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Abstract

We present a novel reconstruction algorithm that, given an

input point set sampled from an object S, builds a one-

parameter family of complexes that approximate S at dif-

ferent scales. At a high level, our method is very similar in

spirit to Chew’s surface meshing algorithm, with one notable

difference: the restricted Delaunay triangulation is replaced

by the witness complex, which makes our algorithm applica-

ble in any metric space. To prove its correctness on curves

and surfaces, we highlight the relationship between the wit-

ness complex and the restricted Delaunay triangulation in

2d and in 3d. Specifically, we prove that both complexes

are equal in 2d and closely related in 3d, under some mild

sampling assumptions.

1 Introduction

The problem of reconstructing a curve or a surface from
scattered data points has received a lot of attention in
the past. Although it is ill-posed in general, since in-
finitely many shapes with different topological types can
interpolate a given point cloud, a number of provably
good methods have been proposed. The common de-
nominator of these methods is the assumption that the
input point set is densely sampled from a sufficiently
regular shape: this assumption makes the reconstruc-
tion problem well-posed, since all sufficiently regular
shapes interpolating the point set have the same topo-
logical type and are close to one another geometrically.
It suffices then to approximate any of these shapes to get
the right answer. The notion of ε-sample, introduced by
Amenta and Bern [1], provides a sound mathematical
framework for this kind of approach, the corresponding
set of reconstructible shapes being the class of manifolds
with positive reach [21]. A number of provably-good al-
gorithms are based on the ε-sampling theory – see [7] for
a survey, and several extensions have been proposed to
reconstruct manifolds in higher-dimensional spaces [12]
or from noisy point cloud data [20]. The theory itself
has been recently extended to a larger class of shapes,
known as the class of Lipschitz manifolds [6]. In all these
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methods, the Delaunay triangulation of the input point
set plays a prominent role since the final reconstruction
is extracted from it.

Figure 1: One-parameter family of complexes built by
the algorithm, and their Betti numbers.

This approach to surface reconstruction is limited
because it assumes implicitely that a point cloud should
always represent a single class of shapes. Consider the
example of a closed helical curve rolled around a torus
in R

3 – see Figure 1. Take a very dense uniform point
sample of the curve: what does this point set represent,
the curve or the torus? Although both objects are
well-sampled according to Amenta and Bern’s sampling
theory, classical reconstruction methods always choose
a single shape, here the curve or the torus, by restricting
themselves either to a certain dimension or to a certain
scale: for instance, the reconstruction method of [12]
or the dimension detection algorithm of [19] will detect
the curve but not the torus, since the point set is
a sparse sample of the curve but not of the torus.
Now, we claim that the result of the reconstruction
should not be either the curve or the torus, but both of
them. More generally, the result of the reconstruction
should be a one-parameter family of complexes, whose



elements approximate the original shape at different
scales, as illustrated in Figure 1. This point of view,
inspired from recent results in Computational Topology
[8, 11, 25], stands in sharp contrast with previous work
on reconstruction and is echoed in the literature on non-
linear dimensionality reduction [28, 30] and topological
persistence [16, 31].

This paper presents a novel reconstruction algo-
rithm that, given an input point set W sampled from
an object S, builds a one-parameter family of complexes
that approximate S at different scales. At a high level,
the method is very similar to Chew’s surface meshing al-
gorithm [5, 14]: it constructs a subset L of W iteratively,
while maintaining a subcomplex of the Delaunay trian-
gulation of L. The one-parameter family of complexes
obtained from this iterative process is the result of the
algorithm. The difference with Chew’s approach is that,
instead of maintaining the restricted Delaunay triangu-
lation of L, we maintain its witness complex CW(L). The
main advantages are that the underlying object S does
not have to be known, and that the full-dimensional
Delaunay triangulation D(L) does not have to be com-
puted. Moreover, the algorithm can be used in any met-
ric space, ultimately enabling new applications of the
Delaunay-based reconstruction ideas.

The witness complex can be viewed as a weak
version of the Delaunay triangulation, well-defined and
computable in any metric space – see Section 2 below.
As such, it has played an important role in the context of
topological data analysis [18]. It was first introduced by
de Silva [17], who proved that CW(L) is a subcomplex of
D(L) whenever the points of L lie in general position in
a Euclidean space. Moreover, if the set W of witnesses
spans the whole ambient space, then CW(L) is equal to
D(L). Now, the question is whether this property holds
when the points of W are sampled from a subset S of the
ambient space, such as for instance a submanifold: in
[18], Carlsson and de Silva observed that CW(L) is then
closely related to the restricted Delaunay triangulation
D|S(L), and they conjectured that both objects should
coincide under some sampling assumptions on W and L.
We prove that this conjecture is valid for a curve in the
plane, but not for a surface in 3d. In the latter case, we
show how to relax the definition of the witness complex
so that it contains D|S(L), and then how to extract a
subcomplex that approximates D|S(L) (and hence S).
This proves that our reconstruction algorithm is correct
when applied to point samples of Lipschitz curves or
surfaces.

We are only aware of one related result: in [3], Attali
et al. show that CW(L) and D|S(L) coincide whenever
the set W of witnesses spans an entire submanifold of
R

n of dimension one or two. This result differs from

ours in two ways: our set W can be finite, which makes
our result more practical, yet in return our set L has
to be sparse compared to W , for CW(L) to contain
D|S(L). This sparseness condition is not an issue in
practice, since the set L is constructed by the algorithm.
Other noticeable differences are that our manifolds can
have singularities, and that our point samples can be
noisy. Our assumption on the input point set W
is fairly mild, since it amounts to saying that the
Hausdorff distance between W and S is sufficiently
small. In particular, there is no sparseness condition
on W , and the amplitude of the noise can be as large
as the sampling density. This noise model, introduced
in [10] and used in subsequent work on reconstruction
[8, 11, 24, 25], is less restrictive than its predecessors
[13, 20, 23], and it makes our algorithm more practical.

The paper is organized as follows. In Section 2,
we recall several concepts that will be used later on. In
Section 3, we present our structural results. Specifically,
we prove that the restricted Delaunay triangulation
and the witness complex are equal in 2d (Section 3.1)
and closely related in 3d (Section 3.2), even when
the data are noisy (Section 3.3). In Section 4, we
introduce our reconstruction algorithm and present
some experimental results.

2 Background and definitions

Let S be a subset of R
2 (resp. R

3), L a finite set of
points in R

2 (resp. R
3), and ε a positive number.

Definition 2.1.

• L is an ε-noisy sample of S if no point of L is farther
than ε from S.
• L is an ε-sample of S if no point of S is farther than
ε from L.
• L is ε-sparse if the pairwise distances between the
points of L are at least ε.

A 0-noisy sample is called a noise-free sample. When
the first two conditions of the definition apply simulta-
neously, for a same ε, the Hausdorff distance between L
and S is bounded by ε. We denote by D(L) the Delau-
nay triangulation of L.

Definition 2.2. The Delaunay triangulation of L re-
stricted to S, or D|S(L) for short, is the subcomplex of
D(L) made of the Delaunay faces whose dual Voronoi
faces intersect S.

Let W be another set of points in R
2 (resp. R

3), finite
or infinite.

Definition 2.3.

• Given a point w ∈ W and a simplex σ = [p0, · · · , pl]
with vertices in L, w witnesses σ if p0, · · · , pl belong to



the l+1 nearest neighbors of w, that is, ∀i ∈ {0, · · · , l},
∀q ∈ L \ {p0, · · · , pl}, d(w, pi) ≤ d(w, q).
• The witness complex of L relative to W , or CW(L) for
short, is the maximum abstract simplicial complex with
vertices in L, whose faces are witnessed by points of W .

The fact that CW(L) is an abstract simplicial complex
means that a simplex belongs to the complex only if
all its faces do. By de Silva’s result1 [17], we have
CW(L) ⊆ D(L) for any sets W and L such that the
points of L lie in general position (which will be assumed
implicitly in the rest of the paper). This implies that
CW(L) is always an embedded simplicial complex. In
the sequel, L will be referred to as the set of landmarks,
and W as the set of witnesses.

Lipschitz curves and surfaces. Boissonnat and
Oudot [6] introduced a new framework for the analysis
of Delaunay-based sampling algorithms. This frame-
work relies on a quantity, called the Lipschitz radius,
which plays a role equivalent to the local feature size of
Amenta and Bern [1], on a broader class of shapes – the
class of Lipschitz curves and surfaces.

Definition 2.4. Let S be the boundary of a bounded
open subset O of R

2 (resp. R
3). Given a point p ∈ S,

the k-Lipschitz radius of S at p, or lrk(p) for short,
is the maximum radius r such that O ∩ B(p, r) is the
intersection of B(p, r) with the hypograph of some k-
Lipschitz univariate (resp. bivariate) function. We call
lrk(S) the infimum of lrk over S.

It is proved in [6] that lrk(S) > 0 whenever S is a
k-Lipschitz curve in R

2 or surface in R
3. In such a

case, one can attach to each point p ∈ S a so-called
k-Lipschitz normal nk(p) and a so-called k-Lipschitz
support plane Tk(p), which play a role similar to the
usual normal vector and tangent plane in the Lipschitz
setting. The main result of [6] is the following:

Theorem 2.1. Let S be a k-Lipschitz surface in R
3 and

L ⊂ S a finite point set, such that:
H1 L is an ε-sample of S, with ε < 1

7 lrk(S),
H2 the triangles of D|S(L) have radius-edge ratios of

at most %, with % < cos 2θ
2 sin θ , where θ = arctan k.

Then, D|S(L) is a 2-manifold isotopic to S, at Hausdorff
distance at most ε from S, and whose oriented normals
approximate the k-Lipschitz normals of S within an
angle of arcsin (2% sin θ).

Another useful result, proved in [26], is an equivalent of
Proposition 13 of [4] for Lipschitz surfaces:

1In his paper, de Silva distinguishes between weak witnesses

and strong witnesses. Here, all witnesses are weak.

Lemma 2.1. Let S be a k-Lipschitz surface in R
3, with

k < 1. Then, ∀p ∈ S, ∀r ≤ lrk(p), S ∩ B(p, r) is a
topological disk.

Similar results exist in the planar case, with similar yet
simpler proofs (omitted here):

Lemma 2.2. Let S be a k-Lipschitz curve in R
2, with

k < 1. Then, ∀p ∈ S, ∀r ≤ lrk(p), S ∩ B(p, r) is
a topological arc. Moreover, the orthogonal projection
of S ∩ B(p, r) onto Tk(p) is a segment whose vertices
are the orthogonal projections of the two endpoints of
S ∩ B(p, r).

Theorem 2.2. If S is a k-Lipschitz curve in the plane,
with k < 1, and if L is an ε-sample of S, with ε <
lrk(S), then D|S(L) is a polygonal curve homeomorphic
to S and at Hausdorff distance at most ε from S.

3 Structural results

In this section, we highlight the relationship between
the witness complex and the restricted Delaunay trian-
gulation in 2d and in 3d. Let S be a k-Lipschitz man-
ifold, i.e. either a k-Lipschitz curve in the plane (Sec-
tion 3.1) or a k-Lipschitz surface in 3d (Section 3.2),
for some constant k ≥ 0. For convenience, we define
θ = arctan k ∈ [0, π/2[. Let W be a δ-noisy δ-sample
of S and L ⊂ W an ε-sparse ε-sample of W . The con-
stants δ and ε will be made explicit later on. Clearly,
L is a (δ + ε)-sample of S. We assume that no vertex
of the Voronoi diagram of L lies on S, a condition that
can always be satisfied by an infinitesimal perturbation
of the points of L since S has non-zero codimension. In
Sections 3.1 and 3.2, we assume further that L is noise-
free (L ⊂ S). The case of a noisy set of landmarks is
deferred to Section 3.3.

3.1 The planar case.

Theorem 3.1. Assume that θ < arcsin 1
8 ≈ 7.2 deg and

that δ < min{ 1−8 sin θ
12 , 3 cos θ−2

4(9 cos θ+6)} lrk(S). If ε satisfies

max
{

12 sin θ
1−8 sin θ , 6

3 cos θ−2

}

δ < ε < 1
8 lrk(S) − 3

2 δ, then

CW(L) coincides with D|S(L).

The lower bound on ε means that the set W of
witnesses must be sufficiently dense2 compared to the
set L of landmarks, for the simplices of D|S(L) to be
witnessed. An illustration is given in Figure 2, which
shows that CW(L) contains D|S(L) when L is sparse (left
picture), whereas when L = W (ε = 0), CW(L) coincides
with the nearest neighbor graph of L, which has nothing
to do with D|S(L) (right picture). The upper bound on ε

2In particular, we have ε > 6δ.



Figure 2: A set of witnesses sampling a smooth closed
curve with noise, and two different subsets of landmarks
(in green) together with their witness complexes.

ensures that the set L of landmarks is sufficiently dense,
so that the nice properties of D|S(L) stated in Section 2
hold, and that classical local arguments can be applied
to show that CW(L) is included in D|S(L).

The proof of the theorem proceeds in two stages:
first, we show that D|S(L) is included in CW(L) (Lemma
3.1), then we show that CW(L) is included in D|S(L)
(Lemma 3.2).

Lemma 3.1. Assume that θ < π
6 and that δ <

min{ 1−2 sin θ
2 , 3 cos θ−2

2(3 cos θ+4)} lrk(S). If ε satisfies

max{ 2 sin θ
1−2 sin θ , 6

3 cos θ−2} δ < ε < 1
2 lrk(S) − δ, then

D|S(L) is included in CW(L).

Proof. Let e = [u, v] be an edge of D|S(L). By definition
of D|S(L), the dual Voronoi edge of e intersects S at
some point c. Let r = d(c, u) = d(c, v) = d(c, L), which
is at most ε + δ since L is a (δ + ε)-sample of S. Since
W is a δ-sample of S, there is some w ∈ W at distance
at most δ from c. Then, u and v are both included in
B(w, ε + 2δ).

Let p be any point of L \ {u, v}. We will prove
that p /∈ B(w, ε + 2δ), which means that w witnesses
e. Consider the portion of S that lies in B(c, r).
Since r ≤ ε + δ < lrk(S), we know from Lemma 2.2
that S ∩ B(c, r) is a topological arc whose endpoints
are u, v and whose orthogonal projection onto Tk(c) is
the line segment [ū, v̄], where ū, v̄ are the orthogonal
projections of u, v. If p does not belong to B(c, lrk(S)),
then it does not belong to B(w, ε + 2δ) either, since
B(w, ε + 2δ) ⊆ B(c, ε + 3δ), which by hypothesis is
included in B(c, lrk(S)). Otherwise, since p ∈ L\{u, v},
S∩B(c, r) contains c but not p, therefore [ū, v̄] contains
c but not the projection p̄ of p, because the projection
from S ∩ B(c, lrk(S)) to Tk(c) is one-to-one. As a
consequence, d(c, p) is at least d(c, p̄) ≥ d(c, {ū, v̄}) +
d(p̄, {ū, v̄}). Since L is ε-sparse, we have d(p, u) ≥ ε,

d(p, v) ≥ ε, and d(c, u) = d(c, v) ≥ d(u,v)
2 ≥ ε

2 .
Moreover, since S ∩ B(c, lrk(S)) is the graph of a k-
Lipschitz univariate function defined over Tk(c), we have
d(p̄, ū) ≥ d(p, u) cos θ, d(p̄, v̄) ≥ d(p, v) cos θ, d(c, ū) ≥

d(c, u) cos θ, and d(c, v̄) ≥ d(c, v) cos θ. As a result,

d(c, p) ≥ d(c, p̄) ≥ d(c, {ū, v̄}) + d(p̄, {ū, v̄})
≥ ε

2 cos θ + ε cos θ = 3
2ε cos θ.

This expression is greater than ε+3δ since ε > 6δ
3 cos θ−2 ,

by hypothesis. It follows that p is farther than ε + 3δ
from c, and hence farther than ε + 2δ from w. Thus, w
witnesses [u, v]. Similarly, every other edge of D|S(L)
is witnessed by some point of W . Since L ⊆ W ,
the vertices of D|S(L) witness themselves, hence the 1-
skeleton of D|S(L) is included in CW(L).

Finally, we assumed that no Voronoi vertex lies
on S, which implies that D|S(L) has no simplex of
dimension two or more. Hence, D|S(L) is equal to its
1-skeleton, which is included in CW(L). This proves the
lemma. ¤

The proof of the second lemma uses similar argu-
ments and is therefore omitted.

Lemma 3.2. Assume that θ < arcsin 1
8 and that δ <

1−8 sin θ
12 lrk(S). If ε satisfies 12 sin θ

1−8 sin θ δ < ε < 1
8 lrk(S)−

3
2 δ, then CW(L) is included in D|S(L).

3.2 The 3d case. Unlike in the planar case, the wit-
ness complex and the restricted Delaunay triangulation
of points sampled from a surface in 3d may not always
coincide, even in situations where the sets of witnesses
and landmarks satisfy strong sampling conditions. The
reason is that, when a tetrahedron t of D(L) has almost
cocircular vertices, the chance for any of the diagonal
edges of t to be witnessed by a point of W is small –
such a tetrahedron is called a sliver in the literature [29].
In order to give an intuition of this fact, let us assume
for simplicity that the surface is flat and that the ver-
tices of t are cocircular, as in Figure 3 (left). The order-2
Voronoi diagram of the vertices is then degenerate, the
Voronoi cells of the diagonal edges being reduced to a
single point p that lies at the intersection of the edges of
the diagram. Therefore, any diagonal edge can be wit-
nessed only by p, which means that the probability for
any triangle of the quadrangle to be witnessed when W
is finite is zero. As a result, holes appear with probabil-
ity one in the witness complex, as illustrated in Figure 4
(left).

When the vertices of tetrahedron t are almost-
cocircular, as in Figure 3 (right), the order-2 Voronoi
cell of one diagonal edge is empty, while the cell of the
other diagonal edge is arbitrarily small. Thus, the prob-
ability for any triangle of the quadrangle to be witnessed
when W is finite is also arbitrarily small. Although it
is always possible to perturbate the point set L so that
the points are in general position, guaranteeing that the



Figure 3: Order-2 Voronoi diagrams in the plane.

Figure 4: Witness complex and ν-witness complex.

order-2 Voronoi cells of the edges of D|S(L) are suffi-
ciently large requires large perturbations, which are not
tractable in practice since the underlying surface S is
unknown.

3.2.1 The ν-witness complex. Our approach for
dealing with the above issue consists in relaxing the
definition of the witness complex, so that the latter
includes the restricted Delaunay triangulation. This
requires to modify the concept of witness:

Definition 3.1. Given an integer m, a point w ∈ W
and a simplex σ = [p0, · · · , pl] with vertices in L, w m-
witnesses σ if all the d(w, pi) are among the m smallest
values of the set {d(w, q), q ∈ L}.
Observe that, in the case where m ≤ l, some vertices of
σ must be equidistant to w for w to m-witness σ. In
particular, if m = 1, then all the points of σ must be
equidistant to w, which means that w is a strong witness
of σ, or equivalently, that σ is a Delaunay simplex. If
m = 0, then no point w ∈ W can m-witness σ. In
[18], the authors use m-witnesses only for edges. More
generally, we use them for simplices of all dimensions:

Definition 3.2. Given a countable sequence ν of inte-
gers, the ν-witness complex of L relative to W , or CW

ν (L)
for short, is the maximum abstract simplicial complex
with vertices in L, such that each i-face is νi-witnessed
by some point of W .

Since the simplices of CW
ν (L) have their vertices in L,

their dimension is at most |L|−1. Hence, in the sequence

of integers, only ν0 through ν|L|−1 are used. There is
a natural relationship between CW(L) and CW

ν (L): if
νi ≥ i + 1 ∀i, then CW

ν (L) contains CW(L); in contrast,
if νi ≤ i + 1 ∀i, then CW

ν (L) is included in CW(L); thus,
CW(L) = CW

ν (L) whenever νi = i + 1 ∀i. In addition, if
νi = 0 for some i, then the i-skeleton of CW

ν (L) is empty,
since a simplex cannot be 0-witnessed, and therefore the
dimension of CW

ν (L) is at most i − 1.

Theorem 3.2. Assume that θ < arccos (2 sin π/7) ≈
29.7 deg and that δ < cos θ−2 sin π/7

3 cos θ+2 sin π/7
lrk(S). If ε satisfies

8 sin π/7

cos θ−2 sin π/7
δ < ε < lrk(S)− 3δ, then, for any sequence

ν of integers such that ν0 ≥ 1, ν1 ≥ 6 and ν2 ≥ 6,
D|S(L) is included in CW

ν (L).

Proof. Since the vertices of D|S(L) belong to L, which
is included in W , they witness themselves and thus
belong to CW

ν (L). In addition, since we assumed that
no Voronoi vertex lies on S, D|S(L) contains no simplex
of dimension three or more.

Let σ be a simplex (edge or triangle) of D|S(L),
and let B(c, r) be a Delaunay ball centered on S and
circumscribing σ. Since W is a δ-sample of S, there is a
point w ∈ W at distance at most δ from c. Then, σ lies
in the ball B(w, r+δ), which is included in B(c, r+2δ).

Claim 3.1. The ball B(c, r + 2δ) contains at most six
points of L.

Proof. Since L is a (δ + ε)-sample of S, the radius r of
the surface Delaunay ball is at most δ + ε. Therefore,
r + 2δ ≤ ε + 3δ, which is less than lrk(S) according
to the hypothesis of Theorem 3.2. It follows that
S ∩ B(c, r + 2δ) is the graph of a k-Lipschitz bivariate
function defined over the plane Tk(c).

Let p1, · · · , pl be the points of L∩B(c, r + 2δ). We
call p̄1, · · · , p̄l their orthogonal projections onto Tk(c).
Since L is ε-sparse, the pi are at least ε away from one
another. And since they belong to S ∩ B(c, lrk(S)),
which is the graph of a k-Lipschitz bivariate function
defined over the plane Tk(c), their projections p̄i are at
least ε cos θ away from one another. Moreover, since
B(c, r) is a Delaunay ball, the pi are at least r away
from c, hence the p̄i are at least r cos θ away from c.

The rest of the proof depends on whether r ≥ ε or
r < ε. In fact, the overall ideas are the same, but some
technical details differ.

• If r ≥ ε, then, inside Tk(c), c and the p̄i are centers
of pairwise-disjoint open disks of radius ε

2 cos θ. Let
Dc, D1, · · · , Dl denote these disks. Since the pi belong
to B(c, r + 2δ), the p̄i belong to the disk D(c, r + 2δ).
Therefore, Dc, D1, · · · , Dl form a congruent packing of
the disk D(c, r + 2δ + ε

2 cos θ). Now, according to the



hypotheses of the claim, we have:

r+2δ+
ε

2
cos θ ≤ ε+3δ+

ε

2
cos θ <

ε

2
cos θ

(

1

sin π/7
+ 1

)

.

Hence, by a classical result on congruent packings of
disks [22, 27], there are at most seven disks of radius
ε
2 cos θ packed in D(c, r + 2δ). The fact that Dc is one
of them implies that l ≤ 6, which proves the claim in
the case where r ≥ ε.

• If r < ε, then c and the p̄i are centers of
pairwise-disjoint open disks of radius r

2 cos θ. Let
Dc, D1, · · · , Dl denote these disks. Since the pi belong
to B(c, r + 2δ), Dc, D1, · · · , Dl are included in D(c, r +
2δ + r

2 cos θ). Now, B(c, r) is a Delaunay ball, hence
its bounding sphere contains at least two points of L,
which implies that r ≥ ε/2. Moreover, the hypotheses

of the claim state that δ < ε
4

(

cos θ
2 sin π/7

− 1
)

, which is at

most r
2

(

cos θ
2 sin π/7

− 1
)

. Therefore, Dc, D1, · · · , Dl form a

congruent packing of a disk of radius:

r + 2δ + r
2 cos θ < r + r

(

cos θ
2 sin π/7

− 1
)

+ r
2 cos θ

= r
2 cos θ

(

1
sin π/7

+ 1
)

.

It follows, by the same result as above on congruent
packings of disks, that l ≤ 6, which proves the claim in
the case where r < ε. ¤

Claim 3.1 implies that the vertices of σ are among
the six nearest neighbors of w. Since this is true for
any edge or triangle of D|S(L), and since the vertices of
D|S(L) belong to CW

ν (L), CW
ν (L) contains all the edges

and triangles of D|S(L). This ends the proof of the
theorem. ¤

The next theorem guarantees that the simplices
of CW

ν (L) are not too large as long as the νi remain
bounded. It follows that the size of CW

ν (L) is linear in
|L|, since L is sparse. This property can be generalized
to higher dimensions, at the price of an exponential
growth of the constant factor. This motivates the
use of the witness complex instead of the Delaunay
triangulation.

Theorem 3.3. Assume that δ, ε satisfy δ + ε <
cos θ√

6
lrk(S). Then, for any point w ∈ W , the dis-

tance between w and its sixth nearest neighbor among

the points of L is at most δ +
( √

6
cos θ + 1

)

(δ + ε). As

a consequence, for any sequence ν of integers such that
ν1 ≤ 6, the total number of simplices of CW

ν (L) is at

most 2O((δ+ε/ε cos θ)3)|L|, which is linear with respect to
|L| as far as θ is fixed and δ is within a constant factor
of ε.

Proof. Let w ∈ W and let w̄ be a point of S closest
to w. Since W is a δ-noisy sample of S, we have
d(w, w̄) ≤ δ. We call p1, · · · , pl the points of L that

lie in B
(

w̄,
( √

6
cos θ + 1

)

(δ + ε)
)

, and p̄1, · · · , p̄l their

orthogonal projections onto the plane Tk(w̄). We will
prove that l ≥ 6.

Since L is a (δ + ε)-sample of S, the balls Bi =
B(pi, δ + ε) cover S ∩ B(w̄, (δ+ε)

√
6/cos θ) (observe that,

among the balls of radius δ + ε centered at the points of
L, only the Bi intersect B(w̄, (δ+ε)

√
6/cos θ)). It follows

that, inside Tk(w̄), the disks Di = D(p̄i, δ +ε) cover the
orthogonal projection of S ∩ B(w̄, (δ+ε)

√
6/cos θ). Now,

according to the hypothesis of the lemma, we have
(δ+ε)

√
6/cos θ < lrk(S). Thus, by Lemma 2.1, S ∩

B(w̄, (δ+ε)
√

6/cos θ) is a topological disk whose orthogonal
projection onto Tk(w̄) contains the projection D of the
intersection of B(w̄, (δ+ε)

√
6/cos θ) with the cone of apex

w̄, of axis aligned with nk(w̄) and of half-angle π
2 − θ.

Therefore, the Di cover D, which is a disk of center w̄
and radius (δ + ε)

√
6. Thus, the number of disks Di is

at least

Area(D)

Area(Di)
=

6π(δ + ε)2

π(δ + ε)2
= 6.

It follows that the number of points of L that lie in

B
(

w̄,
( √

6
cos θ + 1

)

(δ + ε)
)

is at least 6. As a result, the

distance from w to its sixth nearest landmark is at most
d(w, w̄) +

( √
6

cos θ + 1
)

(δ + ε) ≤ δ +
( √

6
cos θ + 1

)

(δ + ε).

Let us now bound the size of CW
ν (L). Let p be

a point of L. From the above paragraph we deduce
that the edges of CW

ν (L) incident to p are included in

balls of radii at most δ +
( √

6
cos θ + 1

)

(δ + ε). Hence,

all edges belong to a common ball of center p and

radius r ≤ 2δ + 2
( √

6
cos θ + 1

)

(δ + ε), which is equal to

2ε
(

1 +
√

6
cos θ +

( √
6

cos θ + 2
)

δ
ε

)

. The neighboring vertices

q1, · · · , ql of p in CW
ν (L) belong to B(p, r) as well. Now,

since the points of L are farther than ε from one another,
the qi are centers of pairwise-disjoint balls of radius
ε/2, hence their number l is at most Vol(B(p,r))

Vol(B(p,ε/2)) ≤

64
(

1 +
√

6
cos θ +

( √
6

cos θ + 2
)

δ
ε

)3

= O
(

1
cos3 θ

(

1 + δ
ε

)3
)

.

Since every simplex of CW
ν (L) incident to p is uniquely

defined as a subset of {q1, · · · , ql}, the number of
simplices of CW

ν (L) incident to p is at most 2l, which
gives the result. ¤

3.2.2 Manifold extraction. It follows from The-
orem 3.2 that CW

ν (L) contains D|S(L), but Figure 4



(right)3 shows that CW
ν (L) is not restricted to D|S(L)

and contains additional simplices that are small enough
to be ν-witnessed. Nevertheless, it is possible to extract
from CW

ν (L) a simplicial surface Ŝ isotopic to S and at
Hausdorff distance O(ε + δ) of S. The extraction pro-
cedure takes a number % as parameter and proceeds as
follows:

1. Since the goal is to extract a 2-manifold, only
the 2-skeleton of CW

ν (L) is considered. Since it
may not be an embedded complex, we intersect
it with D(L). The result is a pure 2-dimensional
subcomplex C of D(L).

2. To guarantee that the output simplicial surface
has no skinny triangle, we delete from C all the
triangles of radius-edge ratio greater than %.

3. We greedily remove from C all the triangles in-
cident to sharp edges. An edge is sharp if all its
incident triangles in C lie in a small wedge of angle
at most π/2. This definition applies in particular
to edges that are incident to one single triangle.

4. By a depth-first walk in the dual graph of the re-
maining part of C, we extract the outer boundary
of C.

Observe that steps 3. and 4. correspond to the manifold
extraction procedure of [1, 2]. As argued in these
papers, the outcome is a simplicial complex Ŝ whose
dihedral angles are greater than π/2. Moreover, thanks
to step 2., the radius-edge ratios of the facets of Ŝ
are at most %. However, two issues arise: first, by
greedily removing non-Delaunay triangles or triangles
with sharp edges or large radius-edge ratios from CW

ν (L),
steps 1. through 3. might end up with an empty
complex C. As a result, Ŝ may be empty. Second,
the outer boundary of C might not be an embedded
surface since it may contain multiple vertices or edges.
By proceeding with a depth-first search on the dual
graph of C, step 4. duplicates multiple vertices and
edges, so that the resulting complex Ŝ is a simplicial
surface whose immersion in R

3 coincides with the outer
boundary of C.

Theorem 3.4. Let % = 1 + 1−2 sin π/7

8 sin π/7
≈ 1.038. As-

sume that θ < arctan
√

3
1+4% ≈ 18.6 deg. If δ, ε satisfy

8 sin π/7

cos θ−2 sin π/7
δ < ε < cos3 θ

(cos θ+
√

6)(4+3 cos2 θ)%
√

3
lrk(S) −

2 cos θ+
√

6
cos θ δ, then, for any sequence ν of integers such

that ν0 ≥ 1 and ν1 = ν2 = 6, the simplicial complex Ŝ
extracted from CW

ν (L) with parameter % is an embedded
surface isotopic to S and at Hausdorff distance at most
(

δ +
( √

6
cos θ + 1

)

(δ + ε)
)

%
√

3
cos2 θ from S.

3Thanks to a bug in Geomview, we can see some hidden

triangles in the vicinity of slivers, such as in green areas.

The proof of the theorem (omitted here) is roughly the
same as in Section 5 of [6]. Here is a short overview:

– First, we show that the triangles of D|S(L) are not
skinny and make large dihedral angles. This fact,
combined with Theorem 3.2, implies that complex
C contains D|S(L) after step 3. above. We deduce

that Ŝ is not empty, since D|S(L) is a manifold
without boundary, by Theorem 2.1.

– Second, we use Theorem 3.3 (ii) of [6] to show that
Ŝ is a Lipschitz surface, which implies in particular
that it is an embedded surface.

– Third, we use Proposition 6.4 of [6] to bound the
Hausdorff distance dH(Ŝ, S) between Ŝ and S.
We show that dH(Ŝ, S) is small compared to the
Lipschitz radii of Ŝ and S.

– Finally, we apply Theorem 6.2 of [9] to show that
Ŝ and S are isotopic.

3.3 Dealing with noisy data. Our previous results
hold provided that the set L of landmarks lies on the
curve or surface S. Theorem 3.5 below shows that this
condition is not mandatory, under some restrictions on
the densities of W and L. Let λ0 ≈ 0.078 denote the
smallest positive root of the polynomial 64λ6 +832λ5 +
1008λ4−160λ3−4λ2−12λ+1, and for any θ ∈ [0, π

2 ], let

λ(θ) be the smallest positive root of 16(4 sin2 θ−1)λ6 +
32λ5−12(2+3 sin2 θ)λ4+8λ3+(4 sin2 θ+63)λ2+64λ−16.

Theorem 3.5. Let S be a k-Lipschitz surface in R
3,

and let L be a δ-noisy ε-sparse (δ + ε)-sample of S.
Assume that δ, ε satisfy the following conditions, where
θ = arctan k:














δ < min
{

1
4 ,

√
2−4 sin θ

2(
√

2+4 sin θ)
, cos(2θ)−2 sin θ

2(cos(2θ)+2 sin θ) , λ0, λ(θ)
}

ε

δ < min
{

1
14 − ε

2lrk(S) ,
1
6 − 7ε

12lrk(S)

}

lrk(S)

Then, there exists a k′-Lipschitz surface S′, passing
through the points of L, isotopic to S, and at Hausdorff
distance at most ε + 3δ from S, such that:























k′ = tan



arcsin





4((1+2 sin θ) δ

ε
+sin θ)

2 sin

„

arcsin
1−2 δ

ε

2(1+2 δ
ε
)
−2 arcsin

2 δ
ε

1−2 δ
ε

«









lrk′(S′) ≥ lrk(S) − (2ε + 7δ) > 1
2 lrk(S)

If the set W of witnesses is a δ-noisy δ-sample of
a k-Lipschitz surface S, for some sufficiently small δ
(as compared to lrk(S)), then Theorem 3.5 ensures that
there exists an interval of values of ε such that any ε-
sparse ε-sample L of W lies on a k′-Lipschitz surface
S′, with k′ = O(k + δ/ε) and lrk(S′) = Ω(lrk(S)). The
structural results of Section 3.2 apply then to S ′, W ,
L. And since S′ is isotopic to S and close to it for the
Hausdorff distance, these results hold for S, W , L as



well, with slightly worse constants. There exists also a
version of Theorem 3.5 for Lipschitz curves, which can
be combined with the structural results of Section 3.1.

The proof of the theorem (omitted here) consists
in building an isotopy φ : [0, 1] × S → R

3 such
that S′ = φ(1, S) is a k′-Lipschitz surface passing
through the points of L, with k′ = O(k + δ/ε) and
lrk′(S′) = Ω(lrk(S)). Intuitively, since the points of L lie
ε away from one another, with ε large compared to the
amplitude δ of the noise, the surface S can be snapped
onto the points of L without changing its normals too
much. This can be easily seen on simple examples, such
as for instance when S is the x-axis in R

2 (in this case,
the snapped curve is the polygonal chain connecting the
points of L in the order of their abscissae).

4 Application to reconstruction

4.1 Algorithm. The algorithm works in any arbi-
trary metric space. It takes as input a finite point set
W , identified as the set of witnesses, and an optional
countable sequence ν of integers, whose default value is
νi = i+1 ∀i (which corresponds to CW

ν = CW). The algo-
rithm constructs a set L ⊆ W of landmarks iteratively,
starting with L = ∅, and in the meantime it maintains
CW

ν (L). At each iteration, the witness lying furthest
away from L is inserted in L, and CW

ν (L) is updated as
described below. The process stops when L = W . The
output of the algorithm is either the one-parameter fam-
ily of complexes CW

ν (L) built throughout the process, or
simply the diagram of their Betti numbers, computed
on the fly using the persistence algorithm4 of [31]. With
this diagram, the user can determine the scale at which
to process the data: it is then easy to generate the cor-
responding subset of landmarks (the points of W have
been sorted according to their order of insertion in L)
and to rebuild its witness complex.

4.2 Update of CW
ν (L). Our strategy to update

CW
ν (L) relies on the following observation: when a wit-

ness p is inserted in L, every simplex that appears in
CW

ν (L) is incident to p, whereas every simplex that dis-
appears from CW

ν (L) has a face that is no longer ν-
witnessed. It follows that the ν-witnesses of all these
simplices belong to the reverse κ-nearest landmarks5 of
p, where κ = min{|L|, maxi νi}. Hence, CW

ν (L) can be
updated by performing a reverse κ-nearest landmarks
search on p, and then, for each witness w in the out-
come, a κ-nearest landmarks search on w, to determine

4The filtration used in [31] is rebuilt at each iteration, since

some simplices are deleted from our complex CW
ν (L).

5These are the witnesses that have p among their κ-nearest

landmarks.

which simplices to insert or delete from CW
ν (L). A num-

ber of dynamic data structures exist that can perform
these queries efficiently – see [15] for a survey. Note how-
ever that κ can be as large as |W |, a case in which the
above queries take linear time. Moreover, when νi ≥ |L|
∀i, CW

ν (L) coincides with the complete hypergraph of L
and hence has an exponential size. Nevertheless, in Eu-
clidean space R

n, κ is more likely to be a constant de-
pending (exponentially) on n, which reduces the size of
CW

ν (L) to O(|L|), by Theorem 3.3. The total time spent
to maintain CW

ν (L) is then O(|W |2), since any newly-
created landmark has Θ(|W |) reverse κ-nearest land-
marks (these can be detected naively by an exhaustive
search on the set W ), each of which witnesses a constant
number of simplices (these can be found by maintain-
ing the lists of κ-nearest landmarks of the witnesses).
We conjecture that it should be possible to reduce the
time complexity to O(|W | log |W |), under some sparse-
ness condition on W .

4.3 2d and 3d cases. We take ν = (1, 2, 3) in 2d
and ν = (1, 6, 6, 4) in 3d, as prescribed by the theory.
Moreover, we replace CW

ν (L) by its intersection with
D(L). This makes sense because, D|S(L) being a subset
of D(L), Theorems 3.1 and 3.4 hold the same if CW

ν (L) is
replaced by CW

ν (L)∩D(L). The advantage of the latter
complex is that it can be stored as a subcomplex of
D(L), which allows to speed-up the (reverse) κ-nearest
landmarks queries in practice. Another thing in 3d is
that we also maintain the subcomplex Ŝ extracted by
the procedure of Section 3.2.2.

4.4 Theoretical guarantees. Let L(i) denote the
set L at the end of iteration i of the algorithm. Calling
ε(i) the minimum number such that L(i) is an ε(i)-
sample of W , we have the following:

Lemma 4.1. At any iteration i, L(i) is an ε(i)-sparse
ε(i)-sample of W .

Proof. At each iteration j ≤ i of the algorithm, the
witness p(j) farthest from L(j−1) is inserted in L(j−1).
Right before this insertion, L(j−1) is an ε(j−1)-sample
of W . This means that the distance from p(j) to L(j−1)
is ε(j−1). Since L keeps growing during the process, we
have ε(j) ≥ ε(j + 1), ∀j ≤ i. Thus, each point inserted
in L before or at iteration i is at least ε(i−1) away from
L at the time of its insertion. This implies that L(i) is
ε(i − 1)-sparse, and therefore also ε(i)-sparse. ¤

From this lemma and from Theorems 3.1, 3.4 and
3.5, we deduce that, if W is a δ-noisy δ-sample of some
k-Lipschitz manifold S in R

2 (resp. R
3), for sufficiently

small values of δ and k, then there exists an interval of



Figure 5: Diagram of Betti numbers of Ŝ for the
Tanglecube point set.

values of ε(i) such that CW(L(i)) (resp. Ŝ) is a correct
approximation of S. Therefore, the topological type
of CW(L) (resp. Ŝ) stabilizes for some time during the
course of the algorithm, and so do topological invariants
such as homology groups. The duration of the stabilized
phase depends on the ratio δ/lrk(S).

These guarantees hold provided that the input
point set W is a δ-noisy δ-sample of the underlying
manifold S, for some sufficiently small value of δ. This
is equivalent to saying that the Hausdorff distance
between W and S is bounded by δ. In particular, there
is no sparseness condition on W , and the amplitude of
the noise can be as large as the sampling density.

4.5 Experimental results and discussion. Fig-
ure 5 shows three main phases in the evolution of the
Betti numbers of Ŝ (the x-axis represents 1/ε(i) on a log-
arithmic scale): first, their behaviour is erratic and the
topology of Ŝ keeps changing, because ε(i) is too large
compared to lrk(S); then, the Betti numbers stabilize
and a plateau appears in the diagram, as predicted by
the theory; finally, ε(i) becomes too small compared to
δ, and holes appear in the complex, which doom the
manifold extraction process. Some snapshots of Ŝ dur-
ing the three phases are given at the bottom of Figure 5.
The plateau in Figure 6 is smaller, due to the fairly high
value of δ in the data set. Observe that the topological
type of Ŝ on the plateau (genus = 6) coincides with the
one of the original physical object, but not with the one

Figure 6: Diagram of Betti numbers of Ŝ for the Happy
Buddha point set.

of the model in the repository (genus = 104). The rea-
son is that, due to noise and holes in the data, classical
reconstruction techniques fail because they look at the
point cloud at one scale only. In contrast, our method
provides reconstructions at various scales and generates
plateaus whenever the topological type is stable enough
to be plausibly that of the underlying object. For in-
stance, in Figure 6, a new plateau appears right be-
fore the data structure becomes unstable: this plateau
indicates that a new handle (shown on the model on
the left) has been detected. Another example is given
in Figure 1, where the diagram has two well-separated
plateaus corresponding to two plausible reconstructions:
a torus, and a simple closed curve drawn on that torus.
To handle the change in dimension (shown at the bot-
tom row of the figure), we maintained CW

ν (L) for both
ν = (1, 2, 3, 4) and ν = (1, 6, 6, 4) simultaneously, and
determined at each step the complex to keep according
to their Betti number β2.

5 Conclusion

We have introduced a new reconstruction method, based
on the witness complex. This method uses inter-sample
distances alone and can therefore be applied in any
metric space. Moreover, it stands in sharp contrast with
previous work in the area, since it is multiscale and gives
some insights on the various plausible topological types
of the original object. We believe that this approach
to manifold reconstruction is highly practical and has
a number of potential applications, such as for instance
topological noise removal or mesh compression. As a
side product, in order to prove our algorithm correct
on Lipschitz curves and surfaces, we have highlighted



the relationship between the witness complex and the
restricted Delaunay triangulation in 2d and 3d.
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