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ABSTRACT
Manifold reconstruction has been extensively studied for the
last decade or so, especially in two and three dimensions. Re-
cent advances in higher dimensions have led to new methods
to reconstruct large classes of compact subsets of Rd. How-
ever, the complexities of these methods scale up exponen-
tially with d, making them impractical in medium or high
dimensions, even on data sets of low intrinsic dimensionality.

In this paper, we introduce a novel approach that stands
in-between classical reconstruction and topological estima-
tion, and whose complexity scales up with the intrinsic di-
mension of the data. Our algorithm combines two paradigms:
greedy refinement, and topological persistence. Given a
point cloud in Rd, we build a set of landmarks iteratively,
while maintaining a nested pair of abstract complexes, whose
images in Rd lie close to the data, and whose persistent ho-
mology eventually coincides with the homology of the under-
lying shape. When the data points are densely sampled from
a smooth m-submanifold X of Rd, our method retrieves the
homology of X in time at most c(m)n5, where n is the size
of the input and c(m) is a constant depending solely on m.

To prove the correctness of our algorithm, we investigate
on Čech, Rips, and witness complex filtrations in Euclidean
spaces. More precisely, we show how previous results on
unions of balls can be transposed to Čech filtrations, and
from there to Rips and witness complex filtrations. Finally,
investigating further on witness complexes, we quantify a
conjecture of Carlsson and de Silva, which states that wit-
ness complex filtrations should have cleaner persistence bar-
codes than Čech or Rips filtrations, at least on smooth sub-
manifolds of Euclidean spaces.

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Čech complex, Rips complex, witness complex,
filtration, persistent homology, manifold reconstruction.
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1. INTRODUCTION
The problem of reconstructing unknown structures from

finite collections of data samples is ubiquitous in the Sci-
ences, where it has many different variants, depending on
the nature of the data and on the targeted application. In
the last decade or so, the computational geometry commu-
nity has gained a lot of interest in manifold reconstruction,
where the goal is to reconstruct submanifolds of Euclidean
spaces from point clouds. Efficient solutions have been pro-
posed in dimensions two and three, based on the use of the
Delaunay triangulation — see [8] for a survey. Recently, sig-
nificant steps were made towards a full understanding of the
potential and limitations of the Delaunay-based approach
in arbitrary dimensions [14, 30]. In parallel, new sampling
theories were developped, such as the critical point theory
for distance functions [9], which provides sufficient condi-
tions for the topology of a shape X ⊂ Rd to be captured
by the offsets of a point cloud L lying at small Hausdorff
distance. These advances lay the foundations of a new theo-
retical framework for the reconstruction of smooth submani-
folds [11, 29], and more generally of large classes of compact
subsets of Rd [9, 10, 12]. Combined with the introduction of
more lightweight data structures, such as the witness com-
plex [16], they have led to new provably-good algorithms [6]
whose complexities can be orders of magnitude below the
one of the classical Delaunay-based approach. For instance,
on a data set with n points in Rd, the algorithm of [6] runs

in time 2O(d2)n2, whereas the size of the Delaunay triangu-

lation can be of the order of n⌈ d

2 ⌉. Unfortunately, 2O(d2)n2

remains too large for these methods to be practical, even
when the data points lie on a low-dimensional submanifold.

A weaker yet similarly difficult version of the reconstruc-
tion paradigm is topological estimation, where the goal is
to infer the topological invariants of X from an input point
cloud L. This problem has received a lot of attention in the
recent years, and it finds applications in a number of areas of
Science, e.g. sensor networks [18], statistical analysis [7], or
dynamical systems [28, 31]. A classical approach consists in
building a nested sequence of spaces K0 ⊆ K1 ⊆ · · · ⊆ Km,
and in studying the persistence of homology classes through-
out this sequence. It has been independently proved in [12]
and [15] that the persistent homology of the sequence de-
fined by the α-offsets of a point cloud L coincides with the
homology of the underlying shape X under mild sampling
conditions. Specifically, if the Hausdorff distance between
L and X is less than ε, for some small enough ε, then, for
all sufficiently small α ≥ ε, the canonical inclusion map
Lα →֒ Lα+2ε induces homomorphisms between homology



Figure 1: Topological analysis of a synthetic 1000-
dimensional data set. The 50, 000 data points have

been sampled uniformly at random from a helical

curve drawn on the 2d Clifford torus, embedded into

R1000 via a quadratic mapping. The image shows the

persistence barcode of the Rips filtration built over

a carefully-chosen subset of 2000 landmarks.

groups, whose images are isomorphic to the homology groups
of X. Combined with the structure theorem of [33], which
states that the persistent homology of the sequence {Lα}α≥0

is fully described by a finite set of intervals, called a persis-
tence barcode or a persistence diagram — see Figure 1, the
above result means that the homology of X can be deduced
from this barcode, simply by removing the intervals of length
less than 2ε, which are therefore viewed as topological noise.

From an algorithmic point of view, the persistent homol-
ogy of a nested sequence of simplicial complexes (called a
filtration) can be efficiently computed using the persistence
algorithm [21, 33]. Among the many filtrations that can be
built on top of a point set L, the α-shape enables to reliably
recover the homology of the underlying space X, since it
is known to be a deformation retract of Lα [20]. However,
this property is useless in high dimensions, since computing
the α-shape requires to build the full-dimensional Delaunay
triangulation. It is therefore appealing to consider other fil-
trations that are easy to compute in arbitrary dimensions,
such as the Rips and witness complex filtrations. In this
paper, we produce an equivalent of the result of [12, 15] for
these filtrations, and more generally for any filtration that
is intertwined with the Čech filtration. Recall that, for all
α > 0, the Čech complex Cα(L) is the nerve of the union of
the open balls of same radius α about the points of L. It is
known to be homotopy equivalent to Lα. However, combin-
ing this fact with the result of [12, 15] is not enough to prove
that the persistent homology of Cα(L) →֒ Cα+2ε(L) coincides
with the homology of X, because it is unclear whether the
homotopy equivalences Cα(L) → Lα and Cα+2ε(L) → Lα+2ε

commute with the canonical inclusions Cα(L) →֒ Cα+2ε(L)
and Lα →֒ Lα+2ε. In the paper, we show that there exist
homotopy equivalences that commute with canonical inclu-
sions, at least at homology and homotopy levels. This en-
ables us to extend the result of [12, 15] to the Čech filtration,
and from there to the Rips and witness complex filtrations.

Another common concern in topological data analysis is
the size of the vertex set on top of which the filtration is
built. Indeed, in practical situations where the input data

set W samples the underlying shape very finely, it makes
sense to build the filtration on top of a small subset L
of landmarks to avoid a waste of computational resources.
However, downsampling the vertex set may result in a signif-
icant degradation in the quality of the persistence barcode.
This is true in particular with the Čech and Rips filtrations,
whose barcodes can have topological noise of amplitude de-
pending directly on the density of the landmark set L. The
introduction of the witness complex filtration appeared as an
elengant way of solving this issue [17]. The witness complex
of L relative to W , or CW (L) for short, can be viewed as a
relaxed version of the Delaunay triangulation of L, in which
the points of W \L are used to drive the construction of the
complex [16]. Due to its special nature, which takes advan-
tage of the points of W \ L, the witness complex filtration
is likely to give persistence barcodes whose topological noise
depends on the density of W rather than on the one of L,
as conjectured in [17]. We prove that this statement is only
true to some extent, namely: whenever the points of W are
sufficiently densely sampled from some smooth submanifold
of Rd, the topological noise in the barcode can be arbitrarily
small compared to the density of L. Nevertheless, it cannot
depend solely on the density of W . This shows that the
witness complex filtration does provide cleaner persistence
barcodes, though maybe not as clean as expected.

Taking advantage of the above results, we propose a novel
approach to reconstruction that stands in-between the clas-
sical reconstruction and topological estimation paradigms.
Our algorithm is a variant of the method of [6, 26] that com-
bines greedy refinement and topological persistence. Given
an input point cloud W , the algorithm builds a subset L of
landmarks iteratively, and in the meantime it maintains a
nested pair of simplicial complexes (Rips or witness com-
plexes) and computes its persistent Betti numbers. The
outcome of the algorithm is the diagram showing the evolu-
tion of these persistent Betti numbers. Using this diagram,
a user or software agent can determine a relevant scale at
which to process the data. It is then easy to rebuild the
corresponding set of landmarks, as well as its nested pair of
complexes. Although our method does not really compute
an embedded complex that is close to X topologically and
geometrically, it comes with theoretical guarantees, it is eas-
ily implementable, and it has reasonable complexity. Indeed,
in the case where the input point cloud W is densely sampled
from a smooth submanifold X of Rd, we show that the com-
plexity of our algorithm is bounded by c(m)n5, where c(m)
is a quantity depending solely on the intrinsic dimension m
of X, and n is the size of W . To the best of our knowledge,
this is the first provably-good topological estimation or re-
construction method whose complexity scales up with the
intrinsic dimension of the data. When X is a more general
compact set in Rd, our complexity bound becomes c(d)n5.

The paper is organized as follows: after introducing the
Čech, Rips, and witness complex filtrations in Section 2, we
prove our structural results in Sections 3 and 4, focusing
on compact subsets of Rd in Section 3, and on the partic-
ular case of smooth submanifolds in Section 4. Finally, we
present our algorithm and its analysis in Section 5.

2. VARIOUS RELATED FILTRATIONS
The definitions, results and proofs of this section hold in

any arbitrary metric space. However, for the sake of con-
sistency with the rest of the paper, we state them in the



particular case of Rd, endowed with the Euclidean norm
‖.‖. Although our bounds can be proved to be tight in the
general metric case, it is possible to work out somewhat
tighter bounds in the Euclidean case, at the price of a loss
of simplicity in the statements.

For any compact set X ⊂ Rd, we call diam(X) the diam-
eter of X, and diamCC(X) the component-wise diameter of
X, defined by: diamCC(X) = infi diam(Xi), where the Xi

are the path-connected components of X. Finally, given two
compact sets X, Y in Rd, we call dH(X, Y ) their Hausdorff
distance. Given a finite set L of points of Rd and a pos-
itive number α, we call Lα the union of the open balls of
radius α centered at the points of L: Lα =

S

x∈L B(x, α).
We also denote by {Lα} the open cover of Lα formed by
the open balls of radius α centered at the points of L. The
Čech complex of L of parameter α, or Cα(L) for short, is
the nerve of this cover, i.e. it is the abstract simplicial com-
plex whose vertex set is L, and such that, for all k ∈ N
and all x0, · · · , xk ∈ L, [x0, · · · , xk] is a k-simplex of Cα(L)
if and only if B(x0, α) ∩ · · · ∩ B(xk, α) is non-empty. The
(Vietoris-)Rips complex of L of parameter α, or Rα(L) for
short, is the abstract simplicial complex whose k-simplices
correspond to unordered (k + 1)-tuples of points of L which
are pairwise within distance α of one another. The Rips
complex is closely related to the Čech complex, according to
the following standard result of computational topology:

Lemma 2.1. For all finite set L ⊂ Rd and all α > 0, we
have: C α

2 (L) ⊆ Rα(L) ⊆ Cα(L).

From now on, L is referred to as the landmark set. Let
W be another (possibly infinite) subset of Rd, referred to as
the witness set. Let also α ∈ [0,∞). Given a point w ∈ W
and a k-simplex σ with vertices in L, w is an α-witness of
σ (or, equivalently, w α-witnesses σ) if the vertices of σ lie
within distance (dk(w) + α) of w, where dk(w) denotes the
distance between w and its (k+1)th nearest landmark. The
α-witness complex of L relative to W , or Cα

W (L) for short, is
the maximum abstract simplicial complex, with vertices in
L, whose faces are α-witnessed by points of W .

When α = 0, the α-witness complex coincides with the
standard witness complex CW (L), introduced in [16]. The α-
witness complex is also closely related to the Čech complex,
though the relationship is a bit more subtle than in the case
of the Rips complex:

Lemma 2.2. Let L, W ⊆ Rd be such that L is finite. If
every point of L lies within distance l of W , then for all α > l

we have: C α−l

2 (L) ⊆ Cα
W (L). In addition, if the distance

from any point of W to its second nearest neighbor in L is

at most l′, then for all α > 0 we have: Cα
W (L) ⊆ C2(α+l′)(L).

Proof. Let [x0, · · · , xk] be a k-simplex of C α−l

2 (L). This

means that
Tk

i=0 B(xi,
α−l
2

) 6= ∅, and as a result, that ‖x0 −
xi‖ ≤ α − l for all i = 0, · · · , k. Let w be a point of W
closest to x0. We have ‖w − x0‖ ≤ l, therefore x0, · · · , xk

lie within distance α of w. Since the distances from w to its
nearest points of L are non-negative, w is an α-witness of
[x0, · · · , xk] and of all its faces. As a result, [x0, · · · , xk] is
a simplex of Cα

W (L). Consider now a k-simplex [x0, · · · , xk]
of Cα

W (L). If k = 0, then the simplex is a vertex [x0], and

therefore it belongs to Cα′

(L) for all α′ > 0. Assume now
that k ≥ 1. Edges [x0, x1], · · · , [x0, xk] belong also to Cα

W (L),
hence they are α-witnessed by points of W . Let wi ∈ W be

an α-witness of [x0, xi]. Distances ‖wi − x0‖ and ‖wi − xi‖
are bounded from above by d2(wi) + α, where d2(wi) is the
distance from wi to its second nearest point of L, which
by assumption is at most l′. It follows that ‖x0 − xi‖ ≤
‖x0 − wi‖ + ‖wi − xi‖ ≤ 2α + 2l′. Since this is true for all
i = 0, · · · , k, we conclude that x0 belongs to the intersection
Tk

i=0 B(xi, 2(α + l′)). As a result, [x0, · · · , xk] is a simplex

of C2(α+l′)(L).

Corollary 2.3. Let X be a compact subset of Rd, and
let L ⊆ W ⊆ Rd be such that L is finite. Assume that
dH(X, W ) ≤ δ and dH(W, L) ≤ ε, with ε+δ < 1

4
diamCC(X).

Then, for all α > ε, C α−ε

2 (L) ⊆ Cα
W (L) ⊆ C2α+6(ε+δ)(L). In

particular, if δ ≤ ε < 1
8

diamCC(X) then, for all α ≥ 2ε we

have: C α

4 (L) ⊆ Cα
W (L) ⊆ C8α(L).

Proof. Since dH(W, L) ≤ ε, every point of L lies within
distance ε of W . As a result, the first inclusion of Lemma

2.2 holds with l = ε, that is: C α−ε

2 (L) ⊆ Cα
W (L). Now,

for every point w ∈ W , there is a point p ∈ L such that
‖w − p‖ ≤ ε. Moreover, there is a point x ∈ X such that
‖w − x‖ ≤ δ, since we assumed that dH(X, W ) ≤ δ. Let
Xx be the path-connected component of X that contains x.
Take an arbitrary value λ ∈

`

0, 1
2

diamCC(X) − 2(ε + δ)
´

,
and consider the open ball B(w, 2(ε + δ) + λ). This ball
clearly intersects Xx, since it contains x. Furthermore, Xx is
not contained entirely in the ball, since otherwise we would
have: diamCC(X) ≤ diam(Xx) ≤ 4(ε + δ) + 2λ, hereby
contradicting the fact that λ < 1

2
diamCC(X) − 2(ε + δ).

Hence, there is a point y ∈ X lying on the bounding sphere
of B(w, 2(ε + δ) + λ). Let q ∈ L be closest to y. We have
‖y−q‖ ≤ ε+δ, since our hypothesis implies that dH(X, L) ≤
dH(X, W ) + dH(W, L) ≤ δ + ε. It follows then from the
triangle inequality that ‖p−q‖ ≥ ‖w−y‖−‖w−p‖−‖y−q‖ ≥
2(ε + δ) + λ− (ε + δ)− (ε + δ) = λ > 0. Thus, q is different
from p, and therefore the ball B(w, 3(ε + δ) + λ) contains
at least two points of L. Since this is true for arbitrarily
small values of λ, the distance from w to its second nearest
neighbor in L is at most 3(ε + δ). It follows that the second
inclusion of Lemma 2.2 holds with l′ = 3(ε + δ), that is:

Cα
W (L) ⊆ C2(α+3(ε+δ))(L).

As mentioned at the head of the section, slightly tighter
bounds can be worked out using specific properties of Eu-
clidean spaces. For the case of the Rips complex, this was
done by de Silva and Ghrist [18, 24]. Their approach can be
combined with ours in the case of the witness complex.

3. PROPERTIES OF FILTRATIONS IN RD

This section uses classical concepts of algebraic topology:
homotopy equivalences, deformation retractions, homology
groups, homotopy groups, etc. We refer the reader to [27]
for a good introduction to these concepts. Throughout the
paper, we use singular homology with coefficients in an arbi-
trary field – omitted in the notations. Our results also hold
at homotopy level, as detailed in Section 3.2.2.

Given a compact set X ⊂ Rd, we denote by dX the dis-
tance function defined by dX(x) = inf{‖x − y‖ : y ∈ X}.
Although dX is not differentiable, it is possible to define a
notion of critical point for distance functions and we denote
by wfs(X) the weak feature size of X, defined as the small-
est positive critical value of dX [10]. We do not explicitly
use the notion of critical value in the following, but only its



relationship with the topology of the offsets Xα = {x ∈ Rd :
dX(x) ≤ α}, stressed in the following result from [25]:

Lemma 3.1. If 0 < α < α′ are such that there is no crit-

ical value of dX in the closed interval [α, α′], then Xα′

de-
formation retracts onto Xα.

In particular, the hypothesis of the lemma is satisfied when
0 < α1 < α2 < wfs(X). Therefore, all the offsets of X have
the same homotopy type in the interval (0, wfs(X)). In the
sequel, we repeatedly make use of the following standard
result of linear algebra:

Lemma 3.2. Given a sequence A → B → C → D →
E → F of homomorphisms between finite-dimensional vector
spaces, if rank (A → F ) = rank (C → D), then this quantity
also equals the rank of B → E. Similarly, if A → B →
C → E → F is a sequence of homomorphisms such that
rank (A → F ) = dim C, then rank (B → E) = dim C.

3.1 Čech filtration
Since the Čech complex is the nerve of a union of balls,

its homotopy type is closely related to the one of this union.
We will use the following extension of Theorem 4.7 of [12]:

Lemma 3.3. Let X be a compact set and L a finite set
in Rd, such that dH(X, L) < ε for some ε < 1

4
wfs(X).

Then, for all α, α′ ∈ [ε, wfs(X) − ε] such that α′ − α ≥ 2ε,
and for all λ ∈ (0, wfs(X)), we have: ∀k ∈ N, Hk(Xλ) ∼=
im i∗, where i∗ : Hk(Lα) → Hk(Lα′

) is the homomorphism
between homology groups induced by the canonical inclusion

i : Lα →֒ Lα′

. Given an arbitrary point x0 ∈ X, the same
conclusion holds for homotopy groups with base-point x0.

Proof. We can assume without loss of generality that
ε < α < α′ − 2ε < wfs(X) − 3ε, since otherwise we can
replace ε by any ε′ ∈ (dH(X, L), ε). From the hypothesis we
deduce the following sequence of inclusions:

Xα−ε →֒ Lα →֒ Xα+ε →֒ Lα′ →֒ Xα′+ε (1)

By the Isotopy Lemma 3.1, for all 0 < β < β′ < wfs(X), the

canonical inclusion Xβ →֒ Xβ′

is a homotopy equivalence.
As a consequence, Eq. (1) induces a sequence of homo-
morphisms between homology groups, such that all homo-

morphisms between homology groups of Xα−ε, Xα+ε, Xα′+ε

are isomorphisms. It follows then from Lemma 3.2 that

i∗ : Hk(Lα) → Hk(Lα′

) has same rank as these isomor-
phisms. Now, this rank is equal to the dimension of Hk(Xλ),
since the Xβ are homotopy equivalent to Xλ for all 0 < β <
wfs(X). It follows that im i∗ ∼= Hk(Xλ), since our ring of
coefficients is a field.

The case of homotopy groups is a little trickier, since the
above rank argument cannot be used. However, we can use
the same proof as in Theorem 4.7 of [12] to conclude.

Observe that Lemma 3.3 does not guarantee the retrieval
of the homology of X. Instead, it deals with sufficiently
small offsets of X, which are homotopy equivalent to one
another but possibly not to X itself [12, Fig. 4]. In the
special case where X is a smooth submanifold of Rd how-
ever, Xλ and X are homotopy equivalent, and therefore the
theorem guarantees the retrieval of the homology of X.

Consider now the Čech complex Cα(L), for any value α >
0. By definition, Cα(L) is the nerve of the open cover {Lα} of

Lα. Since the elements of {Lα} are convex, they form a good
open cover of Lα, i.e. their intersections are either empty or
contractible. It follows from the nerve theorem [27, Corollary
4G.3] that Lα and its nerve Cα(L) are homotopy equivalent.
We thus get the following diagram, where horizontal arrows
are canonical inclusions and vertical arrows are homotopy
equivalences provided by the nerve theorem:

Lα →֒ Lα′

↑ ↑
Cα(L) →֒ Cα′

(L)

(2)

Unfortunately, the nerve theorem does not guarantee that
this diagram commutes. However, standard arguments of al-
gebraic topology imply the following result, where NU (resp.
NU ′) stands for the nerve of the open cover U (resp. U ′):

Lemma 3.4. Let X ⊆ X ′ be two paracompact spaces, and
let U = {Uα}α∈A and U ′ = {U ′

α}α∈A be good open covers of
X and X ′ respectively, based on a same finite parameter set
A, such that Uα ⊆ U ′

α for all α ∈ A. Then, there exist homo-
topy equivalences NU → X and NU ′ → X ′ that commute
with the canonical inclusions X →֒ X ′ and NU →֒ NU ′ at
homology and homotopy levels.

Letting X = Lα, X ′ = Lα′

, U = {Lα}, and U ′ = {Lα′}, we
get from Lemma 3.4 that there exist homotopy equivalences

Cα(L) → Lα and Cα′

(L) → Lα′

that make the diagram of
Eq. (2) commute at homology and homotopy levels. Com-
bined with Lemma 3.3, this fact implies the following result:

Theorem 3.5. Let X be a compact set and L a finite set
in Rd, such that dH(X, L) < ε for some ε < 1

4
wfs(X).

Then, for all α, α′ ∈ [ε, wfs(X) − ε] such that α′ − α > 2ε,
and for all λ ∈ (0, wfs(X)), we have: ∀k ∈ N, Hk(Xλ) ∼=
im j∗, where j∗ : Hk(Cα(L)) → Hk(Cα′

(L)) is the homo-
morphism between homology groups induced by the canonical

inclusion j : Cα(L) →֒ Cα′

(L). Given a point x0 ∈ X, the
same result holds for homotopy groups with base-point x0.

Using the terminology of [33], this theorem guarantees that
the homology of Xλ is obtained from the persistence barcode
of the filtration {Cα(L)}α≥0 by removing the intervals of
persistence less than 2ε.

We now give our proof1 of Lemma 3.4, which consists in a
generalization to our context of the main arguments of the
proof of the nerve theorem provided in Section 4G of [27]:

Proof of Lemma 3.4. Recall that U is a good open cover
of X, namely: ∀k ∈ N, ∀α0, · · · , αk ∈ L,

Tk

l=0 Uα is either
empty or contractible. From this cover we construct a topo-
logical space ∆X as follows: let ∆n denote the standard
n-simplex, where n = #A− 1. To each non-empty subset S
of A we associate the face [S] of ∆n spanned by the elements
of S, as well as the subspace US =

T

s∈S Us of X. ∆X is
then the subspace of X × ∆n defined by:

∆X =
[

∅6=S⊆A

US × [S].

The subspace ∆X ′ ⊆ X ′ × ∆n is built similarly. Note that
we have ∆X ⊆ ∆X ′, since the hypothesis of the lemma im-
plies US ⊆ U ′

S for all S ⊆ A. Furthermore, the product

1Another proof of Lemma 3.4 is provided in [5], for the special

case where X = Lα, X′ = Lα′

, U = {Lα}, and U ′ = {Lα′

} lie in
R

d. Our proof is simpler, and it holds in a more general setting.



structures of ∆X and ∆X ′ imply the existence of canonical
projections p : ∆X → X and p′ : ∆X ′ → X ′. These projec-
tions commute with the canonical inclusions ∆X →֒ ∆X ′

and X →֒ X ′, therefore the following diagram:

X →֒ X ′

↑p ↑p′

∆X →֒ ∆X ′
(3)

induces commutative diagrams at homology and homotopy
levels. Moreover, since U is an open cover of X, which is
paracompact, p is a homotopy equivalence [27, Prop. 4G.2].
The same holds for p′, and therefore p and p′ induce isomor-
phisms at homology and homotopy levels.

We now show that, similarly, there exist homotopy equiv-
alences ∆X → NU and ∆X ′ → NU ′ that commute with
the canonical inclusions ∆X →֒ ∆X ′ and NU →֒ NU ′. This
follows in fact from the proof of Corollary 4G.3 of [27]. In-
deed, using the notion of complex of spaces introduced in
[27, Section 4G], it can be shown that ∆X is the realiza-
tion of the complex of spaces associated with the cover U —
see the proof of [27, Prop. 4G.2]. Its base is the barycen-
tric subdivision Γ of NU , where each vertex corresponds
to a non-empty finite intersection US for some set S ⊆ A,
and where each edge connecting two vertices S ⊂ S′ corre-
sponds to the canonical inclusion US′ →֒ US . In the same
way, ∆X ′ is the realization of a complex of spaces built over
the barycentric subdivision Γ′ of NU ′. Now, since the non-
empty finite intersections US (resp. U ′

S) are contractible, the
map q : ∆X → Γ (resp. q′ : ∆X ′ → Γ′) induced by sending
each open set US (resp. U ′

S) to a point is a homotopy equiv-
alence [27, Prop. 4G.1 and Corol. 4G.3]. Furthermore, by
construction, q is the restriction of q′ to ∆X. Therefore,

∆X →֒ ∆X ′

↓q ↓q′

Γ →֒ Γ′
(4)

is a commutative diagram where vertical arrows are homo-
topy equivalences. Now, it is well-known that Γ and Γ′ are
homeomorphic to NU and NU ′ respectively, and that the
homeomorphisms commute with the inclusion. Combined
with (3) and (4), this fact proves Lemma 3.4.

3.2 Intertwined filtrations

3.2.1 Results on homology
Using Lemma 2.1 and Theorem 3.5, we get the following

guarantees on the Rips filtration:

Theorem 3.6. Let X ⊂ Rd be a compact set and L ⊂
Rd a finite point set such that dH(X, L) < ε for some ε <
1
9

wfs(X). Then, for all α ∈
ˆ

2ε, 1
4

(wfs(X) − ε)
˜

and all

λ ∈ (0, wfs(X)), we have: ∀k ∈ N, Hk(Xλ) ∼= im j∗, where
j∗ is the homomorphism between homology groups induced
by the canonical inclusion j : Rα(L) →֒ R4α(L).

Proof. Lemma 2.1 provides the following sequence:

C α

2 (L) →֒ Rα(L) →֒ Cα(L) →֒ C2α(L) →֒ R4α(L) →֒ C4α(L)

Since α ≥ 2ε, Theorem 3.5 implies that this sequence of
inclusions induces a sequence of homomorphisms between
homology groups, such that Hk(C α

2 (L)) → Hk(C4α(L)) and
Hk(Cα(L)) → Hk(C2α(L)) have ranks equal to dim Hk(Xλ).
Hence, by Lemma 3.2, rank j∗ is also equal to dim Hk(Xλ).
It follows that im j∗ ∼= Hk(Xλ).

Similarly, Corollary 2.3 provides the following sequence:

C
α

4 (L) →֒ Cα
W (L) →֒ C8α(L) →֒ C9α(L) →֒ C36α

W (L) →֒ C288α(L),

from which follows a result similar to Theorem 3.6 on the
witness complex, by the same proof:

Theorem 3.7. Let X be a compact set in Rd, and let L ⊆
W ⊆ Rd be such that L is finite. Assume that dH(X, W ) ≤ δ
and that dH(W, L) ≤ ε, with δ ≤ ε < min{ 1

8
diamCC(X),

1
1153

wfs(X)}. Then, for all α ∈
ˆ

4ε, 1
288

(wfs(X) − ε)
˜

and

all λ ∈ (0, wfs(X)), we have: ∀k ∈ N, Hk(Xλ) ∼= im j∗,
where j∗ is the homomorphism between homology groups in-
duced by the canonical inclusion j : Cα

W (L) →֒ C36α
W (L).

More generally, the above arguments show that the homol-
ogy of Xλ can be recovered from the persistence barcode
of any filtration {Fα}α≥0 that is intertwined with the Čech
filtration in the sense of Lemmas 2.1 and 2.2. Note however
that Theorems 3.6 and 3.7 suggest a different behavior of
the barcode in this case, since its topological noise might
scale up with α (specifically, it might be up to linear in α),
whereas it is uniformly bounded by a constant in the case
of the Čech filtration. This difference of behavior is easily
explained by the way {Fα}α≥0 is intertwined with the Čech
filtration. A trick to get a uniformly-bounded noise is to
represent the barcode of {Fα}α≥0 on a logarithmic scale,
that is, with log2 α instead of α in abcissa.

3.2.2 Results on homotopy
The results on homology obtained in Section 3.2.1 follow

from simple algebraic arguments. Using a more geometric
approach, we can get similar results on homotopy. From
now on, x0 ∈ X is a fixed point and all the homotopy groups
πk(X) = πk(X, x0) are assumed to be with base-point x0.
Theorems 3.6 and 3.7 extend to homotopy as follows:

Theorem 3.8.
• Under the hypotheses of Theorem 3.6, we have: ∀k ∈ N,

πk(Xλ) ∼= im j∗, where j∗ : πk(Rα(L)) → πk(R4α(L)) is
the homomorphism between homotopy groups induced by the
inclusion Rα(L) →֒ R4α(L).

• Under the hypotheses of Theorem 3.7, we have: ∀k ∈ N,
πk(Xλ) ∼= im j∗, where j∗ : πk(Cα

W (L)) → πk(C36α
W (L)) is

the homomorphism between homotopy groups induced by the
inclusion Cα

W (L) →֒ C36α
W (L).

The proof of the theorem relies on the following result, which
is an immediate generalization of Proposition 4.1 of [12]:

Lemma 3.9. Let X be a compact set and L a finite set in
Rd, such that dH(X, L) < ε for some ε < 1

4
wfs(X). Let

α, α′ ∈ [ε, wfs(X) − ε] be such that α′ − α ≥ 2ε. Given k ∈
N, two k-loops σ1, σ2 : Sk → (Lα, x0) in Lα are homotopic

in Xα′+ε if and only if they are homotopic in Lα′

.

Proof of Theorem 3.8. As mentioned at the beginning
of the proof of Lemma 3.3, we can assume without loss of
generality that 2ε < α < 1

4
(wfs(X) − ε). Consider the se-

quence of inclusions introduced in the proof of Theorem 3.6.
We use the homotopy equivalences hβ : Lβ → Cβ(L) pro-
vided by Lemma 3.4 for all values β > 0, which commute
with inclusions at homotopy level. Note that, for any el-
ement σ of πk(Cβ(L)), there exists a k-loop in Lβ that is
mapped through hβ to a k-loop representing the homotopy



class σ. In the following, we denote by σg such a k-loop.
Let E, F and G be the images of πk(C α

2 (L)) in πk(Cα(L)),
πk(C2α(L)) and πk(C4α(L)) respectively, through the homo-
morphisms induced by inclusion. We thus have a sequence
of surjective homomorphisms: πk(C α

2 (L)) → E → F → G.
Note that, by Theorem 3.5, F and G are isomorphic to

πk(Xλ). Let σ ∈ F be a homotopy class. Since F is the im-

age of πk(C α

2 (L)), we can assume without loss of generality

that σg ⊂ L
α

2 . Assume that the image of σ in G is zero.
Then, σg is null-homotopic in L4α and, since L4α ⊂ X4α+ε,
σg is also null-homotopic in X4α+ε. But σg ⊂ L

α

2 ⊂ X
α

2
+ε,

and X2α+ε deformation retracts onto X
α

2
+ε, by the Iso-

topy Lemma 3.1. Therefore, σg is null-homotopic in X
α

2
+ε,

which is contained in L2α since α
2

+ 2ε < 2α. Hence, σg

is null-homotopic in L2α, i.e. σ = 0 in F . So, the homo-
morphism F → G is injective, and therefore it is an iso-
morphism. Thus, F → πk(R4α(L)) is injective, and it is
now enough to prove that the image of the homomorphism
φ∗ : πk(Rα(L)) → πk(C2α(L)) induced by inclusion is F .

Obviously, F is contained in the image of φ∗. Now, let σ ∈
πk(Rα(L)) and let φ∗(σ)g be a k-loop in L2α that is mapped
through h2α to a k-loop representing the homotopy class
φ∗(σ). Since φ∗(σ) is in the image of φ∗, and since Rα(L) ⊂
Cα(L), we can assume that φ∗(σ)g belongs to Lα. Let σ̃g

be the image of φ∗(σ)g through a deformation retraction
of X2α+ε onto Xα0 , where 0 < α0 < α

2
is such that α

2
−

α0 > ε. Obviously, σ̃g and φ∗(σ)g are homotopic in X2α+ε,
and it follows from Lemma 3.9 that σ̃g and φ∗(σ)g are also

homotopic in L2α. And since σ̃g is contained in Xα0 ⊂ L
α

2 ,
the equivalence class of h α

2
(σ̃g) in πk(C α

2 (L)) is mapped to

φ∗(σ) ∈ πk(C2α(L)) through the homomorphism induced

by C α

2 (L) →֒ C2α(L), which commutes with the homotopy
equivalences. As a result, φ∗(σ) belongs to F , which is thus
equal to im φ∗. This proves the first part of the theorem.
The proof of the second part is mostly the same.

4. SMOOTH SUBMANIFOLDS OF RD

In this section, we consider the case of submanifolds X
of Rd that have positive reach. Recall that the reach of X,
or rch(X) for short, is the minimum distance between the
points of X and the points of its medial axis [1]. A point
cloud L ⊂ X is an ε-sample of X if every point of X lies
within distance ε of L. In addition, L is ε-sparse if its points
lie at least ε away from one another.

Theorem 4.1 below is a first attempt at quantifying a con-
jecture of Carlsson and de Silva [17], according to which
the witness complex filtration should have cleaner persis-
tence barcodes than the Čech and Rips filtrations, at least
on smooth submanifolds of Rd. By cleaner is meant that the
amplitude of the topological noise in the barcodes should be
smaller, and also that the long intervals should appear ear-
lier. We prove this latter statement correct to some extent:

Theorem 4.1. There exist a constant ̺ > 0 and a contin-
uous, non-decreasing map ω̄ : [0, ̺) → [0, 1

2
), with ω̄(0) = 0,

such that, for any submanifold X of Rd, for all ε, δ satis-
fying 0 < δ ≤ ε < ̺ rch(X), for any δ-sample W of X
and any ε-sparse ε-sample L of W , Cα

W (L) contains a sub-
complex D homeomorphic to X and such that the canonical
inclusion D →֒ Cα

W (L) induces an injective homomorhism
between homology groups, provided that α satisfies: 8

3
(δ +

ω̄( ε
rch(X)

)2ε) ≤ α < 1
2

rch(X) − (3 +
√

2
2

)(ε + δ).

This theorem guarantees that, for values of α ranging from
O(δ + ω̄( ε

rch(X)
)2ε) to Ω(rch(X)), the topology of X is cap-

tured by a subcomplex D that injects itself suitably in Cα
W (L).

As a result, long intervals showing the homology of X ap-
pear around α = O(δ + ω̄( ε

rch(X)
)2ε) in the persistence bar-

code of the witness complex filtration. This can be much
sooner than the time α = 2ε prescribed by Theorem 3.7,
since ω̄( ε

rch(X)
) can be arbitrarily small. Specifically, the

denser the landmark set L, the smaller the ratio ε
rch(X)

, and

therefore the smaller 8
3
(δ + ω̄( ε

rch(X)
)2ε) compared to 2ε.

Our proof of Theorem 4.1 stresses the close relationship
that exists between the α-witness complex and the so-called
weighted restricted Delaunay triangulation DX

ω (L). Given a
submanifold X of Rd, a finite landmark set L ⊂ Rd, and
an assignment of non-negative weights to the landmarks,
specified through a map ω : L → [0,∞), DX

ω (L) is the nerve
of the restriction to X of the power diagram2 of the weighted
set L. By a result of Cheng et al. (see Theorem 4.2 below),
DX

ω (L) is homeomorphic to X under a sufficient landmark
density and under a suitable choice of weights – bounded

from above by ω̄
“

ε
rch(X)

”

. The main point of our proof is

then to show that Cα
W (L) contains DX

ω (L) and that the latter
injects itself nicely into the former.

In the special case where X is a smooth curve or surface,
all weights can be taken to be zero, since the unweighted re-
stricted Delaunay triangulation is known to be homeomor-
phic to X [1, 2]. As a result, function ω̄ is zero, and the long
intervals showing the homology of X in the barcode of the
witness complex filtration appear already at time α = O(δ).

In the general case however, the upper bound on the ap-
pearance time of long bars cannot depend solely on δ, since
otherwise, in the limit case where δ = 0 (i.e. W = X), we
would get that the homology groups of X can be injected
into the ones of CX(L), which is known to be true for curves
and surfaces [3], but not for 3-manifolds [30]. Now, whether
O(δ + ω̄( ε

rch(X)
)2ε) is a tight upper bound or not is open.

The rest of Section 4 is devoted to the proof of Theorem
4.1. After introducing the weighted restricted Delaunay tri-
angulation formally in Section 4.1, we stress its relationship
with the α-witness complex in Section 4.2, and then we de-
tail the proof of Theorem 4.1 in Section 4.3.

4.1 Weighted restricted Delaunay triangulation
Given a finite point set L ⊂ Rd, an assignment of weights

over L is a non-negative real-valued function ω : L → [0,∞).

The quantity maxu∈L,v∈L\{u}
ω(u)

‖u−v‖ is called the relative

amplitude of ω. Given p ∈ Rd, the weighted distance from
p to some weighted point v ∈ L is ‖p − v‖2 − ω(v)2. This
is actually not a metric, since it is not symmetric. Given a
finite point set L and an assignment of weights ω over L, we
denote by Vω(L) the power diagram of the weighted set L,
and by Dω(L) its nerve, also known as the weighted Delau-
nay triangulation. If the relative amplitude of ω is at most
1
2
, then the points of L have non-empty cells in Vω(L), and

in fact each point of L belongs to its own cell [13]. For any
simplex σ of Dω(L), Vω(σ) denotes its dual face in Vω(L).

Given a subset X of Rd, we call VX
ω (L) the restriction of

Vω(L) to X, and we denote by DX
ω (L) its nerve, also known

as the weighted Delaunay triangulation of L restricted to

2More on power diagrams and on restricted Delaunay triangula-
tions can be found in [4] and [22] respectively.



X. Observe that DX
ω (L) is a subcomplex of Dω(L). In

the special case where all the weights are equal, Vω(L) and
Dω(L) coincide with their standard Euclidean versions, V(L)
and D(L). Similarly, Vω(σ) becomes V(σ), and VX

ω (L) and
DX

ω (L) become respectively VX(L) and DX(L).

Theorem 4.2 (Lemmas 13, 14, 18 of [14]).
There exist3 a constant ̺ > 0 and a non-decreasing con-

tinuous map ω̄ : [0, ̺) → [0, 1
2
), such that, for any manifold

X and any ε-sparse 2ε-sample L of X, with ε < ̺ rch(X),
there is an assignment of weights ω of relative amplitude at

most ω̄
“

ε
rch(X)

”

such that DX
ω (L) is homeomorphic to X.

This theorem guarantees that the topology of X is cap-
tured by DX

ω (L) provided that the landmarks are sufficiently
densely sampled on X, and that they are assigned suitable
weights. Observe that the denser the landmark set, the
smaller the weights are required to be, as specified by the
map ω̄. In the particular case where X is a curve or a surface,
ω̄ can be taken to be the constant zero map, since DX(L) is
homeomorphic to X [1, 2]. On higher-dimensional manifolds
though, positive weights are required, since DX(L) may fail
to capture the topological invariants of X [30].

The proof of the theorem given in [14] shows that VX
ω (L)

satisfies the so-called closed ball property, which states that
every face of the weighted Voronoi diagram Vω(L) intersects
the manifold X along a topological ball of proper dimen-
sion, if at all. Under this condition, there exists a homeo-
morphism h0 between the nerve DX

ω (L) and X, as proved
by Edelsbrunner and Shah [22]. Furthermore, h0 sends ev-
ery simplex of DX

ω (L) to a subset of the union of the re-
stricted Voronoi cells of its vertices, that is: ∀σ ∈ DX

ω (L),
h0(σ) ⊆ S

v vertex of σ Vω(v) ∩ X. This fact will be instru-
mental in the proof of Theorem 4.1.

4.2 Relationship betweenDX
ω (L) and Cα

W (L)

As mentioned in introduction, the use of the witness com-
plex for topological data analysis is motivated by its relation-
ship with the weighted restricted Delaunay triangulation:

Lemma 4.3. Let X be a compact set in Rd, W ⊆ X a δ-
sample of X, and L ⊆ W an ε-sparse ε-sample of W . Then,
for all assignment of weights ω of relative amplitude ω̄ ≤ 1

2
,

DX
ω (L) is included in Cα

W (L) whenever α ≥ 2
1−ω̄2

`

δ + ω̄2ε
´

.

This result implies in particular that DX(L) is included in
Cα

W (L) whenever α ≥ 2δ, since DX(L) is nothing but DX
ω (L)

for an assignment of weights of relative amplitude zero.

Proof. Let σ be a simplex of DX
ω (L). If σ is a vertex,

then it clearly belongs to Cα
W (L) for all α ≥ 0, since L ⊆ W .

Assume now that σ has positive dimension, and consider a
point c ∈ Vω(σ)∩X. For any vertex v of σ and any point p of
L (possibly equal to v), we have: ‖v−c‖2−ω(v)2 ≤ ‖p−c‖2−
ω(p)2, which yields: ‖v−c‖2 ≤ ‖p−c‖2+ω(v)2−ω(p)2. Now,
ω(p)2 is non-negative, while ω(v)2 is at most ω̄2‖v − p‖2,
which gives: ‖v − c‖2 ≤ ‖p − c‖2 + ω̄2‖v − p‖2. Replacing
‖v−p‖ by ‖v−c‖+‖p−c‖, we get a semi-algebraic expression
of degree 2 in ‖v − c‖, namely: (1 − ω̄2)‖v − c‖2 − 2ω̄2‖p −
c‖‖v − c‖ − (1 + ω̄2)‖p − c‖2 ≤ 0. It follows that ‖v − c‖ ≤
1+ω̄2

1−ω̄2 ‖p− c‖. Let now w be a point of W closest to c in the
Euclidean metric. Using the triangle inequality and the fact

3Here, quantities ̺ and ω̄ are the same as in Theorem 4.1. In
fact, these quantities come from the lemmas of [14].

that ‖w − c‖ ≤ δ, we get: ‖v − w‖ ≤ ‖v − c‖ + ‖w − c‖ ≤
1+ω̄2

1−ω̄2 ‖p − c‖ + δ. This holds for any point p ∈ L, and in
particular for the nearest neighbor pw of w in L. Therefore,

we have ‖v − w‖ ≤ 1+ω̄2

1−ω̄2 ‖pw − c‖ + δ, which is at most
1+ω̄2

1−ω̄2 (‖pw−w‖+δ)+δ ≤ ‖pw−w‖+ 2
1−ω̄2

`

δ + ω̄2ε
´

because

‖w−c‖ ≤ δ and ‖w−pw‖ ≤ ε. Since this inequality holds for
any vertex v of σ, and since the Euclidean distances from w
to all the landmarks are at least ‖pw −w‖, w is an α-witness
of σ and of all its faces as soon as α ≥ 2

1−ω̄2

`

δ + ω̄2ε
´

. Since

this holds for all simplex σ ∈ DX
ω (L), the lemma follows.

4.3 Proof of Theorem 4.1
The proof relies on two technical results. The first one is

Dugundji’s extension theorem [19], which states that, given
an abstract simplex σ and a continuous map f : ∂σ → Rd,
f can be extended to a continuous map f : σ → Rd such
that f(σ) is included in the Euclidean convex hull of f(∂σ),
noted CH(f(∂σ)). This convexity property of f is used in
the proof of the second technical result, stated as Lemma
4.5 below and proved at the end of the section.

Proof of Theorem 4.1. Since δ ≤ ε, L is an ε-sparse
2ε-sample of X, with ε < ̺ rch(X). Therefore, by Theo-
rem 4.2, there exists an assignment of weights ω over L, of

relative amplitude at most ω̄
“

ε
rch(X)

”

, such that DX
ω (L) is

homeomorphic to X. Taking D = DX
ω (L), we then have:

∀k ∈ N, Hk(X) ∼= Hk(D). Moreover, by Lemma 4.3, we
know that D = DX

ω (L) is included in Cα
W (L), since α ≥

8
3

„

ω̄
“

ε
rch(X)

”2

ε + δ

«

≥ 2

1−ω̄
“

ε

rch(X)

”2

„

ω̄
“

ε
rch(X)

”2

ε + δ

«

.

There remains to prove that j : DX
ω (L) →֒ Cα

W (L) induces
injective homomorphisms j∗ between the homology groups
of DX

ω (L) and Cα
W (L). To do so, we will build a retraction h :

Cα
W (L) → DX

ω (L), i.e. a continuous map whose restriction
to DX

ω (L), h◦ j, is the identity. This will imply that h∗ ◦ j∗ :
Hk(DX

ω (L)) → Hk(DX
ω (L)) is an isomorphism (in fact, the

identity), and thus that j∗ is injective.
We begin our construction with the homeomorphism h0 :

DX
ω (L) → X provided by the theorem of Edelsbrunner and

Shah [22]. Taking h0 as a map DX
ω (L) → Rd, we extend

it to a continuous map h̃0 : Cα
W (L) → Rd by the following

iterative process: while there exists a simplex σ ∈ Cα
W (L)

such that h̃0 is defined over the boundary of σ but not over
its interior, we apply Dugundji’s extension theorem, which
extends h̃0 to the entire simplex σ.

Lemma 4.4. The above iterative process extends h0 to a
map h̃0 : Cα

W (L) → Rd.

Proof. We only need to prove that the process visits ev-
ery simplex of Cα

W (L). Assume for a contradiction that the
process terminates while there still remain some unvisited
simplices of Cα

W (L). Consider one such simplex σ of min-
imal dimension. Either σ is a vertex, or there is at least
one proper face of σ that has not yet been visited – since
otherwise the process could visit σ. In the former case, σ is
a point of L, and as such it is a vertex4 of DX

ω (L), which
means that h0 is already defined over σ (contradiction). In
the latter case, we get a contradiction with the fact that σ
is of minimal dimension.
4Indeed, every point p ∈ L lies on X and belongs to its own cell,
since ω has relative amplitude less than 1

2
. Therefore, Vω(p) ∩

X 6= ∅, which means that p is a vertex of DX
ω (L).



Now that we have built a map h̃0 : Cα
W (L) → Rd, our next

step is to turn it into a map Cα
W (L) → X. To do so, we

compose it with the projection pX that maps every point of
Rd to its nearest neighbor on X, if the latter is unique. This
projection is known to be well-defined and continuous over
Rd \ M, where M denotes the medial axis of X [23].

Lemma 4.5. Let X, W, L, δ, ε satisfy the hypotheses of The-
orem 4.1. Then, h̃0(Cα

W (L)) ∩ M = ∅ provided that α <
1
2

rch(X) −
“

3 +
√

2
2

”

(ε + δ).

Since by Lemma 4.5 we have h̃0(Cα
W (L)) ∩ M = ∅, the map

pX ◦ h̃0 : Cα
W (L) → X is well-defined and continuous. Our

final step is to compose it with h−1
0 , to get a continuous

map h = h−1
0 ◦ pX ◦ h̃0 : Cα

W (L) → DX
ω (L). The restric-

tion of h to DX
ω (L) is simply h−1

0 ◦ pX ◦ h0, which coincides
with h−1

0 ◦ h0 = id since h0(DX
ω (L)) = X. It follows that

h ◦ j is the identity in DX
ω (L), and therefore that the in-

duced map h∗ ◦ j∗ is also the identity. This implies that
j∗ : Hk(DX

ω (L)) → Hk(Cα
W (L)) is injective, which concludes

the proof of Theorem 4.1.

We end the section by providing the proof of Lemma 4.5:

Proof of Lemma 4.5. First, we claim that the image
through h̃0 of any simplex of Cα

W (L) is included in the Eu-
clidean convex hull of the restricted Voronoi cells of its sim-
plices, that is:

∀σ ∈ Cα
W (L), h̃0(σ) ⊆ CH

 

[

v vertex of σ

Vω(v) ∩ X

!

.

This is clearly true if σ belongs to DX
ω (L), since in this case

we have h̃0(σ) = h0(σ) ⊆ S

v vertex of σ Vω(v) ∩ X, as men-
tioned after Theorem 4.2. Now, if the property holds for all
the proper faces of a simplex σ ∈ Cα

W (L), then by induction
it also holds for the simplex itself. Indeed, for each proper
face τ ⊂ σ, we have h̃0(τ) ⊆ CH

`
S

v vertex of τ Vω(v) ∩ X
´

,

which is included in CH
`
S

v vertex of σ Vω(v) ∩ X
´

. There-

fore, CH
`
S

v vertex of σ Vω(v) ∩ X
´

contains CH
“

h̃0(∂σ)
”

,

which, by Dugundji’s extension theorem, contains h̃0(σ).
Thus, the property holds for every simplex of Cα

W (L).

We can now prove that the image through h̃0 of any arbi-
trary simplex σ of Cα

W (L) does not intersect the medial axis
of X. This is clearly true if σ is a simplex of DX

ω (L), since in

this case h̃0(σ) = h0(σ) is included in X. Assume now that
σ /∈ DX

ω (L). In particular, σ is not a vertex. Let v be an ar-
birtary vertex of σ. Consider any other vertex u of σ. Edge
[u, v] is α-witnessed by some point wuv ∈ W . We then have
‖v − u‖ ≤ ‖v − wuv‖ + ‖wuv − u‖ ≤ 2d2(wuv) + 2α, where
d2(wuv) stands for the Euclidean distance from wuv to its
second nearest landmark. According to Lemma 3.4 of [6],
we have d2(w) ≤ 3(ε+ δ), since L is an (ε+ δ)-sample of X.
Thus, all the vertices of σ are included in the Euclidean ball
B(v, 2α+6(ε+δ)). Moreover, for any vertex u of σ and any
point p ∈ Vω(u) ∩ X, we have ‖p − u′‖ ≤ ε + δ, where u′ is
a landmark closest to p in the Euclidean metric. Combined
with the fact that ‖p − u‖2 − ω(u)2 ≤ ‖p − u′‖2 − ω(u′)2,
we get: ‖p − u‖2 ≤ ‖p − u′‖2 + ω(u)2 ≤ 2(ε + δ)2, since

by Lemma 3.3 of [6] we have ω(u) ≤ 2 ω̄
“

ε
rch(X)

”

(ε + δ) ≤
ε + δ. Hence, Vω(u) ∩ X is included in B(u,

√
2(ε + δ)) ⊂

B(v, 2α+(6+
√

2)(ε+δ)). Since this is true for every vertex

Input: W , distances {l(w, w′), w, w′ ∈ W}.
Init: Let L := ∅, ε := +∞;
While L ( W do

Let p := argmaxw∈W minv∈L l(w, v);
// p is chosen arbitrarily in W if L = ∅
L := L ∪ {p};
ε := maxw∈W minv∈L l(w, v);
Update R4ε(L) and R16ε(L);
Compute persistence of R4ε(L) →֒ R16ε(L);

End while
Output: diagram showing the evolution of persis-
tent Betti numbers versus ε.

Figure 2: Pseudo-code of the algorithm.

u of σ, we get: h̃0(σ) ⊆ CH
`
S

u vertex of σ Vω(u) ∩ X
´

⊆
B(v, 2α + (6 +

√
2)(ε + δ)). Now, v belongs to L ⊆ W ⊆ X,

and by assumption we have 2α + (6 +
√

2)(ε + δ) < rch(X),

therefore h̃0(σ) does not intersect the medial axis of X.

5. APPLICATION TO RECONSTRUCTION
Taking advantage of the structural results of Section 3,

we devise a very simple yet provably-good algorithm for
constructing nested pairs of complexes that capture the ho-
mology of a large class of compact subsets of Rd. This al-
gorithm is a variant of the greedy refinement technique of
[26], which builds a set L of landmarks iteratively and in
the meantime maintains a suitable data structure. In our
case, the data structure is composed of a nested pair of sim-

plicial complexes, which can be either Rα(L) →֒ Rα′

(L) or

Cα
W (L) →֒ Cα′

W (L), for specific values α < α′. Both variants
of the algorithm enjoy similar theoretical guarantees, but the
variant using witness complexes is likely to be more effective
in practice. In the sequel we focus on the variant using Rips
complexes because its analysis is somewhat simpler.

The algorithm.
The input is a finite point set W in an arbitrary metric

space, together with the pairwise distances l(w, w′) between
the points of W . Initially, we set L = ∅ and ε = +∞.

At each iteration, the point of W lying furthest away5

from L in the metric l is inserted in L, and ε is set to
maxw∈W minv∈L l(w, v). Then, R4ε(L) and R16ε(L) are up-
dated, and the persistent homology of R4ε(L) →֒ R16ε(L)
is computed using the persistence algorithm [33].

The algorithm terminates when L = W . The output is
the diagram showing the evolution of the persistent Betti
numbers versus ε, which have been maintained throughout
the process. As we will see below, with the help of this di-
agram the user can determine a relevant scale at which to
process the data: it is then easy to generate the correspond-
ing subset L of landmarks (the points of W have been sorted
according to their order of insertion in L during the process),
and to rebuild R4ε(L) and R16ε(L). The pseudo-code of the
algorithm is provided in Figure 2.

Guarantees on the output.
For any i > 0, let L(i) and ε(i) denote respectively L

and ε at the end of the ith iteration of the main loop of

5At the first iteration, an arbitrary point of W is chosen, since L

is empty.



the algorithm. Since L(i) keeps growing with i, ε(i) is a
decreasing function of i. In addition, L(i) is an ε(i)-sample
of W , by definition of ε(i). Hence, if W lies at Hausdorff
distance δ of some compact set X ⊂ Rd, then we have
dH(L(i), X) ≤ δ + ε(i). Therefore, Theorem 3.6 provides
us with the following theoretical guarantee:

Theorem 5.1. If the input W lies at Hausdorff distance
δ of some compact set X ⊂ Rd, with δ < 1

18
wfs(X), then,

at each iteration i such that δ < ε(i) < 1
18

wfs(X), the per-

sistent homology groups of R4ε(i)(L(i)) →֒ R16ε(i)(L(i)) are
isomorphic to the homology groups of Xλ, ∀λ ∈ (0, wfs(X)).

Under mild conditions on the input, this theorem guaran-
tees the existence of a plateau showing the homology of Xλ,
of length at least ( 1

18
wfs(X) − δ), in the diagram of persis-

tent Betti numbers. When δ is small enough compared to
wfs(X), the plateau is large enough to be detected. In cases
where W samples several compact sets with different weak
feature sizes, the theorem ensures that several plateaus ap-
pear in the diagram, showing plausible reconstructions at
various scales – see Figure 3. Once a relevant scale has been
selected, the corresponding landmark set and nested com-
plexes are easily rebuilt. Differently from the algorithm of
[26], this outcome is not a single embedded simplicial com-
plex but a nested pair of abstract complexes, whose images
in Rd lie at Hausdorff distance6 O(ε) of X, and whose per-
sistent homology gives the homology of Xλ.

Update of R4ε(L) and R16ε(L).
We now describe how to maintain R4ε(L) and R16ε(L).

In fact, we settle for describing how to rebuild R16ε(L) com-
pletely at each iteration, which is sufficient for achieving our
complexity bounds, although it is clearly much preferable in
practice to use more local rules to update the simplicial com-
plexes. Consider the one-skeleton graph G of R16ε(L). By
definition, a simplex that is not a vertex belongs to R16ε(L)
if and only if all its edges are in G. Therefore, the simplices
of R16ε(L) are precisely the cliques of G. The simplicial
complex can then be built as follows: (1.) build graph G,
(2.) find all maximal cliques in G, and (3.) report the max-
imal cliques and all their subcliques. We perform Step 1.
naively in O(|L|2) time, where |L| denotes the size of L. For
Step 2., we use the output-sensitive algorithm of [32], which
finds all the maximal cliques of G in O(k |L|3) time, where
k is the size of the answer. Finally, we report all the sub-
cliques of the maximal cliques in a time that is linear in the
total number of cliques, which is also the size of R16ε(L).
Therefore, at each iteration of the algorithm, R4ε(L) and
R16ε(L) are rebuilt within O(|R16ε(L)| |L|3) time, where
|R16ε(L)| denotes the size of R16ε(L).

Running time of the algorithm.
Let |W | denote the size of W . At each iteration of the

algorithm, point p and parameter ε are computed naively by
iterating over the points of W , and for each such point, by
reviewing its distances to all the landmarks. This procedure
takes O(|W ||L|) time. Once R4ε(L) and R16ε(L) have been
updated, the persistence algorithm runs in O(|R16ε(L)|3)
time [21, 33]. Hence,

6Indeed, every simplex of R16ε(L) has all its vertices in Xε+δ ⊆
X2ε, and the lengths of its edges are at most 16ε.
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Figure 3: Output of our algorithm when applied

blindly to the 1000-dimensional data set of Figure 1.

Lemma 5.2. The time complexity of every iteration of the
algorithm is O(|W ||L| + |R16ε(L)||L|3 + |R16ε(L)|3).
In addition, standard packing arguments (omitted in this
extended abstract) provide the following tight upper bounds
on the size of R16ε(L) in Euclidean spaces:

Lemma 5.3. If L is a finite ε-sparse point set in Rd, then

|R16ε(L)| ≤ 233d |L|. If in addition L lies on a m-submanif-

old X of Rd, with rch(X) > 256ε, then |R16ε(L)| ≤ 235m |L|.
These upper bounds are tight in order of magnitude.

Whenever the input point cloud W lies on a smooth m-
submanifold X of Rd, the lemma suggests7 that the algo-
rithm goes through two consecutive phases. First, a transi-
tion phase where the landmark set L is too coarse for the
dimensionality of X to have an influence on the shapes and
sizes of the stars of the vertices of R16ε(L). For instance, if
X is an embedded curve that roughly fills in the unit ball in
Rd, then, for large values of ε, L is nothing but a sampling
of the d-ball. Then comes a second, stable phase, where L
is dense enough for the dimensionality of X to play a role.
Denoting by i0 the last iteration of the transition phase, we
deduce from Lemmas 5.2 and 5.3 that the running time of

the algorithm is O(|W ||L(i0)|2 + 833d |L(i0)|5 + 835m |W |5).
There remains to get rid of the term depending on d, which
we do using a backtracking strategy. Specifically, we first
run the algorithm without maintaining R4ε(L) and R16ε(L),
which simply sorts the points of W according to their order
of insertion in L. Then, we run the algorithm backwards,
starting with L = L(|W |) = W and considering at each it-
eration j the landmark set L(|W | − j). During this second
phase, we do maintain R4ε(L) and R16ε(L) and compute
their persistent Betti numbers. If W samples X densely
enough, then Theorem 5.1 ensures that the relevant plateaus
will be computed before the transition phase starts, and thus
before the size of the data structure becomes independent
of the dimension of X. It is then up to the user to stop the
process when the space complexity becomes too large. This
variant of the algorithm has the following complexity:

Theorem 5.4. If W is a point cloud in Euclidean space

Rd, then the running time of the algorithm is O(833d |W |5),
7Note that, at every iteration i of the process, L(i) is an ε(i)-
sparse point set, since the algorithm always inserts in L the point
of W lying furthest away from L [26, Lemma 4.1].



where |W | denotes the size of W . If in addition W is a δ-
sample of some smooth m-submanifold of Rd, with δ small
enough, then the running time becomes O(835m |W |5).
By Lemma 5.3, the bounds in Theorem 5.4 are tight in order
of magnitude. Thus, the algorithm can have a doubly expo-
nential complexity in m when the input point set is densely
sampled from a m-dimensional smooth manifold. However,
it can be shown that the m-skeleton of the Rips complex is
in fact simply exponential in m. Hence, when a reasonable
upper bound b on m is known, one can reduce the running

time of the algorithm to 2O(m2)|W |5 by considering only the
b-skeleton of the Rips complex. Similarly, the running time

reduces to 2O(d2)|W |5 if only the d-skeleton is considered.

6. CONCLUSION
This paper makes effective the approach developped in

[12, 15] by providing an efficient, provably-good and easy-to-
implement algorithm for the topological and geometric anal-
ysis of point cloud data in arbitrary dimensions. Addressing
a weaker version of the classical reconstruction problem, the
algorithm ultimately outputs a nested pair of complexes at
a user-defined scale, from which the homology of the under-
lying shape X can be inferred. When X is a smooth sub-
manifold of Rd, the complexity of the algorithm scales up
with the intrinsic dimension of X and not with the ambient
dimension d, assuming that the pairwise distances between
the data points have been pre-computed. Thus, a new step
is made towards reconstructing (low-dimensional) manifolds
in high-dimensional spaces in reasonable time with guaran-
tees. However, there still remains the challenging problem
of constructing an embedded complex that is topologically
equivalent and geometrically close to the sampled shape.

The theoretical framework developed in the paper can be
used for the analysis of various persistence-based methods
in Euclidean spaces. It can also virtually be applied in any
metric space (provided that the result of [12, 15] on unions
of balls can be extended), thanks to the genericity of Lemma
3.4 and of the arguments of Section 3.2.1. A class of spaces of
particular interest to us is the class of compact Riemannian
manifolds, possibly with boundaries, with applications in
machine learning and sensor networks.
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