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Abstract

We present a clustering scheme that combines a mode-seeking phase with a cluster merging
phase in the corresponding density map. While mode detection is done by a standard graph-
based hill-climbing scheme, the novelty of our approach resides in its use of topological persistence
to guide the merging of clusters. Our algorithm provides additional feedback in the form of
a set of points in the plane, called a persistence diagram (PD), which provably reflects the
prominences of the modes of the density. In practice, this feedback enables the user to choose
relevant parameter values, so that under mild sampling conditions the algorithm will output the
correct number of clusters, a notion that can be made formally sound within persistence theory.
In addition, the output clusters have the property that their spatial locations are bound to the
ones of the basins of attraction of the peaks of the density.

The algorithm only requires rough estimates of the density at the data points, and knowledge
of (approximate) pairwise distances between them. It is therefore applicable in any metric space.
Meanwhile, its complexity remains practical: although the size of the input distance matrix may
be up to quadratic in the number of data points, a careful implementation only uses a linear
amount of memory and takes barely more time to run than to read through the input.

1 Introduction

Unsupervised learning or clustering is an important tool for understanding and interpreting data in
a variety of fields. Obtaining the most natural clustering is an ill-posed problem in general, and it
is particularly difficult with massive and high-dimensional data sets where visualization techniques
fail. The breadth of the existing work on clustering [25] shows the high interest this topic has
aroused among the scientific community. Here we recount a few classical methods to show where
our approach stands with respect to the literature:

K-means [31] is perhaps the most commonly used approach. Given a fixed number k of clusters,
it tries to place cluster centers and define cluster boundaries so as to minimize the sum of the squared
distances to the center within each cluster. This minimization problem is known to be NP-hard, so
k-means resorts to an iterative expectation-maximization procedure that is guaranteed to converge
at least to some local minimum. This minimum is not guaranteed to be global, however. Another
issue with k-means and its variants is that they produce bad results on highly non-convex clusters.
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Spectral clustering [40] was designed specifically to work on non-convex data. It first computes
an embedding of the data set endowed with a diffusion distance between the points, given by a
Laplacian of some neighborhood graph. Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigendecomposition of the Laplacian, which
may have numerical issues as the size of the data grows. The presence of a gap in the spectrum
of the Laplacian gives an indication of the correct number k of clusters. However, problems arise
when there are more than a small number of outliers in the data, in which case no such gap may
exist.

Density-based techniques make the assumption that the data points are drawn from some un-
known density function f . Clustering becomes then a problem of understanding the structure of f ,
as estimated from the samples. A popular approach consists in thresholding the density at some
fixed level α, then treating the connected components of the superlevel-set Fα = f−1([α,+∞)) as
clusters and the rest of the data as noise. In practice, the density f is unknown so its superlevel
Fα needs to be approximated from the data, which algorithms like DBSCAN [22, 34] do by var-
ious graph-based heuristics. Unfortunately, due to the use of a fixed density threshold α, these
techniques do not respond well to hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Another popular approach, called mode-seeking, consists in detecting the local peaks of f in
order to use them as cluster centers and to partition the data according to their basins of attraction.
The precise notion of the basin of attraction Bp of a peak p varies between references, yet the
bottom line remains that Bp corresponds to the subset of the data points that eventually reach p
by some greedy hill-climbing procedure. This line of work started with the algorithm of [30] and was
followed by numerous variants and extensions, including Mean-Shift [15] and its successors [35,39].
A common issue faced by these techniques is that the gradient and extremal points of a density
function are notoriously unstable, so their approximation from a density estimator can lead to
unpredictable results. This is why methods such as Mean-Shift adopt a proactive strategy that
consists in smoothing the estimator before launching the hill-climbing procedure, which in turn
raises the difficult question of how much smoothing is needed to remove the noise without affecting
the signal, and to obtain the correct number of clusters.

Enter topological persistence In this paper, we adopt a more reactive strategy that consists in
using topological persistence [21,41] to detect and merge unstable clusters after their computation,
thus regaining some stability. Although our method belongs to the same family as Mean-Shift,
the use of persistence makes it possible to link explicitly the input parameter values to the output
number of clusters. It also provides a sound theoretical framework for characterizing the correct
number of clusters, in the same spirit as spectral clustering.

Topological persistence estimates the prominence (also called persistence) of the density peaks
and builds a hierarchy of the peaks based on it. The prominence of a peak is defined as the difference
between its height and the level at which its basin of attraction meets the one of a higher peak
(its parent in the hierarchy). More precisely, focusing on the 1-parameter family of superlevel-sets
Fα = f−1([α,+∞)) of the density function f , persistence studies the evolution of the connectivity
(and more generally, of the topology) of Fα as α ranges from +∞ to −∞. A new connected
component C is born in Fα when α reaches the height of a peak p of f , and dies when it gets
connected in Fα to the component of a higher peak (see Figure 1(a)). As mentioned above, the
prominence of p is simply the height difference between birth and death values of C. The lifespan
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Figure 1: Sketch of topological persistence: (a) a new connected component is born in the
superlevel-set Fα when α = f(p), and it dies when α = f(s); its lifespan is represented as a
point in the PD of f ; (b) a piecewise-linear approximation f̃ of f ; (c) superimposition of the PDs
of f (red) and f̃ (blue), showing the one-to-one correspondence between the prominent peaks of f
and f̃ .

of each connected component C can be represented as a point in the plane, with the x-coordinate
giving the birth time of C and the y-coordinate giving its death time. The collection of such points
is called the (0-dimensional) persistence diagram (PD) of f , illustrated in Figure 1(c). The key
insight of this planar data representation is that the PD reveals part of the topological structure
of the density function f . More precisely, each peak of f is uniquely represented by one point in
the PD, and its prominence is given by the vertical distance of this point to the diagonal y = x.

Originally defined in Morse theory, prominence is known to be more stable than other measures
of significance such as absolute height. For example, a small bump occurring at a high density will
have large absolute height but small prominence. The same kind of stability holds for PDs. For
instance, f and its noisy approximation f̃ (see Figure 1(b)) have similar PDs, in the sense that
there is a one-to-one mapping of small amplitude from the prominent peaks of f̃ to the ones of
f , the rest of the peaks being treated as topological noise and mapped to the diagonal in the PD
(see Figure 1(c)). Thanks to this fundamental stability property, with only limited knowledge of
the underlying space and a finite estimate of the density f it is possible to provably and efficiently
approximate the PD of f . The combination of such guarantees with computational practicality is
at the heart of topological data analysis [2–4,24], which includes this work.

It is worth noting that PDs are similar in spirit to the dendrograms provided by agglomerative
clustering schemes, whose principle is to build the clusters in a bottom-up fashion, starting with
each point being its own cluster and merging at each step the most similar clusters together. The
output dendrogram describes the sequence of merges that have occurred during the process, thus
encoding the hierarchical structure of the obtained family of clusterings. While these techniques
bear some connections with ours, they are actually based on a different clustering paradigm that
suffers from its own limitations — see e.g. Section 14.3.12 in [26].

Our method Our clustering scheme, called ToMATo (Topological Mode Analysis Tool), combines
the original graph-based hill-climbing algorithm of [30] with a cluster merging step guided by
persistence. As illustrated in Figure 2(b), hill-climbing is very sensitive to perturbations of the
density function f that arise from a density estimator f̃ . Computing the PD of f̃ enables us to
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Figure 2: Our approach in a nutshell: (a) estimation of the underlying density function f at the
data points; (b) result of the basic graph-based hill-climbing step; (c) approximate PD showing 2
points far off the diagonal corresponding to the 2 prominent peaks of f ; (d) final result obtained
after merging the clusters of non-prominent peaks.

quantify the prominences of its peaks and, in favorable cases, to distinguish those that correspond
to peaks of the true density f from those that are inconsequential. In Figure 2(c) for instance, we
can see 2 points (pointed to by arrows) that are further from the diagonal than the other points:
these correspond to the 2 prominent peaks of f̃ (one of them is at y = −∞, since the highest
peak never dies). To obtain the final clustering, we merge every cluster of prominence less than
a given thresholding parameter τ into its parent cluster in the persistence hierarchy. As shown
in Figures 2(c) and 2(d), the PD gives us a precise understanding of the relationship between the
choice of τ and the number of obtained clusters.

In practice we run ToMATo twice: in the first run we set τ = +∞ to merge all clusters and
thus compute the PD; then, using the PD we choose a value for τ (which amounts to selecting the
number of clusters) and re-run the algorithm to obtain the final result. The feedback provided by
the PD proves invaluable in interpreting the clustering results in many cases. Indeed, the PD gives
a clear indication of whether or not there is a natural number of clusters, and because it is a planar
point cloud we can understand its structure visually, regardless of the dimensionality of the input
data.

ToMATo is highly generic and agnostic to the choice of distance, underlying graph, and density
estimator. Our theoretical guarantees make use of graphs that do not require the geographic
coordinates of the data points at hand (only pairwise distances are used) nor estimates of the
density at extra points. This makes the algorithm applicable in very general settings. ToMATo
is also highly efficient: in the worst case it has an almost-linear running time in the size of the
underlying graph, and only a linear memory usage in the number of data points. Most often we
use Euclidean distances, however other metrics such as diffusion distances can be used. Indeed,
the choice of metric and density estimator define the space we study, while our algorithm gives the
structure of this space. Finally, ToMATo comes with a solid mathematical formulation. We show
that, given a finite sampling of an unknown space with pointwise estimates of an unknown density
function f , our algorithm computes a faithful approximation of the PD of f . Under conditions of a
sufficient signal-to-noise ratio in this PD, we can determine the correct number of clusters and show
that significant clusters always have stable regions. In some applications, the number of clusters
is not obvious and we see this in the corresponding PDs. However, in these cases the relationship
between the choice of parameters and the number of obtained clusters is transparent.
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Obtaining guarantees in such general settings using only simple tools like neighborhood graphs is
made possible by recent advances on the stability of persistence diagrams [6, 8]. Previous stability
results [14] required the use of piecewise-linear approximations of the density functions, as in
Figure 1(b) for instance. The construction of such approximations becomes quickly intractable
when the dimensionality of the data grows. This fact might explain why topological persistence
was never really exploited in mode analysis before, except in some restricted or low-dimensional
settings [33].

Paper layout In the first part of the paper (Sections 2 through 5) we emphasize the experi-
mental aspects of our work, describing the approach, giving an intuitive overview of its theoretical
guarantees, discussing the choice of its parameters in practice, and demonstrating its potential in
terms of applications through a series of experimental results obtained on synthetic and real-life
data sets. The precise statements and proofs of our theoretical claims are detailed in the second
part of the paper (Sections 6 through 11).

Part I
PART I: Approach, guarantees, and results

2 The algorithm

We first provide an intuitive insight into our approach by considering the continuous setting un-
derlying our input. We then give the details of the algorithm in the discrete setting.

The continuous setting Consider an m-dimensional Riemannian manifold X and a Morse func-
tion f : X → R, i.e. a C∞-continuous function with non-degenerate critical points such that all
the critical values are distinct. Assume that f has a finite number of critical points. The ascending
region of a critical point m, noted A(m), is the subset of the points of X that eventually reach m
by moving along the flow induced by the gradient vector field of f . For all x ∈ A(m), we call m
the root of x. Ascending regions of the peaks of f are known to form pairwise-disjoint open cells
homeomorphic to Rm. Furthermore, assuming X to have no boundary and f to be bounded from
above and proper1, the ascending regions of the peaks of f cover X up to a subset of Hausdorff
measure zero. It is then natural to use them to partition (almost all) the space X into regions of
influence.

For any α ∈ R, let Fα denote the closed superlevel-set f−1([α,+∞)). Consider the nested
family of spaces {Fα}α∈R obtained by letting parameter α decrease from +∞ to −∞. This family
is called the superlevel-sets filtration of f . For any α ∈ R and x ∈ X, let C(x, α) ⊆ Fα denote
the path-connected component of Fα that contains x. Morse theory tells us that when a local
maximum mp of f enters the superlevel-sets filtration, at time α = f(mp), a new path-connected
component C(mp, α) appears in the superlevel-set Fα. In homological terms, the peak mp is called

1Meaning that for any bounded closed interval [a, b] ⊂ R, the pre-image f−1([a, b]) is a compact subset of X.
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the generator of the component born at time f(mp). This component ceases to be independent in
Fα when it gets connected to another component generated by a higher peak mq. At that particular
time, noted α = d(mp), persistence theory tells us that C(mp, α) gets merged into C(mq, α). While
mq remains the generator of the component C(mq, α), mp ceases to be a generator, and by analogy
we call mq its root, noted mq = r(mp). In the (0-dimensional) persistence diagram D0f , the lifespan
of mp as a generator is encoded by the point p of coordinates px = f(mp) and py = d(mp) ≤ px.
The difference px− py ≥ 0 between birth and death times is called the prominence of the peak mp.
Equivalently, we say that mp is (px−py)-prominent. As for the peak mq, if it remains the generator
of C(mq, α) for all values α ≤ f(mq), then persistence theory sets its death-time d(mq) to −∞, so
its lifespan is represented in D0f by the point (f(mq), −∞) and its prominence is infinite.

Given a thresholding parameter τ ≥ 0, we restrict our focus to the peaks mp of f of prominence
at least τ . Intuitively, the points of X that are attracted by mp are the ones belonging to ascending
regions that are eventually merged by persistence into the connected component of mp before being
merged into the component of any other peak of prominence at least τ . Formally, for every peak
mq of f (of arbitrary prominence), let us iterate the root map mq 7→ r(mq) until some peak of
prominence at least τ is reached2. We call r∗τ the thus iterated root map, and we note that every
peak of prominence at least τ is a fixed point of r∗τ . The union of the ascending regions of the
peaks mapped to mp through r∗τ is referred to as the basin of attraction of mp (of parameter τ) in
the paper, noted Bτ (mp):

∀mp s.t. px − py ≥ τ, Bτ (mp) =
⋃

r∗τ (mq)=mp

A(mq). (1)

Note that Bτ (mp) contains A(mp) since mp is a fixed point of r∗τ . More precisely, we have A(mp) =
B0(mp) ⊆ Bτ (mp). In addition, since the iterated root map mq 7→ r∗τ (mq) is uniquely defined, the
basins of attraction form a partition of the union of all ascending regions. These basins are our
target clusters.

The discrete setting ToMATo takes as input an unweighted simple graph G, whose vertex
set represents the data points and whose edges connect the points according to some user-defined
proximity rule. Each vertex i of G must be assigned a non-negative value f̃(i) corresponding to the
estimated density at that point. In addition, ToMATo takes in a non-negative merging parameter
τ , whose choice and use are elaborated below. In this discrete setting, the algorithm mimics the
process described above in the continuous setting by running the following procedures in this order:

1. (Mode-seeking) To compute the initial clusters, ToMATo iterates over the vertices of G sorted by
decreasing f̃ -values : at each vertex i, it simulates the effect of the gradient of the underlying
density function by connecting i to its neighbor in G with highest f̃ -value, if that value is
higher than f̃(i). Otherwise, all neighbors of i have lower values, so i is declared a peak of f̃ .
The resulting collection of pseudo-gradient edges forms a spanning forest of the graph, and
each tree in this forest can be viewed as the analog within G of the ascending region of a peak
of the true density function in the underlying continuous domain.

2Such a prominent peak is always reached eventually, since the function f has finitely many peaks and since the
root map satisfies f(mq) < f(r(mq)), meaning that r(mq) is more prominent than mq.
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2. (Merging) To handle merges between trees, ToMATo iterates over the vertices of G again, in the
same order, while maintaining a union-find data structure U , where each entry corresponds
to a union of trees of the spanning forest. We call root of an entry e, or r(e) for short, the
vertex contained in e whose f̃ -value is highest. By definition, this vertex is the root of one
of the trees contained in e, that is, a local peak of f̃ in G. During the iteration process, two
different scenarios may occur when a vertex i is considered:
(a) Vertex i is a peak of f̃ within G, i.e. the root of some tree T . Then, i creates a new

entry e in U , in which T is stored, and we let r(e) = i.
(b) Vertex i is not a peak and therefore belongs to some tree stored in an existing entry ei

of U (of which i is not the root). Then, we compute the set E of the entries of U that
contain neighbors of i in G. We iterate over this set in any order, and for each entry
e ∈ E considered, we check whether e 6= ei and min{f̃(r(e)), f̃(r(ei))} < f̃(i) + τ , that
is, whether the two entries differ and at least one of them has a less than τ -prominent
root. If so, then e and ei are merged into a single entry e∪ ei in U , and we let r(e∪ ei) =
argmax{r(e), r(ei)}f̃ , so in effect the entry with the lower root is merged into the one with
the higher root.

Upon termination, the (merged) clusters stored in the entries of the union-find data structure
U form a partition of the vertex set of G, and their roots are the peaks of f̃ of prominence at least
τ within the graph. The output of ToMATo is then the subset of this collection of clusters that is
stored in those entries e such that f̃(r(e)) ≥ τ . The rest of the data points is stored in entries with
roots lower than τ , so it is treated as background noise and discarded from the data set3.

In addition to the clustering, ToMATo outputs the lifespans of all the entries that have been
created in the union-find data structure during the merging phase. By analogy with the continuous
setting, an entry is born when it is created in U with a single tree attached to it as described in
scenario (a) above, and it dies when it gets merged into another entry with higher root as described
in scenario (b). For ease of visualization, the lifespan is represented as a point (x, y) in the plane,
where x is the birth time and y the death time of the entry (y = −∞ if the entry never gets merged
into another one). It is easy to see that the thus obtained planar diagram of points coincides
with the persistence diagram of the scalar field f̃ when parameter τ is set to +∞, as the condition
min{f̃(r(e)), f̃(r(ei))} < f̃(i)+τ in scenario (b) becomes always trivially satisfied and the merging
rule is the one prescribed by persistence theory. When τ < +∞, the entries whose roots are at
least τ -prominent never get merged into other entries, so their corresponding points in the output
diagram are projected down vertically onto the horizontal line y = −∞.

Implementation details and complexity In practice the mode-seeking and merging proce-
dures can be run simultaneously during a single pass over the vertices of the graph G: for each
considered vertex i, the approximate gradient at i is computed, then the possible merges in the
union-find data structure U are performed—these involve only previously visited vertices. The
corresponding pseudo-code is given in Algorithm 1.

3This extra filtering step departs from the approach described in the continuous setting. It stems from the
observation that the data points may not be densely sampled over the entire manifold X. Depending on the proximity
rule used in the definition of the neighborhood graph G, the sparseness of the data in low-density regions may create
independent connected components that give birth to spurious clusters with infinite prominence — see Figure 6 for
an illustrative example.
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The mode-seeking phase takes a linear time in the size of G once the vertices have been sorted.
As for the merging phase, it makes O(n) union and O(m) find queries to the union-find data
structure U , where n and m are respectively the number of vertices and the number of edges of
G. If an appropriate representation is used for U (e.g. a disjoint-set forest [16]), and if the vertex
gradients and the entry roots are stored in separate containers with constant-time access (e.g.
arrays), then the worst-case time complexity of Algorithm 1 becomes O(n log n+mα(n)), where α
stands for the inverse Ackermann function.

As for the space complexity, note that the graph G does not have to be stored entirely in main
memory, since only the neighborhood of the current vertex i is involved at the i-th iteration of the
clustering procedure. The main memory usage is thus reduced to O(n), where n is the number
of vertices of G. The total space complexity remains O(n + m) though, as the graph needs to be
stored somewhere (e.g. on the disk).

ALGORITHM 1: Clustering

Input: simple graph G with n vertices, n-dimensional vector f̃ , real parameter τ ≥ 0.

Sort the vertex indices {1, 2, · · · , n} so that f̃(1) ≥ f̃(2) ≥ · · · ≥ f̃(n);
Initialize a union-find data structure U and two vectors g, r of size n;
for i = 1 to n do

Let N be the set of neighbors of i in G that have indices lower than i;
if N = ∅ then

// vertex i is a peak of f̃ within G
Create a new entry e in U and attach vertex i to it;
r(e)← i; // r(e) stores the root vertex associated with the entry e

else

// vertex i is not a peak of f̃ within G

g(i)← argmaxj∈N f̃(j); // g(i) stores the approximate gradient at vertex i

ei ← U .find(g(i));
Attach vertex i to the entry ei;
for j ∈ N do

e← U .find(j);

if e 6= ei min{f̃(r(e)), f̃(r(ei))} < f̃(i) + τ then
U .union(e, ei);

r(e ∪ ei)← argmax{r(e), r(ei)}f̃ ;

ei ← e ∪ ei;
end

end

end

end

Output: the collection of entries e of U such that f̃(r(e)) ≥ τ .

3 Parameter selection

ToMATo takes in three inputs: the neighborhood graph G, the density estimator f̃ , and the merging
parameter τ . Although the freedom left to the user in the choice of these inputs gives our approach
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a lot of flexibility, the latter must not come at the expense of a significant increase in the amount
of effort needed to run the program. This is why this section provides some insights into the choice
of parameters.

Neighborhood graph G ToMATo relies heavily on the neighborhood information encoded in
the input graph G. Choosing a relevant neighborhood graph (and thereby a relevant metric) is
a problem faced by many clustering techniques. In our experiments we primarily used the δ-Rips
graph, which connects two data points whenever they lie within distance δ of each other. This purely
metric definition makes it possible to use these graphs in arbitrary metric spaces, and to interpret
the structure of the obtained PDs thanks to a sound theoretical framework (see Section 4). The
choice of a particular value for δ corresponds more or less to the choice of a scale at which to inspect
the data. It can be tricky on some instances, where different choices of scale may reveal different
structures. This is why we recommend running ToMATo at several scales, either sequentially or in
parallel. This can be done even for large data sets thanks to the efficiency of the algorithm. For too
large values of δ there will be no real structure in the PD, while too small values of δ will produce
too many infinitely prominent peaks in the PD, corresponding to the connected components of the
graph. By examining the PDs obtained at different scales, one can find an appropriate trade-off.

Another popular choice of neighborhood graph is the k-nearest neighbor (k-nn) graph. Its main
advantage is that it remains sparse whatever the layout of the data. We tested the algorithm
with this graph and generally found that it performed well, recovering the correct clusters under
a suitable choice of parameter k. However, to the best of our knowledge there currently exists no
theory that validates these empirical observations, and in practice we were left with the task of
choosing k, which we accomplished by trial-and-error.

We also ran ToMATo using Delaunay graphs and some of their variants [37]. These have the
great advantage of being parameter-free, and the disadvantage of creating long edges connecting
high-density areas that are far apart, thus leading to artificial merges between clusters. One way
around this issue is to discretize the long edges and to estimate the density at the newly created
nodes, in order to reveal additional valleys that separate the prominent peaks. This requires the
ability to estimate the density outside the input point cloud, which is generally the case when a
Delaunay graph is built.

Density estimator f̃ While the algorithm is agnostic to the choice of density estimator, we
experimented with two of them: a truncated Gaussian kernel estimator, and the distance to a
measure estimator4 proposed in [1]. Each of these estimators uses one parameter, and we refer the
reader to the appropriate references for some insights into the choice of these parameters.

Merging parameter τ During the merging phase, ToMATo eventually merges all clusters of
prominence less than τ into clusters of prominence at least τ . In other words, the choice of τ
determines which peaks of f̃ are considered significant. To choose τ , we run ToMATo twice. In
the first run, τ is set to +∞, which makes ToMATo output the PD of the scalar field f̃ over the
graph G, just as the 0-dimensional version of the standard persistence algorithm [21] would do.
This PD reveals the topological structure of f̃ , providing the height and prominence of each peak

4Given an integer parameter k, the distance of a point x to the empirical measure of support a finite set of points
P is the square root of the average of the squared distances of x to its k nearest neighbors in P . The inverse of this
quantity is used as density estimator.
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of f̃ . Hence it can be used to determine a suitable value for τ , to be assigned in a second run of
ToMATo that computes the final clustering.

In cases where the PD of f̃ shows a large gap separating a small set of k highly prominent peaks
from the rest of the structure, we infer that the number of clusters is likely to be k, and so we
set τ to be any value between the prominences of the k distinguished peaks and the prominences
of the rest of the PD. Then the output of the second run of ToMATo contains exactly k clusters.
Detecting a large gap automatically can be done by means of the following simple heuristic: we
sort the points in the PD by decreasing prominence (possibly weighted by the corresponding peak
heights, to avoid a squeezing effect due to the presence of extremely or even infinitely prominent
peaks), and then we look for the largest drop in the sequence of (weighted) prominences. This
is reminiscent of what is commonly done in spectral clustering for finding a gap in a Laplacian
spectrum, and in fact our prominence gap and the spectral gap play very similar roles, even if in
completely different settings.

In cases where the PD of f̃ does not show any well-separated structure, it still provides a clear
relationship between the choice of parameter τ and the number of clusters obtained after re-running
ToMATo. The choice of a particular value (or of a collection of values) for τ depends on the context,
and in practice it requires to use additional application-specific information on the data. This is
what we did for instance on the biological data set to distinguish between several possible choices
of τ (see Section 5.2).

4 Theoretical guarantees

In this section, we give an intuitive overview of the theoretical guarantees that come along with
ToMATo and validate the above heuristics. Formal statements and proofs can be found in the
second part of the paper (Sections 6 through 11).

Let X be an m-dimensional Riemannian manifold with positive convexity radius5, and f : X→ R
a Lipschitz-continuous probability density function with respect to the m-dimensional Hausdorff
measure. We assume that the input data set L has been sampled over X according to f in i.i.d.
fashion, and that the values of f at the data points and the geodesic distances in X between the
data points are known either exactly or within a small additive error. Finally, we assume the
input graph G to be the δ-Rips graph built over L using the estimated geodesic distances, for some
user-defined parameter δ.

Definition 4.1 Given two values d2 > d1 ≥ 0, the persistence diagram D0f is called (d1, d2)-
separated if every point of D0f lies either in the region D1 above the diagonal line y = x− d1, or
in the region D2 below the diagonal line y = x− d2 and to the right of the vertical line x = d2.

This condition formalizes the intuitive notion that the points of D0f can be separated between
prominent peaks (region D2) and topological noise (region D1), as illustrated in Figure 3. In this
respect, it acts very similarly to a signal-to-noise ratio condition: the larger the prominence gap
d2 − d1, the more clearly the prominent peaks are separated from the noise. In the limit case
where d1 = 0, all peaks of f are at least d2-prominent and none of them is viewed as noise. The
additional condition that the points of D2 must lie to the right of the vertical line x = d2 follows

5Recall that the convexity radius of X is the infimum over the points x ∈ X of the supremum over the values r ≥ 0
such that any geodesic ball of center x and radius r′ < r is geodesically convex, that is, any two points in that ball
are joined by a unique geodesic of length less than 2r′, and this geodesic is contained in the ball.
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the description of the extra filtering step performed by the algorithm after the merging phase, and
it stems from the fact that only some superlevel-set of the density f can be densely sampled by the
data points.

-∞0
0

d2

d1

D1

D2

d2

Figure 3: The separation of the persistence diagram D0f between prominent peaks (region D2) and
topological noise (region D1).

Our first result relates the number of clusters computed by the algorithm to the number of
prominent peaks of f . Using the stability of persistence diagrams [6, 8] to relate the diagram of f
to the diagram output by step 2 of the algorithm, we can prove that the regions D1 and D2 remain
disjoint under perturbations caused by our approximation, and can therefore be separated using
any value within a certain range for the thresholding parameter τ . With such values of parameter
τ as input, the algorithm computes the correct number of clusters with high probability:

Result 1 (Theorem 9.2) If D0f is (d1, d2)-separated and if the Rips parameter δ > 0 is smaller
than a fraction of d2−d1 and of the convexity radius of X, then there is a range [d1+O(δ), d2−O(δ)]
of values of the thresholding parameter τ such that the number of clusters output by the algorithm
is equal to the number of peaks of f of prominence at least τ with probability at least 1 − e−Ω(n),
where n is the number of data points.

Explicit bounds are given in Theorem 9.2. The big-O notations hide factors proportional to the
Lipschitz constant c of f . The big-Ω notation hides a factor increasing monotonically with c and δ
and depending on certain geometric quantities of the manifold X. As can be seen fro the statement,
the larger the prominence gap d2−d1, the larger the range of admissible values for τ , and of course
the more easily this range can be detected. In the meantime, the smaller δ, the larger the range,
but also the smaller the probability of success6.

Another question is how well the output of the algorithm approximates the basins of attraction
of the prominent peaks over the point cloud, assuming that f is of Morse type. In full generality,
this is a hopeless question since the basins of attaction are not stable even in the smooth case.
There are indeed many examples of very close functions having very different basins of attraction,
and clearly the algorithm cannot provably-well approximate the unstable parts of the basins. An
illustrative example is given in Figures 4 and 5. Yet, we can ensure that the output of the

6This follows the intuition that a minimum point density is required for the connectivity of the δ-Rips graph to
reflect the one of some superlevel-set of the density f .
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Figure 4: A function f : [0, 1]2 → R with unstable basins of attraction. The three peaks m,m1,m2

have respective prominences f(m) − f(s2), f(m1) − f(s1), and +∞. When τ > f(m) − f(s2),
the ascending region A(m) is merged into the basin of attraction Bτ (m2) at the value α = f(s2).
However, since f(s2)− f(s1) can be made arbitrarily small compared to f(m1)− f(m), arbitrarily
small perturbations of f compared to the prominence gap f(m1)−f(m)+f(s2)−f(s1) merge A(m)
into Bτ (m1) instead, thus making A(m) an unstable part of Bτ (m2). In the discrete setting, where
the square [0, 1]2 is replaced by a point cloud, different samplings of the square or different values of
parameter δ lead to different merges of the cluster associated with m. This erratic behavior of the
algorithm only stops when δ becomes small enough compared to the (arbitrarily small) quantity
f(s2)− f(s1).

algorithm approximates some stable parts of the basins:

Result 2 (Theorem 10.1) Under the same hypotheses as in Result 1, it holds with probability at
least 1− e−Ω(n) that for every point p ∈ D2 the algorithm outputs a cluster C such that C ∩ Fα =
Bτ (mp) ∩ L ∩ Fα for all values α ∈ [ατ (mp) + d1 + O(δ), f(mp)), where mp is the peak of f
corresponding to point p, where Bτ (mp) denotes the basin of attraction of mp in the underlying
manifold X, and where ατ (mp) is the first value of α at which Bτ (mp) gets connected to the basin
of attraction of another peak of f of prominence at least τ in the superlevel-set Fα.

In plain words, cluster C is the trace of the basin of attraction Bτ (mp) over the point cloud L,
until (approximately) the value ατ (mp) at which Bτ (mp) meets the basin of another τ -prominent
peak of f . Beyond that value, the cluster may start diverging from the basin, which itself may
start being unstable, as illustrated in Figures 4 and 5. As will be shown in Section 10 (Eq. 6), we
have ατ (mp) ≤ f(mp)− d2, so the length of the interval of values of α for which C is the trace of
Bτ (mp) over L is at least d2 − d1 −O(δ).

Our proof of Result 2 also shows an important fact, namely: that each basin of attraction
Bτ (mp) is stable under small perturbations of the function f , at least between values f(mp) and
ατ (mp) + d1 + O(δ). This fact opens the door to a more statistical approach to clustering: since
we know the top parts of the basins (and therefore of the clusters computed by the algorithm) are
stable under small perturbations of the function, we can conduct multiple runs of the algorithm
with random perturbations of the function, and then find correspondences between the outputs of
different runs. Each point can then be assigned a quantitative measure of its classification stability
over the runs.

Note finally that the probabilistic nature of our theoretical results does not stem from the
algorithm itself, which is deterministic, but from the fact that the input data set must form a dense
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Figure 5: Outputs of the algorithm obtained from a uniform ε-sample L of the unit square (ε = 0.15)
endowed with the function f of Fig. 4. We chose a value of τ that gives two clusters, and we used
three different values for the Rips parameter: δ = 0.27 (left), δ = 0.28 (center), δ = 0.6 (right).
Notice how some values of δ induce a correct merge of A(m) into Bτ (m2) whereas others induce
an incorrect merge of A(m) into Bτ (m1). The limit value of ε below which no such failure of the
algorithm occurs depends on the arbitrarily small quantity f(s2)− f(s1).

sampling of some superlevel-set of f for the algorithm to produce a faithful approximation of D0f .
This event can only occur with some probability since the data points are sampled at random from
f .

5 Experimental results

We focused on three types of inputs: (1.) structured synthetic data sets in R2 and R3, where direct
data inspection allowed us to check our results visually; (2.) simulated alanine-dipeptide protein
conformations in R21, where the knowledge of the intrinsic parameters of the simulation allowed us
to check our results a posteriori; (3.) image pixels distributions in color space, where the quality of
the clustering could be checked visually on the resulting image segmentation. In our experiments
we used the two estimators mentioned in Section 3: truncated Gaussian kernel and distance to
a measure. Our implementation was done in C++, and it was run on a PC with 8 CPU cores
running at 2.4 GHz and 8 GB of RAM7. The code is publicly available at the following address:
http://geometrica.saclay.inria.fr/data/ToMATo/.

5.1 Synthetic Data

Our first data set consists of 10k points sampled from two twin spirals in the unit square, shown in
Figure 2 (a). Using a δ-Rips graph, with δ = 0.04, and the distance to a measure density estimator,
we obtain the PD in Figure 2(c). Choosing τ by the gap heuristic we obtain the clustering shown
in Figure 2(d). A smaller Rips parameter, δ = 0.02, gives many infinitely persistent components
(Figure 6(a)), with all but one appearing late in the PD (near the lower-left corner). Components
in this part of the PD are discarded by the extra filtering step performed by the algorithm after
completion of the merging phase, which removes much of the background noise (Figure 6(b)).

We also experimented with the k-nn graph (taking k = 35) and the Delaunay graph. The
obtained PDs are shown in Figure 7. Although not identical, they share the same overall structure

7Each run used only one core and a fraction of the available memory.
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Figure 6: The twin spirals data set from Figure 2, processed using a smaller Rips parameter: (a) the
persistence diagram; (b) the final clustering with late appearing connected components filtered out
(in black).

with 2 prominent clusters, and the resulting clusterings are virtually identical to Figure 2(d).
To illustrate the scalability of our approach, we generated a second data set with about 100k

samples from the same probability distribution. It only took ToMATo a few seconds to cluster this
data set using the Rips graph. The result is shown in Figure 8. The PD is much better separated
than previously because the approximation of the PD of the underlying density function provably
improves as the number of samples increases, as stated in our theoretical results.

For comparison, we ran spectral clustering [9] on the twin spirals data set with 10k samples, using
the k-nn graph. The result, shown in Figure 9, was consistent across choices of input parameters. It
is explained by the effect of the background noise on the k-means procedure in eigenspace. We were
unable to run the code on δ-Rips graphs or on the data set with 100k points because of numerical
issues in the eigenvalues computation.

We also considered another synthetic example, made of four noisy interlocked rings in R3 with
uniform background noise added (Figure 10(a)). Spectral clustering again failed on this data set
(Figure 10(b)), for the same reason as before. It did obtain correct clusters with much of the
background noise removed, but this required significant tweaking of the number of neighbors: too
many resulted in bad clustering and too few resulted in numerical instability in the computation.
For comparison, Figure 11 shows the outputs of ToMATo.

5.2 Alanine-dipeptide conformations

Next we cluster conformations of the alanine-dipeptide molecule. The data consist of short tra-
jectories of conformations generated by atomistic simulations of this small protein [11]. Accurate
simulation by molecular dynamics must be done at the atomic scale, generally limiting the length
of simulations to picoseconds because of the small time steps needed to integrate stiff bond length
and angle potentials. Biologically interesting dynamics, however, often occur on the scale of mil-
liseconds. One solution to this issue is to generate a coarser model using metastable states [28].
These are conformational clusters between which transitions are infrequent and independent. Such
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Figure 7: PDs obtained on the twin spirals data set of Figure 2 using (a) the k-nn graph with k = 35
and (b) the Delaunay graph. The resulting clusterings are virtually the same as in Figure 2(d).

coarser representations are tractable using Markovian models [10–12] while still allowing for useful
simulations. A key problem is the discovery of these metastable states.

The alanine-dipeptide was chosen as example because its dynamics are relatively well-understood:
it is known that there are only two relevant degrees of freedom, and these are known a priori. This
makes it possible to visualize the clustering results by projecting the points onto these coordinates
which are referred to as φ and ψ (Ramachandran plots). In previous work [11], clustering was done
manually into 6 clusters. Subsequent work [10] tried to automatically recover these 6 clusters, as
we did using our method.

Our input consisted of 960 trajectories, each one made of 200 protein conformations, each
conformation being represented as a 21-dimensional vector with 3 coordinates per atom of the
protein. For our experiments we took the trajectories and treated the conformations as 192,000
independent samples in R21. The metric used on this point cloud was root-mean-squared deviation
(RMSD) after the best possible rigid matching computed using the method of [36]. The RMSD
distance matrix was the only input to our clustering scheme. The output is shown in Figure 12.

It appears from the persistence diagram that there could be anywhere from 4 to 7 clusters.
The first 4 clusters are much more prominent than the following 3 clusters. Since there is clearly
a multiscale behavior, we plot the PD on a log-log scale. From this perspective, the first 4 clusters
are still prominent but relative to their height the 5th and 6th clusters are prominent as well.
While the 7th cluster is not as prominent, it is still more prominent than the following clusters,
suggesting that 7 is also a reasonable number of clusters. To confirm this insight we came back
to the original problem of finding clusters that maximize the metastability (as defined in [28]): we
computed the metastabilities of all our candidate clusterings, and we reported them in the table
and plot of Figure 13. These results show that the metastability increases linearly with the number
of clusters, up to 7 clusters, after which it starts leveling off. So, choosing 4, 5, 6 or 7 clusters
should not affect the metastability significantly, thus confirming the observations made from the
PD. This is an example of a scenario where the insights into the number of clusters provided by
the PD can be validated by exploiting further application-specific information on the data.
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Figure 8: The twin spirals data set with 100k points, processed using the Rips graph: (a) the
persistence diagram; (b) the final clustering.
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Figure 9: Result of spectral clustering on the twin spirals data set with 10k samples: (a) a plot of
the first 10 eigenvalues, and (b) the obtained clustering.

Computing the input RMSD distance matrix took the most time: all pairwise distances between
conformations were estimated, which took about a day of computation. In order to save space, for
each conformation we only recorded the distances to its 15,000 closest conformations in the matrix.
On this input, ToMATo only took a few minutes to run. Meanwhile, the amount of memory
used remained approximately constant, which enabled us to make several runs in parallel to find a
suitable Rips parameter δ.

5.3 Image Segmentation

Finally we use our approach to segment color images. Turning image segmentation into a clustering
problem can be done by mapping the pixels in the image to points in some color space like Luv,
where they are to be clustered according to the basins of attraction of the peaks of their underlying
density function. The segments in the image are then the pre-images of the clusters through the
mapping. This is the approach taken e.g. by Mean-Shift [15]. The reason why Luv is preferred over
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Figure 10: (a) The rings data set with the estimated density function. (b) The result obtained
using spectral clustering.
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Figure 11: Outputs of ToMATo on the rings data set: the obtained PDs with (a) δ-Rips graph,
(b) k-nn graph, and (c) Delaunay graph. (d) Clustering obtained with the δ-Rips graph.

other color spaces like RGB is because the Euclidean distance in Luv space is known to capture
the subjective notion of perceptual difference reasonably well.

Clustering in Luv space is oblivious to proximity relations between pixels in the image, allowing
pixels that are far apart in the image to end up in a same cluster. Depending on the context, this
property can be viewed either as a feature or as a drawback. Removing it requires to take spatial
information into account during the clustering phase, which is usually done by appending the two
pixel coordinates to the three color channels, thus yielding a 5-dimensional point cloud. The obvious
drawback is that the contributions of color and spatial coordinates must be balanced properly in
the computation of distances, because the scales of the color channels and spatial coordinates are
unrelated. This is an issue in its own right.

In the context of our method, it is natural to consider the pixels in the image domain and in
Luv space separately, building the neighborhood graph G in the image domain while estimating the
density in Luv space. An advantage of this approach is that, due to the grid structure of the image,
the number of neighbors of a pixel in the graph G is constant, and therefore the graph is sparse.
However, applied naively, this approach does not work, since pixels belonging to well-separated
high-density areas in Luv space can be neighbors in the image, thus leading to the premature
merge of some of these areas by the algorithm. For instance, consider a black-and-white image
with the same number of black and white pixels. Then, the data points in Luv space are gathered
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Figure 12: Biological data set: (a) input point cloud, projected down to the (φ, ψ) domain for
visualization purposes; (b) output PD represented on a log-log scale; (c) output clustering with 7
clusters.
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Figure 13: Quantitative evaluation of the quality of the output of ToMATo on the biological data
set: (a) metastability of the obtained clustering versus the number of clusters; (b) corresponding
intervals sorted by decreasing prominence.

at two distinct hotspots: the black spot, and the white spot. Now, the density function is constant
over the image domain, and since black and white regions are neighbors in the image, they all
get merged together (resulting in a single cluster) whatever small positive value is assigned to the
prominence threshold τ , and regardless of the actual black and white patterns in the image.

To overcome this defect, we modify the proximity rule used for building G as follows, so that
it also takes color information into account: two pixels are connected in G if and only if they are
close both in the image domain and in Luv space. In practice the spatial constraint is checked first,
so that the neighborhoods of the data points have constant size from the beginning. Typically, in
practice we used 5 × 5 windows in the image domain, and the graph construction and clustering
phases took barely more than a second each on images with a few hundreds of thousands of pixels.
Computing the truncated Gaussian estimator in Luv space was more expensive, however it only
took 10 to 20 seconds on each image using the ANN library [32] for proximity queries.

Since natural images have textures, the corresponding point clouds in Luv space contain lots
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of very small clusters independent from the rest of the data. As a result of our proximity rule,
the outputs of ToMATo also contained a lot of very small clusters, which we simply discarded in
a post-processing step—in practice, all clusters containing fewer than 100 points were discarded,
and the corresponding pixels were marked in black in the segmented images.

The results obtained with this approach are shown in Figure 14. For each input image we show
a histogram of the prominences of the peaks detected by the algorithm (ignoring the highest peak,
whose prominence is infinite), as well as the segments obtained after choosing a suitable value for
parameter τ (this value is indicated by the arrow in each histogram). The segments are shown in
fake colors, so the segmentation structure is better highlighted: for instance, one can see that on
the mandrill image the algorithm discriminated the left cheek from the right cheek and the left
eye from the right eye, due to their separation in the image domain. Again, the black pixels in
the segmentation results do not correspond to a single cluster, but rather to a myriad of clusters
with fewer than 100 points each, which were discarded in a post-processing step. Focusing now on
the histograms, observe that none of them exhibits a clear prominence gap. Instead, they exhibit
a series of smaller gaps, which suggests that the correct number of clusters may not be readily
identified, thus following the widely accepted idea that image segmentation is an ill-posed problem.
Nevertheless, the histograms still provide a precise understanding of the relationship between the
choice of parameter τ and the number of obtained segments on each image.
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Figure 14: Outputs of ToMATo in color image segmentation. Top row: input color images. Middle
row: histograms of the prominences of the peaks of the estimated density in the neighborhood
graph. Each arrow shows the choice of parameter τ made by the user. Bottom row: segmentation
obtained after re-running the clustering algorithm with the chosen value of τ .
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Part II
PART II: Theoretical Analysis

Our analysis makes consistent use of topological persistence theory, as introduced in [20] and later
developed in [21, 41]. We therefore begin this part of the paper with a brief description of the
theory (Section 6), referring to two recent surveys [5, 19] for further details.

The analysis per se is then carried out in Sections 7 through 11, where X, f and L denote the
following mathematical objects:
• X is an m-dimensional Riemannian manifold with positive convexity radius %c(X),
• f : X → R is a c-Lipschitz probability density function with respect to the m-dimensional

Hausdorff measure on X,
• L is a finite set of points sampled over X according to f in i.i.d. fashion.

In Sections 7 through 10 we consider a simplified model for our input, where the values of f at
the points of L and the pairwise geodesic distances between these points are assumed to be known
exactly. We also take the δ-Rips graph Rδ(L) as the neighborhood graph used by the algorithm.
The analysis proceeds as follows:

1. we show that some superlevel-set of f is densely sampled by L with high probability (Sec-
tion 7),

2. under this condition and a relevant choice of parameter δ, we show that the persistence
diagram computed by the clustering algorithm approximates a large part of the persistence
diagram of f (Section 8),

3. we deduce that the algorithm can recover the correct number of clusters under some sufficient
signal-to-noise ratio condition on the persistence diagram of f (Section 9),

4. we show that under the same condition the clusters computed by the algorithm approximate
the stable parts of the basins of attraction of the peaks of f (Section 10).

Then, in Section 11 we consider a more realistic model for our input, where density values and
geodesic distances are known with some small uncertainty, and we study the stability of the output
of the algorithm with respect to small perturbations of the input.

6 Background on topological persistence

We use singular homology with coefficients in a commutative ring, assumed to be a field and omitted
in our notations. We refer the reader to [27] for a thorough introduction to homology theory.

A persistence module X is a finite directed system of finite-dimensional vector spaces connected
by linear maps:

Xm −→ Xm−1 −→ · · · −→ X1 −→ X0.

The structure of this system is encoded as a planar point set, called the persistence diagram

of X and noted DX . Formally, DX is defined as a multi-set of points in the extended plane R2
,

where R = R ∪ {−∞,+∞}, contained in the union of the extended diagonal ∆ = {(x, x) : x ∈ R}
and of the extended grid {(i, j) : m ≥ i > j ≥ 0} ∪ {(i,−∞) : m ≥ i ≥ 0}. The multiplicities
of the points of ∆ are set to +∞, while the multiplicities of the grid points are defined by finite
alternating sums of ranks of composed homomorphisms X l → Xk, l > k [6,13]. Since all the spaces
are finite-dimensional, these ranks are finite, and so the diagram DX only contains finitely many
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points off the diagonal ∆. Intuitively, every such point (i, j) encodes the lifespan of some generator
appearing at time i and dying at time j < i in the sequence of vector spaces8.

In the following we consider persistence modules defined by continuous sequences of vector
spaces {Xα}α∈R, connected by linear maps Xα → Xβ for all α ≥ β, such that Xα → Xα is the
identity map and Xα → Xβ → Xγ commute with Xα → Xγ for all α ≥ β ≥ γ. The definition
of persistence diagram can be extended to this continuous setting via a limit process [6], under
some tameness condition stating that the homomorphisms Xα → Xβ have finite ranks for all
α > β. Under this condition, the persistence diagram DX may contain infinitely many points off
the extended diagonal ∆, however all its accumulation points belong to ∆, so DX is finite outside
any offset of ∆.

A natural measure of proximity between persistence diagrams is the bottleneck distance [13].
Given two tame persistence modules X and Y, a multi-bijection γ between DX and DY is a bijection

γ :
⋃

p∈|DX|

µ(p)∐
i=1

p→
⋃

q∈|DY|

µ(q)∐
i=1

q,

where |DX| denotes the support of DX , i.e. the set DX considered as a subset of R2
without any

multiplicities, and where µ(p) denotes the multiplicity of point p ∈ |DX| in DX . Note that such
bijections always exist since the points on the diagonal ∆ have infinite multiplicities. The bottleneck
distance d∞B (DX ,DY) between DX and DX is the quantity minγ maxp∈DX ‖p − γ(p)‖∞, where γ
ranges over all multi-bijections between DX and DY, and where ‖ · ‖∞ denotes the l∞-norm.

Stability is an important property of persistence diagrams. It can be stated in terms of a measure
of proximity between persistence modules called interleaving [6]. Formally, two tame persistence
modules X and Y are (strongly) ε-interleaved if there exist two families of homomorphisms {φβ :
Xβ → Y β−ε}β∈R and {ψβ : Y β → Xβ−ε}β∈R, such that for all values β′ ≥ β the following diagrams
of vector spaces commute:

Xβ′+ε

φβ′+ε ##GGGGGGGG
// Xβ−ε

Y β′ // Y β

ψβ

<<yyyyyyyy

Xβ′−ε // Xβ−ε

Y β′ //

ψβ′
;;wwwwwwww
Y β

ψβ

::uuuuuuuuu

Xβ′ // Xβ

φβ

""EEEEEEEE

Y β′+ε

ψβ′+ε
;;wwwwwwww

// Y β−ε

Xβ′ //

φβ′ ##GGGGGGGG Xβ

φβ

$$HHHHHHHHH

Y β′−ε // Y β−ε

(2)

Intuitively, the commutativity of these diagrams means that every generator appearing (resp. dy-
ing) in X at a given time β ∈ R must appear (resp. die) in Y within the time range [β − ε, β + ε],
and vice-versa. The currently most general stability theorem in persistence theory says that any
ε-interleaved pair of tame persistence modules has ε-close persistence diagrams in the bottleneck
distance [6, 8].

In the context of clustering, we will primarily focus on persistence modules X induced at 0-
dimensional homology level by the sequence of superlevel-sets of a real-valued function f . Consider

8Note that we depart from the usual way of introducing persistence by reversing the time flow, which goes from
+∞ to −∞ here. This choice is purely formal and does not affect the validity of the theory.
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the nested family of closed superlevel-sets Fα = f−1([α,+∞)), and take for {Xα}α∈R the induced
family of 0-dimensional homology groups H0(Fα), connected by the homomorphisms H0(Fα) →
H0(F β) induced by the canonical inclusions Fα ↪→ F β for all α ≥ β. This persistence module
encodes the evolution of the path-connectivity of the superlevel-sets Fα as parameter α decreases
from +∞ to −∞, and its persistence diagram DX is precisely what we called the persistence
diagram of f (noted D0f) in the first part of the paper.

7 Sampling the superlevel-sets of f

In our analysis we use the following classical notion of sampling density, where dX denotes the
geodesic distance in the Riemannian manifold X:

Definition 7.1 Given a subset Y ⊆ X and a parameter ε > 0, L is a geodesic ε-sample of Y if
every point of Y lies within geodesic distance ε of L, that is: ∀y ∈ Y, minp∈L dX(y, p) ≤ ε.

Since the points of L are drawn according to f in i.i.d. fashion, the more points are drawn the
more chances we have that L satisfies the above condition over some prescribed superlevel-set Fα.
This simple fact is proved formally in Theorem 7.2 below. Before stating the theorem, we need to
introduce a few measure-theoretic quantities. Given a subset A of X and a parameter r > 0, let
Vr(A) ≥ 0 denote the infimum of the Hausdorff measures achieved by geodesic balls of radius r
centered in A, that is:

Vr(A) = inf
x∈A

Hm(BX(x, r)), where BX(x, r) = {y ∈ X, dX(x, y) ≤ r}. (3)

Let also Nr(A) ∈ N∪{+∞} be the r-covering number of A, that is, the minimum number of closed
geodesic balls of same radius r needed to cover A (the balls do not have to be centered in A).

Theorem 7.2 Let X be an m-dimensional Riemannian manifold, and f : X → R a c-Lipschitz
probability density function. Consider a set L of n points sampled according to f in i.i.d. fashion.
Then, for any parameters ε > 0 and α > cε, we are guaranteed that L forms an ε-sample of Fα

with probability at least 1−Nε/2(Fα) e−n(α−cε)Vε/2(Fα).

Proof. If Nε/2(Fα) = +∞ or Vε/2(Fα) = 0, then the lower bound on the probability of success
given in the conclusion is non-positive, therefore its holds trivially.

Assume from now on that Nε/2(Fα) < +∞ and Vε/2(Fα) > 0. Consider a family {Bi}1≤i≤l
of closed geodesic balls of same radius ε

2 such that Fα ⊆ ⋃l
i=1Bi and l = Nε/2(Fα) is minimal.

For each integer i in the range [1, l], let pi be a point of Bi ∩ Fα. Such a point exists because
otherwise the cover would not be minimal. Since f is c-Lipschitz, at every point x ∈ Bi we have
f(x) ≥ f(pi)− c dX(x, pi) ≥ α− cε > 0. Therefore,

∀i ∈ {1, · · · , l},
∫
Bi

f dHm ≥ (α− cε)Hm(Bi) ≥ (α− cε)Vε/2(Fα).

Let Ei denote the event that L∩Bi = ∅. Then, ∪iEi is the event that at least one ball Bi contains
no point of L. When the complement of this event occurs, the triangle inequality tells us that L
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is a geodesic ε-sample of Fα, and so our goal is to work out an upper bound on the probability
P[∪iEi]. For each event Ei taken separately, we have

P[Ei] =

(
1−

∫
Bi

f dHm
)n
≤
(
1− (α− cε)Vε/2(Fα)

)n
.

Then, by the union bound, we have

P[∪iEi] ≤
l∑

i=1

P[Ei] ≤ l
(
1− (α− cε)Vε/2(Fα)

)n
.

Observe now that the quantity e−x + x − 1 is non-negative for all x ≥ 0. Letting x be equal to
(α− cε)Vε/2(Fα), we obtain

1− (α− cε)Vε/2(Fα) ≤ e−(α−cε)Vε/2(Fα),

which implies

P[∪iEi] ≤ l
(
1− (α− cε)Vε/2(Fα)

)n ≤ l e−n(α−cε)Vε/2(Fα) = Nε/2(Fα) e−n(α−cε)Vε/2(Fα).

�

Theorem 7.2 can be interpreted in various different ways:
• When the probability density function f is given and a fixed superlevel-set Fα (α > 0) is

considered, the theorem ensures that after drawing sufficiently many points according to f in
i.i.d. fashion the superlevel set Fα will be densely sampled with high probability.
• Conversely, when the set L of sample points is fixed and a target sampling parameter ε is given,

the theorem ensures that for large enough values9 of α the superlevel-set Fα is ε-sampled by
L with high probability. In particular, α has to be larger than cε.

In both scenarios, the probability of success is influenced by two quantities that are intrinsic to the
Riemannian manifold X: the covering number Nε/2(Fα), and the minimum geodesic ball measure
Vε/2(Fα). In particular, the probability of success can be positive only when Nε/2(Fα) is finite
and Vε/2(Fα) is positive, two conditions that are met by a large class of Riemannian manifolds
X, including the ones with bounded absolute sectional curvature (among which are the compact
Riemannian manifolds and the Euclidean spaces):

Lemma 7.3 If X is a complete Riemannian manifold with bounded absolute sectional curvature,
then for any α > 0 and any ε < 2%c(X) we have Nε/2(Fα) < +∞ and Vε/2(Fα) > 0.

Proof. Let α > 0. Since X is complete with bounded absolute sectional curvature, the Bishop-
Gunther inequality [23, Theorem 3.101] ensures that Vr(X) > 0 for all values r within the range
(0, %c(X)). This holds in particular for r = ε/2, and so we have Vε/2(Fα) ≥ Vε/2(X) > 0.

To show that Nε/2(Fα) is finite, take any ε
4 -packing of Fα, i.e. any set S ⊆ Fα such that

dX(s, s′) > ε
2 for all pairs of points s, s′ ∈ S, s 6= s′. Let r = min{ α2c , ε4} > 0. Since f is c-Lipschitz,

we have
∀s ∈ S, ∀x ∈ BX(s, r), f(x) ≥ f(s)− cr ≥ α

2
,

9As α grows, Nε/2(Fα) decreases while Vε/2(Fα) increases, therefore the probability of success increases.

24



which means that the geodesic ball BX(s, r) is included in the superlevel-set Fα/2. Moreover, the
geodesic balls in the collection {BX(s, r)}s∈S are pairwise-disjoint since r ≤ ε

4 and S is an ε
4 -packing.

As a result, we have

Hm(Fα/2) ≥ Hm
(⋃
s∈S

BX(s, r)

)
=
∑
s∈S
Hm (BX(s, r)) ≥ Vr(Fα) |S|. (4)

Now, since f is a probability density function, we have

1 =

∫
X
f dHm ≥

∫
Fα/2

f dHm ≥ α

2
Hm(Fα/2). (5)

It follows from Eqs. (4)-(5) that |S| ≤ 2
α Vr(Fα) . Since this inequality holds for any ε

4 -packing S of

Fα, we conclude by the Kolmogorov-Tikhomirov inequality [29] that Nε/2(Fα) ≤ 2
α Vr(Fα) , which

is finite since both α and Vr(Fα) are positive. �

8 Approximating the persistence diagram of f

Recall that in our analysis we are assuming the neighborhood graph used by the clustering algorithm
to be the δ-Rips graph Rδ(L). In this section, we are also assuming that the merging parameter τ
is set to +∞.

During the merging phase (described in Section 2), the algorithm builds a nested family of
subgraphs of Rδ(L) by inserting the vertices one at a time, in decreasing order of their function
values. Each time a vertex v is inserted, all the edges of its upper star (i.e. the edges of Rδ(L)
that connect v to vertices with higher function values) are inserted as well. We call this family the

upper-star Rips filtration, noted Rfδ (L), and we write it formally as follows:

Rfδ (L) = {Rδ(L ∩ Fα)}α∈R,

where Rδ(L∩Fα) is the δ-Rips graph of the vertex subset P ∩Fα, and where parameter α decreases

from +∞ to −∞. Since each graph Rδ(L∩Fα) is finite, the familyRfδ (L) induces a tame persistence
module at 0-dimensional homology level. The persistence diagram output by the algorithm is
precisely the persistence diagram of this module, noted D0Rfδ (L), and our goal is to determine to
what extent it is close to D0f .

This scenario is reminiscent of the one considered in [7], where the following approximation
result was proven10:

Theorem 8.1 ( [7]) Let X be a compact Riemannian manifold, possibly with boundary, and f :
X→ R a c-Lipschitz function. Let also L be a geodesic ε-sample of X. If ε < 1

4%c(X), then for any

δ ∈ [4ε, %c(X)), the bottleneck distance between D0f and D0Rfδ (L) is at most cδ.

Unfortunately, this result is not directly applicable in our context because our scenario differs in
the following crucial ways:

10The result of [7] holds in fact for homology groups of arbitrary dimensions, but it uses two upper-star Rips
filtrations in parallel in the algorithm: Rfδ/2(L) and Rfδ (L). As reported in Section 4.3 of that paper, in the special

case of 0-dimensional homology, using both filtrations or only Rfδ (L) gives exactly the same results.
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Figure 15: Left: the multi-bijection of Theorem 8.2. Right: for the proof of Lemma 8.3.

1. in our case the manifold X may not be compact, for instance when it is some Euclidean space
Rm;

2. in our case the point cloud L may not be dense over the entire manifold X, especially when
the points are drawn from a probability distribution whose support does not cover X entirely.

Our main result (Theorem 8.2 below) addresses these two issues, assuming that the point cloud L
forms a dense sampling of some superlevel-set of the function f , as guaranteed with high probability
by Theorem 7.2. In the statement of the theorem, QNE

α , QSE
α , QSW

α , and QNW
α denote respectively

the quadrants (α,+∞]× (α,+∞], (α,+∞]× [−∞, α], [−∞, α]× [−∞, α], and [−∞, α]× (α,+∞]

in the extended plane R2
.

Theorem 8.2 Let X be a Riemannian manifold, possibly non-compact, possibly with boundary.
Assume that its convexity radius %c(X) is positive. Let L ⊆ X be a finite point cloud and f : X→ R
a c-Lipschitz function. Then, for any positive δ < %c(X), for any α ∈ R such that L is a geodesic
δ
4 -sample of Fα = f−1([α,∞)), there is a multi-bijection γ : D0f → D0Rfδ (L) such that:

(i) ∀p ∈ D0f ∩QNE
α , ‖p− γ(p)‖∞ ≤ cδ.

(ii) ∀q ∈ D0Rfδ (L) ∩QNE
α , ‖γ−1(q)− q‖∞ ≤ cδ.

(iii) ∀p ∈ D0f ∩QSE
α , |px − γ(p)x| ≤ cδ.

(iv) ∀q ∈ D0Rfδ (L) ∩QSE
α , |γ−1(q)x − qx| ≤ cδ.

The theorem is illustrated in Figure 15 (left). Assertions (i)-(ii) ensure that the multi-bijection γ
does not move the points of both diagrams by more than cδ within the upper-right quadrant QNE

α

corresponding to the superlevel-set of f that is δ
4 -sampled by L. In cases where L is a δ

4 -sample
of the entire manifold X (α = −∞), assertions (i)-(ii) imply that the bottleneck distance between
both persistence diagrams is at most cδ, as stated in Theorem 8.1.

Assertions (iii)-(iv) provide weaker guarantees in the lower-right quadrant QSE
α , by ensuring that

every 0-dimensional homology generator appearing at time αb > α in the superlevel-sets filtration
of f must appear within [αb − cδ, αb + cδ] in the upper-star filtration Rfδ (L), and vice-versa. By
contrast, death times are not fully controlled: if the homology generator dies at time αd < α in the
superlevel-sets filtration of f , then all we can say is that its death time in Rfδ (L) must be less than
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α + cδ, because if it were not then by (ii) the point of D0f corresponding to the generator would
be located in QNE

α instead of QSE
α .

Finally, due to the potentially low sampling density outside the superlevel-set Fα, there is no
guarantee concerning the portion of D0f lying in the quadrant QSW

α located to the left of the vertical
line x = α. This part of the diagram corresponds indeed to homological generators appearing at
times less than α in the superlevel-sets filtration of f , which may or may not be captured in Rfδ (L).

Proof. [of Theorem 8.2] The key to the proof of the theorem is the following technical result,
whose purely algebraic proof is deferred to Appendix A:

Lemma 8.3 Let X and Y be two tame persistence modules that are (strongly) ε-interleaved above
some given time α ∈ R. Then, there is a multi-bijection γ : DX → DY satisfying assertions (i)

through (iv) of Theorem 8.2, with D0f replaced by DX , with D0Rfδ (L) replaced by DY, and with cδ
replaced by ε.

A few words of explanation are in order. Two tame persistence modules X and Y are ε-interleaved
above a given time α ∈ R if there exist two families of homomorphisms {φβ : Xβ → Y β−ε}β≥α
and {ψβ : Y β → Xβ−ε}β≥α such that the diagrams of Eq. (2) commute for all values β′ ≥ β ≥
α. Intuitively, the commutativity of these diagrams means that every generator appearing (resp.
dying) in X at some time β ≥ α must appear (resp. die) in Y within [β − ε, β + ε], and vice-versa.
This statement is the analog of assertions (i)-(ii) of Theorem 8.2. Furthermore, every generator
appearing in X at time βb ≥ α and dying at time βd ≤ α must appear within [βb−ε, βb+ε] and die
at some time below α+ ε in Y, and vice-versa. This statement is the analog of assertions (iii)-(iv)
of Theorem 8.2.

With Lemma 8.3 at hand, the proof of the theorem becomes a straightforward adaptation of the
proof of Theorem 8.1 given in [7]. Indeed, exactly the same sequence of arguments as in [7, §3.1]
shows that there exist two families of homomorphisms {φβ : H0(F β) → H0(Rδ(L ∩ F β−cδ))}β≥α
and {ψβ : H0(Rδ(L ∩ F β)) → H0(F β−cδ)}β≥α that make the persistence modules {H0(F β)}β∈R
and {H0(Rδ(L∩F β))}β∈R (strongly) cδ-interleaved above time α. It follows then from Lemma 8.3

that there is a multi-bijection γ : D0f → D0Rfδ (L) satisfying assertions (i) through (iv). �

9 Estimating the number of prominent peaks of f

In this section, we prove that the algorithm can recover the correct number of clusters provided
that the peaks of the density function f are prominent enough compared to the topological noise.
To state the result formally we need to introduce some notation for partitioning the persistence
diagram of f .

For any d > 0, we call ∆d the shifted diagonal line y = x−d. Let ∆S
d denote the closed half-plane

lying below ∆d, and ∆N
d the open half-plane lying above ∆d. Similarly, we call ΛW

d (resp. ΛE
d )

the closed (resp. open) half-plane lying to the left (resp. right) of the vertical line x = d, and ΛS
d

(resp. ΛN
d ) the closed (resp. open) half-plane lying below (resp. above) the horizontal line y = d.

Definition 4.1 can now be restated as follows:

Definition 9.1 Given two values d2 > d1 ≥ 0, the persistence diagram of f is called (d1, d2)-
separated if it has the following structure:

D0f = D1 ∪D2, where D1 ⊂ ∆N
d1 and D2 ⊂ ∆S

d2 ∩ ΛE
d2 .
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Figure 16: For the proof of Theorem 9.2.

As mentioned after Definition 4.1, the condition that D0f is partitioned into two disjoint subsets
D1 ⊂ ∆N

d1
and D2 ⊂ ∆S

d2
with d2 > d1 can be interpreted as a signal-to-noise ratio condition: the

relevant peaks of f (in D2) must be significantly more prominent than the non-relevant ones (in
D1) for the algorithm to be able to detect the correct number of clusters. The additional condition
that D2 ⊂ ΛE

d2
follows the description of the extra filtering step performed by the algorithm after

the merging phase, and it stems from the fact that only some superlevel-set Fα of f can be densely
sampled by the input point set L, as expressed in Theorem 7.2. Due to a lack of sample points
outside Fα, the persistence diagram of the upper-star Rips filtration built by the algorithm cannot
be controlled in the region ΛW

α , which must therefore be discarded as illustrated in Figure 6(a).

Theorem 9.2 Let X be a Riemannian manifold with positive convexity radius, and let f : X→ R
be a c-Lipschitz probability density function. If D0f is (d1, d2)-separated, with d2 > d1 ≥ 0, then for
any positive parameter δ < min{%c(X), d2−d1

5c } and any threshold τ ∈ (d1 + 2cδ, d2 − 3cδ), on any
input of n sample points drawn according to f in an i.i.d. fashion the number of clusters computed
by the algorithm is equal to the number of peaks of f of prominence at least d2 with probability at

least 1−Nδ/8(F cδ)e−n
3
4
cδVδ/8(F cδ).

Proof. Let α = cδ and ε = δ/4. According to Theorem 7.2, the input point set L forms a δ
4 -sample

of the superlevel-set F cδ with probability at least 1−Nδ/8(F cδ)e−n
3
4
cδVδ/8(F cδ). Assume from now on

that L is indeed a δ
4 -sample of F cδ. By Theorem 8.2, there is a multi-bijection γ : D0f → D0Rfδ (L)

satisfying conditions (i) through (iv) of Theorem 8.2. Let us prove that under these conditions

the diagram of Rfδ (L) is separated into two parts, one of which is in (multi-)bijection with the
set of peaks of f of prominence at least d2. The proof requires us to analyze where an arbitrary
point p of D0f can be mapped to by γ. Referring to Figure 16(a), we split our analysis into five
different cases depending on the region of D0f that contains p. We first consider Regions I and
II, which correspond to the case p ∈ D1, and we show that their images through γ are included in
∆N
d1+2cδ ∪ ΛW

d1+2cδ:

• p lies in Region I, i.e. p ∈ ∆N
d1
∩ΛN

cδ. Then, we have p ∈ QNE
cδ , and (i) implies that ||p−γ(p)||∞ ≤

cδ. Therefore, γ(p) ∈ ∆N
d1+2cδ.

• p lies in Region II, i.e. p ∈ ∆N
d1
∩ ΛS

cδ. Then, a quick computation (see Figure 16(b))

shows that p lies in ΛW
d1+cδ. If γ(p) were located in ΛE

d1+2cδ, then (iv) would imply that

p = γ−1(γ(p)) ∈ ΛE
d1+cδ, thereby raising a contradiction. Therefore, γ(p) ∈ ΛW

d1+2cδ.
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Thus, γ(D1) ⊆ ∆N
d1+2cδ ∪ ΛW

d1+2cδ. We now proceed with Regions III, IV, V, which correspond to

the case p ∈ D2, and we show that their images through γ do not intersect ∆N
d1+2cδ ∪ ΛW

d1+2cδ:

• p lies in Region III, i.e. p ∈ ∆S
d2
∩ ΛN

cδ = ∆S
d2
∩ ΛN

cδ ∩ ΛE
d2+cδ. Then, we have p ∈ QNE

cδ and

therefore ||γ(p)− p||∞ ≤ cδ, by (i), which implies that γ(p) ∈ ∆S
d2−2cδ ∩ΛE

d2
, which is disjoint

from ∆N
d1+2cδ ∪ ΛW

d1+2cδ since by hypothesis we have d2 > d1 + 4cδ.

• p lies in Region IV, i.e. p ∈ ΛS
cδ ∩ ΛEd2+cδ. Then, (iii) implies that γ(p) ∈ ΛE

d2
. In addition,

we have γ(p) ∈ ΛS
2cδ since otherwise γ(p) would belong to QNE

cδ and by (ii) p = γ−1(γ(p))
would belong to ΛN

cδ, a contradiction. Thus, we have γ(p) ∈ ΛS
2cδ ∩ΛE

d2
, which is disjoint from

∆N
d1+2cδ ∪ ΛW

d1+2cδ since by hypothesis we have d2 > d1 + 4cδ.

• p lies in Region V, i.e. p ∈ ∆S
d2
∩ΛE

d2
∩ΛW

d2+cδ. Then, p belongs to QSE
cδ , therefore (iii) implies

that γ(p) ∈ ΛE
d2−cδ. In addition, γ(p) must lie in ΛS

2cδ or we have a contradiction by (ii) as in

the previous case. Hence, γ(p) ∈ ΛE
d2−cδ ∩ΛS

2cδ, which is disjoint from ∆N
d1+2cδ ∪ΛW

d1+2cδ since
by hypothesis we have d2 > d1 + 5cδ.

Thus, the persistence diagram D0Rfδ (L) is partitioned into two disjoint subsets: DR1 and DR2 , which
are the respective images of D1 and D2 through γ, and which lie respectively in the disjoint regions
γ(I ∪ II) and γ(III ∪ IV ∪ V), as depicted in Figure 16(b). Then, for any choice of parameter τ
within the range (d1 +2cδ, d2−3cδ), the subset DR2 (as well as D2) is located in the region ∆S

τ ∩ΛE
τ ,

whereas DR1 (as well as D1) is located in its complement ∆N
τ ∪ΛW

τ . This implies that the algorithm
discards DR1 and keeps only DR2 , which has same (finite) total multiplicity as D2 since both sets
contain no point of the diagonal ∆ and are in multi-bijection. This concludes the proof of the
theorem. �

10 Approximating the basins of attraction of the prominent peaks
of f

The next natural question is whether the clusters output by the algorithm are faithful approxima-
tions to the actual basins of attraction of the underlying probability density function f . Using the
terminology of Section 2, given a parameter τ ≥ 0 and a peak mp of f of prominence at least τ ,
we call basin of attraction of mp of parameter τ , noted Bτ (mp), the union of the ascending regions
of all the peaks mapped to mp through the iterated root map r∗τ , as per Eq. (1). Recall that the
root map r takes each peak mq of f and maps it to the higher peak r(mq) such that the connected
component generated by mq in the superlevel-sets filtration of f gets merged by persistence into
the component generated by r(mq). The iterated root map r∗τ iterates this process until some peak
of prominence at least τ is reached. Given such a peak mp, we call ατ (mp) the time at which the
connected component generated by mp first gets connected to the one generated by another peak of
prominence at least τ . Assuming D0f to be (d1, d2)-separated and τ to lie within the range [d1, d2],
we have the following inequalities:

∀mp s.t. px − py ≥ τ, px − d2 ≥ ατ (mp) ≥ py. (6)

The first inequality follows from the fact that for any peak mq 6= mp of prominence at least τ ,
C(mp, α) and C(mq, α) cannot get connected with each other above time α = px − d2, because
otherwise the prominence of the younger connected component would be less than d2 and therefore
less than τ since D0f is (d1, d2)-separated. The second inequality follows from the fact that, at
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time α = py, C(mp, α) gets connected to another connected component, of prominence higher than
px − py ≥ τ , which means that time ατ (mp) has been reached.

As reported in Section 4, guaranteeing that the entire basins of attraction of the prominent
peaks of f are approximated by the output of the algorithm is hopeless. However, Theorem 10.1
below gives a partial approximation guarantee (where we abuse notations by writing Bτ (p) for
Bτ (mp) and ατ (p) for ατ (mp)):

Theorem 10.1 Let X be a Riemannian manifold with positive convexity radius, and let f : X→ R
be a c-Lipschitz probability density function. If D0f is (d1, d2)-separated, with d2 > d1 ≥ 0, then
for any positive parameter δ < min{%c(X), d2−d1

5c } and any threshold τ ∈ (d1 + 2cδ, d2 − 3cδ),
on any input L of n sample points drawn according to f in an i.i.d. fashion the following is true

with probability at least 1−Nδ/8(F cδ)e−n
3
4
cδVδ/8(F cδ): for each point p ∈ D2 there is a cluster BRτ (p)

output by the algorithm such that BRτ (p)∩Fα = Bτ (p)∩L∩Fα at all times α ∈ (ατ (p)+d1+ 5
2cδ, px].

In plain words, the conclusion of the theorem means that, within the superlevel-set Fα, the cluster
BRτ (p) is the trace of the basin of attraction Bτ (p) over the point cloud L. This holds from the
time px at which the basin Bτ (p) appears in the superlevel-sets filtration of f , almost until the time
ατ (p) at which Bτ (p) ceases to be disconnected from the other basins of attraction of parameter
τ in the filtration. In view of Eq. (6), the duration of this phase is at least d2 − d1 − 5

2cδ > 0,
which as in Theorem 9.2 can be interpreted as a signal-to-noise ratio condition. As explained in
Section 4 and illustrated in Figures 4 and 5, below time ατ (p) it is not possible to guarantee the
approximation of the basin of attraction Bτ (p) on all instances.

The rest of Section 10 is devoted to the proof of Theorem 10.1. A noticeable feature of our
proof is to not depend on a particular choice of pseudo-gradient edges within the Rips graph Rδ(L)
during the mode-seeking phase of the algorithm (see Section 2). Indeed, it holds as long as the
following conditions are met:
• every vertex is the origin of one pseudo-gradient edge,
• every pseudo-gradient edge connects its origin to a neighbor with a higher function value.

This feature is an indicator of the stability of our clustering technique, and it opens the door to
various strategies for selecting the pseudo-gradient edges in the graph.

Proof. [of Theorem 10.1] According to Theorem 7.2, the point cloud L forms a δ
4 -sample of F cδ

with probability at least 1−Nδ/8(F cδ)e−n
3
4
cδVδ/8(F cδ). We assume from now on that L is indeed a

δ
4 -sample of F cδ.

The equality BRτ (p)∩ Fα = Bτ (p)∩L∩ Fα will be proved by mutual inclusion: BRτ (p)∩ Fα ⊆
Bτ (p) ∩L ∩ Fα (Lemma 10.6) and BRτ (p) ∩ Fα ⊇ Bτ (p) ∩L ∩ Fα (Lemma 10.7). We begin with a
series of easy technical results (Lemmas 10.2 through 10.5) that will be key to proving the theorem:

Lemma 10.2 For any p, q ∈ D2 and any α, α′ ∈ R, if p 6= q then

∀x ∈ Bτ (p) ∩ Fα, ∀y ∈ Bτ (q) ∩ Fα′ , dX(x, y) ≥ max{α− αm, 0}+ max{α′ − αm, 0}
c

,

where αm = min{ατ (p), ατ (q)}.

Proof. If α > f(mp) or α′ > f(mq), then Bτ (p) ∩ Fα = ∅ or Bτ (q) ∩ Fα′ = ∅ and the conclusion
holds trivially. If Bτ (p)∩Fα 6= ∅ and Bτ (q)∩Fα′ 6= ∅, then take x ∈ Bτ (p)∩Fα, y ∈ Bτ (q)∩Fα, and
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consider a shortest path11 [x, y] between x and y in X. Let z be a point of [x, y] where the value of f
is minimal. Since Bτ (p) or Bτ (q) cannot get connected to any other basin of attraction of paramater
τ above time αm, we have f(z) ≤ αm. We deduce that dX(x, z) ≥ α−αm

c and dX(y, z) ≥ α′−αm
c ,

since f is a c-Lipschitz function. Note that these lower bounds are negative when α, α′ < αm. Since
z is on a shortest path between x and y, we conclude that

dX(x, y) = dX(x, z) + dX(z, y) ≥ max{α− αm, 0}+ max{α′ − αm, 0}
c

.

�

For any p ∈ D2, we let
vp = argmaxv∈Bτ (p)∩Lf(v).

This point is well-defined because Bτ (p) ∩ L is not empty. Indeed, by Lemma 10.2 and Eq. (6) we

have min{dX(mp, y) | y ∈ X \Bτ (p)} ≥ f(mp)−ατ (p)
c ≥ d2

c > τ
c ≥ δ ≥ min{dX(mp, x) | x ∈ L}, which

implies that Bτ (p) contains at least one point of L.

Lemma 10.3 For any p ∈ D2, we have f(mp) ≥ f(vp) ≥ f(mp)− c δ4 .

Proof. The first inequality follows from the definition of mp as the argmax of f over Bτ (p), which
contains vp. To prove the second inequality, we use our assumption that L forms a δ

4 -sample of F cδ

and therefore of F d2 since d2 ≥ cδ by hypothesis. Then, because p belongs to D2 ⊂ ΛE
d2

, we have

mp ∈ F d2 and therefore there is a point v ∈ L such that dX(v,mp) ≤ δ/4. Since f is c-Lipschitz,
we have f(v) ≥ f(mp)− cδ/4. To complete the proof, we only need to show that v actually lies in
the basin Bτ (p), which will imply that f(vp) ≥ f(v) ≥ f(mp)− cδ/4. By Lemma 10.2, the geodesic

distance of mp to X\Bτ (p) is at least
f(mp)−ατ (p)

c = px−ατ (p)
c , which by Eq. (6) is at least d2

c , which
by hypothesis is greater than 5δ. It follows then from the triangle inequality that the geodesic
distance of v to X \Bτ (p) is strictly positive, which means that v ∈ Bτ (p). �

It follows from the previous results that vp is a peak of f in the Rips graph Rδ(L). Indeed,
Lemma 10.3 guarantees that f(vp) ≥ f(mp) − cδ/4 = px − cδ/4, which by Eq. (6) is at least
ατ (p) + d2 − cδ/4. Therefore, Lemma 10.2 ensures that the geodesic distance of vp to X \Bτ (p) is
at least d2

c − δ
4 , which by hypothesis is greater than δ. This implies that every neighbor v of vp in

the Rips graph Rδ(L) lies in the basin Bτ (p), and by definition of vp that f(v) ≤ f(vp). Thus, vp is
a local maximum in Rδ(L). As a result, at time f(vp) a new connected component CR(vp, f(vp))

appears in the upper-star Rips filtration Rfδ (L), or more precisely in the subgraph Rδ(L∩ Fα). In
homological terms, this connected component is generated by the peak vp. Its lifespan is encoded as

a point pR in the persistence diagram D0Rfδ (L). Note that this point may or may not be identical
to the point γ(p) associated with p by the multi-bijection introduced in the proof of Theorem 9.2.
Defining regions DR1 and DR2 as in the proof of Theorem 9.2, we have:

Lemma 10.4 For all p ∈ D2, pR ∈ DR2 .

Proof. At any time α ∈ (ατ (p) + cδ/2, f(vp)], Lemma 10.2 guarantees that every point of
L ∩ Fα ∩ Bτ (p) (including vp itself) is disconnected from every point of L ∩ Fα \ Bτ (p) in the

11Since we did not make any assumption regarding the existence of shortest paths between arbitrary points on the
manifold X, it may happen that no shortest path exists between x and y. However, we can always consider paths
[x, y] of length at most dX(x, y) + ζ, for arbitrarily small values ζ > 0.
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subgraph Rδ(L ∩ Fα), therefore the connected component CR(vp, α) is included in Bτ (p). This
implies that vp remains the argmax of f over CR(vp, α), and therefore that CR(vp, α) still exists as
an independent connected component in the subgraph Rδ(L∩Fα). It follows that pRy ≤ ατ (p)+cδ/2,

which in turn implies that pRx − pRy ≥ f(vp) − ατ (p) − cδ/2. By Lemma 10.3, this quantity is at
least f(mp)− ατ (p)− 3cδ/4 = px − ατ (p)− 3cδ/4, which by Eq. (6) is at least d2 − 3cδ/4. Thus,
pR lies in ∆S

d2−3cδ/4 ⊂ ∆S
d2−3cδ. In addition, we have pRx = f(vp) ≥ f(mp) − cδ

4 = px − cδ
4 , which

is at most d2 − c δ4 since by hypothesis p ∈ D2 ⊂ ΛE
d2

. Hence, pR also lies in ΛE
d2−cδ/4 ⊂ ΛE

d2−3cδ,

which proves that pR ∈ DR2 since d2 > d1 + 5cδ. �

According to Lemma 10.4, p 7→ pR is a map D2 → DR2 . This map is clearly injective, since by

definition pR corresponds to the connected component of Rfδ (L) generated by the peak vp which
belongs to the basin Bτ (p) and to none other. In fact, the map is bijective since by Theorem 9.2
the cardinalities of D2 and DR2 are the same. Another important consequence of Lemma 10.4 is
that vp is in fact the generator of a whole cluster output by the algorithm. We call BRτ (p) this
cluster.

Given a point x ∈ L, we denote by r(x) the root of the tree to which x is attached during the
mode-seeking phase of the algorithm (see Section 2). For each merge of an entry e into another
entry e′ performed in the union-find data structure during the merging phase of the algorithm, we
call e′ the root of e, noted e′ = r(e). We can then iterate the root map, starting at x, until we reach
the root of the cluster containing x in the output of the algorithm. This root is denoted r∗τ (x),
by analogy with the continuous setting. By construction, r∗τ (x) is the only peak of f (within the
Rips graph Rδ(L)) of prominence at least τ in its cluster. Therefore, in the persistence diagram

D0Rfδ (L), r∗τ (x) corresponds to some point q ∈ DR2 . Let p ∈ D2 be such that pR = q. Such a point
exists since the map p 7→ pR is a bijection D2 → DR2 . The cluster containing x in the output of the
algorithm is then BRτ (p), and its root is r∗τ (x) = vp.

Lemma 10.5 ∀x ∈ L, ∀α ≤ f(x)− d1 − 2cδ, CR(x, α) = CR(r∗τ (x), α).

Proof. By definition of the root r(x), there is a path from x to r(x) in the Rips graph Rδ(L)
such that f increases along this path. This means that x and r(x) belong to the same connected
component of the subgraph Rδ(L∩F f(x)). Since α ≤ f(x), we deduce that CR(x, α) = CR(r(x), α).

For convenience, we let x0 = r(x), x1 = r(x0), · · · , xl−1 = r(xl−2), and xl = r(xl−1) = r∗τ (x).
We have f(xl) ≥ f(xl−1) ≥ · · · ≥ f(x0) ≥ f(x). By construction, the cluster output by the
algorithm that contains the xi does not contain any peak of f of prominence τ or more beside xl.
This means that, for any i < l, the peak xi is less than τ -prominent and therefore corresponds to
some point of DR1 in the diagram D0Rfδ (L). It follows in particular that the prominence of xi is less
than d1 + 2cδ, which means that CR(xi, f(xi)− d1 − 2cδ) = CR(xi+1, f(xi)− d1 − 2cδ). Now, we
have f(xi)−d1−2cδ ≥ f(x)−d1−2cδ ≥ α, which implies that CR(xi, α) = CR(xi+1, α). Since this
is true for all i < l, we conclude that CR(x0, α) = CR(x1, α) = · · · = CR(xl, α) = CR(r∗τ (x), α).
This fact, combined with the observation that CR(x, α) = CR(r(x), α) = CR(x0, α), concludes the
proof of the lemma. �

We are now ready to prove our first inclusion:

Lemma 10.6 For all p ∈ D2 and all α > ατ (p) + d1 + 5
2cδ, B

R
τ (p) ∩ Fα ⊆ Bτ (p) ∩ L ∩ Fα.

Proof. For any α > f(vp), B
R
τ (p) ∩ Fα is empty and so the inclusion holds trivially. Assume

from now on that ατ (p) + d1 + 5
2cδ < α ≤ f(vp), and consider a point x ∈ BRτ (p) ∩ Fα. Since
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f(x) ≥ α, Lemma 10.5 guarantees that CR(x, α − d1 − 2cδ) = CR(r∗τ (x), α − d1 − 2cδ). In other
words, x and r∗τ (x) belong to the same connected component of the subgraph Rδ(L ∩ Fα−d1−2cδ).
Since by hypothesis α − d1 − 2cδ is greater than ατ (p) + cδ/2, Lemma 10.2 ensures that every
point of L ∩ Fα−d1−2cδ ∩ Bτ (p), including vp = r∗τ (x) itself, is disconnected from every point of
L∩Fα−d1−2cδ \Bτ (p) in the subgraph Rδ(L∩Fα−d1−2cδ). This implies that x belongs to Bτ (p). �

We now proceed with the inclusion in the other direction:

Lemma 10.7 For all p ∈ D2 and all α > ατ (p) + d1 + 5
2cδ, Bτ (p) ∩ L ∩ Fα ⊆ BRτ (p) ∩ Fα.

Proof. Since by definition vp is the argmax of f over Bτ (p) ∩ L, for all α > f(vp) the set
Bτ (p) ∩ L ∩ Fα is empty and so the inclusion holds trivially. Assume from now on that ατ (p) +
d1 + 5

2cδ < α ≤ f(vp), and let x ∈ Bτ (p) ∩ L ∩ Fα. Let q ∈ D2 be such that vq = r∗τ (x). Since
f(x) ≥ α, Lemma 10.5 guarantees that CR(x, α − d1 − 2cδ) = CR(vq, α − d1 − 2cδ). Now, since
α−d1−2cδ > ατ (p)+cδ/2, Lemma 10.2 ensures that every point of L∩Fα−d1−2cδ∩Bτ (p), including
x itself, is disconnected from every point of L∩Fα−d1−2cδ\Bτ (p) in the subgraph Rδ(L∩Fα−d1−2cδ).
This implies that vq belongs to Bτ (p), and therefore that vq = vp. Hence, x belongs to BRτ (p). �

The conclusion of Theorem 10.1 follows from the mutual inclusions stated in Lemmas 10.6 and
10.7. ��

11 Robustness of the approach

In the previous sections we assumed the input function f̃ to be the true density function f . In many
practical scenarios however, density values are not supplied and must be estimated from the data
set L. In this section, we show that the output of the algorithm is robust to small perturbations of
these values, thus making our approach practical. More precisely, we assume the density estimator
f̃ to approximate the true density function f over the point cloud L within an additive error η:

sup
v∈L
|f̃(v)− f(v)| < η. (7)

Then, without any modification to the algorithm, the persistence diagram given as output still
approximates the persistence diagram of f , with a slighty degraded approximation bound:

Theorem 11.1 Under the hypotheses of Theorem 8.2, and assuming that Eq. (7) is satisfied by
f̃ , for any positive δ < %c(X) and any α > 0 the following holds with probability at least

(
1 −

Nδ/8(Fα) e−|L|(α−cδ/4)Vδ/8(Fα)
)
: there is a multi-bijection γ between the persistence diagrams of f

and of the upper-star filtration Rf̃δ (L) induced by f̃ on the Rips graph Rδ(L), such that:

(i) ∀p ∈ D0f ∩QNE
α+η, ‖p− γ(p)‖∞ ≤ cδ + η.

(ii) ∀q ∈ D0Rf̃δ (L) ∩QNE
α+η, ‖γ−1(q)− q‖∞ ≤ cδ + η.

(iii) ∀p ∈ D0f ∩QSE
α+η, |px − γ(p)x| ≤ cδ + η.

(iv) ∀q ∈ D0Rf̃δ (L) ∩QSE
α+η, |γ−1(q)x − qx| ≤ cδ + η.
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Proof. Eq. (7) implies that the upper-star filtrations Rfδ (L) and Rf̃δ (L) are interleaved with
respect to inclusion:

∀α ∈ R, Rδ(L ∩ Fα) ⊆ Rδ(L ∩ F̃α−η) ⊆ Rδ(L ∩ Fα−2η).

Therefore, their induced persistence modules at 0-dimensional homology level are (strongly) η-
interleaved. As a consequence, the bottleneck distance between their persistence diagrams is
bounded by η. In addition, it follows from Theorem 7.2 that L forms a δ

4 -sample of the superlevel-

set Fα with probability 1−Nδ/8(Fα) e−|L|(α−cδ/4)Vδ/8(Fα). So, with the same probability L statisfies

the assumptions of Theorem 8.2, which implies that D0f and D0Rfδ (L) satisfy assertions (i) through
(iv) of Theorem 8.2. The result follows. �

The above theorem replaces Theorem 8.2, and the rest of the analysis unfolds in the same way
as before.

Density estimation is an extensive research area and many methods to estimate the values of
f from the data set L can be used in practice (see e.g. [17]). Identifying the families of density
estimators f̃ that satisfy Eq. (7) in full generality is beyond the scope of this paper. Nevertheless,
in some cases constructing such an estimator is not too difficult, which we will now illustrate in the
Euclidean setting with a simple kernel-based estimator.

Suppose the Riemannian manifold X is the Euclidean space Rm. Let L be a finite set of data
points sampled according to some probability density function f : Rm → R. We assume that the
coordinates of the points of L are given, so that their pairwise Euclidean distances can be computed
exactly. The density f can then be approximated using the following ball estimator:

f̃r(x) =
1

Vr
|L ∩ B(x, r)|

|L| , (8)

where B(x, r) is a concise replacement for BRm(x, r), the Euclidean m-ball of center x and radius r,
and where Vr is a concise replacement for Vr(Rm), the volume of any Euclidean m-ball of radius r.

Lemma 11.2 If f is c-Lipschitz, then for any value of parameter r and any ζ ≥ 0, we have
supv∈L |f̃r(v)− f(v)| ≤ cr + ζ with probability at least 1− |L|e−2|L|(ζVr)2.

Proof. Let µ be the measure associated with the density function f . Given a point v ∈ L, we
know from the path-connectivity of B(v, r) and from the Intermediate Value Theorem that there
is a point x ∈ B(v, r) such that f(x) equals the average value of f inside the ball, that is:

f(x) =
µ(B(v, r))

Vr
. (9)

Since f is c-Lipschitz, we have |f(v)− f(x)| ≤ cr. Combined with Eq. (9), this gives:∣∣∣∣f(v)− µ(B(v, r))

Vr

∣∣∣∣ ≤ cr. (10)

In addition, the Bounded Differences Inequality tells us that for any ξ > 0, we have:∣∣∣∣ |L ∩ B(v, r)|
|L| − µ(B(v, r))

∣∣∣∣ ≤ ξ (11)
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with probability at least 1 − e−2|L|ξ2 . Letting ξ = ζVr in the above expression and combining it
with Eqs. (8) and (10), we obtain: ∣∣∣f̃r(v)− f(v)

∣∣∣ ≤ cr + ζ (12)

with probability at least 1− e−2|L|(ζVr)2 . The lemma follows then from the application of the union
bound on the set L. �

Notice that the ball estimator (8) strongly relies on the property that the volume of a Euclidean
m-ball of radius r in Rm does not depend on the location of its center. This is not the case in general
Riemannian manifolds. To overcome this issue it is possible to consider kernels of the following
form:

g̃(x) =

∑
p∈LK(dX(p, x))

|L| , (13)

where K : R → R is a non negative function such that
∫∞
−∞K(u)du = 1 and K(u) = K(−u).

Then, under some conditions, g̃ can be seen as an estimator of the convolution of f with K ◦ dX,
assuming that L has been sampled according to f . We refer the reader to [18,38] for further details
on kernel-based density estimation.

Perturbing distances Slightly increasing the Rips parameter value used in the algorithm makes
the output also robust to small perturbations of the geodesic distances between the data points.
In the analysis, this very mild change to the algorithm allows one to combine a result from [7]
(namely Theorem 4) with our Theorem 8.2, making the latter resilient to some degree of fuzziness
in the values of the geodesic distances. The formal statements and proofs are technical and do not
bear any conceptual novelty, furthermore a very similar analysis was already performed in [7, §3.3],
therefore we refer the reader to that paper for the details.

12 Conclusion

We have introduced a new clustering algorithm that combines a classical mode-seeking step with
a novel persistence-based cluster merging step. It is straightforward to implement and provably
robust to noise. Rather than rely on heuristics, it returns structural information about the modes
of the density function in the form of a persistence diagram, which allows the user to see the
relationship between the choice of parameter values and the number of obtained clusters. In many
cases this diagram provides insights into the correct number of clusters, which can be automatically
inferred by further processing. Our method can work with any density estimator and any metric,
including Euclidean, geodesic, and diffusion distances. The point is that the persistence diagram
only displays the information that is present in the density function and underlying space (known
through the input distance matrix).

Our theoretical developments provide an understanding of when the data has a clear number
of clusters, and which parts of the clusters are stable under small perturbations of the input. This
opens up the possibility of doing soft-clustering, where each point is assigned to a cluster with some
probability. Finally we note that, because we use a topological framework, additional features can
be extracted from the data through higher-dimensional persistence diagrams [7], such as the circular
structure of the rings in the synthetic data set of Figure 10(a) — although it is not yet clear how
this type of information can be exploited.
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A Appendix — Proof of Lemma 8.3

Let X = {Xβ}β∈R and Y = {Y β}β∈R be two tame persistence modules that are (strongly) ε-

interleaved above some given time α. Let {xββ′ : Xβ′ → Xβ}β′≥β be the family of homomorphisms

associated with X , and {yββ′ : Y β′ → Y β}β′≥β the family of homomorphisms associated with Y. We

define a new persistence module X̃ from X as follows:{
∀β ≥ α− ε, X̃β = Xβ

∀β < α− ε, X̃β = 0

{
∀β ≥ α− ε, ∀β′ ≥ β, x̃ββ′ = xββ′

∀β < α− ε, ∀β′ ≥ β, x̃ββ′ = 0
(14)

Clearly, x̃ββ′ ◦ x̃
β′

β′′ = xββ′ ◦ x
β′

β′′ = xββ′′ = x̃ββ′′ when β ≥ α − ε, whereas x̃ββ′ ◦ x̃
β′

β′′ = 0 = x̃ββ′′

when β < α − ε. Thus, X̃ is indeed a persistence module. The fact that x̃ββ′ = xββ′ whenever

β′ ≥ β ≥ α− ε implies that DX ∩QNE
α−ε = DX̃ ∩QNE

α−ε, by the definition of persistence diagram12.

Let then γX : DX → DX̃ be a multi-bijection such that γX and γ−1
X leave the points within QNE

α−ε
fixed. We will show that the total multiplicities of DX and DX̃ are equal within any given vertical
half-line {β′} × [−∞, β] where β′ > β ≥ α − ε, which will enable us to further assume that γX
and γ−1

X only move the points vertically within the lower-right quadrant QSE
α−ε, as illustrated in

Figure 15 (right).
Using the terminology introduced in [6], given any η > 0 we discretize X and X̃ over the integer

scale α − ε + ηZ, to get respectively Xα−ε+ηZ and X̃α−ε+ηZ. Their persistence diagrams are then
snapped onto the regular grid (α− ε+ ηZ)× (α− ε+ ηZ), as per Theorem 3.7 of [6] (the snapping
directions are reversed here, since time flows from +∞ to −∞). For any integers i > j ∈ Z, the
total multiplicity of DXα−ε+ηZ within the vertical half-line {α− ε+ iη}× [−∞, α− ε+ jη] is given
by the sum of the multiplicities of the points (α − ε + iη, α − ε + (j − k)η) for k ranging over
N ∪ {+∞}:

µtot
η,i,j(DXα−ε+ηZ) = µ(α− ε+ iη,−∞) +

∑
k∈N

µ(α− ε+ iη, α− ε+ (j − k)η), (15)

where by definition13 the multiplicity of point (α− ε+ iη, α− ε+ (j − k)η), k ∈ N, is given by:

µ(α− ε+ iη, α− ε+ (j − k)η) =
(

rank x
α−ε+(j−k+1)η
α−ε+iη − rank x

α−ε+(j−k+1)η
α−ε+(i+1)η

)
−
(

rank x
α−ε+(j−k)η
α−ε+iη − rank x

α−ε+(j−k)η
α−ε+(i+1)η

)
.

(16)

Since the persistence module X is tame, the ranks in Eq. (16) are finite. Notice that the se-

quence
(

rank x
α−ε+(j−k)η
α−ε+iη

)
k∈N

is non-increasing, bounded from below by zero, and takes integer

values. Hence, it becomes stationary after a while. The same argument holds for the sequence(
rank x

α−ε+(j−k)η
α−ε+(i+1)η

)
k∈N

, and so the difference
(
x
α−ε+(j−k)η
α−ε+iη − rank x

α−ε+(j−k)η
α−ε+(i+1)η

)
is the same for all

values of k beyond some finite threshold km. We then have µ(α− ε+ iη, α− ε+ (j − k)η) = 0 for

12The part of DX that lies in the quadrant QNE
α−ε is fully determined by the ranks of the homomorphisms xββ′ for

β′ ≥ β ≥ α− ε, and the same goes for DX̃ . We refer the reader to Section 3 in [6] for the technical details.
13See Definition 3.2 in [6] and recall that coordinates are reversed here because time flows from +∞ to −∞.
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all k > km, and the sum in Eq. (15) is a finite sum where most of the terms of Eq. (16) cancel out:

µtot
η,i,j(DXα−ε+ηZ) = µ(α− ε+ iη,−∞) +

(
rank x

α−ε+(j+1)η
α−ε+iη − rank x

α−ε+(j+1)η
α−ε+(i+1)η

)
−
(

rank x
α−ε+(j−km)η
α−ε+iη − rank x

α−ε+(j−km)η
α−ε+(i+1)η

)
.

(17)

In addition, the term
(

rank x
α−ε+(j−km)η
α−ε+iη − rank x

α−ε+(j−km)η
α−ε+(i+1)η

)
in Eq. (17) is by definition14 equal

to the multiplicity of point (α− ε+ iη,−∞). Hence,

µtot
η,i,j(DXα−ε+ηZ) = rank x

α−ε+(j+1)η
α−ε+iη − rank x

α−ε+(j+1)η
α−ε+(i+1)η . (18)

The same is true for X̃α−ε+ηZ (which is tame since Xα−ε+ηZ is), that is:

µtot
η,i,j(DX̃α−ε+ηZ) = rank x̃

α−ε+(j+1)η
α−ε+iη − rank x̃

α−ε+(j+1)η
α−ε+(i+1)η . (19)

Assuming now that i > j ≥ −1, i.e. that the endpoint of the vertical half-line {α−ε+iη}×[−∞, α−
ε + jη] lies on or above the horizontal line y = α − ε − η, we have x̃

α−ε+(j+1)η
α−ε+iη = x

α−ε+(j+1)η
α−ε+iη and

x̃
α−ε+(j+1)η
α−ε+(i+1)η = x

α−ε+(j+1)η
α−ε+(i+1)η , and so µtot

η,i,j(DX̃α−ε+ηZ) = µtot
η,i,j(DXα−ε+ηZ) by Eqs. (18) and (19).

Since this is true for any η > 0, it follows from the definition of persistence diagram that the total
multiplicities of the diagrams DX and DX̃ in any vertical half-line {β′}×[−∞, β] with β′ > β ≥ α−ε
are the same. We may thus further assume that the multi-bijection γX : DX → DX̃ defined above is
such that γX and γ−1

X move the points within the lower-right quadrant QSE
α−ε vertically, in addition

to keeping the points within the upper-right quadrant QNE
α−ε fixed.

The same construction as in Eq. (14) can be applied to the tame persistence module Y, thus
yielding another tame persistence module Ỹ. By the same sequence of arguments as above, we
know that there is a multi-bijection γY : DY → DỸ such that γY and γ−1

Y move the points within
QSE
α−ε vertically while keeping the points within QNE

α−ε fixed.

Observe now that the newly-introduced persistence modules X̃ and Ỹ are (strongly) ε-interleaved.
Indeed, let {φβ : Xβ → Y β−ε}β≥α and {ψβ : Y β → Xβ−ε}β≥α be two families of homomorphisms
that make X and Y (strongly) ε-interleaved above time α. We define two new families of homo-
morphisms between X̃ and Ỹ, indexed over R, as follows:{

∀β ≥ α, φ̃β = φβ and ψ̃β = ψβ,

∀β < α, φ̃β = 0 and ψ̃β = 0.

The fact that these two families of homomorphisms make the diagrams of Eq. (2) commute for
all β′ ≥ β ≥ α comes from the fact that {φβ}β≥α and {ψβ}β≥α themselves make the diagrams
commute. The fact that the families {φ̃β}β∈R and {ψ̃β}β∈R make the diagrams commute across
and below time α comes from the fact that they are identically zero below time α. Thus, X̃ and
Ỹ are (strongly) ε-interleaved over whole R, which implies by the Extended Stability Theorem
(Theorem 4.4 in [6]) that there is a multi-bijection γ̃ : DX̃ → DỸ that moves the points by at most
ε in the l∞-distance. The map γ = γ−1

Y ◦ γ̃ ◦ γX is then a multi-bijection DX → DY satisfying
assertions (i) through (iv) of Theorem 8.2. This concludes the proof of Lemma 8.3.

14See Definition 3.2 and the related comments in Section 3.1 of [6].
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