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Abstract

We introduce a new feature size for bounded domains in thee@adowed with an intrinsic metric.
Given a pointr in a domainX, thesystolic feature sizef X atax measures half the length of the shortest
loop throughz that is not null-homotopic inX. The resort to an intrinsic metric makes the systolic
feature size rather insensitive to the local geometry ofdbmain, in contrast with its predecessors
(local feature size, weak feature size, homology feature)si This reduces the number of samples
required to capture the topology &f, provided that a reliable approximation to the intrinsictrnoeof
X is available.

Under sufficient sampling conditions involving the systdiature size, we show that the geodesic
Delaunay triangulatio® x (L) of a finite samplingl of a bounded planar domai¥ is homotopy equiv-
alent toX. Moreover, under similar condition®)x (L) is sandwiched between the geodesic witness
complexC¥ (L) and a relaxed versidﬁ}?’,y(L). In the conference version of the paper, we took advan-
tage of this fact and proved that the homologyrof (L) (and hence the one df) can be retrieved by
computing the persistent homology betwédh(L) andC}’(‘fV(L). Here, we investigate further and show
that the homology oK can also be recovered from the persistent homology asedaidth inclusions
of typeC¥ (L) — C)V}fy, (L), under some conditions on the parameters /. Similar results are ob-
tained for Vietoris-Rips complexes in the intrinsic metiidie proofs draw some connections with recent
advances on the front of homology inference from point cldath, but also with several well-known
concepts of Riemannian (and even metric) geometry.

On the algorithmic front, we propose algorithms for estimgthe systolic feature size, selecting
a landmark set of sufficient density, building its geodesatabnay triangulation, and computing the
homology of X using geodesic withess complexes or Rips complexes. Wepadsent some practical
simulations in the context of sensor networks that corratmour theoretical results.

1 Introduction

There are many situations where a topological domain or sgais&known to us only through a finite set of
samples. Understanding global topological and geometric properti&stiofough its samples is important
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in a variety of applications, including surface parametrization in geometryepsing, non-linear dimen-
sionality reduction for manifold learning, routing and information discoveseinsor networks, etc. Recent
advances in geometric data analysis and in sensor networks have maderaive use of é&andmarking
strategy Given a point cloud? sampled from a hidden domain or spaXethe idea is to select a subset
L c W of landmarks, on top of which some data structure is built to encode the ggoamekitopology
of X at a particular scale. Examples in data analysis include the topology estimataithaigof [20]
and the multi-scale reconstruction algorithm of [6, 30]. Both algorithms reltherstructural properties of
the withess complexa data structure specifically designed by de Silva [19] for use with theraridng
strategy. Examples in sensor networks include the GLIDER routing schedh#savariants [23, 24]. The
idea underlying these techniques is that the use of sparse landmarKer@diflensity levels enables us to
reduce the size of the data structures, and to perform calculations orptiteditta set at different scales.
Two questions arise naturally: (1) how many landmarks are necessaaptiare the invariants of a given
objectX at a given scale? (2) what data structures should be built on top of them?

Manifold sampling issues have been intensively studied in the past, indapgndf the context of
landmarking. The first results in this vein were obtained by Amenta, BethEppstein, for the case where
X is a smoothly-embedded closed curve in the plane or surface in 3-spa2g [Their bound on the
landmarks density depends on the local distance to the medial aRi% \ofX (thelocal feature sizg and
the data structure built on top @fis the so-calledestricted Delaunay triangulatianSeveral extensions of
their result have been proposed, to deal with noisy data sets [21], shfrgieclosed manifolds of arbitrary
dimensions [6, 17], smoothly or non-smoothly embedded in Euclidean spgcds parallel, others have
focused on unions of congruent Euclidean balls and their topologicatiants. In a seminal paper [37],
Niyogi et al. proved that, ifX is a smoothly-embedded closed manifold dnd dense enough sampling of
X, then, for a wide range of values ofthe union of the open Euclidean balls of radiugbout the points
of L deformation retracts ont&'.

The above results only hold for manifolds without boundary. The prEseh boundaries brings in
some new issues and challenges. An interesting class of manifolds with bimsndahe one of bounded
domains inR™. These naturally arise in the configuration spaces of motion planning prshiterobotics,
in monitoring complex domains with sensor networks, and in many other contbet®watural obstacles
to sampling certain areas exist. By studying the stability of distance functiowsripact sets iflR™, Chazal
and Lieutier [15] have extended the sampling theory to a much larger clatgeots, including some non-
smooth non-manifold compact sets. Their bound on the landmarks denségdiepn the so-calledeak
feature sizeof X, defined as the smallest positive critical value of the Euclidean distarie® td his mild
sampling condition is shown to be sufficient for the recovery of the homoéoglyhomotopy groups of
X. Although the results of [15] are valid in a very general setting, in mangsct®e weak feature size is
small compared to the size of the topological featureX pbecause it is bound to extrinsic quantities —
see Figure 1 (center). As a result, many landmarks are wasted satisfgisgripling condition of [15],
whereas very few would suffiédgo capture the topology oK. In practice, this results in a considerable
waste of memory and computation power.

The case of bounded domains suggests the use of an intrinsic metric onnilaéndnstead of the
extrinsic metric provided by the embedding. This is essential for certainedagsapplications, such as
sensor networks, where node location information may not be availableraynthe geodesic distance can
be approximated via wireless connectivity graph distances. Intrinsic meéiesbeen studied in the context
of Riemannian manifolds without boundary [35] and, from a more computtipoint of view, in the
context of the so-calledhtrinsic Delaunay triangulations (iDT) of triangulated surfaces without boundary

'Here we are only discussing the number of landmarks, and not thearuhisample points. Indeed, for our approach to
work in practice, an accurate approximation to the geodesic distaneniust be provided, which may be given for free in some
situations €.g.in robotics), but which may as well require many sample points in oth@sgag. in sensor networks, see Section
7). In all situations, the main advantage of our approach is to build datztetes on top of a very small set of landmarks.
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Figure 1: Left and center: two Lipschitz domains with very different wissgture sizesw(fs), but similar
systolic feature sizes. Right: a geodesic Voronoi edge with non-zdredgele measure.

[5]. 2-D triangle meshes in 3-D that happen to coincide with the iDT of thetioes are known to have many
attractive properties for PDE discretization [26], and generating su€hmBshes is a topic of considerable
interest in geometry processing [22].

Our contributions.  In the paper we focus on the special case of bounded domains in thedesedting
which already raises numerous questions and finds important applicatisessor networks. We make
the novel claim that resorting to an intrinsic metric instead of the Euclidean matricesult in significant
reductions in terms of the number of landmarks required to recover the hpyrgfee of a bounded domain
— an appealing fact in the context of resource-constrained nodddnusensor networks. To this end, we
introduce a new quantity, called tisgstolic feature sizeor sfs for short, which measures the size of the
smallest topological feature (hole in this case) of the considered planaaidd . Specifically, given a
pointz € X, sfs(z) is defined as half the length of the shortest loop throughat is not null-homotopic
in X — see Figure 1 (left and center) for an illustration. In particu#s(x) is infinite whenz lies in a
simply connected component &f. The termsystolic feature sizis coined after the concept systole first
introduced by Loewner around 1949 and later developed by Bergem@&@ and others [29]. The systole
at x is the length of the shortest non-contractible loopXirthat passes through therefore it is precisely
equal to2sfs(z).

In contrast with previous quantitiesfs depends essentially on the global topologyXafand it is only
marginally influenced by the local geometry of the domain boundary. Un@easBumption thaX has
Lipschitz boundaries (the actual Lipschitz constant being unimportantricantext), we show thatfs is
well-defined, positive, and-Lipschitz in the intrinsic metric. Moreover, it is a geodesiesfs-sample of
X, for somes < % then the cover ofX formed by the geodesic Voronoi cells of the pointsio$atisfies
the conditions of the Nerve theorem [8, 39], and therefore its dual DajacomplexDx (L) is homotopy
equivalent toX. By geodesicsfs-sample ofX, we mean that every point € X is at a finite geodesic
distance less tha sfs(x) to L. In the particular case wheX is simply connected, our sampling condition
only requires thatl, has at least one point on each connected component, akgardless of the local
geometry ofX . In the general case, our sampling condition can be satisfied by placorgtaat number of
landmarks around each hole8f and a number of landmarks in the remaining part& dhat is logarithmic
in the ratio of the geodesic diameter_&fto the geodesic perimeter of its holes. This is rather independent
of the local geometry of the bounda®yX” and can result in selecting far fewer landmarks than required by
any of the earlier sampling conditions that guarantee topology recovery.

The systolic feature size is closely related to the concept of injectivity raiReemannian geometry.
We stress this relationship in the paper, by showing that, for all pointX’, sfs(z) is equal to the geodesic
distance frome to its cut-locus inX. This result also suggests a simple procedure for estimafi(g)



at any pointz € X. Using this procedure, we devise a greedy algorithm for generatiisgsamples of
any given Lipschitz planar domaiX, based on a packing strategy. The size of the output lies within a
constant factor of the optimal, the constant depending on the doubling donesfsX. Our algorithm
relies on two oracles whose actual implementations depend on the applicat®dered. We provide some
implementations in the context of sensor networks, based on pre-existingutesd schemes [23, 38].

We also focus on the structural properties of the so-cajkatesic withess complean analog of the
usual witness complex in the intrinsic metric. In many applications, comp@ipnglL) can be hard, due to
the difficulty of checking whether three or more geodesic Voronoi celle macommon intersection. This
is especially true in sensor networks, where the intersections betweemtteoV/cells of the landmarks
can only be sought for among the set of notlésdue to the lack of further information on the underlying
domainX. Therefore, it is convenient to replag®y (L) by the geodesic witness compléX’ (L), whose
computation only requires us to perform geodesic distance comparissteadrof locating points equidis-
tant to multiple landmarks. Assuming that the geodesic distance can be compattlg,eve prove an
analog of de Silva’s theorem [19], which states t&t(L) is included inDx (L) under some mild sam-
pling conditions. We also prove an analog of Lemma 3.1 of [30], which statgésathelaxed version of
C¥ (L) containsDx (L) under similar conditions. The relaxation consists in allowing a simplex te-be
witnessed byw if its vertices belong to the + 1 nearest landmarks af, and the relaxed complex is denoted
by C)VXV(L). Unfortunately, as pointed out in [30], it is often the case that ned}e(L) norC)V(‘fy(L) coin-
cides withDx (L). In the conference version of this paper [28], we took advantageedbittt thatDx (L)
is sandwiched betweed¥! (L) andC}ZV(L), and we proved that the homology Pfx (L) (and hence the
one of X) can be retrieved by computing the persistent homology bet@¥e(d) andC)”{’V(L). Thus, the
homology of X can be recovered without the need for construcfihg(L) in practice. The drawback of
the approach is that the proof of correctness requires the samplingydenise driven by the distance to
the medial axis oR? \ X, which can be arbitrarily small compared to the systolic feature size andesqu
some more stringent conditions on the regularity of the domain boundary [28]

In the present paper we consider a different approach, basedentiadvances on the front of homology
inference from point cloud data [16]. Focusing on the one-paramateityf of relaxed geodesic withess
complexes?}‘fy(L), where parameter ranges ovelN, we show that this family is interleaved with the one-

parameter family ofcech complexe€, (L), where parameter ranges oveilR_.. The interleaving of the
two families of spaces implies that the persistent homological information theyisasimilar [13]. Now,
Co(L) is the nerve of the union of the open geodesic balls of same radibsut the points of., and that its
homology is related to the one of its dual union of balls via the Nerve theoreimumton of geodesic balls
covers the whole domaili and therefore shares the same topological invariants as langdasrge enough.
Thus, via unions of open geodesic balls and their €lesth complexes, a connection is drawn between the
homology ofX and the persistent homology of the one-parameter family of relaxed witopgdexes. The
weak point of this connection resides in the application of the Nerve theovhioh requires the geodesic
balls to satisfy certain local conditions detailed in Definition 4.4 below. Thesditons are automatically
satisfied by small enough geodesic balls on Riemannian manifolds. Nevesthaleschitz planar domains
are not Riemannian manifolds, and the main point of our analysis is to showetbdesic balls of radii at
most a fraction of the systolic feature size do satisfy the conditions of theeNleeorem (Lemma 5.5). Our
proof draws connections between the systolic feature size and the @istatie cut locus on the one hand
(Lemma 5.6), as well as between Lipschitz planar domains and a class of &agths calledlexandrov
space®on the other hand (Theorem 5.10).

The paper is organized as follows: after recalling the necessary tmarid)in Section 2, we introduce
the systolic feature size and give some of its basic properties in Sectiore8, ifhSection 4, we study the
topological structure of the geodesic Delaunay triangulation. We also teateodesic Delaunay triangu-
lation to the geodesic witness complex. In Section 5 we turn the focus to thedftsthall geodesic balls



in Lipschitz planar domains, from which theoretical guarantees on the hgialstructure of geodesic
witness complexes are derived. In Section 6, we detail our algorithmarigolghg Lipschitz domains in the
plane, estimating their systolic feature size, and computing their homologye Bhgsrithms are adapted
to the sensor networks setting in Section 7.

2 Background and definitions

The ambient space B?, endowed with the Euclidean metric, noigg. Given a subseX of R?, )O(, X, and
0X, stand respectively for the interior, the closure, and the boundaky. &for allz € R? and allr € R,
Bg(z,7) denotes the open Euclidean ball of centeand of radius-. We also sef = [0, 1]. Finally, S*,
R x {0}, andR?, denote respectively the unit circle, the abcissa line, and the closedhgipelane.

2.1 Algebraic tools

Paths and loops. Given a subseX of R?, apathin X is a continuous map — X. For alla,b € I
(a < b), 74,4 denotes the path— (a+s(b—a)), which can be seen as the restriction,db the segment
[a, b]. In addition,y denotes the path+— ~(1 — s), which can be seen as the inverseyofsiven two paths
7,7 : I — X such thaty(1) = +/(0), v - 7/ denotes their concatenation, definechbyy’(s) = ~(2s) for
0<s< % andy -+/(s) =+/'(2s — 1) for % < s < 1. A spaceX where all pairs of points are connected by
at least one path is said to path-connected

Given a pointr € X, aloop throughz in X is a pathy in X that starts and ends at i.e. such that
7(0) = (1) = . For simplicity, we writey : (I,0I) — (X, z). An equivalent representatidfor - is
as a continuous map from the unit circleXg and in this case we write : (S',1) — (X, ) to specify
thaty(1) = z. The concatenation operation gives a monoid structure to the set of lompgtha same
basepoint: € X, the identity element being the constant ldop- {z} (or, equivalentlyS* — {z}).

Homotopy of maps and spaces. Given two topological space¥ andY’, two continuous mapg, g :
X — Y are said to b&bomotopidf there exists a continuous map: X x I — Y such that, for alk: € X,
we haveF'(z,0) = f(z) andF(z,1) = g(z). The mapF is called ahomotopybetweenf andg. It can
be viewed as a path betwe¢randg in the space of continuous maps frofhto Y. Two spacesX andY
are said to bénomotopy equivalent there exist two mapg : X — Y andg : Y — X, such thaty o f
is homotopic to the identity itk and f o g is homotopic to the identity if’. Homotopy equivalent spaces
have similar topological invariants, such as Betti numbers, homology groupsmotopy groups.

Suppose that a homotogdy : X x I — Y between two mapg, g : X — Y keeps a certain subspace
X' C X fixed, thatisVa' € X',Vt € I, F(2',t) = f(2’) = g(«’). Then,F is called a homotopy between
f andg relative toX’, and f, g are said to be homotopic relative /. A special case of interest is when
X = StandX’ = {1}. Then, the mapg andg are two loops through a same basepginat Y that remains
fixed throughout the homotopy. If g is the constant oo — {y}, thenf is said to benull-homotopidn
Y. The relation of homotopy relative &/ between loops through a same basepgiatY is an equivalence
relation. The quotient monoid, endowed with the binary operation inducedhgatenation, has in fact a
group structure, and it is called tliendamental groupf Y at basepoiny. If Y is path-connected, then
its fundamental group is independent (up to isomorphism) of the chosepdiat And if moreover the
fundamental group is trivial.g. all loops through any fixed basepoint are homotopic to the constant loop),
thenY is said to besimply connected We refer the reader to Chapter 1 of [31] for further reading on
homotopy theory with fixed basepoint.

2The choice of a particular representation for loops depends on thextanid it is always made explicit in the sequel.



Degrees of loops. To any loopy : S' — S' in the unit circle corresponds a unique intedegy < Z,
called thedegreeof v, such thatdeg(y - 7/) = deg~ + deg~’ for all loops~,+’ : ' — S!, and that
deg~ = 0 for any constant map : S' — {z}. Itis easily seen thategy = — deg~. Moreover, it can

be proved that the degree is invariant over each homotopy class ofilodfs so thatdeg v encodes the
homotopy class of the loop—seee.g.[31, Thm. 1.7]. We can define a similar concept for loops in the plane.
Given a loopy : S' — R? and a point: € R? \ (S'), consider the map, = 7, o~ : S' — S!, where

7. : R2\ {} — S!is the radial projection onto the unit circle centered atlefine by, (y) = %.
Sincer, is continuous oveR? \ {z}, the mapy, is a continuous loop i5*. We then define the degreepf
with respect tar as:deg,, v = deg~,. Itis also known as the winding number-pfboutz. Given a point
x € R2,if T'is a homotopy between two loops~y’ in R? \ {z}, thenr, o I is a homotopy between, o

andr, o+ in S, hence we havdeg, v = deg(m, 0 v) = deg(m, 07) = deg, .

Corollary 2.1  For any pointz € R? and any loopsy, v’ : S! — R?\ {z} that are homotopic ifR? \ {z},
we haveleg, v = deg, +'. In particular, if v or v/ is constant, thedeg, v = deg, 7' = 0.

Other useful results. We now recall two standard results of algebraic topology that relate thesiamd
intersections of planar sets that aesolute neighborhood retrac{&ANR). A subsetX of a topological
spaceY is a neighborhood retract if there exist an opensef 2 C Y and a retractiof? — X, i.e. a

continuous map) — X whose restriction toX is the identity. A topological spac® is and ANR if every
embedding ofX as a closed subset of a normal space is a neighborhood retrach®@prdofs of the two
results are given in Appendix A for completeness.

Proposition 2.2
() Let X4, ---, X; be compact planar sets such that the intersection of any arbitrary coltectighe
X;'sis anon-empty ANR. IX4, - - - , X}, are simply connected, then so are the path-connected com-
ponents ofX; N --- N X.
(i) Let X,Y be compact planar sets such th&t Y and X N'Y are non-empty ANR’s. IK,Y are
path-connected and U Y is simply connected, thek NY is path-connected.

2.2 Length structures

Most of the material of this section comes from Chapter 2 of [10]. The Eemticspacé? is naturally
endowed with dength structurewhere admissible paths are all continuous pdths R2, and where the
length of a pathy is defined by:

n—1
7| = sup {ZdE('Y(ti)a’Y(ti—&-l)), neN, 0=ty <t; < <tp= 1} ; 1)
i=0

where the supremum is taken over all decompositionsiofo an arbitrary (finite) number of intervals. We
clearly havely| = |vy|. However,|v| is not always finite. Take for instance Koch’s snowflake, a fractal
curve defined as the limit of a sequence of polygonal curves in the placan be easily shown that, at
each iteration of the construction, the length of the curve is multiplieé,tgo that the length of the limit
curve is infinite. Therefore, we have | : C°(I,R?) — R, U {+oo}. When the length ofy is finite,
we say thaty is arectifiablepath. Note also thgt- | may not be continuous with respect to the uniform
topology overC?(I,R?). Take for instance the sequence of piecewise-linear curved — R? defined
by vi(t) = (t, t mod 1) if |t] is even, andy;(t) = (¢, + — (¢ mod 1)) if |%] is odd. This sequence
converges uniformly to the unit segment- (¢,0), yet everyy; has length,/2 therefore the limit length is
V2. Nevertheless, - | is lower semi-continuous [10, Prop. 2.3.4], which means that the limit lengtk,(he
V'2), if it exists, must be at least the length of the limit path (héje,
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Any subsetX of R? inherits a length structure frof?, where the class of admissible path€ 1, X),
and where the length function is the same as above. We defimériasic (or geodesiy metricd x over X
as follows:

Vo,y € X, dx(z,y) =inf{|y], v: I — X, 7(0) =z, 7(1) =y}, )

where the infimum is taken over all pathsXhconnectingr andy. Itis clear that we havéx (x,y) = +oo
wheneverz, y belong to different path-connected componentsXofHowever, the converse is not always
true. Take for instance a s&t made of two disjoint disks connected by Koch'’s snowflake:, ij belong to
different disks, then all curves connectin@ndy go through Koch’s snowflake and therefore have infinite
length. This raises a critical issue, which is that the topology inducedlxyogn X — also called intrinsic
topology — may not always coinciélavith the topology induced by — also called Euclidean topology.
This is a problem since the geodesic Voronoi diagram is closely related tottimsic metricd x, whereas
the goal is to capture the topology &f for the extrinsic metrielg. In order to bridge the gap between the
two topologies, we will make further assumptions on the subspairethe next section.

Another issue is that some pairs of poimts) € X may not have a shortest path connecting thieena
pathy : I — X such thaty(0) = z, (1) =y, and|y| = dx(z,y). This means that the infimum in Eq. (2)
is not always a minimum. As an example, take #otthe closed unit disiB (0, 1), and remove the closed
disk Bg (0, 1) from it: points(—1,0) and(1, 0) have no shortest path connecting thenXinNevertheless,
when X is compact, the following variant of the Arzela-Ascoli theorem applies:

Theorem 2.3 (Thm. 2.5.14 and Prop. 2.5.19 of [10])f X is compact, then every sequence of paths with
uniformly bounded length contains a uniformly converging subsequekga.consequence, every pair of
points connected by a rectifiable pathihhas a shortest path iX.

2.3 Lipschitz domains in the plane
To deal with the issues of the previous section, we make further assumetians domainX .

Definition 2.4 A Lipschitz domainin the plane is a compact embedded topological 2-submanifoRf of
with Lipschitz boundary. Formally, it is a compact subseof R? such that, for all point: € 9.X, there
exists a neighborhootl,, in R? and a Lipschitz homeomorphisfy : R? — R2, such thatp,(0) = z,
os(R x {0}) NV, =0X NV, andg,(RL) NV, = X NV,.

Observe that, for any neighborhod{ of = included inV,,, we also havey, (0) = z, ¢,(R x {0}) N V) =

0X NV}, and¢,(R%) NV} = X NV,. Therefore,V, can be assumed to be arbitrarily small. Moreover,
sinceg,(0) = x and¢, is continuousg;, *(V,) is a neighborhood of the origin iR?, hence it contains an
open Euclidean disB about the origin. By taking(B) as the new neighborhodd, aroundz, we ensure
thato, (X N V) is the intersection o]t%%r with the open diskB. This makes the pre-image &f NV,
throughg,. convex.

The concept of Lipschitz domain is related to the classical notion of smoothanifold with boundary
—seee.g.Chapter 8 of [34], the only difference being that the local chadse only required to be Lipschitz,
and notC!-continuous. As a result, the boundary)6fmay not be smooth. This makes the class of Lipschitz
domains quite large: in particular, it contains all smooth or polygonal domains.

Since a Lipschitz domairX is a compact subset &2, Theorem 2.3 applies, and therefore any pair
of points of X connected by a rectifiable path X has a shortest path iX. Moreover, according to
Rademacher’s theorem [253.1.6], the boundarg X is differentiable almost everywhere. But the property

3In particular, a mapy : I — X that is continuous for the Euclidean topology may not always be continfosuhe intrinsic
topology. For instance, for any pointe (/) that lies on Koch’s snowflake, the geodesic distance betwesrd any other point
of X is infinite, which implies that, for any > 0, the open geodesic ballx (x, r) is reduced to{z}, and hence its pre-image
throughry is a closed subset df and not an open subset bf



of Lipschitz domains that is most interesting to us is that their boundaries etiatde, since they are
locally images of Lipschitz maps [252.10.11]. This enables to show that the pathological cases mentioned
in Section 2.2 cannot occur with a Lipschitz donfaias stated in Theorem 2.5 below.

Bibliographical note. Lipschitz domains are sometimes callegdakly Lipschitz manifoldg] in the liter-
ature, as opposed srongly Lipschitz manifoldg’], for which it is further assumed that the boundary of the
domain coincides locally with the graph of some univariate Lipschitz functiaticH also that, in contrast
with [7], we do not make any assumption on the Lipschitz constants of thedbaets. All we need to know
is that the latter are Lipschitz, so that their images are rectifiable&s2250.11].

Theorem 2.5 If X is a Lipschitz domain in the plane, then the intrinsic topology coincides with the Eu-
clidean topology onX.

Proof.  First, Eq. (2) implies thatlg(z,y) < dx(z,y) for all z,y € X. It follows that every open
Euclidean ball centered iX contains the open geodesic ball of same center and same radius. Asa cons
quence, every open set (X, dg) is also open i X,dx). This means that the intrinsic topology is finer
than the Euclidean topology. To show that, conversely, the Euclidean tppislalso finer than the intrinsic
topology, we will use the following technical result:

Claim 2.5.1 If X is a Lipschitz domain in the plane, then, for all pointe X, the mapy — dx(z,y) is
continuous for the Euclidean topology oh

Proof. Letx,y € X. We will prove that, for alk > 0, there exists @ > 0 such thatvy’ € Bg(y,0) N X,
jdx (z.9/) — dx(z,y)| <e. O

- Assume first thay € X. Then there exists' > 0 such thatBg(y,c’) C X. Letd = min{e,&’}. For
all y € Bg(y,0), the line segmeriy, 4] lies in X, hencedx (y,3') = dg(y,y') < e. It follows then from
the triangle inequality thatlx (z,y') — dx(x,y)| < dx(y,y') < .

- Assume now thay € 9X. There exists a neighborhod of y in R? such thatX NV, = ¢,(R%) N
Vy, for some Lipschitz homeomorphism,. Let ¢, be the Lipschitz constant af,. As mentioned after
Definition 2.4, we can assume without loss of generality #at(X N V,) is the intersection oR3 with
an open disk centered at the origin of radius at m;?stThen, for all pointy’ € X NV, consider the
pathy : s — ¢, (s ¢, (/). Sinceg, ' (X NV,) is convex,y(I) is included inX N V,, and hence inX.
Moreover, the length of the line segm@mﬁ;l (y')]isless thanc%, hence the length of is less tharm, since
¢, is ¢,-Lipschitz [25,§2.10.11]. It follows thatlx (y,y) < ¢, which implies thatdy (=, y') —dx (z, )| <
dx(y,y") < €, by the triangle inequality. This concludes the proof of the claim.

We can now show that the Euclidean topology is finer than the intrinsic topalody, which will end
the proof of Theorem 2.5. Consider any open geodesicBallx, ), wherex € X ande > 0. Observe
that Bx (z,¢) = dx(z,.)~%([0,¢[), wheredx (z,.) denotes the map — dx(z,y). Since[0, <[ is open in
R4 anddx(z, .) is continuous for the Euclidean topolodyx (z, ) is open in(X, dx). And since the open
geodesic balls form a basis for the intrinsic topology, every open seXiix) is also open in X, dg).
This means that the Euclidean topology is finer than the geodesic topolayy

From now on.X will be endowed with the Euclidean topology by default. Thanks to Theorénttds
topology will coincide with the intrinsic topology whenev&ris a Lipschitz domain.

“In particular, the boundary of a Lipschitz domain cannot coincide locally avfractal curve such as Koch’s snowflake, whose
length is infinite.



The next result states that every pathXncan be approximated within any accuracy by a homotopic
rectifiable path. This implies that the homotopy classes of pathis aoincide with the homotopy classes
of rectifiable paths. In particular, every pair of points lying in the same patimected component of is
connected by a rectifiable path, and hence it has a shortest p&thoy Theorem 2.3.

Lemma 2.6 For any continuous path : I — X and any real number > 0, there exists a rectifiable path
7. : I — X, homotopic toy relative® to 91 in X, such thatmax,e; minser dx (7-(s), y(t)) < e.

The quantitymax,c; minge; dx (7:(s), y(¢)) is nothing but the semi-Hausdorff distance frontl) to (1)

in the intrinsic metric. The basic idea of the proof is to defin@s a piecewise-linear curve whose vertices
lie on~(I). This is possible far away from the boundaryXf but not in its vicinity, where the shape of
0X might preventy.(I) from being included inX. However, in the vicinity 09X, we can mapy(I) to
parameter space through one of the local chaitgtroduced in Definition 2.4. Since the pre-imageXof

is convex, we can define a piecewise-linear curve approximatiigy (7)) in parameter space, which we
then map back to a rectifiable curveihthrough¢. The rest of the section is devoted to the details of the
proof and can therefore be skipped in a first reading.

Proof. Letn be an arbitrary positive real number. According to Definition 2.4, foradl 0.X, there exists
some neighborhoold, C R? such that, insid&’,, X coincides with the image dﬁi through some Lipschitz
homeomorphisng,.. As mentioned after Definition 2.4, we can assume without loss of generality’that
is included inBg(z, 4), and that the pre-image df NV, through¢, is convex. Consider the collection
of open set4V, }.cox. This is an open cover @fX, which is compact, hence there exist - - - , 2, such
thatV,,, U---UV,, coversoX. For simplicity of notations, forall = 1,--- , k we renamé/,, asV; and
¢4, aS¢;. The open set§; will be used toshieldthe boundary) X

For all s € I, we consider an open Euclidean diBk abouty(s), of radiusr, defined as follows:

o if Bg(v(s),4)N0X =0, thenry = 4,

o else, ify(s) ¢ 0X, thenr, = dg(v(s),0X), wheredg(y(s),0X) > 0 denotes the Euclidean

distance ofy(s) to the closed seiX;

e else, we have(s) € 0X, thereforey(s) belongs to some neighborhodg, and we choose; > 0

such thatB, C V;.
By construction, we havé&, C X if ~v(s) ¢ 0X,andB; C V; for somei otherwise. Since is continuous,
the pre-image of (1) N B, throughry is an open subset df Therefore, it is a disjoint union of open intervals
in 1. Consider the collection of all these open intervals,sfgpanningl. This collection of intervals forms
an open cover of, which is compact, hence there drntervals in the collection/y, - - - , I;, such that
I =1, U---UI. Observe that, by construction, for al= 1,-- -,/ we have thaty(Z;) is included inBj,
for somes; € I.

We can assume without loss of generality that the fafifly}<;<; is minimal, in the sense that the
removal of any element would destroy the covéi:=1,--- .1, U#i I; 2 I. Ifitis not so, then we can
always remove elements from the family until the property is satisfied. Lebwsre-order the elements
of the family such that the left endpoint &f is smaller than the left endpoint éf,, for all .. Since the
family is minimal, the ordering on the left endpoints of theis the same as the ordering on their right
endpoints. As a consequence, eacimtersects only;_; and/; ;. Lett; =0,t., =1,andt; € [,_1 N I;

Vi =2,--- 1. We will approximatey by a piecewise Lipschitz curve connecting th;). For simplicity,
we renamey|, ;.. ,] asvi-
By construction, forali = 1,--- |l we havelt;, t;11] C I;, hencey; (1) = v([ti, ti+1]) € v(I;), which

is included inB;,.
- Assume first that; ¢ 0X, which implies thatB,, € X andr,, <

. Define;, as the linear
interpolation between (¢;) and~y(t; 1), namely:;, = s — (1 — s)y(t;) + sy(tis1)

. SinceBs, is convex,

°As mentioned in Section 2.1, this means that the homotopy betweand~ is constant ovedI = {0, 1}.
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(1) is included inBj, and hence inX. Moreover, we have;(0) = v(t;) = 7i(0), 7, (1) = y(tit1) =
7i(1), and the Hausdorff distande (v, (1), v([t:, ti+1])) in the Euclidean metric is less than the diameter of
By, which is bounded by. Furthermore, the malp : I x I — R? defined byl'(s,t) = (1—t)y;,(s)+tyi(s)

is a homotopy relative to1 betweem}'] and~, in R2. Since it is a linear interpolation between two maps
whose images lie i3;,, which is convex, the image dfis also included inB,,, and hence ik . It follows
thatI" is a homotopy relative t01 betweenyf7 and~; in X.

- Assume now thas; € 0X, which implies thatB;, is included in soméd/;. Because of the pres-
ence ofdX in the vicinity of v([t;,¢;+1]), we can no longer guarantee that the linear interpolation be-
tween~(t;) andy(t;+1) remains inX. This is why we use the char; to map the arey([t;,ti+1])
to parameter spaoﬁj‘l(X N V;), which is convex. Specifically, we defir’ry% as the image through;
of the linear interpolation between the pre-imagesy@f) andy(t;+1) in ¢;1(X N V;), namely: fyj] :
5= ¢ <(1 — s)(¢j_1 oy)(ti) + s(qﬁj‘l o ’y)(ti+1)>. As in the previous case, we havj;(()) = ~;(0) and
~4(1) = 7i(1). Moreover, sinces; ' (X NV;) is convex, we havél —s)(¢; " o) (t;) + s(6; " 0)(tit1) €
qﬁj‘l(Xm/}) forall s € I, hencey; (1) is included inX NV;. It follows that;, : I — X, and that the Haus-

dorff distanceiH(wj](I), vi(I)) in the Euclidean metric is less than the diamete¥ pfwhich is bounded by
n sinceV; C Bg(xj, 4). Notice also thaty,i] is a Lipschitz map, hence it is rectifiable, by [22.10.11].
Finally, the mapl’ : I x I — R? defined byI'(s,t) = ¢; <(1 - t)(gsj—l o) (s) + t(gbj_l o%)(s)) is a
homotopy relative t@I betweenyf7 and~y; in R2, Sincegi)j‘1 o I' is a linear interpolation between maps
¢; ' o) andg; ! oy in ¢ (X NV;), which is convex, the image dfis included inX N V;. It follows
thatI" is a homotopy relative t01 betweeny, and~; in X.

We now definey, as the concatenation of '[h,(%, namely: v, = ’y% : ’y% » ~fyf7. By concatenating the
homotopies relative 01 between they; and they;, we obtain a homotopy relative tl betweerny, and
~in X. Moreover, since the;, are rectifiable, so is,. We also havey, (0) = ~,(0) = 71(0) = ~(0), and
(1) = 7}7(1) = (1) = ~(1). Finally, the Hausdorff distanagy (v, (1), v(I)) in the Euclidean metric is
bounded by the maximum of thi(+; (1), ~i(I)), which is less than.

To conclude the proof of the lemma, we need to show that bounding the éféfudidtance between
and its approximation in the Euclidean metric is sufficient for bounding the sems#orff distance from
the approximation te in the intrinsic metric. Let be an arbitrary positive real number. Since by Theorem
2.5 the Euclidean and geodesic topologies are equd ofor all s € I there exists am, > 0 such that
Bg(v(s),ns) is included inBx (v(s),e). The ballsBg(v(s),ns) form an open cover of(I). Hence, for
all s € I, the Euclidean distance fron{s) to the complement of the cover R? is positive. Sincey and the
distance to the complement are continuous, whikecompact, the infimum of the distances of the(s) to
the complement is in fact a minimum, and therefore it is positive. Now, accotralihg previous paragraphs,
there exists a curve, : I — X, homotopic toy relative todI in X, such thatdy (y(1),v,(I)) < 7. It

follows that~,(I) C J,c; Be(v(s),n), which is included inJ,.; Be(v(s),ns) € User Bx(7(s),€).
This concludes the proof of Lemma 2.6, with= ~,,. [J

Observe that, in the proof of Lemma 2.6, the family of bdll, }sc; forms an open cover of(I).
Letting ¢ be the quantitynf {dg(z, (1)) | 2 € X \ U,e; Bs} > 0, the second part of the proof shows in
fact that every path’ : I — X such thaty’(0) = ~(0), v/(1) = ~(1), anddg(7/(s),~v(s)) < ¢ for all
s € (0,1), is homotopic toy relative todI. Thus, we obtain the following guarantee:

Lemma 2.7 For any pathy : I — X, there exists a quantity > 0 such that every path’ : I — X with
same endpoints asthat satisfieslz(7/(s),v(s)) < ¢ forall s € (0, 1) is homotopic toy relative tod!.

10



3 The systolic feature size

Definition 3.1 Let X be a Lipschitz domain in the plane. Thegstolic feature sizef X at a given point
r € X is the quantity:sfs(z) = L inf{|y|, v : (S*,1) — (X, «) non null-homotopic inX }.

As illustrated in Figure 1 (left and center), the resort to an intrinsic metric stie systolic feature size
rather insensitive to the local geometry of the dom&inindeedsfs depends on the geodesic perimeters of
the holes ofX, which depend on the geometry &fat a more global scale.

The rest of this section is devoted to the proof of some useful basichpiexpef the systolic feature size.

Lemma 3.2 Let X be a Lipschitz domain in the plane, and lebe a point inX. If the path-connected
component ofX that containse is simply connected, thesfis(z) = +oo. Else,sfs(x) < +oo, and there
exists a non null-homotopic rectifiable logp (S, 1) — (X, z) such thasfs(z) = § || > 0.
Proof. Letx € X. Call X, the path-connected componentdtthat containg:. Every loop through: in X
is aloop inX,. If X, is simply connected, then the st : (S, 1) — (X, x) non null-homotopic inX,, }
is empty, and therefore its lower bousf(x) is infinite. Assume now thak, is not simply connected.
Then, there exists at least one non null-homotopic lgep (S*,1) — (X,,z). By Lemma 2.6, we can
assume without loss of generality thatis rectifiable. We then haves(z) < 1 |yo| < +oc.

Consider now a sequen¢g; ); of non null-homotopic loops throughin X, such that|v;|); converges
to 2sfs(x). Such a sequence exists, sirlsés(z) < +oc is the infimum of the set of lengths of non null-
homotopic loops through. By convergence, we know that there exists a rarduch that, for ali > n,
~i is a rectifiable curve of lengthy;| < 2sfs(z) + 1. Thus, the sequendey,;); is uniformly bounded
by 2sfs(z) + 1, which implies by Theorem 2.3 that it contains a subsequence convergifagraly to
some loopy : (1,01) — (X, z). It follows from Lemma 2.7 that, after a certain rank, every element in the
subsequence is homotopictaelative todI. As a consequence,is not null-homotopic inX, and therefore
|v| is positive and at lea®tsfs(x). In addition, sincé|~;|); converges t@sfs(x), the lower semi-continuity
of | - | implies that|y| < 2sfs(x). As a conclusion, we have| = 2sfs(z) > 0. O

Lemma 3.3 Let X be a Lipschitz domain in the plane. The map- sfs(x) is 1-Lipschitz in the intrinsic
metric. Hence, it is continuous for the Euclidean topology, efledX ) = inf{sfs(x), =z € X} is positive.

Proof. Letz,y € X. If z,y belong to different path-connected component& othen we have x (z,y) =
+oo. It follows that|sfs(z) — sfs(y)| < dx(x,y). Assume now that, y belong to the same path-connected
componentX; of X. Let~ be a shortest path betweermandy in X. We are guaranteed by Theorem 2.3 and
Lemma 2.6 that such a path exists XIf is simply connected, theiis is constant and equal tboo over X;.
Else, consider a loop, : (S*,1) — (X, ) such thaty,| = 2sfs(z) < +oc. Such a loop exists, by Lemma
3.2. Then, the path, = 7 - v, - v is a loop througly in X. Its length is|y,| + 2|v| = 2sfs(z) + 2dx (z, y).
Moreover, the map, — ¥ - v, - v is known to induce an isomorphism between the fundamental groups
of X; at basepoints andy — seee.qg.[31, Prop. 1.5]. Therefore, the loop is not null-homotopic inX,
which implies thatfs(y) < 3 |v,| = sfs(z) +dx (z,y). This proves that the map+— sfs(z) is 1-Lipschitz

in the intrinsic metric, and hence continuous for the intrinsic topology, butfalshe Euclidean topology,
by Theorem 2.5. Sinc&’ is compact, there exists some paint X such thasfs(X) = sfs(z), which is
positive, by Lemma 3.2.01

Lemma 3.4 Let X be a Lipschitz domain in the plane. For all pointe X, every loop inside the open
geodesic balBx (z, sfs(x)) is null-homotopic inX.

11



Proof.  Assume for a contradiction that there exists some poirt X and some loopy, : S' —
Bx (z,sfs(x)) that is not null-homotopic ifX. Sincemaxgc; dx(x,7,(s)) < sfs(z), Lemma 2.6 ensures
that there exists a rectifiable loopt — X that is homotopic toy, in X, and that is still included in
Bx(z,sfs(x)). Hence, we can assume without loss of generality thas rectifiable. Let( be a shortest
path between: andy = +,.(0). The pathy = ¢ - v, - { is a loop throughr, included inBy (x, sfs(z)), of
length|y| < |vz| + 2dx(x,y) < +oo. Moreover,y is non null-homotopic inX, since it is homotopic to
vz It follows that|y| > 2sfs(z).

For all s € I, we definey; and(; to be respectively the path, , and a shortest path between
and~(s). Letsg = inf{s | 75 - (s non null-homotopic inX'}. This means that, for a < s, s - (s
is null-homotopic inX, whereas for all; > 0 there exists some € [sq, so + [ such thaty, - (s is not
null-homotopic inX.

— If sg = 0, then there are arbitrarily short non null-homotopic loops thraugh X, which contradicts

the fact thasfs(x) > 0 (Lemma 3.2).

— If sp = 1, then fors arbitrarily close tal, 75,11 (s is non null-homotopic inX, and of length arbitrarily

close to|(s| < sfs(z), which contradicts the definition efs(z) (Definition 3.1).
It follows thatsy €]0, 1[. For alln > 0, there exists_,, s.,, € I such thatso — 1 < s_;, < 59 < 544 <
so +n, and thatys_, - Es_ is null-homotopic inX whereasys_, ES+n is not. Theng,_, is homotopic to
Ys_p relative® to 01, Wh|ch implies thats , - v,_, s, IS homotopic toy,,, relative toal As aresult, the
loop~' = (g“s_,7 7\[3,7,,s+,,) CSM is homotoplc toys,, - g3+n, which is not null-homotopic inX. Hence,
we havely'| > 2sfs(x), by definition ofsfs(z).

Now, the length ofy’ is [Cs_, | + |Vjs_,.s:,]] + sy, |, Which is at most2 max,er dx (,7(s)) +
V5,510 Sincenis arbitrarily small, so i$ys_, o..l, thereforé~/| is arbitrarily close t@ maxses dx (z, y(s)),
which is less thafsfs(z). This contradicts the fact that’| > 2sfs(x), as proved in the previous paragraph.
[

Note that Lemma 3.4 does not imply that the balt (x, sfs(z)) itself is contractible. It turns out that
open geodesic balls of radius at most a fraction of the systolic featurareiz®ntractible. The proof of this
fact requires some more work though — see Section 5.

4 Geodesic Delaunay triangulation and witness complex

Given a Lipschitz domaiX in the plane, and a set of landmaiks— X that is dense enough with respect to
the systolic feature size of, we show in Section 4.1 that the geodesic Delaunay triangul&ip(l) has

the same homotopy type &S (Theorem 4.3). Furthermore, for any set of withesdés_ X that is dense
enough compared td, we prove in Section 4.2 th&x (L) is sandwiched between the geodesic witness
complexC¥ (L) and its relaxed versio@Y (L) (Theorems 4.14 and 4.17). Densities of point clouds are
measured according to the following definition, where the scalarfieldl be chosen to be either a constant
function or a fraction of the systolic feature size:

Definition 4.1 Given a Lipschitz planar domaiX and a functiom : X — R, U{+occ},asetL C X isa
geodesidi-sampleof X if we havedx (z, L) < h(x) for all pointsz € X. In addition, L is h-sparse if we
havedx (p, q) > min{h(p), h(q)} for all pointsp # ¢q € L.

It follows from the definition that any geodesiesamplel of X must have points in every path-connected
component ofX, because geodesic distanced.tare required to be finitel(y (z, L) < h(x)). We will see
in Section 6.2 how to generate geodesifs-samples of Lipschitz planar domains.

6As mentioned in Section 2.1, this means that the homotopy betgueerandqys_, is constant ovedl = {0, 1}.
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4.1 Geodesic Delaunay triangulations

Geodesic Voronoi diagrams are nothing but Voronoi diagrams in the irctrmetric:

Definition 4.2 Given a subsek of R?, and a finite subsett of X, thegeodesic Voronoi diagrawof L in X,
or Vx (L) for short, is a cellular decomposition of, where the cell of a point € L is defined as the locus
of all the pointsr € X such thatdx(x,p) < dx(z,q) Vg € L. The nerve oVx (L) is called thegeodesic
Delaunay triangulatioof L in X, notedDx (L).

Given a simplexs € Dx(L), we call Vx (o) its dual Voronoi face. Note that, in contrast with the Eu-
clidean casey x (o) does not always have Lebesgue measure zero when the dimensigrdn-zero, as
illustrated in Figure 1 (right).

Theorem 4.3 If X is a Lipschitz domain in the plane, arda geodesiesfs-sample ofX, for some:s < %
thenDx (L) and X are homotopy equivalent.

The rest of Section 4.1 is devoted to the proof of Theorem 4.3. The peties on the so-called Nerve
theorem, stated as Theorem 4.5 below, which relies on the concgpbodfcover

Definition 4.4 Letl be afinite collection of closed (resp. open) subsefs @fhose union coverX’. Then,
U is agood closed (resp. open) covalr X if for any non-empty subsét C U/ the common intersection
between the elements¥fis either empty or contractible.

Theorem 4.5 (from [8, 39], see also Section 4G of [31]Jhe nerve of a good closed (resp. open) cover of
X is homotopy equivalent t& .

Here, we také/ to be the collection of the geodesic Voronoi cells:= {Vx(p), p € L}. The nerve of
this collection is precisely the geodesic Delaunay triangulafi@r{L). Thus, proving Theorem 4.3 comes
down to showing that any collection of cells U (L) has an empty or contractible intersection, and then
invoking Theorem 4.5. Our proof proceeds in three steps: first, we shat every single Voronoi cell
is contractible (Section 4.1.1); then, we show that any pair of Voronoi baksan empty or contractible
intersection (Section 4.1.2); finally, we show inductively that any arbitcatiection of Voronoi cells has
an empty or contractible common intersection (Section 4.1.3).

Along the way, our proof uses several results of algebraic topologju@img the ones of Proposition
2.2) that require non-empty intersections of geodesic Voronoi cells toN\d&<A This fact turns out to be true
in any Lipschitz planar domain, and it can be shown using the local contiriuite @eodesic flow, provéd
in Sections 5.1 and 5.2, as well as some nesting properties of neighborioacts, stated in Theorem
I11.3 of [18]. This minor and rather technical aspect of our proofgloet bring any particular insights
into the problem. Therefore, it is omitted for the convenience of expositiwhjrathe sequel non-empty
intersections of geodesic Voronoi cells are admitted to be ANR’s.

4.1.1 Voronoi cells

Lemma 4.6 Under the hypotheses of Theorem 4.3, every calldfL) is path-connected.

Proof. Letp € L, and letz € Vx(p). Lety : I — X be a shortest path fromto = in X. Such a
path~ exists sincer andp lie in the same path-connected componen&ofd x (z, p) being finite due to

the fact thatl is a geodesiesfs-sample ofX. We will show thaty(/) € Vx(p). Assume for a contra-
diction thatvy(s) ¢ Vx(p) for somes € I. This means that there exists a pajne L \ {p} such that

"The statements and proofs from Sections 5.1 and 5.2 do not rely ogsihiésrof this section, therefore they can be invoked here.
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dx(v(s),q) < dx(~(s),p). By the triangle inequality, we hawéy (¢, z) < dx(q,7v(s)) + dx(v(s), x),
wheredx (g,7(s)) < dx(p,7(s)) < |Vo,¢| @anddx (v(s),z) < |ys1)]- Hence, we havelx(q,z) <
Mo,sl + sl = [v] = dx(p,x), which contradicts the assumption thatc Vx(p). Therefore,
v(I) € Vx(p), andz is path-connected tpin Vx(p). O

Lemma 4.7 Under the hypotheses of Theorem 4.3, every calldfL) is simply connected.

Proof. Letp € L. By Lemma 4.6)x (p) is path-connected. Assume for a contradiction ¥atp) is not
simply connected. Then, sindg (p) C X is a bounded subset &, its complement irR? has at least
two path-connected components, only one of which is unbounded, byléixamtder duality — see.g. [31,
Thm. 3.44). LetH be a bounded path-connected componeri“f Vx (p). H can be viewed as a hole in
Vx (p).

We claim thatH is included inX. Indeed, consider a loop : S — Vx(p) that winds around? —
such a loop exists sincH is bounded byx (p). Take any point: € Vx(p). For ally € Vx(p), we have
dx(z,y) < dx(z,p)+dx(p,y) < e sfs(z)+e sfs(y), which is at most2=sfs(x) sincesfs is 1-Lipschitz in
the intrinsic metric. ThusYx (p) is included in the open geodesic balk (z, 2= sfs(z)), where2 < 1
sincee < % Therefore;y : S' — Vx(p) is null-homotopic inX, by Lemma 3.4. Lef’ : S' x I — X
be a homotopy betweenpand a constant map iX. For any pointr € H, we havedeg, v # 0 since the
loop v winds aroundH. If z did not belong td’(S* x I), thenT" would be a homotopy betweenand a
constant map ifR? \ {z}, thus by Corollary 2.1 we would havieg, v = 0, thereby raising a contradiction.
It follows thatT'(S* x I) contains all the points off, which is therefore included i .

As a consequence, the hole is caused by the presence of some dite$of, whose geodesic Voronoi
cells form H. Assume for simplicity that there is only one such gitéhe case of several sites being similar.
We then have’x (¢q) = H, anddH = Vx(q) N Vx(p). Consider the Euclidean rdy, ¢), and callz its first
point of intersection wittdH beyondq. The line segmeny, x] is included inH C X, therefore we have
dx(z,q) = dg(z, q), which yields:

dx(z,p) = dp(z,p) = de(z,q) + de(¢, p) = dx(z,q) + de(q,p) > dx(z,q).
This contradicts the fact thatbelongs taH and hence t&/’x (p). O

Since planar sets are aspherical [11], their homotopy groups of dinme8say more are trivial. As a
consequence, geodesic Voronoi cells have the same homotopy geap®int, up to isomorphism. Since
in addition they are ANR'’s, they are homotopy equivalent to CW-comple8@sThap. 26§2]. Therefore,
by Whitehead’s theorem, they are homotopy equivalent to a point. Hence,

Proposition 4.8 Under the hypotheses of Theorem 4.3, every callxdfL) is contractible.

4.1.2 Intersection of pairs of Voronoi cells

We will now prove that the geodesic Voronoi cells have pairwise empty miractible intersections. Given
two sitesp, ¢ € L whose cells intersect, we first study the topological type of their ubipfp) U Vx(q),
from which we can deduce the topological type of their intersedtiofp) N Vx (q).

Lemma 4.9 Under the hypotheses of Theorem 4.3, the union of any pair of intergemlis ofVx (L) is
simply connected.
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Proof. Letp,q € L be such thaVx(p) N Vx(q) # 0. The outline of the proof is the same as for Lemma
4.7. First, since by Lemma 48y (p) andVx (q) are path-connected, so is their union. Assume now for a
contradiction thaVx (p) UVx (q) is not simply connected, and consider a hdlén Vx (p)UVx (q). Letz €
Vx(p) N Vx(q). Forany pointy € Vx (p), we havelx (z,y) < dx(x,p) +dx(p,y) < e sfs(x) + ¢ sfs(y),
which is at mostl%sfs(x) sincesfs is 1-Lipschitz in the intrinsic metric. Idem for the points Bk (¢). As

a consequencdlx (p) U Vx(q) is included in the open geodesic balk (z, 2= sfs(p)), where2 < 1

’1—e
sincee < % Therefore, by the same argument as in the proof of Lemmaf&ig,included inX.

It follows that the hole is caused by the presence of some sités\dfp, ¢}, whose geodesic Voronoi
cells formH. Assume for simplicity that there is only one such sit¢he case of several sites being similar.
We then have’x (u) = H, anddH = Vx(u) N (Vx(p) U Vx(q)). Consider the Euclidean linepassing
throughu and perpendicular t¢p, ¢). Let =,y be the first points of intersection éfwith 9H in each
direction, starting from:. Since anglesup andpuy sum up totm, one of them (sayup) is obtuse. This
implies thatrug is also obtuse. Assume without loss of generality thatx, p) < dx(z, q). Since the line
segmenfu, x] is included inH C X, we havedx (z,u) = dg(x,u). Hence, using Pythagoras’ theorem
together with the fact thatup is obtuse, we get:

dX(I',p)Q > dE(x7p)2 > dE(.T,U)Z + dE(u7p)2 = dx(l',u>2 + dE(“’vp)Q > dX(.%',’U,)2.

Now, z belongs tadH and hence t&x (p) U Vx(q). Moreover, we assumed without loss of generality that
dx(z,p) < dx(z,q), thereforer belongs toVx (p), which contradicts the above equation. It follows that
Vx(p) U Vx(q) is simply connected, which concludes the proof of the lemra.

Using the above result, we can now show thatp) N Vx (q) is contractible:

Proposition 4.10 Under the hypotheses of Theorem 4.3, the intersection of any pair ofoéélig(L) is
either empty or contractible.

Proof. Letp,q € L be such thaVx(p) N Vx(q) # (). Proposition 2.2 (i) tells us that every path-connected
component oVx (p) N Vx(q) is simply connected, since by Lemma 4% (p) andVx (¢) are. Moreover,
Proposition 2.2 (ii) tells us thafx (p) N Vx(q) is path-connected, since by Lemma #.6(p) andVx (q)
are, and since by Lemma 4.9 their union is simply connected. It follows thentfre asphericity of planar
sets and from Whitehead'’s theorem that(p) N Vx (¢) is contractible.[]

4.1.3 Intersection of arbitrary numbers of Voronoi cells

The following result, combined with Theorem 4.5, concludes the proof ebiidm 4.3:

Proposition 4.11 Under the hypotheses of Theorem 4.3, for arsitesp,,--- ,pr € L, the intersection
Vx(p1) N--- N Vx(pr) is either empty or contractible.

Proof. The proof is by induction ok. Cases: = 1 andk = 2 were proved in Sections 4.1.1 and 4.1.2
respectively. Assume now that the result is true up to sbrre2, and considek + 1 sitespy, - -+ ,pgs1 € L
suchtha®x (p1) N -+ N Vx(pri1) # 0.

Observe first thalx (p1) N --- N Vx (pr+1) is the intersection o|ﬂf:1 Vx (pi) with Vx (pr+1), which
by the induction hypothesis are both simply connected. Hence, eachgateated component of their
intersectionVx (p1) N --- N Vx(pr+1) is also simply connected, by Proposition 2.2 (i).

15



Consider now the unioéﬂi?:1 Vx (pi)> U Vx (pr41), which is path-connected since b@tfi_, Vi (p:)
andVx (px11) are. Observe that the union can be rewritten as follows:

k

k
(ﬂ VX(Pi)) UVx(prs1) = [ Vx(pi) U Vx (pr11)) -
i=1

i=1

By the induction hypothesis (more precisely, according to the gase 2), every Vx(p;) U Vx (pg+1)
is simply connected, hence somf:l (Vx(pi) UVx(pr+1)), by Proposition 2.2 (i). It follows then from
Proposition 2.2 (i) that the intersectidix (p1) N- - -NVx (px+1) is path-connected, since bcft]f:1 Vx (pi)
andVx (pi1) are, and since their union is simply connected.

Thus,Vx(p1)N--- Vx(pr+1) is simply connected, and it follows from the asphericity of planar sets and
from Whitehead’s theorem th&ty (p1) N - - - Vx (pr+1) is contractible. O

4.2 Geodesic witness complexes
Witness complexes in the intrinsic metric are defined in the same way as in the Baaingric:

Definition 4.12 Given a subsek of R?, and two subsetd, L of X such thatL is finite,

e given a pointw € W and a simplexr = [po, - - - , p;] with vertices inL, w is a witnessof ¢ if for all
i=0,---,1,dx(w,p;) is finite and bounded from above 8y (w, q) forall ¢ € L\ {po,--- ,p};

e the geodesic witness compl@f L relative toW, or C¥ (L) for short, is the maximal abstract simplicial
complex with vertices i, whose faces are withessed by pointgiaf

Observe that a poink € W may only witness simplices whose vertices lie in the same path-connected
component ofX asw. The fact thaC)‘@/(L) is an abstract simplicial complex means that a simplex belongs
to the complex only if all its faces do. In the sequél,is called the set of witnesses, whileis referred to

as the set of landmarks.

As in the Euclidean case, there exists a stronger notion of withess compiexe wach witness is
required to be equidistant to the vertices of the simpiexIn this caseg is a Delaunay simplex, and
therefore the strong withess complex is included in the Delaunay triangul&tibis seminal work [19], de
Silva shows that the weak witness complex is also included in the Delaunayuliaging, in the Euclidean
metric. Below we give an equivalent of this result in the intrinsic metric — se®idm 4.14. The proof uses
the same kind of machinery as in [3], and it relies on the following fact:

Lemma 4.13 Let X be a Lipschitz domain in the plane, ahd geodesiesfs-sample ofX, for some: < 1.
Letz be a point ofX, andp its (k + 1)th nearest point of. in the intrinsic metric. Ifz andp lie in the same

k
path-connected component®f thend x (z, p) < G’—f?) e sfs(x). Else,dx (z,p) = +o0.
Proof. The proof is by induction o. We call X, the path-connected component¥fthat contains:.

- Casek = 0: by definition,p is a nearest neighbor of in L for the geodesic distance. Sinfeis a

1—¢
- General case: assume that the result holds up to gome. Letpo, - - - , px+1 denote thé+2 points of
L closest tar in the intrinsic metric, ordered according to their geodesic distancesligQy1 ¢ X, then
we haved x (z, pp+1) = +00, which proves the result fdr+ 1. Assume now thgty; € X,. This implies
that all thep; also belong taX,, since their geodesic distancesit@re bounded byl x (z, px+1) < +oc.

k
geodesiesfs-sample ofX, we haved x (z,p) < e sfs(x) = (ﬁ) e sfs(z).

k
By the induction hypothesis, we haide (z,pp) < --- < dx(x,pr) < (?—in) e sfs(x). Sincepg1 liesin
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X, the latter is not covered byx (pg) U - - - U Vx (pr). Therefore, there is a poipte L\ {po,--- ,pr}
such thatVx (p) intersects the geodesic Voronoi cell pf for some:i € {0,---,k}. Note thatp may
or may not bepy itself. Lety € Vx(p;) N Vx(p). SinceL is a geodesiesfs-sample ofX, we have
dx(y,pi) = dx(y,p) < e sfs(y). Thus, by the triangle inequality and the induction hypothesis, we get:

34\
dx (v, y) < dx(x,p;) +dx(pi,y) < <1 — i) e sfs(z) + ¢ sfs(y).

Sincesfs is 1-Lipschitz in the intrinsic metric, we havds(y) < sfs(x) + dx(«,y), which, by the above

k :
equation, is at mosf 1 + ¢ (‘i’—fj) sfs(x) + € sfs(y). It follows thatsfs(y) < % sfs(z).

Now, sincep ¢ {po,--- ,pr}, we havedx (x, pr+1) < dx(z,p), which by the triangle inequality is at most
k
dx(z,p;) + 2dx(y,p;). By the induction hypothesislx (z, p;) is bounded by(f%g) e sfs(x), whereas

gt

k _ Ak k k+1
Ay (. pes) < <<3+5> Jr2(1 e)f +e(B+¢) >ssfs(a;)§ <3+e> - shs(a),

1—¢ (1 —g)ktl 1—¢

according to the above computatioddx (v, p;) is less tharze (z). Inthe end, we obtain:

which proves the result foe + 1. O

In the special case where the point claliés a geodesie-sample ofX, with a uniform bound on its
density, the upper bound on the geodesic distance between itskth nearest point of. drops down to
(1 + 2k)e, by the same proof. It is worth pointing out the influence of the samplingagguon the upper
bound, which becomes exponentialkirwhen the sampling is non-uniform, whereas it remains linedr in
when the sampling is uniform. While it is clear that the linear bound in the unifampsing case is tight,
it is still unknown at this time whether the exponential bound in the non-unigampling case is tight or
not.

Theorem 4.14 Let X be a Lipschitz domain in the plane, aida geodesiesfs-sample ofX. If ¢ < ﬁ
for some integek > 0, then thek-skeleton o€ (L) is included inDx (L) for all W C X.

Proof. The proof is by induction otk. There will be in fact two inductions, therefore we call this one Ik,
for clarity.

- Casek = 0: every point ofL is a vertex ofDx (L), whether it is witnessed by a point @f or not.

- General case of Ik: assume that the result holds up to gomé®. Assume further that < ﬁ Let
o = [po, -+ ,pr+1] be a simplex oE¥ (L), and letw, € W be a witness ofr. Consider without loss of
generality that the, are ordered such thaty (wo, pg) > --- > dx(wo, pr+1). Then, the closed geodesic
ball By = Bx (wg, dx (wo,po)) contains they; and no other point of.. Moreover,py belongs tadBy. We
will prove by induction thatB, can be shrunk to some closed geodesic Ball; such that all the; lie
on 0By.+1, While By, still contains no other point of.. The center ofBy; will then be equidistant to
all the vertices oy, and the latter will therefore be proved to beZim; (L). The induction, named Ir for
clarity, states that there is a closed geodesic Balthat contains the; and no other point of,, and such
thatpg, - - -, p. lie oON9B;..

e Caser = 0: initially, we havep, € 0By, and B, contains they; and no other point of..

e General case of I < r < k): assume that we have found a closed geodesicihathat satisfies
the requirements. In particular, we haxg - - - , p. € 0B,. This means that the centet. of B, belongs to
Vi (po) N--- NV (pr), whereV’ (p;) denotes the cell gf; (i < r) in the geodesic Voronoi diagram &f\
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{pr+1,- - s Pr+1}. Moreover, sincépo, - - - , px+1] belongs t(ﬁ}’}’(L), so does its subsimpldxo, - - - , pr],
which therefore belongs also1@x (L), by the induction hypothesis of Ik. Hendey (pp) N---NVx (pr) is
not empty. Leto, € Vx(pg)N---NVx(p,). Since the cell of any; in Vx (L \ {pr+1, - ,pr+1}) CONtains
the cell ofp; in Vx (L), w, also belongs & (po) N -+ N Vi (pr).

We claim that’ (po) N - - - N V% (pr) is path-connected. Indeed, for any poing X, the geodesic dis-
tance frome to L is finite, becausé is a geodesiesfs-sample ofX. And sincewy witnesses$po, - - - , pr+1,
all the p; lie in the same path-connected componenkKofswy, therefore the geodesic distance betwgen

k+1
andL\ {pr+1,-- -, pry1} is still finite, and by Lemma 4.13 it is bounded éﬁ—j) e sfs(z). This quan-

tity is less thant* e sfs(z) < 1 sfs(z), since by the induction hypothesis of Ik we havet ' < :.
Hence,L \ {p,41, - ,pr+1} IS @ geodesic’sfs-sample of X, for somes’ < é As a consequence,
Vi (po) N --- NV (pr) is path-connected, by Proposition 4.11.

Sincew, andw, both belong toV (po) N --- N Vi (p,), which is path-connected, there exists a path
v: I — Vi(po)N---NV%s(pr) such thaty(0) = w, andy(1) = w,. For alls € I, v(s) is equidistant to
po, - -+, pr, @and closer to these points than to any other poidt'ofp, 11, - - - , px+1}, in the intrinsic metric.
Moreover, forallj = +1,--- ,k + 1, the mapf; : s — dx(v(s),po) — dx(v(s), p;) is continuous, and
we havef;(0) = dx(wy,po) — dx(wy,pj) > 0 sinceB, containsp; and hag, on its boundary, whereas
fi(1) = dx (@r, po) — dx(@r, p;) < 0 sincew, is a witness ofpy, - - - ,pr]. Thus, f;(s) = 0 for at least
one values € I. Lets; be the smallest such

Consider now; = argmin,_, ;... 4155, and assume without loss of generality that ~ + 1. We
then havef, (1 (s,+1) = 0andf;(s,+1) > Oforall j = r+2,--- , k+ 1. This means that the point.; =
v(sr4+1) is equidistant tgo, - - - , p,+1, and farther from these points than frem.o, - - - , pr41. In addition,
wy41 IS closer topy, - -+, pr+1 than to any other point of \ {p,+2, - ,pr+1}, Sincew,1 € y(I) C
V' (po). It follows that the closed geodesic b#},; = Bx (wry1,dx (wry1,po)) containspg, - -+, per1
and no other point of., and thatpg, - - - , p,+1 lie on 9B,41. This concludes the induction Ir, and hereby
also the induction Ik. [

Note that, for the conclusion of Theorem 4.14 to hold, it is mandatory to makessumption on the
density of the landmarks sét since otherwise some boundary effects could occur. As an exampdprak
X an annulus and fok a set of three landmarks evenly distributed around the hole of the anfiujug:)
is then reduced to the boundary of the triangle formed by the three landmérkseas sincé, has only
three points, the triangle is witnessed and therefore it belong¥'(d.).

Our next result (Theorem 4.17) is an analog of Theorem 3.2 of [Bdjvdlves a relaxed version of the
witness complex, defined as follows:

Definition 4.15 Given a subseX of R?, two subset$V, L of X such thatL is finite, and an integer > 0,

a simplexo with vertices inL is v-witnessedy w € W if the vertices ot belong to the path-connected
component ok that containgw and to they+ 1 landmarks closest ta in the intrinsic metric. Thgeodesic
v-witness complesof L relative toW, or C¥ (L) for short, is the maximum abstract simplicial complex
made ofv-witnessed simplices. Its dimension is at most

Theorem 4.17 assumes thats a 7_sfs-sparse sample, which means by Definition 4.1 that every pair of
landmarkg # ¢ must satisfylx (p, ¢) > 52 min{sfs(p), sfs(¢) }. The bound om depends on theoubling
dimensiorof (X, dx ), defined as the smallest integesuch that every open (resp. closed) geodesic ball can
be covered by a union & open (resp. closed) geodesic balls of half its radius. The doubling diomens
measures the shape complexityXf and it can be arbitrarily large. As an example, takeXoa comb-
shaped domain made of a rectangle of dimensions2, to which are glued: branches of length and
width % as shown in Figure 2 (left). The geodesic distance from any poidf ¢ the center poinp

is at most2, so thatX is covered by the closed geodesic bal (p, 2). Consider now the closed geodesic
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Figure 2: Left: a Lipschitz domain with doubling dimension at IdasRight: the size of g1, - , qx} is g
times that of{p, p’}, although both point sets are geodedicsamples of the domain afd;,--- ,qx} is a
geodesicE-packing.

balls Bx(q;,1), 1 < i < k, where pointsy; are located at the tips of the branches ofX. Every ball
Bx(q;, 1) isincluded in the branch af;, therefore the ball®x (¢;, 1) are pairwise disjoint. Thus, at ledst
closed geodesic balls of raditiccan be packed inside a closed geodesic ball of rajiugich implies that
the doubling dimension afX, dx ) is at leastogs, &, according to the following result by Kolmogorov and
Tikhomirov:

Lemma 4.16 (from [33]) Given any subsét” of X, and any real number > 0, the maximum number of
pairwise-disjoint open (resp. closed) geodesic balls of raditisat can be packed insidg is at most the
minimum number of open (resp. closed) geodesic balls of radiuat are necessary to covér.

Theorem 4.17 Let X be a Lipschitz domain in the plane, of doubling dimensioh.et W be a geodesic
dsfs-sample ofX, and L a geodesiesfs-sample ofX that is also:_sfs-sparse. Ife + 2§ < 1, then, for

any integens > 2/ — 1, wherel = {log2 3+E+26/ﬂ , Dx (L) is included inCY, (L).

1—e—26

Proof. Leto be a simplex oDy (L), and letc be a point of its dual geodesic Voronoi c&lk (o). Since
W is a geodesiésfs-sample ofX, there is a pointv € W at geodesic distance at massfs(c) from c.
Moreover, sincel. is a geodesiesfs-sample ofX, every vertexv of ¢ is at geodesic distance less than
e sfs(c) from c. It follows thatdx (w,v) < (6 + €) sfs(c). Now, sincelL is ;_sfs-sparse, every two
landmarksv, v' located in the open geodesic bélk (w, (¢ + §) sfs(c)) satisfy: dx (v,v") > 15 sfs(v),
assuming without loss of generality the(v) < sfs(v’). Sincesfs is 1-Lipschitz in the intrinsic metric
(Lemma 3.3), we havesfs(v) > sfs(c) —dx (v, ¢) > sfs(c) — (e+26) sfs(c) = (1—e—20) sfs(c). Thus, the
landmarks insidéBx (w, (¢ + 0) sfs(c)) are at Ieas@ sfs(c) away from one another in the intrinsic

metric. Hence, they are centers of pairwise-disjoint open geodesic hasre radiusﬁﬁ sfs(c),
packed inside the open geodesic ball of centand radiuge + ¢ + %)sfs(c) = 3?{151525 sfs(c).
According to Lemma 4.16, there are at m/tsuch balls, wheré = [logQ %W = {10& 3;15;:225” :

It follows thate is v-witnessed bys whenever > 24 —1. Since this is true for every simplexof Dx (L),
the latter is included i€Y (L) whenever > 2!4 — 1. O

It follows from Theorems 4.14 and 4.17 that, whenelleand W are dense enoug®x (L) is sand-

wiched betweer® ¥ (L) andC)V}fy(L), provided that is chosen sufficiently large. The simulation results
presented in Section 7 suggest that even small valuesaoé sufficient in practice. Note however that, in
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some cases, neithé}’ (L) norC)V}fl,(L) coincides exactly wittDx (L). This fact, already observed in [30]

in a Euclidean setting, motivates the use of persistent homology betieeh) andCy’, (L) for computing
the homology ofDx (L) without building the latter complex explicitly.

5 Unions of geodesic balls and their nerves

Given a Lipschitz domairX in the plane, and two finite subséis C L C X, we saw in the previous
section (Theorems 4.14 and 4.17) that the following sequence of inclusadds provided thatV, L are
dense with respect to the systolic feature siz&'and that the relaxation parameteis large enough:

CY (L) € Dx(L) CCY,(L).

In the conference version of this paper [28] we showed how the adeEpeence of inclusions can be used
to infer the homology of the domaiX. Specifically, considering singular homology with coefficients in
an arbitrary field, we showed that the inclusiélf (L) — Dx (L) induces surjective homomorphisms at
homology level, while the inclusioPPx (L) — C)V(V’V(L) induces injective homomorphisms. Intuitively, this
means that the homology classes of cycleDgaf(L) already exist iCY{/ (L) and do not die irC)V}fV(L).

As a result, the inclusio®¥ (L) — C¥ (L) encodes the same homological informationZag(L),
and therefore ast itself, by Theorem 4.3. More formally, for alt € N, the rank of the linear map
Hi(CY (L)) — Hg(CY (L)) induced by the inclusion between the witness complexes is equal fdtthe
Betti number ofDX(L): which by Theorem 4.3 coincides with ttéh Betti number ofX .

In this section we want to proceed further and study the ranks of the lneps induced at homology
level by inclusions of typé’}}fy(L) — C)V(V,V,(L), where0 < v < v/ are arbitrary values of the relaxation
parameter. Moreover, we want to study other families of simplicial completsith also easy to build in
practice. In particular, we are interestediips complexeis the geodesic distance:

Definition 5.1 Given a finite point sel. € X and a real parametetx > 0, the (Vietoris-)Rips complex
R«(L) is the abstract simplicial complex of vertex getvhose simplices correspond to non-empty subsets
of L of diameter less than in the geodesic distancgy .

Our analysis uses the approach of [16], which we will now describédlyoaad adapt to our context. The
main idea of [16] is to relate Rips and withess complexes to the so-cadeld complexeslefined below:

Definition 5.2 Given a finite point sef. C X and a real parametet. > 0, theCech complexX, (L) is the
nerve of the union of open geodesic balls of same radiabout the points of..

SinceCech complexes can be potentially difficult to compute, they are not meantctnisgucted in prac-
tice. However, they can be used as an intermediate algebraic constracttbe inalysis of the topological
structures of Rips or withness complexes. Indeed, on the one hand, tiegppf theCech complex is tied
to the one of its dual union of balls via the Nerve Theorem 4.5, providedhbaialls form a good cover of
the union, as per Definition 4.4. On the other hand, as prewgdh [16], the one-parameter family @fech
complexes is interleaved with the one-parameter family of Rips complexes inlihwif@ sense:

Wa >0, Ca (L) € Ra(L) C Ca(L). 3)

The analysis of [16] uses the above interleaving property to deriveasabetween the ranks of the linear
maps induced at homology level by inclusions between Rips complexes arahkiseof linear maps induced
by inclusions betwee@ech complexes. More precisely, from Eq. (3) one deduces the fojoséguence
of inclusions for allg > 2

Cas2(L) € Ra(L) € Ca(L) € Rp(L) € Cs(L). (4)
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By simple algebraic arguments, this sequence of inclusions implies the folloneagailities between the
ranks of the homomorphisms induced at homology level by inclusigfis> 2a, Vk € N,

rank Hk(Ca/z(L)) — Hk(Cﬂ(L)) S rank Hk('Ra(L)) — Hk(RB(L)) S dimHk(Ca(L)). (5)

These inequalities provide upper and lower bounds on the ranks of tlze lmegps induced at homology
level by inclusions of typeR, (L) — Rp(L). The rest of the analysis of [16] consists in working out
sufficient conditions under which the upper and lower bounds coincittetiie Betti numbers oX. To

do so, it relates the one-parameter familyééch complexes to its dual one-parameter family of unions
of balls. Recall indeed from Definition 5.2 thdt (L) is the nerve of the union of open geodesic balls of
same radiugv about the points of.. Let us callL* this union, and L*} the associated collection of open
geodesic balls. The analysis of [16] provides the following key resulighwvtan be viewed as a persistent
variant of the Nerve Theorem 4.5:

Lemma 5.3 For any parametersy < 3, if {L*} forms a good open cover @ and {7} forms a good
open cover of %, then there exist homotopy equivalendes — C,(L) and L®? — Cs(L) that commute
with the canonical inclusiong® — L# andC, (L) — Cgz(L) at homology level.

In other words, the inclusions® — L” andC, (L) — Cg(L) carry the same homological information, that
is: for all k € N, the linear map#fy, (L) — Hy (L") andH}(Co (L)) — Hy(Cs(L)) induced by inclusions
have the same rank.

Now, if we assume thal is a geodesie-sample of some length spa&g thenL“ coincides withX as
soon asy > ¢, and for all3 > « > ¢, the canonical inclusiofA® — LPis the identity ofX, which implies
that the rank off;, (L) — Hj (L") coincides with the:th Betti number ofX. Combined with Lemma 5.3,
this fact implies that, for albe > 2 and3 > 2« such that{L®/2}, {L*}, {L?} form good open covers
of L*/2, L*, LP respectively, the rank Off1,(Co/2(L)) — Hi(Cs(L)) and the dimension off(Cn(L))
coincide with thekth Betti number ofX. Thus, the upper and lower bounds in Eq. (5) coincide withkthe
Betti number ofX', which implies the following:

Theorem 5.4 Let X be a length space that admits a finite geodessamplel. Then, for allt € N, for all
o > 2e andj3 > 2a such that{ .*/?}, {L*}, { L} form good open covers @f*/2, L*, L respectively, the
rank of the homomorphisti,(R.(L)) — Hjy(Rg(L)) induced by inclusion coincides with ti¢h Betti
number ofX.

In [16], the analysis takes place in Euclidean sp&&e where balls are convex and their intersections
contractible (if not empty). In [14], the analysis is extended to the casermpact Riemannian manifolds,
with or without boundary, where geodesic balls are convex and theisetdgons contractible (if not empty)
up to the so-called convexity radius of the manifold. Thus, the assumpti@visfdigood covers in Theorem
5.4 holds as long a8 is smaller than the convexity radius. In the present context, the domasnnot a
Riemannian manifold since its boundary can be non-smooth. Yet, the aluperies of geodesic balls still
hold provided that the radii are not more than a fraction of the systolicrieatne ofX:

Lemma 5.5 If X is a Lipschitz planar domain, then any finite collection of open geodesic Halsl at
mostisfs(X) forms a good open cover of its union..

Combined with Theorem 5.4, this resultimplies that, i§ a geodesie-sample of a Lipschitz planar domain
X, for somes < 5sfs(X), then, for any choice of parameterse (2e, ¢sfs(X)] andg € [20v, 3sfs(X)],
the Betti numbers oK can be obtained as the ranks of the homomorphisms induced at homologlgyevel
the inclusionR (L) — Rz(L).

Lemma 5.5 is the main new result of this section. Its proof turns out to be rd#imrate, and in fact it
draws some interesting connections between the systolic feature size aistdinee to the cut locus on the
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one hand (see Lemma 5.6 in Section 5.1), as well as between Lipschitz ptemaing and a class of length
spaces calledlexandrov spacesn the other hand (see Theorem 5.10 in Section 5.2). The proof is detailed
in Sections 5.1 and 5.2, while Section 5.3 adapts the above analysis to thé aésess complexes.

5.1 Systolic feature size and cut locus

A noticeable feature of the systolic feature size is its close relationship withotealled cut-locus. For
any given pathy : I — X, we callsupportof ~ the sety(I). If v is a shortest path betwean= ~(0)
andy = (1), then~(I) is called ashortest path suppotietween: andy. Note that different paths may
have identical supports. In particular, a shortest path support maljavedsby shortest paths as well as
non-shortest paths (think of the latter as moving back and forth along gposit Given a point: € X,
the cut-locusof = in X, or CLx (z) for short, is the locus of the points &f having at least two different
shortest paths supportsian X . In other words, a poing € X belongs taCL x () iff there exist two paths
7,7+ I — X such thaty(0) = v/(0) = z,v(1) =+'(1) =y, [7| = [7'| = dx(=,y), andy(I) # (1)
The geodesic distance fromto its cut-locus is denoted hyx (z, CLx (x)).

Lemma 5.6 If X is a Lipschitz domain in the plane, them € X, sfs(x) = dx(z, CLx(2)).

Proof. We first show thatfs(z) > dx(z, CLx(x)). This is clearly true if the path-connected component
X; of X that containse is simply connected, since in such a case we kfy@) = +oco. Assume now
that X; is not simply connected, and let: (S',1) — (X, 1) be a non null-homotopic loop through

in X, of length2sfs(z) < +o00. Such a loop exists, by Lemma 3.2. Moreover, according to [10, Prop.
2.5.9], we can assume without loss of generality thstparameterized with constant speed, thatise 1,
V0,511 = slvl. We then haveyg 15| = |[vp.1)] = 3l7| = sfs(z). Call respectivelyy’ and~” the paths
Y(0,;/2) @Nd7(ys,1). These are two paths betweerandy = ~(1/2) in X, hence their lengths are at least
dx(z,y). We claim that]y| = |7”| = dx(z,y). Indeed, let{ be a shortest path from to y in X.
Since~ is not null-homotopic inX, 4/ and4” are not homotopic relative 7 in X, and therefore/ - ¢

or 4" - ¢ (say~’ - ¢) is not null-homotopic inX. It follows that|y’ - ¢| > 2sfs(z). Now, if [¢| < "],
then we havey' - | = || + [¢| < |¥'| + |¥'| = || = 2sfs(z), which raises a contradiction with the
previous sentence. Therefole!| = |v"| = |¢| = dx(z,y). Finally, we claim that the supports of
and~" are distinct. Assume for a contradiction that/) = ~”(I). Then, for alls’ € [0, 1/2], there exists

s" € [1/2,1] such thaty(s’) = ~(s”). This implies thaidx (x,v(s")) = dx(z,v(s”)). But sincey’ and

4" are shortest paths fromto y in X, we havedx(x,v(s")) = [vo,«]| anddx (z,v(s")) = |y 1l-

It follows thats’” = 1 — s”, becausey is parameterized with constant speed. This meansiythat 7",
which implies thaty = +/ - 4" is null-homotopic inX', which contradicts our assumption. Thus, we have
v (I) # ~"(I), as well asy| = |¥”| = dx(z,y), which means thay belongs toCLx (x). Therefore,
sfs(x) = |7/| = || = dx(,y) > dx(z, CLx ().

Let us now show thatfs(z) < dx(z,CLx(z)). Assume for a contradiction that there is a point
y € CLx(x) such thatdyx(x,y) < sfs(z). Pointy has at least two shortest pathsy’ from = whose
supports differ. Assume without loss of generality that’ are parameterized with constant speed. Then,
forall0 < s < s’ <1, we havey(s) # ~(s'), since otherwise the patfy 4 - v[,1) Would connectr to
y and be strictly shorter thap, hereby contradicting the fact that the latter is a shortest path froony.
Thus,~ is an injection from/ to X. Given any points:, v € (1), with v~ (u) < y~1(v), we callvyy,
the pathryp,—1(,),-1(»)- BY the same argument; is also an injection fron to X, and we use the same
notation for subpaths.

Since the supports efand~’ differ, we havey(I)\~/'(I) # 0 or~'(I)\v(I) # 0 —sayy(I)\~'(I) # 0.
Let ., be a maximal subarc of satisfyingy.,,(]0,1[) N+/(I) = (. Here,u andv are the two endpoints of
Yuw, @nd by maximality we have # v andu,v € v(I) N+/(I). Sincey,, and~,, are injective, and since
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their images inX have common endpoints but disjoint relative interiors, the path 7., is a simple loop,
and therefore it divides the plane into two connected components, onkidf ycalledC) is bounded, by
the Jordan curve theorem. Moreover, we haeé= (v,,, - 7».)(I), and the degree of the loop with respect
to any point ofC' is non-zero. Now, since,~’ are shortest paths fromto y, with dx (z,y) < sfs(x), the
image of the loopy,,,, - 7.« lies in the open geodesic bl (z, sfs(x)). Hence, by Lemma 3.4, the loop is
null-homotopic inX, and since its degree with respect to the point§’aé non-zero, any homotopy with
a constant map iX passes through the points ©f which therefore belong t& . Thus, between points
andv, v and+’ sandwich a regiod’ that is included inX. We will show that there exist shortcuts 40+’

in C, hereby contradicting the fact thatand+’ are shortest paths fromto y in X.

Consider the line segment, v|, and choose a positively-oriented orthonormal frame such that point
is at the origin, lingu, v) is vertical, and point lies aboveu. Let A\, denote the patk — (1 — s)u + sv.

- If [u, v] is included inC, then the paths,., - Ay, - Yoy @NdYL, - Ay - %’Jy connectz toy in X. And
sincev,,(I) and~,,(I) differ, one of them at least (say,,(/)) differs from [u, v], which implies that
[Yuv| > dE(u, v) = |Ayp| @and hence thaty| > |v.y - Auw - Yoy |, Which contradicts the fact thatis a shortest
path fromz to y in X.

- If now [u, v] is not included inC, then there is a point € [u,v] that does not belong t6'. On the
horizontal line passing through C' lies on the right or on the left ofu, v), say on the right. Let be a
rightmost point ofC. We havec ¢ {u,v} because lies on the right of lingu, v). Note thatc € 9C, and
assume without loss of generality that ., (), which implies that ¢ ~.,,(I) sincec ¢ {u,v}. Leta
be the connected componentf,(I) \ (u,v) that contains:. Since,, is a simple arcy is a subarc of
~Yuv, Starting and ending ofu, v), and passing through Let! be the vertical line passing throughNote
thatC does not intersect the right half-plane bounded.bylevertheless, other componentsigf \ (u, v)
may touchl, including some subarcs of,,. However, by paring” infinitesimally in their vicinity, one can
easily ensure that is the only arc o9C' that toucheg. Hence, from now on, we assume without loss of
generality that N C C a. This implies thaty/,, (1) does not touch, sincea C v,,(]0, 1[), which does not
intersecty,,, (). Therefore, the rightmost vertical lifétouching~,,,(I) lies on the left ofl. Letd > 0
denote the Euclidean distance betwéand!’.

Consider the open Euclidean bai(c, §). Sincec € C, there exists a point’ lying in C N Bg(c, §).
SinceC is open inR?, we havec” ¢ 9C. Let!” be the vertical line passing through. Note that!” is
located on the right of . Letw” andv” be the first points of intersection &f with 9C above and below”.
We haveu”;v"] € C. Moreoveru” # v" because” ¢ dC. In addition,u” andv” belong toy,, (), since
they lie on!” and hence on the right éf. Finally, [«”,v"] differs from~,,~(I) becausgu”, v"] passes
throughc” ¢ OC. As a result, the path,,~, defined bys — (1 — s)u” + sv”, is included inC C X,
it connects points”, v” of v,,(I), and it is shorter than,,,~. It follows that the pathy,,» - Ay - Yoy
connectse toy in X, and is strictly shorter tham, which contradicts the fact thatis a shortest path from
toy in X. This shows that every pointinside the open geodesic bdll (x, sfs(x)) has only one shortest
path support te. It follows thatsfs(x) < dx(z, CLx(z)), which concludes the proof of Lemma 5.6

The fact that the geodesic distance of a painE X to its cut-locus is equal to half the length of
the shortest non null-homotopic loop throughwas already known in the case of planar domains with
polygonal boundaries [36]. Lemma 5.6 above extends this result to ta@tpsnar domains with Lipschitz
boundaries.

5.2 Lipschitz planar domains are Alexandrov spaces

The background material used in this section comes from Chapters 4 &{d®,do which we refer the
reader for further details.
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We callgeodesic trianglany collection of three distinct points b, ¢ € X connected by three shortest
paths supports,, 7., Teo IN X. Note that the three vertices alone may not define a geodesic triangle
uniquely since there may be several different shortest paths sugpariscting a same pair of vertices.

Definition 5.7 Given a geodesic triangle of verticesb, c € X, acomparison triangles a triangle(a, b, ¢)
in the Euclidean plane such thdg(a, b) = dx(a,b), dg(b,¢) = dx (b, ¢), anddg(¢,a) = dx(c,a).

Although three distinct points iiX may not define a unique geodesic triangle, they always define a unique
comparison triangle up to an isometry of the Euclidean plane.

Definitions 5.8 and 5.9 below consider thleapef small enough geodesic triangles as a criterion for
a length space to have bounded curvature. This criterion is inspiredrésulits in Riemannian geometry,
where manifolds of negative curvature tend to hskianytriangles, whereas manifolds of positive curvature
have rathefattriangles. Here, the skinniness of a geodesic triangle is measured widtt&sp comparison
triangle in the Euclidean plane.

Definition 5.8 (Angle condition) A geodesic triangl€a, b, ¢, Tap, The, Tea) Satisfies theangle conditionf
the angles formed bw,,, 75, 7o at the vertices, b, ¢ are well-defined and at most the corresponding angles
in a comparison triangle.

In the above definition, by angle between two paths : I — X emanating from a same point= a(0) =
B(0) is meant the limit quantityim, ;.o Z(«(s), p, 5(t)), if it exists, whereZ(a(s), p, 3(t)) denotes the
inner anglé at the vertex corresponding ioin a comparison triangle dfp, a(s), 3(t)). This limit may
not always exist in general. Below we prove that, in the special cas@ethitz planar domains, small
enough geodesic triangles have concave edges (Claim 5.10.3) whgseettaat the vertices of the triangles
are well-defined, which implies that angles between edges are also welkkdlefi

Definition 5.9 A length spaceX is an Alexandrov space with non-positive curvatufr@around each point
of X there is a neighborhood such that every geodesic triangle within this neigbbd satisfies the angle
condition of Definition 5.8.

Alexandrov spaces of non-positive curvature are sometimes dakddq0)-space the literature, where
CAT stands for Cartan-Alexandrov-Toponogov, and where (0) atdicthe upper bound on the curvature.
Note also that curvature bounds are usually derived from distanaditioms, not angle conditions. As
proved in [10, Thm. 4.3.5], distance and angle conditions are in factalqut.

The main result of this section is that Lipschitz planar domains are CAT @)esp

Theorem 5.10 Every Lipschitz domaitX in the plane, endowed with the length structure inherited from
(R?%,dg), is an Alexandrov space of non-positive curvature. More preciselyarfg open geodesic ball
B c X of radius at mos%sfs(X), and for any distinct points, b, ¢ € B, the geodesic triangle formed by
a, b, c and their (unique) shortest paths supports satisfies the angle condit@efwiition 5.8.

The proof of the theorem uses four intermediate results, stated as Clainmk thybugh 5.10.4 and proved
on the fly.

Proof of Theorem 5.10. Observe first that, since the diameterifs less tharfs(X), the shortest paths
supports betweem, b, ¢ are defined uniquely, by Lemma 5.6. For more clarity, we€gll., andr., these
paths supports — dashed in Figure 3 (left).

Claim 5.10.1 The paths supports,;, 7, and 7., are simple planar curves that pairwise intersect along
connected subarcs incident to their common endpoints.

8This angle is defined uniquely because the comparison triangle is defifmeely up to an isometry of the Euclidean plane.
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Proof. Sincery, 1, andr,, are shortest paths supports, they have to be simple, since otherwiseulay co
be shortened. Consider nay, andr,.. These paths supports intersect at their common endpoigsume
that they have another poiftt of intersection. Then, the arc af;, that connect$ to ¢’ is a shortest path
support between the two points . Idem for the arc of,. that connects to . Therefore, these two arcs
coincide, by Lemma 5.6. It follows that,; andr,. must intersect along a common subarc incident to their
common endpoink. The same is true for,. andr., on the one hand, and fef, andr,;, on the other hand.

O

a

Figure 3: Left: a geodesic triang(e, b, ¢) in a Lipschitz planar domain (light grey). Shortest paths supports
are dashed. The non-singular part of the triangle, of verticds, ¢ and interior(2, is shown in dark grey.
Right: bold segments show the possible locations ahdé on rays|a, b) and|a, ¢).

Let 7,y be the common subarc ef; and 7., 7.~ the common subarc of,. and r.,, andr,, the
common subarc of,, andr,,. The shortest paths suppofts,, 7y andr. . are then uniquely defined as
subarcs ofry, 7. andr,, respectively. Note that ié’ = o' ora’ = ¢ or b’ = ¢/, then it must be the case
thata’ = b’ = ¢/, by Claim 5.10.1.

Claim5.10.2 If «’ = V/ = ¢, then the curve- = 7, U 1y U 70 is reduced to a point. Else; is a
simple closed curve whose complemerRRtrhas two path-connected components, one of which (c&l)ed
is bounded and contained iK.

Proof. Sincer,, Ty, Teo are shortest paths supports, they are reduced to a same pgiat il = ¢'.
Else, we have’ # U/, v’ # ¢ andd’ # ¢, and the definition of/, V', ¢ derived from Claim 5.10.1 ensures
thatr is a simple closed curve. Then, the Jordan curve theorem guaranteeslitidesR? into two distinct
connected components, one of which (cal®ds bounded. Let,, : I — X be a shortest path between
a’ andbt/, vy : I — X a shortest path betweéhandc’, andy..,, : I — X a shortest path betweehand
a’. Let nowy = vy - Yo - Yerar- We havey(I) = 7. Furthermore,

vl = dx(a", V) +dx(V, ) +dx(d,d') <dx(a,b) +dx(b,c) +dx(c,a) < 2sfs(X),

which implies thaty is null-homotopic inX, by definition ofsfs(X). LetT : S* x I — X be a homotopy
betweeny and a constant map iX. For any pointz € 2, we havedeg, v = £1 since the loopy winds
once around. If = did not belong td"(S* x I'), thenI’ would be a homotopy betweenand a constant map
in R2 \ {x}, thus by Corollary 2.1 we would havig, v = 0, thereby raising a contradiction. It follows
thatT'(S! x I) contains all the points d®, which is therefore included ix. [

It follows from Claim 5.10.2 that the geodesic triangle formedrby, 7,/ andr. is either reduced to
a point, or an embedded triangle in the plane, whose intérisrincluded inX. From now on, we denote
the triangle by(a/, v/, ¢) for simplicity.
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Claim 5.10.3 The triangle(a’, V', ¢’) has concave edges.

Proof. Consider an edge of the triangle, say for instangg . For any pair of points:, y on this edge,
consider the Euclidean segmeénty]. We will show that[z, y] N Q2 = (). Assume for a contradiction that
this is not the case, and lét’, y') be a connected component [af y] N 2. This component is an open
subsegment ofz, y|, and its endpoints lie on, . Call 7,/,» the subarc of, that connects’ to 2’ and
T, the subarc of,y that connectg’ to b'. Replacingryy by 7o/, U (2, ) U 7 yields a path support
between:’ andd’ that is strictly shorter than,;, yet still included inX (since2 c X). This contradicts
the fact thatr,/; is a shortest path support betweérandd’ in X. O

The fact that the edges &', ’, ¢’) are concave implies that their tangents at the three vertices are
well-defined whent', b, ¢ are distinct, as shown in Figure 3 (right).

We can now prove that the inner angles of the geodesic trigagle c) are well-defined, taking for
instance the case of vertexif a # d/, thenr,, andr., coincide in the vicinity oz (as in Figure 3 (left) for
instance), and therefore the inner angle zero; ifa = o’ = b’ = ¢, thena lies on the shortest path support
Tve, and thereforé = , sincea, b, c are assumed to be distinct; elsex o’ andd’, V', ¢ are distinct, and
coincides with the angle formed by the two rays emanating fsand tangent te,;, andr., respectively.

In every case, the inner angtds well-defined. The same is true fband¢.

Claim 5.10.4 The angles:;, b, ¢ are not larger than the corresponding angles in a comparison triangle.

Proof. Take for instance vertex. If a # o/, then we havé = 0, which cannot be more than the value
of the corresponding angle in a comparison triangle: # o’ =t/ = ¢/, then we havé, = 7. But since
a belongs to the shortest path suppayt, we havedx (b, c) = dx(b,a) + dx(a,c), which implies that
a comparison triangle must be flat, with an inner angle agual tor. Consider finally the case where
a = a’ andd’, b/, ¢ are distinct. Lefa,b) and[a, ) be the rays emanating fromand tangent ta,;, and
T.q Tespectively. Orja, b), the pointb is placed such that its Euclidean distance: tis equal todx (a, b).
Similarly, we place poin€ on [a, ¢) such thadg(a,¢) = dx(a,c). Assume that the following inequality
holds:

dp(b,8) < dx(b,c). (6)

Then, any comparison triangle @f, b, ¢) must have an inner angle @athat is at least the anglebetween
[a,b) and[a, ), which proves the claim.

Let us now prove Eq. (6). Since the triandle v, ¢') is embedded in the plane with concave edges,
v and ¢ must lie outside the wedge formed by raysb) and [a,¢), and the edgey . (as well as the
Euclidean segmerit’, ¢']) must intersect the wedge. Lit be the unique intersection point betwdéh (/|
and|a, b), andc” the unique intersection point betwegh ¢’] and|a, ¢). We place a point’ on[a, b) such
thatdg(a,b’) = dx(a,bt’). We also let), b, € [a,b) be such thatlp(b},a) = dg(t/,a) anddg (bh,b") =
dg(b',b"). Since the edge, iy is concave, it coincides with the graph of some convex real-valued fumctio
in an appropriate orthogonal frame of abcissa liag)’). Observe that the Euclidean line segmént$”|
and[b”, '], once concatenated, also form a concave triangle edge, thefefofeu [b”, b'] coincides with
the graph of some convex function in the same frame as above. Andgin€gu [b”, '] lies belowr, ; in
that frame, its length must be greater. As a result, we have:

dE(a, b/) < dx(a,b,) < dE(a, b”) + dE(bH,b,).

This is an easy consequence of the concavity of the edgés, of, ¢’). Indeed, when two points € 7., andq € 7o,
converge taz, the ratiosjz((;”;)) and jﬁgz; converge tal. Furthermore, fop, ¢ close enough ta, the Euclidean line segment
[p, g] is included in(a’, b, ¢') and therefore inX, which implies that% = 1. Thus, a, ¢ converge tas, the angle of a

comparison triangle tends faq, which converges to the angle between the tangents,tandr.,.
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This implies that point’ lies in-betweerd| andb), along the raya, b). Similarly, placinge’ on [a, ¢) such
thatdg(a,c) = dx(a, ), and lettingé,, &, € [a, ) be such thatlp (¢, a) = dr(d,a) anddg(é,, ") =
dr(d, "), we have that’ lies in-betweert; andd, along|a, ¢). Assuming without loss of generality that
dx(a,b") > dx(a, ), we then have

dE(E,’ E/) < dE(7127 Ell) (7)

In addition, sinced’, ¢'] crosses the wedge bounded [pyb) = [a,b”) and|a,¢) = [a,c;), pointc, lies
inside the wedge bounded by, b”) and|[a, ¢’). Now, inside this wedge, the arc of cirddB g (a, dg(a, ))

is included in the closed Euclidean bal (", dg(b”, ¢)). It follows thatdg (b”, &) < dg(b”, ), and by
the triangle inequality,

dg(th, e)) < dg(h,b") +deg”,e)) = dgt/,b") + dp(b’, &) < dp®,b") +d”,d) = dr(¥, ).

Thus,dg(by, &) < dx (¥, ). Combined with Eq. (7), this inequality yields: (b, &) < dx (b, ¢’). Now,
recall thatd x (b, V') = dx(a,b) — dx(a,b") sinced’ lies on the shortest path suppegt. Idem,dx (¢, ') =
dx(a,c) —dx(a,c) sincec lies on the shortest path suppegt. Therefore, we havég (b, b') = dx (b, b')
anddg(c, @) = dx(c, ). Combining these relations with the triangle inequality, we obtain:

dg(b,€) < dp(b,b) +dp,d) + dp(d,c) < dx(b,b) +dx (', )+ dx(d,0),

which is equal talx (b, ¢) sincel’, ¢’ lie on the shortest path suppogt betweerh andc. This proves Eq.
(6), and thus also the claim(]

Claim 5.10.4 concludes the proof of Theorem 5.10.

Open geodesic balls oX in which the angle condition of Definition 5.8 is satisfied by all geodesic
triangles are often calledormal ballsin the literature. They enjoy many interesting properties, among
which the most important ones to us are the fact that normal balls are cfrveny two points in a normal
ball B have a unique shortest path support, which is also includdgl)jrand the fact that for any point
p € X the mapg — ,,, Wherev,, is a shortest path from to ¢ parametrized with constant speed, is
uniquely defined and continuous within any normal ball that contairss a result, intersections of normal
balls are either empty, or convex and contractible — see Propositions 9rid1% k17 as well as Remark
9.1.18 of [10]. Combined with Theorem 5.10, this fact proves Lemma 5.5.

5.3 The case of withess complexes

The one-parameter families Gkch and witness complexes can be interleaved in a same way as in Eq. (3),
modulo some additional conditions on the landmarks and witnesses densities:

Lemma5.11 Let X be a Lipschitz domain in the plane, of doubling dimensiorLet W be a geodesic
d-sample ofX, and L an e-sparse geodesie-sample ofX. For any parametery > 0, we haveC, (L) C
CY,(L) as soon ass > 2%, wherel = [log, 2444207, Conversely, for any parameter, we have
CY, (L) € Co(L) for all valuesa > (2v + 3)e.

Proof. Leta > 0 be a parameter, and = [po,--- , px| @ simplex ofC,(L). The open geodesic balls
Bx (pi, @) have a non-empty common intersection. kdie a point in the intersection, and let ¢ W
be a point of iV closest toc in the intrinsic metric. We then hawx (w,c) < 4, which implies that
dx(w,p;) < a+dforalli=0,---,k. Now, sinceL is e-sparse, the points df that lie within geodesic
distancex + o of w are centers of pairwise-disjoint open geodesic balls of same radpescked inside the
open ballBx (w,« + d + §). Since the doubling dimension of is d, the maximum possible number of
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such balls is at most'?, wherel = [log, 225297, This implies that the vertices of are among the'
points of L nearest tav in the intrinsic metric. As a resulty is av-witness ofs as soon ag > 2!¢. Since
this is true for any simplex € C,(L), we conclude thaf, (L) € CY/, (L) for all v > 2/,

Letnowr € N be a parameter, anda simplex o} (L). Consider any-witnessw of o. The vertices
of o are among the + 1 points of L closest taw in the Qeodesic distance, and they all lie in the same path-
connected component &f asw. Therefore, their geodesic distancestare less tha2v + 3)e, according
to Lemma 4.13 and its subsequent comment. Thus, faer all (2v + 3)e, w belongs to the open geodesic
balls of same radius centered at the vertices af whose common intersection is therefore non-empty. It
follows thatC¥ (L) C Ca(L). O

Letting I(a) = [log, 2+29] andy(a) = 24, we deduce from Lemma 5.11 the following inclu-
sions, which correspond to the ones of Eq. (3) for witness compl&xes: 0,

Ca(L) - C_)ng(a) (L) - C(Qy(a)+3)6(L)'

The above inclusions induce a sequence similar to the one of Eq¢ {4} (2v(«) + 3)¢,
Ca(L) C C)V(I'/,V(a)(L) CCs(L) C C)V}/,y(g)(L) € Clav(p)+3)=(L)-

This sequence provides upper and lower bounds on the ranks of tin@narphisms induced at homology
level by the inclusio®y’ (L) < CY 5, (L), asin Eq. (5)¥8 > (2v(a) + 3)e, Vk € N,

rank Hk(Ca(L) — Hk(c(Zu(ﬁ)+3)s(L)) S rank Hk(C)I/}fy(a) (L)) — Hk(Cg([fy(ﬁ) (L)) S dim Hk(C5(L))

Equality between the upper and lower bounds is guaranteed by Lemmaifgthes same analysis as in
the introduction of Section 5 and assuming that ¢ and(2v(3) + 3)e < Lsfs(X). We thus obtain:

Theorem 5.12 Let X be a Lipschitz planar domaift} a geodesi@-sample ofX, and L a finite geodesic
e-sample ofX. Then, for any choice of parametessand 5 > (2v(a) + 3)e such thatae > ¢ and
(2v(B) + 3)e < isfs(X), the Betti numbers ok can be obtained as the ranks of the homomorphisms

induced at homology level by the inclusiﬁﬁy(a) (L) — C)V(‘fy(g) (L), provided thav,  are small enough.

6 Algorithms

In this section, we describe high-level procedures for estimafindor generating geodesisfs-samples,
and for computing the homology of a Lipschitz planar domain. Our algorithmsessdentially on two
oracles, whose implementations depend on the application considered. nSketith be devoted to the
implementation of such oracles on a sensor network.

6.1 Computing the systolic feature size

Lemma 5.6 suggests a simple procedure for computing the systolic featurgisie:a Lipschitz domain
X in the plane, and a point € X, grow a geodesic balB aboutz at constant speed, starting with a radius
of zero, and ending whel® covers the path-connected compongit of X containingz. Meanwhile,
focus on the wavefrori? B as the radius oB increases — this wavefront evolves as the iso-level sets of the
geodesic distance ta
— if at some stage the wavefroself-intersectsmeaning that there is a poipte 0B with at least two
different shortest paths supportsapthen interrupt the growing process and return the current value
of the radius ofB;
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— else, stop onc& coversX, and returri-oc.
By detecting the first self-intersection event in the growing process,rteegure finds a point afL x (x)
closest tar in the intrinsic metric, and therefore it returdsg (x, CLx (z)), which by Lemma 5.6 is equal to
sfs(z). The procedure relies on two oracles: the first one detects whBtheversX, entirely; the second
one detects whether the wavefront self-intersects at a given vadti¢he radius of3, or rather, between
two given values; < r, of the radius of3.

6.2 Generating geodesiesfs-samples

Given a Lipschitz domairX in the plane, and a real number> 0, we can use the procedure of Section
6.1 to generate geodesisfs-samples ofX. Our algorithm relies on a greedy packing strategy that builds a
point setl iteratively by inserting at each iteration a point®fthat is far away from the current point set

in the intrinsic metric.

In the initialization phase, the algorithm selects an arbitrary peiat X and setsl. = {p}. It also
assigns tg the open geodesic balt, of centerp and radius;Z sfs(p), wheresfs(p) is estimated using
the procedure of Section 6.1.4fs(p) = 400, thenB,, coincides with the path-connected componenkof
containingp. The main loop of the algorithm proceeds in a similar fashion. At each iteratioarbitrary
pointg € X \ U, By is selected and inserted In Pointg is then assigned the open geodesic blbf
centerg and radius;t; sfs(q). The process stops whefi\ U, B, = 0.

The algorithm uses a variant of an oracle of Section 6.1, which can tetheha given union of geodesic
balls coversX, and return a point outside the union in the negative. Upon terminationy peertx € X
lies in some open balB,, and we havely (z, L) < dx(x,p) < 17 sfs(p), which is at most sfs(z) since
sfs is 1-Lipschitz in the intrinsic metric (Lemma 3.3). Moreovéf (z, p) is finite becausé,, is included in
the path-connected componentfcontainingp. Therefore, upon terminatiot, is a geodesiesfs-sample
of X. Let us show that the algorithm indeed terminates:

Lemma 6.1 For all € > 0, the algorithm terminates.

Proof. Our approach is to bound the pairwise Euclidean distances between tie gidinfrom below by
some positive value, and then to apply a packing argumenth ketmin{1, sfs(X)}. Note that we do not
usesfs(X) directly, since the latter might be infinite. In contrast: b < +oc.

Consider any two points, ¢ inserted inL by the algorithm, and assume without loss of generality that
q was inserted aftey. If sfs(p) = +oo, then the ballB, coincides withX,,, the path-connected component
of X that containg. Therefore,q does not belong td\,, and we havelx(p,q) = +oo > % If
sfs(p) < +o0, thendx (p, ¢) is at least the radius d8,,, which is equal to=_sfs(p) > 5-sfs(X) > 1’%
In any case, we havéx (p, q) > 1% for all pointsp, ¢ € L. We will now bound this quantity from below
by another quantity depending dm(p, ¢), which will then enable us to use a packing argument.

Consider the sek of all pairs of pointse, y of X such thatlx (z,y) > 1% K is a closed subset of x

X, which is compact sincd is, hencek itself is also compact. It follows that the mi&pgy(z, y) = gi((ﬁgg
reaches its minimurm over K. This minimum is positive sincé(z,y) € K, we havelx (z,y) > 0, which
implies thatr # y and hence thatg(z,y) > 0.

From the previous paragraphs, we deduce that, for all ppints L, dg(p, q) is at leastn dx (p, q) >

Tf; Hence, the points af are centers of pairwise-disjoint open Euclidean balls of same rﬁ%@sj > 0,

packed insideX & Bg (0, 2(“}7_’56)) where@ stands for the Minkowski sum. SincE is compact, so is

X ® Bg ( ,2(’7{—:@)) which therefore contains only finitely many disjoint open Euclidean ballsaofes

1°This map is well-defined sinagx (z,y) > {1 > O forall (z,y) € K.
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positive radius. It follows thalL is finite. And since the algorithm inserts one pointZirper iteration, the
process terminates.]

We will now show that the size of the output of the algorithm lies within a con$aatdr of the optimal,
the constant depending on the doubling dimensiofafd x ).

Lemma 6.2 For anye €]0, 1], the output landmarks setis_sfs-sparse, and its size is withit}? times the

size of any geodesisfs-sample ofX, wherel = [logz %W and whered is the doubling dimension
of (X, dx).

The influence of the doubling dimensidrof X is illustrated in Figure 2 (right), where the domain consists
of two copies of the domain of Figure 2 (left), glued together along the tipsedf thanches. The systolic
feature size at any point of is at least half the perimeter of a hole, which is equal to 2,3—_1 Consider
the setsP? = {p,p'} and@ = {q1,--- , ¢ }. For any pointz € X, the geodesic distance fromto P is at
most2, as in the case of Figure 2 (left). As for the geodesic distance fraon, it is at most2 + T2_1
Both distances are bounded from abovesfsyx), so thatP and(@ are geodesisfs-samples ofX. Now, for
anygq; € Q, the geodesic distance frognto any other; is greater than half the length of the shortest loop
throughg; that winds around a hole. Therefore, the geodesic distancedram@ \ {¢;} is greater than
sfs(¢;). It follows that@ is sfs-sparse. However, the size €fis % times the size of?, wherek is of the
order of2¢, as observed before Theorem 4.17.

Proof of Lemma 6.2. Let L be the output landmarks set. Given any two poings ¢ € L, assume without
loss of generality thap was inserted in. beforeq. Then,q does not belong to the open geodesic ball of
centerp and radius;; sfs(p). Hencedx(p,p) > 5 sfs(p), which is at least. min{sfs(p), sfs(q)}.
Therefore L is {+_sfs-sparse.

Let now L’ C X be any geodesiesfs-sample ofX. Consider the functiom : L — L’ that maps
each point ofL to its nearest neighbor ify’ in the intrinsic metric, breaking ties arbitrarily. We then have
L] = > e Im=1({q})|. Therefore, to bound the size &f it is enough to bound the size of each set
7 ({q})-

Letq € L/, and letpy, - - - , pi, be the points of-—!({q}). All the pointsp; belong to the path-connected
componentX, of X that containg, sinceL’ is a geodesiesfs-sample ofX. If sfs(¢) = +o0, thenX, is
simply connected, and therefore the algorithm picks only one point figmit follows that|=~!(g)| = 1.
Assume from now on thaffs(¢) < +o00, which means thak(, is not simply connected and hence that the
sfs(p;) are finite.

SinceL'’ is a geodesiesfs-sample ofL, foralli = 1,--- , k we havedx(p;,q) < e sfs(p;), which is
at most;=- sfs(g) sincesfs is 1-Lipschitz in the intrinsic metric (Lemma 3.3). Hence, fhebelong to the
open geodesic ball of centgrand radius;=; sfs(¢). Moreover, assuming without loss of generality that
p1,-- - ,pr Were inserted inl in this order, we have that, for all < i < j < k, p; does not belong to
the open geodesic ball of centgrand radius; = sfs(p;). Hencedx (pi,p;) > 152 sfs(pi), which is at
Ieastﬁ sfs(q) sincedx (pi, q) < e sfs(p;) and sincesfs is 1-Lipschitz in the intrinsic metric. Therefore,
the p; are centers of pairwise-disjoint open geodesic balls of r&ﬁ% sfs(q), packed inside the open

geodesic ball of centerand radius(i + m> e sfs(q) = % e sfs(q).

It follows from the previous paragraph that the sizerof ({¢}) is bounded by the maximum number

of open geodesic balls of radi%li—g)2 sfs(q) that can be packed inside an open geodesic ball of radius
% ¢ sfs(q). By Lemma 4.16, this number is at most the minimum numbef geodesic balls of
radius ;55 sfs(q) that are necessary to cover a geodesic ball of raﬁﬁ{% e sfs(q). The ratio
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1—¢
is the doubling dimension dfX, dx). Thus, for all pointy of L', the size ofr~!(q) is at most2'¢, which
implies that|Z| < 2! |Z/|. O

between the two radii i§*3£2", thereforen is at most(2d)l = 2l wherel = {logQ MW andd

Note that the algorithm introduced in this section can also be used to geneniftar) e-sparse
geodesics-samples ofX, for any inpute > 0. It suffices indeed to remove the estimationstf from
the algorithm, which is no longer needed, and to consider open geodésiofradiuse instead of radius
1=sfs. The arguments of the proofs of Lemmas 6.1 and 6.2 still hold in this contextthantkchnical

+e

details are slightly simpler.

6.3 Computing the homology of Lipschitz domains in the plane

Given a finite samplind. of some Lipschitz planar domail, a variant of the procedure of Section 6.1
can be used to buil®x (L): grow geodesic balls around the pointsofat same speed, and report the
intersections between the fronts. The homologPaf(L) gives then the homology of, provided that’

is dense enough, by Theorem 4.3. However, in many practical situafioisspnly known through a finite
samplingl¥, which makes it hard to detect the intersections between more than two fhoriés type of
discrete setting, it is relevant to replace the constructioP of L) by the ones o€ (L) or R(L), for
some subset. C W of landmarks, since these constructions only require to co7mpare gedaiiksicces
at the points ofL. or W. The Betti numbers oDy (L) (and hence the one of) can then be obtained
as the ranks of the homomorphisms induced at homology level by the incIL@f}l;(sL) — C}"{,V/(L) or
Ra(L) — Ry (L), for well-chosen parametersy’ or «, o/, thanks to the results of Section 5.

More precisely, if we choose for instance to use witness complexes, teeramw select two integer
parameters < v/ and buildC¥ (L) andCY (L) by means of comparisons between the geodesic distances
from the points ofi¥ to the boints ofL. Then, using simplicial homology with coefficients in a field,
which in practice will beZ/2 — omitted in our notations, we have that for alle N the inclusion map
i:CY, (L) — €Y, (L) induces a homomorphisij : H(CY (L)) — H(CY, (L)). By applying
the persistence algorithm [40] to the filtratiG} , (L) — C¥ (L), we can compute the rank gf. Now,
thanks to Theorem 5.12, for any given choice of paramétélzs v/ > 0, the rank ofi; coincides with
the kth Betti number ofX provided thaiV, L. are dense enough€. thatd, e are small enough). Thus, the
homology of the domain can be inferred using witness complexes, undierentfsampling density.

7 Application to Sensor Networks

We have implemented the algorithms of Section 6 in the context of sensor netwdrére the nodes do not
have geographic locations, and where the intrinsic metric is approximatee lsjditest path length in the
connectivity graptlG = (W, E), which is assumed to comply with tigeodesianit disk graph model. This
means that each node has a geodesic communication rapgsathat two nodes, w’ € W are connected
in the graph iffdx (w,w’) < p. All edges have a unit weight, and we denotedaythe associated graph
distance — also called hop-count distance. This geodesic unit disk graghl is the analog of the standard
Euclidean unit disk graph model in the intrinsic metric.

Lemma 7.1 Assume thall is a geodesi@-sample ofX, with§ < %. Then, for all nodesv, w’ € W, we
have:
dX(w7 wl)

< dg(w,w') <
1
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Proof. Letw,w’ € W be two nodes of the graph. We first give an upper boundg@nConsider a shortest
path¢ from w to w’ inside X. We have|(| = dx(w,w’). Let0 = tg < t1 < -+ < ty1 <ty = 1
be distributed alond in such a way thatlx (¢(t;),((ti+1)) = p— 26 forall i = 0,--- ,m — 2, while

dX (wvw/)

dx (C(tm—-1),C(tm)) < p — 26. Clearly, we haven = {Ww For all 4, let w; be a point ofiV
closest ta((t;) in the intrinsic metric. SincéV is a geodesié-sample ofX, we havew, = ((ty) = w,
Wy, = ((ty) = @', anddx (w;, ((t;)) < ¢ for any otheri. It follows from the triangle inequality that:

dx (wi, wi1) < dx(wi, ((t:)) + dx (¢(t:), C(tiv1)) + dx (C(tiv1), wir1) < p. Thereforefw;, w;y1] is an
edge of the communication gragh and thus ta corresponds a pathin G. Both¢ and~y connectw to v’
and are made oh pieces stitched together. Hende;(w, w') < m = [%ﬁ;’ﬂ , which is bounded from

above by:
/ / /
{dx(%w)<1+45>-‘<dX(w7w><1+45>+1:dX(w7w)<1+45+ ! )
ft [ [t 1t 1t po dx(w,w)

Let us now give a lower bound aty;. Let~ be any path fromw to w’ in the communication grap@'.
For any consecutive nodes, w; 1 along the path, we hawex (w;, w;+1) < u sincefw;, w;4+1] is an edge
of G. Therefore, by the triangle inequalitymust have at Ieas(t%} edges. Since this is true for any

pathy fromw tow’ in G, dg(w,w’) > {d)‘(ﬁ’“’/)w > dX(‘:’w/). O

Assume now that is a {T_sfs-sparse geodesisfs-samplé! of X. Suppose thal <« p << ¢ < 1.
Given a witnessv € W, every landmarkpy € L that is not its closest landmark satisfiesy (w,p) =
Q(e) >> p, which implies thatdg (w, p) is an accurate approximation fé’(:’—’p), by Lemma 7.1. If now
p is the landmark closest to, then we may as well hawéx (w, p) << pu, but in this case we also have
dx(w,p) < dx(w,q) forall ¢ € L\ {p}, which implies thatl¢(w, p) < dg(w, q). As a resultdg may
change the order of the distances between the landmarks and interverted distances must have similar
values. In this respect, we can say ttgtis a faithful approximation td x, as it is known that the persistent
homology of the family of/-witness complexes is stable under such small perturbations [13].

Systolic feature size computation. Given a node:, we estimate the geodesic distance ¢ its cut-locus,
which by Lemma 5.6 is equal tds(x). Wanget al. [38] proposed a distributed algorithm for detecting the
cut-locus, which works as follows: the nodesends a flood message with initial hop count 1; each node
receiving the message forwards it after incrementing the hop count., el node learns its minimum
hop count to the node. Then, each pair of neighbors check whether their least common anfleGt)

is at hop-count distance at leaktIf so, then they also check whether their two shortest paths to the LCA
contain nodes at leagtaway from each other (by looking at tlgering neighborhoods of the nodes of the
paths). Every pair satisfying these conditions is called a cut pair. Agdriov38], every hole of perimeter
greater thanl yields a cut pair. Then, every cut node checks its neighbors, andasithie minimum hop
count, then it reports back te with the hop count value. Thus; gets a report from one node on each
connected component of the cut-locus, and learns the systolic featar@ssize minimum hop value.

Landmarks selection and witness complex computation. The landmarks selection procedure imple-
ments the incremental algorithm of Section 6.2 in a distributed manner. A nodedattescoveredand
uncovered A covered node lies inside the geodesic ball of some landmark. Initially,alhddes are un-
covered. They wait for different random periods of time, after whigy thromote themselves to the status
of landmark. Each new landmark floods the network, computes its systdlizéesize, and informs all the

0One may as well assume thaiis ane-sparse geodesicsample ofX, in a uniform version of the setting.
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nodes within its geodesic ball to be covered. Thus, every node evenbeaiynes covered or a landmark
itself.

The geodesic witness complex is computed in a similar way as in [23]. The stlantimarks flood
the network, and every node records its minimum hop counts to them. With thisnation, it determines
which simplices it witnesses. A round of information aggregation collects aBithplices and constructs
the witness complex in a centralized manner. In a planar setting, where orBettieumberss, and 5,
are non-zero, we only need to build the 2-skeleton of the withess comphexefbre, each node may store
only its three nearest landmarks, and it may avoid forwarding message®fther landmarks. This reduces
the message complexity drastically.

As for v-witness complexes, they are computed with the exact same proceduspt that each node
stores its geodesic distances tauts 1 nearest landmarks.

Simulation results and discussion. Figures 4 through 8 present our simulation results. We consider
sensor nodes randomly distributed in a Lipschitz planar domain. Two nattés wnit Euclidean distance
of each other are connected, so that the resulting communication netwoukiisddsk graph. The average
node degree in this graph is denoteddyThe intrinsic metric is approximated by the graph distance in
the connectivity network, where each edge can be either unweightpecthumt distance) or weighted by
its Euclidean length (weighted graph distance). Our aim is to evaluate thediemy of the landmarks
selection and homology computation on various parameters. For the homologytation we use the pair
of complexe¥ (L) andC)V(‘fy(L), wherelL is the landmarks set andis an integer parameter that ranges
typically betweer2 and11. The inclusiorC¥ (L) C C)VXV(L) holds because we restrict our construction to
the 2-skeleta of the complexes. Figure 4 shows a typical examples with.5 (a) ands = 0.25 (b). In both
cases, only the genuine 3 holes persist and are therefore identifiexh-dsvial 1-cycles in the geodesic
Delaunay triangulation.

e Nodes density.We vary the number of nodes from 217 to 355. The average degreensetha
same. The result is shown in Figure 5. Again, the persistent homology éetive witness complex
C¥ (L) and thev-witness complex’¥ (L) gives the homology of the domain. Thus, only the intrinsic
geometry of the domain matters, not the scale of the network, as long as thedatgins dense
enough.

e Landmarks densityFigure 6 shows our results on the same setup as abovegwith).85 (a) and
e = 0.15 (b). In the first case, only two holes are captured, because of the famniarks density.

In the second case, three non-genuine holes are not destroyeduwitigess complex, because the
value of the relaxation parameteris too small given the relatively low nodes density. Increasing
from 2 to 4 produces the correct answer (c). But settintp too high a valuei{ = 11, ¢ = 0.25)
destroys some of the genuine holes (d). Throughout our experimeatsigibrithm produced correct
results with small values aof (v < 4), provided that the nodes and landmarks sets were reasonably
dense. This demonstrates the practicality of our approach, despite tee¢Haayetical bounds stated

in Theorems 4.14 and 4.17.

e Weighted graph distance vs. hop-count distai@iace the hop-count distance is a poor approximation
to the geodesic distance, the range of values thfat work fine with it is reduced. In Figure 7 for
instance, the scheme works well with= 0.5, but not withe = 0.25, in contrast with the results of
Figure 4.

e Packing strategy.Figure 8 shows some of our sampling results. It appears that diffeeakiny
strategies can produce samples of very different sizes, as prediclezhiima 6.1. Maximizing the

ratio %&L’ at each iteration seems to be a very effective strategy in practice, butl#oigime-
consuming, and it tends to choose landmarks near the boundaries ofrfangdavhich can be a
quality or a defect, depending on the application considered.
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8 Conclusion

We have introduced a new quantity, called the systolic feature size, angtghbat it is well-suited for the
sampling and analysis of Lipschitz domains in the plane. In particular, gidemein X and a landmarks
set L that is sufficiently densely sampled froiX, the bound on the density depending on the systolic
feature size ofX, we have proved that the geodesic Delaunay triangulatidnisthomotopy equivalent to
X. The systolic feature size depends essentially on the global topology ahd it is rather insensitive
to the local geometry. As a result, it enables to have very sparse setsdofidats, which makes it a
convenient theoretical tool for geometric data analysis. In this contextawe devised generic procedures
for estimating the systolic feature size and for generating geogssisamples of Lipschitz planar domains.

With more practical applications in mind, we have focused on the geodesicswitoenplex and its re-
laxed version, proving that these two complexes sandwich the geoddaigriag triangulation under some
conditions. As an application, we have shown that it is possible to estimaterti@dgy of a Lipschitz pla-
nar domainX from a finite set of landmarké without actually buildingDx (L) explicitly, by constructing
cW (L) andC}’(‘fV(L) and computing their persistent homology. To give theoretical guarantehbss tap-
proach, we proved in the conference version of the paper that thisteert homology betwee®! (L) and
C)VXV(L) coincides with the homology dPx (L), yet under some fairly stringent sampling conditions. Our
practical experiments in the context of sensor networks suggest that waldditions should be sufficient.
Taking a different approach in the present paper, we have urembgeme sufficient conditions that depend
solely on the systolic feature size.

This work can be generalized in several ways. In a near future, wedntelook at possible extensions
for bounded domains in higher-dimensional Euclidean spaces, with apptisan robotics and geometric
data analysis. Also, it would be relevant to generate homology base®wlersents isolate the various
holes ofX. There exists some work along this line, but for a slightly different co&&t Finally, in order
to make the approach fully practical, it would be necessary to devise dietlibariants of the procedures
that build the simplicial complexes and compute the persistent homology. Wisitievariants exist is
still an open question at this time.
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A Appendix — Proof of Proposition 2.2

We use singular homology with real coefficients, so that our homologypgrate vector spaces over the
field R — omitted in our notations. Please refer to [31, Chap. 2] for an introductioartmtogy theory.

Proof of (). The proof is by induction ok. The case: = 1 is trivially true. Assume now that the
result is true up to some > 1, and considek + 1 planar setsXy, - - - , X1 satisfying the hypotheses
of Proposition 2.2 (i). Notice that each path-connected componefi of - - - N X, is the intersection
of some path-connected componé&nof ﬂle X; with Z = X1, which by the induction hypothesis are
simply connected. Intuitively, the presence of a hole in the intersettio would automatically imply the
presence of a hole ilf or in Z. Thus, the path-connected component¥ of Z must be simply connected,
sinceY andZ are.

Formally, sinceY’, Z andY N Z are ANR's, the triadY U Z, Y, Z) is excisive and the Mayer-Vietoris
long exact sequence holds:

S H(YUZ)BHYNZ) S YY) e H(Z) — -

SinceY andZ are simply connected, we havé (Y) = H,(Z) = 0, thereforeker ¢ = H;(Y N Z). By
exactnessker ¢ is also equal tom 092, which is trivial since we havél, (Y UZ) = 0, Y andZ being subsets
of R2. As aresult, we havél; (Y NZ) = 0. SinceH; (Y N Z) is the direct sum of thé; (C), for C ranging
over all the path-connected componentd’ofi Z, we haveH, (C) = 0 for each path-connected component
C of Y N Z. This implies that the fundamental group @fis trivial: indeed, sinc&' is a path-connected
planar set, its fundamental group is either free or uncountable, anddtesitis trivial if and only if its
abelianization (which is preciselif,(C)) is. As a conclusion(' is simply connected, which proves the
result fork + 1 and thereby concludes the inductiofl

To prove (ii), we need an easy intermediate result:

Lemma A.1 If X,Y are path-connected planar sets such than Y +# (), thenX U Y is path-connected.

Proof. Letp € X NY, and letg be any other point ok U Y. If ¢ € X, then there exists a path between
andq in X, which is path-connected. Otherwigglies inY’, and there exists a path betweeandq in Y,
which is also path-connected. Therefore, every poinkaf Y is path-connected tpin X UY’, which is
therefore path-connected.]

We can now prove (ii):

Proof of (ii)). Assume thatX NY is not empty. Intuitively, the topological type of U Y partially
determines the topological type &TN Y, in the sense that UY would have a hole if evek NY were not
path-connected, sincE, Y themselves are path-connected. Formally, sikic&” and X N'Y are ANR’s,
the triad(X U Y, X, Y) is excisive and the Mayer-Vietoris long exact sequence holds:

S HU(XUY) R Hy (X N Y) S Hy(X) @ Ho(Y) % Ho(x uY) 2 0.

SinceX NY # (), Lemma A.1 tells us thak’ U Y is path-connected, therefodém Hy(X UY') = 1. This
implies thatdim ker 9y = 1, and hence thatink ) = dim ker 9y = 1, by exactness. By the homomorphism
theorem, we havéimker ¢ = dim(Hy(X) @ Ho(Y)) — rank ¢, which is equal tal sinceX andY are
path-connected. Hence, by exactnessk ¢ = dimkery = 1. Moreover, since by assumptioiU Y

is simply connected, we havim H,(X UY) = 0, which implies thatank 9, = 0. By exactness, we
havedim ker ¢ = rank 9; = 0. Hence, by the homomorphism theoretim Hy(X NY) = dimker ¢ +
rank ¢ = 1, which means thak NY is path-connected[]
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