S. Thus, S intersects an even number
of edges of ∂e∗, by the following one: As a consequence, the number of edges of ∂e∗ that intersect
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S transversally an odd number of times is even, to make the proof of Proposition 4.1 hold with
Delb|S(E).

In addition, the proof of Proposition 4.2 relies only on the results of Section 3 and on Proposition
4.1, thus it holds here with Delb|S(E). It follows that Theorem 4.3 is true with Delb|S(E), which
means that the latter verifies Assertion (H0). �

Proof of H1

Since σ < 1
7 dM , Lemma 3.6 says that every persistent facet f is circumscribed by exactly one

ball Bf = B(cf , rf ) such that rf ≤ 1
3 σ(cf ), and that every other ball B(c, r) circumscribing f is

such that r > σ(c). Hence, after the construction of the initial point sample, f is circumscribed
by at most one surface Delaunay ball, namely Bf . Moreover, every point inserted in E during the
construction of the initial point set is farther than σ(x) from E. Thus, by Lemma 7.1, Bf remains
a surface Delaunay ball after the construction of the initial point sample. As a consequence, f is
bipolar since Bf is the only surface Delaunay ball of f .

Throughout the rest of the course of the algorithm, every point x inserted in E is farther than σ(x)
from E, hence Bf remains a surface Delaunay ball, by Lemma 7.1. Therefore, f remains bipolar
since Bf is the only surface Delaunay ball of f .

Since there is one persistent facet on each connected component of S, Delb|S(E) verifies (H1) upon
termination of the algorithm. �

Proof of H2, H3 and H4

The proofs of (H2), (H3) and (H4) detailed in Section 4.2 hold here for Delb|S(E) since they rely
exclusively on (H0) and on Lemmas 3.1 and 3.4. �

So, Delb|S(E) verifies Assertions H0-H4 of Section 4.2 upon termination of the algorithm. As a

consequence, the properties stated for Del|S(E) in Section 4 hold here for Delb|S(E), which ends the
proof of Lemma 9.3. �

Among the results of Section 4, Corollary 4.10 says that E is a ε(1 + 8.5 ε)-sample of S. If
ε < ε5 ≈ 0.065, then ε(1 + 8.5 ε) < 0.1 and hence Del|S(E) is homeomorphic to S, by Theorem

2 of [3]. This implies that Delb|S(E) = Del|S(E), since Delb|S(E) and Del|S(E) are homeomorphic

triangulated surfaces without boundary, and since Delb|S(E) is a subcomplex of Del|S(E).

In conclusion, replacing the intersection oracle by the bipolar oracle implies that the algorithm
works with Delb|S(E) instead of Del|S(E). If σ ≤ ε0 dM ≈ 0.091 dM , then upon termination of the

algorithm Delb|S(E) has all the properties stated in Section 4 for Del|S(E). If σ < ε5 dM ≈ 0.065 dM ,

then Del|S(E) and Delb|S(E) are equal. As explained in Section 11.1 and illustrated in Table 1, the
bipolar oracle is much more efficient than the intersection oracle when run on implicit surfaces.
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9.3 Getting rid of persistent facets

By definition, the radius of the surface Delaunay ball of a persistent facet is three times as small as
the radius of a standard surface Delaunay ball. Therefore, the output mesh of the algorithm has
smaller triangles in the vicinity of persistent facets, which may not be satisfactory. An illustration
of this phenomenon is given in Figure 3.

To avoid the construction of persistent facets during the initialization phase of the algorithm, we
use the set E′

i described in Section 7 as the initial point sample, instead of Ei, and, inside the main
loop of the algorithm, we use the elements of E′

i as control points to check whether Del|S(E) has
vertices on all the connected components of S (Condition 2 of Definition 2.2). Specifically, if all
the points of E′

i are vertices of Del|S(E), then Del|S(E) verifies Condition 2 of Definition 2.2 since
E′

i intersects all the connected components of S. Otherwise, we cannot decide whether Del|S(E)
verifies that condition or not, because we do not know on which connected components of S the
vertices of Del|S(E) lie. Hence, we insert additional points of S in E and go on running the main
loop of the algorithm until all surface Delaunay balls are good and all the points in E′

i have become
vertices of Del|S(E). The additional points of S are computed by casting rays in random directions
from the points of E′

i that are not yet vertices of Del|S(E). Here is the modified version of the
main loop:

while L is not empty or some point x of E′
i is not a vertex of Del|S(E) {

if L 6= ∅ { // proceed as before
take an element B(c, r) from L;
insert c into E and update Del(E);
update Del|S(E);

update L;
}

else { // x ∈ E′
i is not a vertex of Del|S(E)

choose a random vector −→v ;
insert in E the first point of intersection of ray (x, −→v ) with S (if it exists);
insert in E the first point of intersection of ray (x, −−→v ) with S (if it exists);
update Del|S(E);

update L;
}

}

Lemma 9.4 shows that this process terminates. The proof relies on the fact that, in the “worst-
case” scenario, the algorithm creates persistent facets on all the connected components of S, which
implies that Del|S(E) eventually verifies Condition 2 of Definition 2.2.

Lemma 9.4 The modified algorithm terminates, provided that σ ≤ ε0 dM .

Proof Since the initial point sample, E′
i, is clearly computed in a finite amount of time, all we

have to prove is that the main loop of the algorithm terminates. Let Ea denote the set of all points
inserted by the main loop. Let Ec be the set of all inserted centers of bad surface Delaunay balls.
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Since σ is continuous and does not vanish on S, which is compact, Ec is finite by the same packing
argument as in the proof of Lemma 8.1. Let us bound the size of Ea \Ec, which will complete the
proof of the lemma since the main loop of the algorithm inserts one point per iteration.

Let x ∈ E′
i. We call Sx the connected component of S on which x lies. On one side of T (x), all

vectors point towards the interior of the object bounded by S. Therefore, any ray cast on this
side of T (x) from x is such that its first intersection point with S lies on Sx. Moreover, its first
transversal intersection point with S lies on Sx as well. Hence, whatever oracle is used, by casting
such a ray we find a point of Sx. It follows that, if at some stage of its execution the algorithm
detects that x is not a vertex of Del|S(E), then it inserts at least one point of Sx in E, since the
random vector −→v it chooses does not belong to T (x) generically. After a finite number of iterations
of the main loop, either x has become and will remain a vertex of Del|S(E), or there are enough
points of Sx in E to guarantee that at least three of them are close enough to one another to form
a persistent facet, since Sx is compact. In both cases, Del|S(E) has a vertex on Sx for the rest of
the course of the algorithm. Since this is true for every x ∈ E′

i, and since E′
i intersects all the

connected components of S, E verifies Condition 2 of Definition 2.2 after a finite time. At this
stage, E also verifies Condition 1 of Definition 2.2 with ε = ε0, since the centers of bad surface
Delaunay balls are inserted first and since we took σ ≤ ε0 dM . Therefore, all the points of E (in
particular, those of E′

i) are vertices of Del|S(E) by Corollary 4.13. Hence, Ea \ Ec is finite. �

Although we have no explicit upper bound on the size of the output, in practice it turns out that
this version of the algorithm generates sparse samples with no persistent facet – see Figures 4 and
6. As an extreme, we could replace the initialization step by just computing a few random points
on S by shooting along random lines of R

3. As reported in [10], this simple procedure satisfies
Condition 2 of Definition 2.2 with a probability that increases dramatically with the number of
initial random points.

10 Choice of function σ

Although the algorithm is conceptually simple, the theoretical guarantees hold only if σ is at most
ε times dM , the distance to the medial axis of S. For some surfaces, e.g. skin surfaces [15], dM

is equal to the minimum radius of curvature and can therefore be estimated locally. However, in
most cases, dM depends on the global shape of the surface and is difficult to compute. This makes
the search for optimal ε-samples difficult.

A much easier quest is to compute a uniform ε-sample of S. This can be achieved by taking for σ
a constant positive function σ0 ≤ ε dinf

M . The only prerequisite is to compute dinf
M or any smaller

positive value, which is a simpler issue than computing dM at each center of surface Delaunay ball,
and which can be done once for all at the beginning of the algorithm. The way one can estimate
dinf

M depends highly on the nature of the surface. Strategies are discussed in Section 11, for several
types of surfaces.

Once a uniform ε-sample Ē has been constructed, it can be used to estimate dM . In [12], Chazal
and Lieutier introduced the notion of λ-medial axis. The λ-medial axis of Ē, Mλ(Ē), is a subset
of Vor(Ē). Chazal and Lieutier proved that, for values of λ greater than 10

√

3/2 diam(Ē)3/4 √
ε,
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Mλ(Ē) approximates M within a semi-Hausdorff distance of O(ε). It follows that dMλ
, the distance

to Mλ(Ē), is a good estimate of dM . Moreover, given x ∈ S, dMλ
(x) is easy to compute. Therefore,

in a second stage, if one wishes to generate a sparse loose ε-sample of S, one can restart the meshing
algorithm from the beginning, taking σ = ε′ dMλ

, for some ε′ slightly smaller than ε. According to
Lemma 8.4, the result is a size-optimal loose ε-sample of S, provided that E′

i, the point set from
which the initial point sample of the algorithm is constructed (see Section 7), contains a constant
number of points per connected component of S. To construct E′

i, one can simply pick up one
vertex on each connected component of Del|S(Ē). Since Del|S(Ē) is homeomorphic to S and close
to S for the Hausdorff distance, E′

i will contain exactly one point of each connected component
of S.

11 Implementation and results

This section presents our implementation of the algorithm, which works with various types of sur-
faces: implicit surfaces, level sets in 3D-images, point set surfaces and polyhedra. It is written in
C++ and uses the CGAL library [32], which provides a data structure for representing and manip-
ulating the restricted Delaunay triangulation as a subcomplex of the 3D Delaunay triangulation.

We adopted the two-passes strategy described in Section 10, using the version of the algorithm
described in Section 9.3, which does not use persistent facets. This way, we minimized the prereq-
uisites on the knowledge of the surface, which are the following ones:

P1 we can pick up at least one point from each connected component of S.

P2 we know (or we can compute) a positive constant less than dinf
M .

P3 we can implement at least one of the two versions of the oracle.

These prerequisites are discussed in the sequel, for several types of surfaces. The purpose is to
build implementations to fulfill (P1), (P2) and (P3). Notice that (P3) is used throughout the algo-
rithm, whereas (P1) is involved only in the initialization phase and (P2) is a simple precalculation.
Therefore, algorithmic issues arise mainly from (P3).

This section also presents some experimental results which show that the algorithm works well on a
wide variety of input surfaces, including some piecewise smooth surfaces, for which our theoretical
results do not hold since the distance to the medial axis vanishes at singularities.

11.1 Implicit surfaces

In this paragraph, S is a level set (say the zero-set) of some function f whose expression is given
explicitely. In other words, we have S = f−1({0}). We assume that f is C2-continuous and that
its gradient does not vanish on S. Then, by the implicit function theorem, S is a C2-differentiable
2-manifold.
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P1 We compute the points of S that have a horizontal tangent plane. Each connected component
of S has at least two such points, since S has no boundary. These points are the critical points of
f with respect to the height function, i.e. the solutions of the following system:











f(x, y, z) = 0
∂f
∂x (x, y, z) = 0
∂f
∂y (x, y, z) = 0

which is generically zero-dimensional. If f is a polynomial, then the system is algebraic and can
be solved by various means. Our approach consists in computing the generalized normal form
modulo the ideal generated by the three polynomials of the system, and then finding the roots
from eigencomputation – this method was developed in [31] and implemented in C++ as part of
the SYNAPS library [33], which we use in our implementation. If f is not a polynomial but still
continuous, then we compute the solutions of the system using interval arithmetic. Notice that this
computation may be quite complicated but is invoked only once, during the initialization phase of
the algorithm.

P2 Since S is compact, there exists a point p ∈ S such that dM (p) = dinf
M . Let c be the point of M

closest to p. We have dist(c, S) = ‖c− p‖, since ‖c− p‖ = dinf
M . Hence, p is a nearest neighbour of c

on S. If c belongs to the boundary of M , then ‖c − p‖ equals the minimum radius of curvature of
S at p. Otherwise, c has another nearest neighbour on S, say q. We have ‖c− q‖ = ‖c− p‖ = dinf

M ,
thus ‖c− q‖ = dM (q). It follows that the balls B(p, ‖c− p‖) and B(q, ‖c− q‖) are both tangent to
M in c. Hence, p, c and q are collinear, since c belongs to the relative interior of M . This implies
that c is the midpoint of the line segment [p, q], since p 6= q. So, the ball B(c, ‖c − p‖) is tangent
to S in two diametral points.

To sum up, computing dinf
M can be done by finding:

1. the point of S at which the smallest radius of curvature is minimal, which reduces to solving
some low-dimensional optimization problem over S.

2. the smallest sphere bitangent to S with diametral contact points, which reduces to finding
the smallest real positive root of some zero-dimensional system.

These two issues can be solved using the same tools as for prerequisite (P1).

P3 The bipolar oracle is quite easy to implement for implicit surfaces. Indeed, the parity of the
number of transversal intersections between S and a given line segment [a, b] is given by the signs of
f at a and b: if the signs are equal, then the number of transversal intersections is even, otherwise
it is odd. In the latter case, we can find a transversal intersection point by binary search. The

computation time is O(1) for the bipolar test, and O
(

log ‖a−b‖
∆

)

for finding an intersection point

within a precision of ∆ > 0. When f is a polynomial, we use Descartes’ rule instead of evaluating
the signs of f at a and b, which reduces the computation time.
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The intersection oracle is also simple to implement, and we did it by means of a divide-and-conquer
strategy. However, computing all the intersection points of S and segment [a, b] within a precision

of ∆ > 0 takes Θ
(

‖a−b‖
∆

)

time. Hence, for implicit surfaces, the intersection oracle is far less

efficient than the bipolar oracle. Timings are reported in Table 1.

Figure 4: Results on smooth closed algebraic surfaces, with σ = 0.09 dM .

Experimental results Results on smooth closed algebraic surfaces are reported in Figure 4.
The top line shows the inputs, the bottom line shows the outputs. From left to right, we have a
torus, a genus-three surface of degree 4, called “chair”, and a genus-five surface of degree 4, called
“tanglecube”. These surfaces have been meshed taking 0.09 dM for function σ. As predicted by
our theoretical results, we obtained good topological and geometric approximations of the surfaces.

Figures 12 (color section) and 5 show the results of the algorithm respectively on the standard left
trefoil knot and on a more intricate knot with high self-entanglement. In both cases, the result
of the algorithm is ambient isotopic to the original algebraic model, as predicted by Theorem 4.4.
Notice that every knot is represented in “sausage” format, i.e. as the boundary of a thickening of
some knotted curve. Figure 12 (left) shows that such a curve can be defined as the intersection of
two algebraic surfaces, f1 = 0 and f2 = 0, which are the images through a stereographic projection
of two 2-manifolds embedded in the unit sphere of R

4, as explained in [11]. One possible thickening
of the curve f1 = f2 = 0 is f2

1 + f2
2 < δ, whose boundary f2

1 + f2
2 = δ is a smooth closed surface, for

sufficiently small δ. Notice that this thickening does not have a constant radius, as one can observe
in Figure 12 (right).
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Figure 5: An intricate knot, in “sausage” format, meshed with σ = 0.09 dM .

Some results on piecewise smooth algebraic surfaces are presented in Figure 6. Since the distance
to the medial axis vanishes at singularities, our theoretical results do not hold here. Therefore,
to generate each mesh, we used a constant function σ, whose value was chosen according to the
desired resolution of the output mesh, with respect to the diameter of the surface. The left column
of Figure 6 contains the input models, the center column the output meshes, and the right column
some close-ups of both objects. From top to bottom, we have:
- Barth’s octic surface, of degree 8 (according to its name), made of eight pillows placed at the
vertices of a cube and connected along the edges of the cube by means of two singular points. Hence,
there are 24 singular points in total. We took σ = 0.03 to mesh this surface, whose diameter is 4.
- a degree-six surface called “heart”, with two pinch points, one at the top and the other at the
bottom. We took σ = 0.05 to mesh this surface, whose diameter is 4.
- Klein’s bottle, which is not a manifold when immersed in 3-space. Here, we took σ = 0.1, while
the diameter of the surface is 8.

Figure 6 illustrates two things. First, the algorithm terminates on all kinds of compact surfaces,
in accordance with the statement of Lemma 8.1. Second, the algorithm does a good job far from
the singularities. We have added to our implementation a patch that checks whether Del|S(E)
is a manifold and that goes on refining the mesh in the negative. This patch can be toggled by
the user, which allows him to force the algorithm to generate a manifold. This option has been
activated for the “heart” and Barth’s octic. The corresponding meshes are manifolds. Notice that,
as a consequence, the singular points of Barth’s octic are missing in our triangulated version.

Timings for the above algebraic models are reported in Table 1, normalized with respect to the 3D
incremental Delaunay triangulation algorithm. The precalculation of dinf

M is not taken into account
here. Moreover, since the meshing process works in two passes, timings are reported only for the
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Intersection oracle (uses Del|S(E)) Bipolar oracle (uses Delb|S(E))

Surface Engine Oracle
Total
time

Output
size

Engine Oracle
Total
time

Output
size

Time/Del. % # calls Time/Del. % / Del. (# pts) Time/Del. % # calls Time/Del. % / Del. (# pts)

Sphere 0.64 14.6 8, 929 3.8 85.4 4.4 445 0.66 87.5 3, 226 0.1 12.5 0.76 445
Ellipsoid 2.5 6.3 7, 410 37 93.7 39.5 380 2.75 91.7 8, 170 0.25 8.3 3 380
Torus 0.29 0.2 58K 158 99.8 158 1, 268 0.31 88.7 63K 0.39 11.3 0.7 1, 307
Chair 2.67 0.5 260K 562 99.5 565 6, 619 2.7 89.4 255K 0.32 10.6 3.02 6, 461

Tanglecube 2.77 2.9 168K 118 97.1 121 4, 225 2.57 90.8 165K 0.27 9.2 2.84 4, 242
Trefoil
knot

4.18 1.6 545K 261 98.4 265 8, 329 4.18 93.2 592K 0.31 6.8 4.49 8, 317

Intricate
knot

2.56 2.3 5.2M 110 97.7 113 133K 2.31 89.9 7M 0.26 10.1 2.57 148K

Barth’s
octic

2.31 1.7 547K 132 98.3 134 13, 928 2.35 83.8 603K 0.45 16.2 2.8 14, 168

Heart 2.24 7 252K 29.6 93 31.9 8, 445 2.15 91.8 263K 0.19 8.2 2.34 8, 539
Klein’s
bottle

0.15 3.5 101K 41.2 96.5 41.5 3, 424 1.58 92 102K 0.14 8 1.72 3, 445

Table 1: Timings (normalized w.r.t. 3D incremental Delaunay triangulation algorithm) and output size for various algebraic
surfaces.
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Figure 6: Results on non-smooth or non-manifold algebraic surfaces, with σ = σ0 > 0.

second pass. We tried the two versions of the oracle: intersection oracle and bipolar oracle. For
each version, we separated the time spent in the oracle from the time spent in the rest of the
program (the engine).

The first observation is that the ratio between the timings of the two versions of the oracle is quite
large. In the table, it ranges from several units for small models (e.g. 4 for the sphere), to several
dozens for huge models (e.g. 40 for the intricate knot). As explained previously, this phenomenon
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is due to the algorithmic structure of the oracle, which makes the running time of its standard
version linear w.r.t. 1/∆, where ∆ is a user-defined precision threshold (10−6 here), while the time
complexity of its bipolar version is logarithmic w.r.t. 1/∆.

The second observation is that the timings of the engine are comparable to the timings of the
incremental Delaunay triangulation algorithm (the ratio is never greater than a few units, and
sometimes even less than 1). This observation is not surprising since both algorithms are similar.
The trade-off between the performances of these algorithms is due to the oracle. With the bipolar
oracle, the trade-off is small and the performances of both algorithms are comparable.

11.2 Level sets in 3D images

In this paragraph, S is a grey level in a 3D greyscaled image. Formally, it is a level set of some
potential function f whose expression is not given explicitely. However, we can retrieve the value
of f(x) for any x ∈ R

3 by interpolation. Our implementation uses the YAV++ library [34], which
provides us with basic tools for manipulating 3D greyscaled images.

P1 We compute the points of S that have a horizontal tangent plane, by sweeping a horizontal
plane vertically across the image. Since S has no boundary, this gives us at least two points per
connected component of S.

P2 We use a thinning algorithm [13] to compute a discrete approximation M̃ of the medial axis
of S. An estimate of dM can be easily computed from M̃ , which allows us to mesh S in one pass
only.

P3 We proceed as in the case of an implicit surface.

Experimental results Figure 7 shows some results of the algorithm on 3D greyscaled images.
The input images are courtesy of Olivier Clatz. The first one has size 2563 ≈ 16.7M voxels, the
second one 50 × 60 × 60 = 180K voxels. The first mesh has about 25K vertices, which is far less
than the size of the output of the Marching Cubes algorithm (several millions of vertices). The
advantage of our mesher over the Marching Cubes algorithm is that the user can specify through
function σ, at which level of detail he wants to work. The second mesh has approximately 100K
vertices, which is comparable to the size of the input image. The reason for this is that the surface
is quite complicated, with a small dinf

M , hence generating an ε-sample requires a lot of points.

11.3 Point set surfaces

Here, S is known only through an unorganized finite point set E. The points of E are assumed to
be close to S, though they may not lie on S exactly. We use our algorithm to generate a new point
sample. The original one is used only for fulfilling prerequisites (P1), (P2) and (P3).
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Figure 7: Results on 3D greyscaled images, with σ = 0.09 dM .

P3 Since S is known only through E, it is impossible to compute new points of S. Therefore,
to fulfill prerequisite (P3), we have to derive from E some local approximation S̃ of S. Then, our
algorithm will sample S̃ instead of S. Such a strategy has been proposed in [1, 8, 25]. In [8],
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S̃ is a smooth closed surface, and our results imply that the meshing algorithm outputs a good
approximation of S̃. In [1], S̃ is also a smooth closed surface, provided that E is a good sample of S
in some sense. Notice that we can choose S̃ freely. In particular, S̃ does not need to pass through
the points of E.

P1 If E is a good sample of S, in the sense of [1] or in the sense of [20], then we can compute
an approximation of the tangent plane of S in each point of E. We pick up the points of E whose
tangent plane is almost horizontal. Since S has no boundary, this gives us at least two points per
connected component of S.

P2 As explained in Section 10, we can approximate the distance to the medial axis of S̃ with the
distance to the λ-medial axis of E. Using this estimate, we can sample S̃ in one pass only, without
computing dinf

M .

Experimental results Figure 8 shows the results of the algorithm on a noisy point set of 42K
points – upper-left corner. In the upper-right corner is the output of our algorithm when used
with the interpolating surface of [7]. In the bottom-right corner is the result of our algorithm when
used with the approximating surface of [1] – shown in the bottom-left corner. Both outputs have
the right topology type. However, the interpolating surface leads to a wrong approximation of
the normals of the original surface2, due to the presence of noise. This is not the case with the
approximating surface.

11.4 Polyhedra

It is trivial to fulfill (P1) when S is a polyhedron. Moreover, we can forget about (P2) because,
as a choice for σ, we take a constant function that has no relationship with dM , since S contains
singular points. As for (P3), it can be satisfied by means of a naive procedure which, given a line
segment s, checks the intersection of s with each facet of S. The segment-surface-intersection test
is then performed in linear time, with respect to the number of facets of S. Our implementation
of the oracle uses some code developped by M. Samozino from an original idea by P. Bhattacharya
[6]. This code uses an octree to speed-up the segment-surface-intersection test.

Experimental results Figure 10 shows some results on polyhedra. One can notice that the
algorithm does a good job far from the sharp edges. When all dihedral angles of S are larger than
π
2 , the algorithm behaves as if the surface were smooth. It is the case of the horse model, from which
the algorithm generated a manifold with the right topology type. However, in the vicinity of sharp
edges, the output mesh may have cracks or holes, or it may even not be a manifold. An illustration
is given in the close-up of the octopus, in which the mesh is shown with Gouraud shading. The
consequence of the non-orientability of the mesh is that dark stains appear in places where the
normal is oriented in the wrong direction. In these places, the surface is not locally a manifold.

2Ondulations are clearly visible in the upper-right corner of Figure 8.
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Figure 8: Results on a point set surface, with σ = 0.09 dM .

Figure 9 shows the result of the skinny facet removal procedure on the triceratops model. As
predicted in Section 9.1, the procedure terminated and removed all triangles with angles less than π

6 .
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Input

Output

Figure 9: Removing the skinny facets (triceratops model).

12 Conclusion

We have introduced a new notion of surface sample, the so-called loose ε-samples. We have shown
that loose ε-samples are ε(1+8.5 ε)-samples and share the main properties of ε-samples. Checking
if a sample E of a surface S is a loose ε-sample reduces to comparing the radii of the surface
Delaunay balls with the distances of their centers to the medial axis of S. Hence we obtain a
new sufficient condition for sampling a surface with topological and geometric properties. This
condition is similar in spirit to other sampling conditions [3, 4, 22]. An important advantage of our
condition is that it leads to a simple and provably correct algorithm to sample and mesh surfaces,
which has several advantages over the Marching Cubes algorithm [16, 26]: topological guarantees,
approximation of normals, facets with bounded aspect ratio, optimal size.

This paper has only considered the case of smooth closed surfaces. We plan to extend our work
to surfaces with boundaries and to piecewise smooth surfaces. Experimental results have shown
that the algorithm is robust and can produce good geometric approximations of surfaces with
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Figure 10: Results on polyhedra, with σ = σ0 > 0.

singularities.

Our approach can be used for curves in any dimension: extending the proofs of this paper is not
difficult, and in fact the proofs are simpler. Further research is needed to extend this work to
manifolds of dimension more than one embedded in spaces of higher dimensions.

Since the submission of the conference version of this paper, several other certified algorithms
have been proposed to mesh smooth closed implicit surfaces. Plantinga and Vegter [29] proposed
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a variant of the Marching Cubes algorithm with topological guarantees. However, they have no
optimality result, and no guarantee on the aspect ratio of the facets. Cheng et al. [14] proposed
another Delaunay refinement algorithm for meshing implicit surfaces. Their algorithm assumes
to be able to compute critical points of height functions defined over S or over intersections of S
with planes, which seems to be a hard task except for simple cases (when the implicit function is a
polynomial of low degree). Boissonnat et al. [9] proposed a meshing algorithm that offers topological
guarantees based on some results from Morse theory. Their method requires to compute the indices
of critical points and has not been implemented yet.
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Color figures

Figure 11: Example of a Delaunay triangulation (in blue) restricted to a curve (in black).

Figure 12: The standard left trefoil knot, in “sausage” format, meshed with σ = 0.09 dM .
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Appendix: various lemmas

This appendix recalls a few well-known results.

Theorem A.1 [Meusnier’s theorem]
Let S be a C2-continuous surface, m be a point of S, and ξ be a curve drawn on S that passes
through m. We parameterize ξ by arclength. Then,

‖ξ′′‖ =
II(ξ′, ξ′)

cos θ

where ξ′ and ξ′′ are respectively the first and second derivatives of ξ at point m, II is the second
fundamental form of S at m, and θ is the angle between the normal to S and the normal to ξ at m.

A proof of this theorem can be found in [21].

Lemma A.2 Let −→v be a vector of Euclidean space R
3, and Π a vectorial plane that is not orthog-

onal to −→v . Let
−→
vπ denote the orthogonal projection of −→v onto Π. For any vector −→u of Π \ {−→0 },

we have (−→v ,−→u ) ≥
(−→v ,

−→
vπ

)

.

Proof Notice that (−→v − −→
vπ) is orthogonal to Π. Thus, for all −→x ∈ Π, −→v .−→x =

−→
vπ.−→x . Consider

C =
{−→x ∈ Π | ‖−→x ‖ = ‖−→vπ‖

}

. For all −→u ∈ C, we have
−→
vπ.

(−→u −−→
vπ

)

≤ 0. Thus, −→v .−→u = −→v .
−→
vπ +

−→v .
(−→u −−→

vπ
)

= −→v .
−→
vπ +

−→
vπ.

(−→u −−→
vπ

)

≤ −→v .
−→
vπ, which means that cos (−→v ,−→u ) ≤ cos (−→v ,

−→
vπ) since

‖−→u ‖ = ‖−→vπ‖. It follows that (−→v ,−→u ) ≥ (−→v ,
−→
vπ).

Now, let −→u be any non-zero vector of Π. There exists a unique vector
−→
uc ∈ C such that (−→u ,

−→
uc) = 0.

It follows that (−→u ,−→v ) = (
−→
uc,−→v ) ≥ (−→v ,

−→
vπ). �

Lemma A.3 Let f and g be two univariate functions of class C2. Let xa and xb (xa < xb) be two
reals such that

(i) f(xa) = g(xa) and f(xb) = g(xb)
(ii) ∀x ∈ [xa, xb] , f(x) ≥ g(x)
(iii) ∀x ∈ ]xa, xb[ , g′′(x) ≤ 0

Then there exists a real xc ∈ ]xa, xb[ such that f ′′(xc) ≤ g′′(xc) ≤ 0.

Proof By f ′(xa) and g′(xa) we denote the right derivatives of f and g at xa. Idem, by f ′(xb)
and g′(xb) we denote the left derivatives of f and g at xb. (i) and (ii) imply that f ′(xa) ≥ g′(xa),

since otherwise there would exist a neigbourhood Va of xa such that ∀x ∈ Va \ {xa}, f(x)−f(xa)
x−xa

<
g(x)−g(xa)

x−xa
, which would give that f < g on Va \ {xa}, which contradicts (ii). Idem, we have

f ′(xb) ≤ g′(xb).
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Now, Taylor-Lagrange formula (at first order), applied to function (f’-g’), tells that there exists a

real xc ∈ ]xa, xb[ such that (f ′ − g′)′(xc) = (f ′−g′)(xb)−(f ′−g′)(xa)
xb−xa

, which is negative since f ′(xa) −
g′(xa) ≥ 0 and f ′(xb) − g′(xb) ≤ 0. It follows that f ′′(xc) − g′′(xc) ≤ 0. �

Lemma A.4 Let S be a compact surface without boundary, embedded in R
3, and let −→v be a vector.

We choose an orthonormal frame (O, x, y, z) such that −→v is oriented along the [0, z) direction. Let
Ω be a convex subset of R

3, such that ∀x ∈ S ∩Ω, (−→n (x),−→v ) < π
2 , where −→n (x) denotes the normal

to S at x. Then S ∩ Ω is xy-monotone.

Proof We assume without loss of generality that S is oriented such that its normal points outwards.
Let us assume for a contradiction that there exists a point (x0, y0) of plane (O, x, y) such that the
vertical line d passing through (x0, y0) intersects S∩Ω at least twice. Let (x0, y0, z1) and (x0, y0, z2)
be two points of intersection that are consecutive along d. If there are not two such points, then
this means that d intersects S ∩Ω along a segment (which is a degenerate case), and at each point
of this segment the normal to S is orthogonal to d, and thus has zero dot-product with −→v , which
contradicts the hypothesis of the lemma. So now we assume that points (x0, y0, z1) and (x0, y0, z2)
do exist. By definition, they are consecutive among the points of S∩Ω∩d. Since Ω is convex, Ω∩d
is a segment of d, hence points (x0, y0, z1) and (x0, y0, z2) are also consecutive among the points
of S ∩ d. Thus, the open segment of d that joins them is included in one component of R

3 \ S.
It follows that −→n (x0, y0, z1) or −→n (x0, y0, z2) has a negative or zero dot-product with −→v , since the
normal of S always points outwards. This contradicts the hypothesis of the lemma. �

Lemma A.5 Let S be a compact surface without boundary, embedded in R
3, and let −→v be a vector.

We choose an orthonormal frame (O, x, y, z) such that −→v is oriented along the [0, z) direction. Let
B be a ball centered at point c ∈ S, such that ∀x ∈ B ∩S, (−→n (x),−→v ) ≤ π

4 . Then S ∩B lies outside
the cone K of apex c, of vertical axis and of half-angle π

4 .

Proof Let proj be the vertical projection onto plane (O, x, y). Since B ∩ S is xy-monotone by
Lemma A.4, the projection of B ∩S is one-one. Let us assume for a contradiction that there exists
a point c′ ∈ B ∩ S that lies inside K. Let P be the vertical plane that passes through c and c′. It
intersects B ∩ S along a set of simple arcs, since B ∩ S is xy-monotone. We consider the segment
that joins proj(c) and proj(c′):

1. if it is included in proj(B ∩ S), then c and c′ belong to the same connected arc of P ∩ B ∩ S.
The problem becomes then two dimensional: inside plane P , K is a cone of apex c, of vertical axis
and of semi-angle π

4 , and c and c′ belong to a connected arc that is the graph of a function f , and
whose normal makes an angle lower than π

4 with the vertical direction (which means that |f ′| ≤ 1).
Let (O, t, z) be an orthonormal frame of P . We call ct and c′t the t-coordinates of c and c′. We

have |f(c′t) − f(ct)| =
∣

∣

∣

∫ c′t
ct

f ′(t)dt
∣

∣

∣
≤

∣

∣

∣

∫ c′t
ct

|f ′(t)|dt
∣

∣

∣
≤ |c′t − ct|, which means that c′ does not belong

to K, which contradicts the assumption.

2. if the segment that joins proj(c) and proj(c′) is not entirely included in proj(B ∩ S), then
we have to find another point that satisfies all the assumptions of case 1. We call c′1 and c′2 the
points of ∂B that have same (x, y) coordinates as c′, and we assume without loss of generality that
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c′1 lies above c′2. Let p1 and p2 be the upper and lower poles of ∂B. We consider the meridian
m of ∂B than passes through p1, c′1, c′2 and p2. The smaller arc α1 of m that joins p1 and c′1,
and the smaller arc α2 of m that joins p2 and c′2, project themselves onto the segment that joins
proj(c) = proj(p1) = proj(p2) and proj(c′) = proj(c′1) = proj(c′2). Since this segment is not entirely
included in proj(B∩S), it intersects the boundary of proj(B∩S). Let c∗ be the point of intersection
that is closest to proj(c). Since S has no boundary, the boundary of B ∩S belongs to ∂B, thus the
point of B ∩ S that projects onto c∗ lies on α1 or α2. We call proj−1(c∗) this point. Since c′ ∈ K
by assumption, c′1 and c′2 also belong to K. Thus, all the points of α1 belong to K since they are
closer than c′1 to the vertical axis of the cone, while their z-coordinate is bigger than that of c′1.
Idem, α2 ⊂ K. Thus, proj−1(c∗) belongs to K. Moreover, since c∗ is the point of intersection that
is closest to proj(c), segment [proj(c), c∗] is included in proj(B ∩ S). So, proj−1(c∗) verifies all the
assumptions of case 1., and thus leads to the same contradiction. �
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