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Abstract

For points sampled near a compact set X, the persistence barcode of the Rips filtration built
from the sample contains information about the homology of X as long as X satisfies some
geometric assumptions. The Rips filtration is prohibitively large, however zigzag persistence
can be used to keep the size linear. We present several species of Rips-like zigzags and compare
them with respect to the signal-to-noise ratio, a measure of how well the underlying homology is
represented in the persistence barcode relative to the noise in the barcode at the relevant scales.
Some of these Rips-like zigzags have been available as part of the Dionysus library for several
years while others are new. Interestingly, we show that some species of Rips zigzags will exhibit
less noise than the (non-zigzag) Rips filtration itself. Thus, Rips zigzags can offer improvements
in both size complexity and signal-to-noise ratio.

Along the way, we develop new techniques for manipulating and comparing persistence
barcodes from zigzag modules. In particular, we give methods for reversing arrows and removing
spaces from a zigzag while controlling the changes occurring in its barcode. These techniques
were developed to provide our theoretical analysis of the signal-to-noise ratio of Rips-like zigzags,
but they are of independent interest as they apply to zigzag modules generally.

1 Introduction

The goal of homology inference is to extract the homology of a space from a finite sample. The
problem is ill-posed in general, but under the right geometric assumptions about the input and the
underlying space, one can compute an object called a persistence barcode which provably contains
information about the underlying homology. Indeed, homology inference was and continues to be
one of the main motivations for topological persistence theory.

The barcode is computed from a sequence of simplicial complexes, for which two main challenges
arise. The first challenge is to guarantee that the simplicial complexes remain small. Commonly
used methods produce complexes that quickly become too large to fit in memory. The second
challenge is to decrease noise in the barcode while preserving the signal, i.e. the information about
the underlying space. We confront both challenges, analyze several approaches that give linear size
data structures, and provide guarantees on the signal-to-noise ratio in the barcodes.

Context. Persistent homology applies to nested, parameterized families of simplicial complexes
called filtrations. The persistence algorithm takes a filtration and produces a barcode describing
all the changes in homology as one goes from one complex to the next in the filtration [15, 26].

Persistent homology has an important connection with geometric inference results that describe
conditions when homology inference is possible using a union of balls centered at the sample points—
see the survey by Chazal and Cohen-Steiner [6]. The (Vietoris-)Rips filtration {Rα}α≥0 is useful
when these conditions are met. It is defined to have a simplex in Rα for every subset of points with
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diameter at most α. So, the filtration parameter is the geometric scale and the theory guarantees
the existence of some range of scales for which the barcode encodes the homology of the underlying
space. The barcode of this filtration thus has an elegant multi-scale interpretation as “the homology
of the input point cloud across scales.”

The immediate drawback to using the Rips filtration is its size. The scale at which it exceeds
the available memory varies with the input data, the filtration, and the computer used. However, it
is observed to happen early enough so that not all the interesting homological information hidden
in the data can be discovered—see Section 6 for a compelling example. Recent research looks at
how to reduce the size of the complexes in the filtration to postpone the breaking point. The most
notable example is the witness complex [11], which was introduced for this purpose. However, such
attempts are limited as the complexes have controlled size only at small scales and still incur a
blowup at large scales.

A different approach was proposed by Chazal and Oudot [9], who used truncated Rips filtrations
on a nested sequence of subsets of the input points corresponding to samplings at different scales.
Their method computes the barcodes of the Rips filtration of each subset restricted to a range of
scales near the sampling scale of the subset. This can prevent the size blowup in the Rips filtrations
because every subset looks like a uniform sample at the relevant scale. The lingering challenge from
this work is to relate the bars in the resulting barcodes for different scales.

Taking advantage of the recent introduction of zigzag persistence by Carlsson and de Silva [4],
Morozov suggested a simple way to connect the truncated Rips filtrations of consecutive subsamples
together, to obtain a single long sequence of simplicial complexes connected by inclusions—called
the Morozov zigzag (M-ZZ) hereafter. Zigzag persistence relaxes the condition that the family of
complexes be a filtration and instead allows consecutive spaces to be included in either direction,
forwards or backwards, so the sequence is a zigzag diagram rather than a filtration. The M-ZZ
has been integrated into the Dionysus library [14] since early 2009, and as reported by its author
from preliminary experiments [23], it has given surprisingly good results in practice. However, to
date it comes with no theoretical guarantees, so a primary motivation of our paper is to assess the
theoretical quality of the results provided by this zigzag.

Existing methods for building sparse approximations to the Rips filtration have all focused on
the size question, but have ignored the question of noise. For example, even the Rips filtration can
have noise in the barcode at the scales where it represents the underlying topology. We show that
some variants of the M-ZZ not only recover the topological signal but also provably eliminate noise
in the relevant range.

Contributions. We provide the following theoretical guarantees for the Morozov zigzag:
• When the input point cloud P is sufficiently close (in the Hausdorff distance) to a compact set
X with positive weak feature size in Rd, there is a sweet range of geometric scales over which
the persistence barcode of the Morozov zigzag exhibits the homology of X (technically, the
offsets Xλ for an arbitrarily small λ > 0). That is, the barcode has long intervals spanning
the entire sweet range, and their number is at least the dimension of the homology group HXλ

(Theorem 4.3).
• If X has positive µ-reach, then there is a smaller (sweeter) range over which the number of

spanning intervals is exactly dimHXλ and no other intervals are present.
This motivates the study of more elaborate variants of the Morozov zigzag that are less likely to
carry topological noise in the sweet range, even when the underlying space X has zero µ-reach and
positive weak feature size. We analyze three variants in the paper:
• The first one, called the discretized Mozorov zigzag, consists in considering only subsamples
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whose corresponding geometric scales are of the form ζi for a fixed constant ζ and an integer
i. This discretization makes sure that the geometric scale drops significantly (by a factor
of ζ) from one subsample to the next, so there is enough room in each connection between
truncated filtrations to kill the noise.
• The second one, called the oscillating Rips zigzag, consists in somewhat relaxing the truncation

parameter in the Rips filtrations before connecting them together. The effect is to leave enough
room in every truncated filtration for the noise to be killed.
• The third one, called the image Rips zigzag, consists in taking a nested pair of Morozov zigzags

with different filtration parameters, and in connecting them by canonical inclusions to obtain
an image zigzag module at the homology level. Taking a pair of zigzags instead of a single
zigzag kills the noise in the same way as taking a pair of Rips complexes instead of a single
Rips complex did in [9].

Each of these variants comes with the desired guarantee that the sweet and sweeter ranges are equal,
meaning that there is guaranteed to be only ephemeral noise in the sweet range even when the
underlying space X merely has positive weak feature size. Thus, Rips zigzags offer improvements
in both size complexity and signal-to-noise ratio compared to the Rips filtration. The price to
pay compared to the basic Morozov zigzag is a somewhat increased time or space complexity
(Theorems 5.1 and 5.2). The overhead depends on the variant considered but it always remains
bounded, so the variants are tractable alternatives to the Morozov zigzag.

To prove the aforementioned results, we develop new techniques for manipulating zigzag modules
and comparing their persistence barcodes:
• We show how arrows in a zigzag module can be reversed while preserving the persistence

barcode (Theorem 3.1).
• We give a method for removing spaces from a zigzag module while tracking the intervals in

its barcode (Theorem 3.2).
These low-level manipulations make it possible to transform one module into another while con-
trolling the changes in its barcode, a strategy at the core of the proofs of our main theorems.

Related work. A different approach to the problem of building sparse filtrations for offsets
of point clouds in Euclidean space was presented by Hudson et al. [19]. They used ideas from
Delaunay refinement mesh generation to build linear size filtrations that provide provably good
approximations to the persistence diagram of the offsets. However, that approach requires building
a complex that covers the ambient space and includes simplices up to its dimension. Moreover, the
construction requires the use of high degree predicates. In contrast, the new methods described here
only depend on an intrinsic dimension of data and can be built using only distances comparisons.

Recently, Sheehy [24] proposed a method for building a sparse zigzag filtration whose barcode
is provably close to that of the Rips filtration as well as a non-zigzagging variant achieving similar
guarantees. Also, Dey et al. gave an alternative persistence algorithm for simplicial maps rather
than inclusions, which is closely related to zigzag persistence [13]. Their approach, when applied to
Rips filtrations, similarly gives barcodes that are provably close to that of the Rips filtration. We
obtain comparable space/time bounds to these results but get stronger guarantees regarding noise.
Methods that approximate the Rips filtration directly can, in principle, have noise that is as large
as the noise in the Rips filtration itself (or worse).
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2 Background

We use singular homology with coefficients in a field—omitted in our notations. The homology
functor is denoted by H.

We present the definitions of Rips and Čech filtrations in Section 2.1. Then, Section 2.2 intro-
duces some concepts and results from the sampling theory for compact sets in Euclidean spaces,
which will be used in the geometric part of our analysis. We refer the reader to [6] for a compre-
hensive survey on this topic. Section 2.3 gives a brief overview of the concepts and results from
zigzag persistence theory that will be used in the algebraic part of our analysis. Our terminology
is the same as in [4] up to a few minor variants, and we refer the reader to that paper for a more
in-depth treatment.

2.1 Rips and Čech Filtrations

Let P be a finite set in Rd. The Rips complex of P at scale α, denoted Rα(P ), is the abstract
simplicial complex consisting of all subsets of P with diameter (maximum pairwise distance) at
most α. The Rips filtration is the collection of Rips complexes at all nonnegative scales.

The Čech complex of P at scale α, denoted Cα(P ) is the abstract simplicial complex consisting
of all subsets of P with minimum enclosing ball radius at most α. It is isomorphic to the nerve of
the collection of balls of radius α centered at the points of P , i.e. there is a simplex for every subset
of balls that have a common intersection. The Čech filtration is the collection of Čech complexes
at all nonnegative scales.

The Rips and Čech filtrations are interleaved as follows1 in Rd, where ϑd =
√

d
2(d+1) ∈ [1

2 ,
1√
2
).

∀α ≥ 0, Cα
2
(P ) ⊆ Rα(P ) ⊆ Cϑdα(P ). (1)

2.2 Critical Point Theory for Distance Functions

The geometric part of our analysis takes place in Euclidean space Rd, where ‖ · ‖ denotes the
Euclidean norm. The distance from a point y to a set X ⊂ Rd is d(y,X) = infx∈X ‖x− y‖. When
X is compact, the infimum becomes a minimum, and we let dX denote the function distance to X.

∀y ∈ Rd, dX(y)
def
= d(y,X) = min

x∈X
‖x− y‖.

The α-offset of X is the locus of the points of Rd whose distance to X is at most α:

Xα def
= d−1

X ([0, α]).

Although dX may not be differentiable everywhere in Rd, its gradient can be extended to be well-
defined over all of Rd [7]. The extended gradient is denoted ∇X in the following. When working
with offsets, it is useful to observe that for y /∈ Xα, dXα(y) = dX(y)− α, so ∇Xα(y) = ∇X(y).

Definition 2.1. A critical point of the distance function dX to a compact set X ⊂ Rd is a point p
of Rd such that ∇X(p) = 0. Equivalently, a critical point is a point of Rd \X that is in the convex
hull of its nearest points in X. A number r ∈ R is a critical value if there exists a critical point p
such that dX(p) = r.

1See e.g. [12] for a proof. Our definition of the Rips complex differs from the one in [12] by a factor of 2 in the
parameter value. This explains the slight discrepancy between our chain of inclusions and the one in [12].
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Definition 2.2. The weak feature size of a compact set X, denoted wfs(X), is the smallest positive
critical value of its distance function dX .

Given X ⊆ Rd and β ≥ α ≥ 0, we let HXβ
α denote the image of the homomorphism HXα → HXβ

induced at the homology level by the canonical inclusion Xα ↪→ Xβ.

Lemma 2.3 ([9]). Let X be a compact set and P a finite set in Rd, such that dH(X,P ) < ε for

some ε < 1
4wfs(X). Then, HP βα ∼= HXλ for any α, β ∈ [ε,wfs(X)− ε] such that β − α ≥ 2ε, and

for any λ ∈ (0,wfs(X)).

For any finite sets P ⊆ Q ⊂ Rd and any non-negative parameters α, α′, β, β′ such that α ≤ α′,
β ≤ β′, α ≤ β and α′ ≤ β′, we have the following commutative diagram where all linear maps are
induced by inclusions of offsets:

HP β → HQβ
′

↑ ↑
HPα → HQα

′
(2)

This commutative diagram induces a homomorphism HP βα → HQβ
′

α′ .

Lemma 2.4. Let X be a compact set and P ⊆ Q be finite sets in Rd, such that dH(X,P ) < ε
and dH(Q,X) < ε for some ε < 1

6wfs(X). Then, for any α, α′, β, β′ ∈ [3ε,wfs(X)− ε] such that

β − α ≥ 2ε, β′ − α′ ≥ 2ε, α′ ≥ α and β′ ≥ β, the linear map HP βα → HQβ
′

α′ induced by the
diagram (2) is an isomorphism.

Proof. According to Lemma 2.3, HP βα and HQβ
′

α′ are isomorphic vector spaces, and they are finite-

dimensional because P and Q are finite. Therefore, it suffices to show that rankHP βα → HQβ
′

α′ =

dimHP βα . We have the following commutative diagram where all the maps are induced by inclusions
(note that Qα−2ε ⊆ Pα since dH(P,Q) ≤ dH(P,X) + dH(Q,X) ≤ 2ε):

HP β
b // HQβ

′

HPα

a

OO

c // HQα
′

d

OO

HQα−2ε

e

ddIIIIIIIIII
f

OO

The homomorphism HP βα → HQβ
′

α′ we are interested in is the restriction of b to im a, whose rank is
the same as the one of b ◦ a. By composition and commutativity, we have

rank d ◦ f = rank b ◦ a ◦ e ≤ rank b ◦ a ≤ rank a,

and by Lemma 2.3 we have rank d ◦ f = rank a = dimHP βα since α− 2ε ≥ ε and β′ ≤ wfs(X)− ε.
Hence, rank b ◦ a = dimHP βα .

Combining the above analysis with the Persistent Nerve Lemma2 [9, Lemma 3.4], we obtain the

following result where the notation HCβα(P ) stands for the image of the homomorphism HCα(P )→
HCβ(P ) induced at the homology level by the inclusion Cα(P ) ↪→ Cβ(P ).

2We are in fact using an extended version of the Persistent Nerve Lemma, stated in [8], where the index sets of
the open covers may differ.
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Theorem 2.5. Let X be a compact set and P and Q be finite sets in Rd with P ⊆ Q, such that
dH(P,X) < ε and dH(Q,X) < ε.

(i) If ε < 1
4wfs(X), then for any α, β ∈ [ε,wfs(X)− ε] such that β − α ≥ 2ε, for any λ ∈

(0,wfs(X)), the spaces HCβα(P ) and HXλ are isomorphic.

(ii) If ε < 1
6wfs(X), then for any α, α′, β, β′ ∈ [3ε,wfs(X)− ε] such that β − α ≥ 2ε, β′ − α′ ≥

2ε, α′ ≥ α and β′ ≥ β, the homomorphism HCβα(P ) → HCβ
′

α′(Q) induced by the following
commutative diagram (where the maps are induced by inclusions) is an isomorphism.

HCβ(P ) → HCβ′(Q)
↑ ↑

HCα(P ) → HCα′(Q)

(iii) If ε < 1
4wfs(X), then for any α, β ∈ [2ϑdε,

1
2ϑd

(wfs(X) − ε)] such that β − α ≥ 2ε, the map

HCβα(P ) → HR2β(P ) is injective, and the map HR α
ϑd

(P ) → HCβα(P ) is surjective, where both

maps are induced by inclusions.

Proof. Parts (i) and (ii) follow from Lemmas 2.3 and 2.4 respectively, when combined with the
persistent Nerve Lemma. To prove part (iii), first observe that the hypotheses and (i) imply that

rankHCβα = rankHC2ϑdβ
α . So, in the following sequence of maps induced by inclusions,

HCα(P )→ HCβ(P )→ HR2β(P )→ HC2ϑdβ(P )

the map HCβ(P )→ HR2β(P ) restricted to the image of HCα(P )→ HCβ(P ) is injective and therefore

HCβα(P ) → HR2β(P ) is injective as well. Similarly, we have that rankHCβα
2ϑd

= rankHCβα. If we

decompose these maps as

HC α
2ϑd

(P )→ HR α
ϑd

(P )→ HCα(P )→ HCβ(P )

we see that HR α
ϑd

(P )→ HCβα(P ) is surjective as desired.

2.3 Zigzag persistence

The algebraic part of our analysis relies on zigzag persistence theory. We use the terminology
introduced by Carlsson and de Silva [4]. A zigzag module V is a finite diagram of finite-dimensional
vector spaces over a fixed field k where the underlying graph is a path:

V = V1
v1←→ V2

v2←→ · · · vn−1←→ Vn,

where the notation Vi
vi←→ Vi+1 indicates that the linear map vi can be oriented either forwards

(vi : Vi → Vi+1) or backwards (vi : Vi ← Vi+1). An equivalent notation is vi : Vi ↔ Vi+1. The
sequence of map orientations defines the type of the module V. A persistence module, as defined in
the standard (non-zigzag) persistence literature [26], is a zigzag module in which all the maps are
oriented forwards. Thus, all persistence modules of the same length have the same type.

A submodule X of a zigzag module V is defined by subspaces Xi ⊆ Vi such that for all i we have
vi(Xi) ⊆ Xi+1 if vi : Vi ↔ Vi+1 is a forward map and vi(Xi+1) ⊆ Xi if vi is a backward map. The
maps in X are the restrictions of the maps in V to the Xis, so V and X have the same type.
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A homomorphism Φ between two zigzag modules V and W of the same type, denoted Φ : V→W,
is a collection of linear maps φi : Vi → Wi such that the following diagram commutes for all
i = 1, · · · , n− 1:

Vi

φi
��

oo vi // Vi+1

φi+1

��
Wi
oo wi //Wi+1

(3)

The image of Φ, denoted im Φ, is the submodule of W composed of the spaces imφi. The kernel of
Φ, denoted ker Φ, is the submodule of V composed of the spaces kerφi. Φ is called an isomorphism
if every map φi : Vi →Wi is an isomorphism.

A submodule X of V is a summand if there exists another submodule Y of V where Vi = Xi⊕Yi
for all i. In that case, we say that V is the direct sum of X and Y, written V = X⊕Y. As pointed
out in [4], all summands are submodules, but not all submodules are summands. A zigzag module
V is called indecomposable if it admits no other summand than the zero module and itself. It has
been known since Gabriel [16] that the indecomposable zigzag modules are the so-called interval
modules. Given a module type τ and an integer interval [b, d], the interval τ -module with birth time
b and death time d is written Iτ [b, d] and defined with spaces Ii such that Ii = k if i ∈ [b, d] and
Ii = 0 otherwise, and with identity maps between adjacent copies of the base field k and zero maps
elsewhere (the maps are oriented according to τ). A consequence of Gabriel’s result is that every
τ -module is isomorphic to a direct sum of finitely many τ -intervals. Moreover, the Krull-Schmidt
principle guarantees that this decomposition is unique up to a reordering of the terms.

Theorem 2.6 (Interval Decomposition). For every τ -module V there exists a unique finite multiset
of interval modules {Iτ [bi, di]} and an isomorphism

Φ : V→
⊕
i

Iτ [bi, di].

Thus, as in standard (non-zigzag) persistence theory, the structure of V is fully and uniquely
described by the multiset of integer intervals3 {[bi, di]}, called the persistence barcode of V and
denoted Pers(V).

Carlsson and de Silva gave a constructive proof of Theorem 2.6—see [4, Thm. 4.1], which led
to an algorithm for computing the decomposition of a zigzag module. Among the concepts and
results presented in their paper, the following one plays an important part here.

Given a zigzag module V = V1
v1←→ · · · vn−1←→ Vn and two integers p ≤ q ∈ [1, n], let V[p, q] denote

the restriction of V to the index set [p, q]. That is, V[p, q] = Vp
vp←→ · · ·

vq−1←→ Vq. Let Pers(V)|[p,q]
denote the restriction of Pers(V) to [p, q]:

Pers(V)|[p,q] = {[b, d] ∩ [p, q] | [b, d] ∈ Pers(V)}.

The Restriction Principle [4, Prop. 2.12] connects the two types of restrictions together:

Theorem 2.7 (Restriction).
Pers(V[p, q]) = Pers(V)|[p,q].

3Note that we follow [4] and depart from the traditional persistence barcode representation by using closed intervals
instead of half-open intervals.
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3 Manipulating Zigzag Modules

3.1 Arrow reversal

Suppose we have a zigzag module V = V1 ↔ · · · ↔ Vn and we want to reverse the map Vk ↔ Vk+1

for some arbitrary index k in the range [1, n−1], while preserving the persistence barcode of V. The
following theorem states that this is always possible, moreover with a reverse map that is closely
related to the original map.

Theorem 3.1 (Arrow Reversal).

Let V = V1 ↔ · · · ↔ Vk
f←→ Vk+1 ↔ · · · ↔ Vn be a zigzag module. Then, there is a map

g : Vk ↔ Vk+1 oriented opposite to f , such that f ◦ g|im f = 1im f and g ◦ f |im g = 1im g, and the

zigzag module V∗ obtained from V by replacing the submodule Vk
f←→ Vk+1 by Vk

g←→ Vk+1 has the
same persistence barcode as V.

When f is injective, g is surjective and g ◦ f is the identity over the domain of f . Conversely,
when f is surjective, g is injective and f ◦g is the identity over the codomain of f . These properties
are useful when V is part of a commutative diagram, as they sometimes imply commutativity is
preserved after the arrow reversal—as in the proof of Theorem 4.2.

Proof. Let Φ : V →
⊕

i Iτ [bi, di] be the decomposition of V given by the Interval Decomposition
Theorem 2.6. Denote the spaces of Iτ [bi, di] by Ii1 . . . , I

i
n, and let Φ = (φ1, . . . , φn) where each

φj : Vj →
⊕

i I
i
j is an isomorphism.

We assume without loss of generality that f is oriented forwards; the case when f is oriented
backwards is symmetric. The map f ′ =

⊕
i(I

i
k → Iik+1) makes the following diagram commute.

Vk

φk��

f // Vk+1

φk+1��⊕
i

Iik
f ′ //
⊕
i

Iik+1

(4)

To reverse f , we first reverse each map Iik → Iik+1 separately. Recall that this map is either the
identity or zero. The reversal of an identity map is an identity map and the reversal of a zero map

is a zero map, so we take Iik
1← Iik+1 if Iik

1→ Iik+1 and Iik
0← Iik+1 if Iik

0→ Iik+1. We thus get a new
interval module Iτ∗ [bi, di], where τ∗ is the zigzag type of V∗. Let now g′ =

⊕
i(I

i
k ← Iik+1) be the

reverse of f ′, and let g = φ−1
k ◦ g

′ ◦φk+1 be the reverse of f , which gives the following commutative
diagram.

Vk

φk��

Vk+1
goo

φk+1��⊕
i

Iik
⊕
i

Iik+1
g′oo

(5)

The commutativity of this diagram and the definition of Φ imply that the the same isomorphisms
φj induce an isomorphism Φ∗ : V∗ →

⊕
i Iτ∗ [bi, di]. So, Φ∗ yields an explicit interval decomposition

of V∗ with the same intervals as that of V, and thus Pers(V∗) = Pers(V).
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It only remains to prove that f ◦ g|im f = 1im f and g ◦ f |im g = 1im g. By symmetry, it suffices
to prove just one of these, say f ◦ g|im f = 1im f . Using the isomorphism Φ, it suffices to prove the
equivalent statement for f ′ and g′. The statement now follows from the observation that

f ′ ◦ g′ =
⊕
i

((Iik → Iik+1) ◦ (Iik ← Iik+1)) = 1im f ′ ⊕ 0ker g′ ,

where the final step separates the identity maps and the zero maps into two groups.

3.2 Space Removal

Suppose we want to remove the space Vk from a zigzag module V = V1 ↔ · · · ↔ Vn while preserving
most of the persistence barcode. The following theorem shows that this is always possible, and that
every interval [b, d] in Pers(V) becomes [b, d] \ {k} in the new index set {1, · · · , k− 1, k+ 1, · · · , n}.
Note that this is still a single interval, denoted by [b, d]k̂ for clarity.

Theorem 3.2 (Space Removal).

Let V be a zigzag module containing Vk−1
f←→ Vk

g←→ Vk+1. There exists a map h : Vk−1 ↔ Vk+1

such that the zigzag module V∗ formed by removing Vk, f , and g from V and replacing them with
h has barcode

Pers(V∗) =
{

[b, d]k̂ | [b, d] ∈ Pers(V)
}
.

Furthermore, if any map Vk−1 ↔ Vk+1 commutes with f and g, then so does h.

The first step towards the proof of this theorem is the following special case for removing a
space between maps oriented in the same direction.

Lemma 3.3 (Composition).

Given V = V1 ↔ · · · ↔ Vk−1
f−→ Vk

g−→ Vk+1 ↔ · · · ↔ Vn, let V∗ = V1 ↔ · · · ↔ Vk−1
g◦f−→ Vk+1 ↔

· · · ↔ Vn. Then, Pers(V∗) = {[b, d]k̂ | [b, d] ∈ Pers(V)}.

Proof. Let Φ : V →
⊕

i Iτ [bi, di] be the decomposition of V given by the Interval Decomposition
Theorem 2.6. Denoting the spaces of Iτ [bi, di] by Ii1 . . . , I

i
n, and letting f ′ =

⊕
i(I

i
k−1 → Iik),

g′ =
⊕

i(I
i
k → Iik+1), and Φ = (φ1, . . . , φn) where each φj : Vj →

⊕
i I
i
j is an isomorphism, we have

the following commutative diagram.

Vk−1
f //

φk−1��

Vk
g //

φk��

Vk+1

φk+1��⊕
i

Iik−1
f ′ //

⊕
i

Iik
g′ //
⊕
i

Iik+1

(6)

By removing the kth space from each interval module Iτ [bi, di], we get a new interval decomposition⊕
i Iτ∗ [bi, di]k̂, where τ∗ is the type of V∗. Observe that the commutativity of (6) implies that the

following diagram commutes as well.

Vk−1
g◦f //

φk−1��

Vk+1

φk+1��⊕
i

Iik−1
g′◦f ′ //

⊕
i

Iik+1

(7)
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Thus, Φ∗ = (φ1, . . . , φk−1, φk+1, . . . , φn) is an isomorphism from V∗ to
⊕

i Iτ∗ [bi, di]k̂. It follows
that

Pers(V∗) = Pers(
⊕
i

Iτ∗ [bi, di]k̂) = {[b, d]k̂ | [b, d] ∈ Pers(V)}

as claimed in the lemma.

We now combine this special case with the Arrow Reversal Theorem 3.1 to prove the general
Space Removal Theorem.

Proof of Theorem 3.2. There are four cases to consider depending on the orientations of the maps

f and g. Cases (
f→, g→) and (

f←, g←) are covered by the Composition Lemma 3.3. The remaining

cases (
f→, g←) and (

f←, g→) are handled by reversing one of the maps using the Arrow Reversal
Theorem 3.1 and then applying the Composition Lemma 3.3. The arrow reversal preserves the
persistence diagram and the composition removes the kth index from each interval as desired. It
only remains to show that the commutativity property holds.

When there exists a map h′ : Vk−1 ↔ Vk+1 that commutes with f and g, then either

f = g ◦ h′ or f = h′ ◦ g or g = f ◦ h′ or g = h′ ◦ f.

The proofs of these four cases are similar, so we only give the proof of the first case here, leaving
the others as an exercise.

Assuming that f = g ◦ h′, we have im f ⊆ im g. So, applying the Arrow Reversal Theorem 3.1
on the map g results in a map g′ such that g ◦ g′|im f = 1im f . Then, the Composition Lemma 3.3
lets h = g′ ◦ f , so we obtain

g ◦ h = g ◦ g′ ◦ f = g ◦ g′|im f ◦ f = 1im f ◦ f = f

as claimed.

4 Rips Zigzags

Let P be a finite point cloud in some metric space, and suppose that the matrix of pairwise
distances between the points of P is known. Given any ordering (p1, · · · , pn) on the points of P ,
let Pi := {p1, . . . , pi} denote the ith prefix, and define the ith geometric scale as εi = dH(Pi, P ).
Since Pi grows as i increases, we have ε1 ≥ ε2 ≥ · · · ≥ εn = 0.

Given a choice of multipliers η ≤ ρ, Chazal and Oudot [9] proposed to do homological inference
from P using the sequence of short filtrations Rηεi(Pi) ↪→ Rρεi(Pi). Zigzag persistence makes it
possible to replace this sequence of short filtrations by a single zigzag filtration, a representative
portion of which is depicted below.

Rρεi−1(Pi) Rρεi(Pi+1)

Rηεi−1(Pi−1)

AA�������
Rηεi(Pi)

]];;;;;;;

AA�������
Rηεi+1(Pi+1)

]];;;;;;;
(8)

The zigzag module induced at the homology level by this diagram is referred to as the oscillating
Rips zigzag (oR-ZZ for short) hereafter. Note that from a computational point of view, the smaller
ρ the smaller the maximum complex size in the zigzag. In addition, the closer η to ρ the fewer
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simplex additions and deletions during the zigzag calculation. Therefore, as a rule of thumb, one
should try to make ρ as small as possible while η as close to ρ as possible.

Before proceeding with the analysis of the oscillating Rips zigzag in Section 4.2 and of its
variants in the subsequent sections, we first make a short detour and study another zigzag over the
sequence of vertex sets P1, · · · , Pn that will play a central role in our analysis.

4.1 The image Čech zigzag

Canonical inclusions between Čech complexes give the following pair of horizontal zigzags connected
by vertical arrows, where each zigzag alternately adds one point to the vertex set and reduces the
geometric scale.

· · · ← HCρεi(Pi) → HCρεi(Pi+1) ← HCρεi+1(Pi+1) → · · ·
↑ ↑ ↑

· · · ← HCηεi(Pi) → HCηεi(Pi+1) ← HCηεi+1(Pi+1) → · · ·

This commutative diagram induces the following zigzag of images, referred to as the image Čech
zigzag hereafter.

· · · ← HCρεiηεi(Pi)→ HCρεiηεi(Pi+1)← HC
ρεi+1
ηεi+1(Pi+1)→ · · · (9)

Theorem 4.1. Let ρ and η be multipliers such that 3 < η < ρ− 2. Let X ⊂ Rd be a compact set,
let P ⊂ Rd be a finite set, and let ε = dH(P,X). Then, for any l > k such that

max

{
3ε

η − 3
,

2ε

ρ− η − 2

}
≤ εl ≤ εk < min

{
1

6
wfs(X)− ε, 1

ρ+ 1
(wfs(X)− ε)

}
,

the image Čech zigzag restricted to HCρεkηεk(Pk)→ · · · ← HCρεlηεl(Pl) contains only isomorphisms, and
its spaces are isomorphic to HXλ for any λ ∈ (0,wfs(X)). Therefore, its persistence barcode is
made only of full-length intervals, whose number equals the dimension of HXλ.

Proof. By the triangle inequality, for any i ∈ [1, n] we have dH(Pi, X) ≤ dH(Pi, P ) + dH(P,X) <
εi + ε. Since the geometric scale εi decreases with i, we have εk ≥ εi ≥ εl for all i ∈ [k, l],
and therefore the bounds on εl and εk imply that εi + ε < 1

6wfs(X), that ηεi and ρεi belong to
the interval [3(εi + ε),wfs(X)− (εi + ε)], and that ρεi − ηεi ≥ 2(εi + ε). Thus, the hypotheses of
Theorem 2.5 (ii) are satisfied within the range [k, l], and so the result follows from that theorem.

Theorem 4.1 guarantees a range of scales for which the zigzag has the correct persistent homol-
ogy (the sweet range) only when the Hausdorff distance ε between the sample P and the set X is
sufficiently small with respect to the weak feature size of X. Since εl must be less than εk, the
bounds in the hypothesis of the theorem imply that

ε < min

{
η − 3

6η
,
η − 3

3ρ+ η
,
ρ− η − 2

6(ρ− η)
,
ρ− η − 2

3ρ− η

}
wfs(X) = O(wfs(X)).

4.2 Analysis of the oscillating Rips zigzag

The following result gives conditions on η and ρ for the persistence barcode of the oR-ZZ to exhibit
the homology of the shape underlying an input point cloud P ⊂ Rd. The main idea will be to relate
the or-ZZ to the image Čech zigzag.
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Theorem 4.2. Let ρ and η be multipliers such that ρ > 10 and 3
ϑd
< η < ρ−4

2ϑd
. Let X ⊂ Rd be a

compact set, let P ⊂ Rd be a finite set, and let ε = dH(P,X). Then, for any l > k such that

max

{
3ε

ϑdη − 3
,

4ε

ρ− 2ϑdη − 4

}
≤ εl ≤ εk < min

{
1

6
wfs(X)− ε, 1

ϑdρ+ 1
(wfs(X)− ε)

}
,

the oR-ZZ restricted to HRρεk(Pk+1) ← · · · ← HRηεl(Pl) has a persistence barcode made only of
full-length intervals and ephemeral (length zero) intervals, the number of full-length intervals being
equal to the dimension of HXλ for any λ ∈ (0,wfs(X)).

Proof. Let ρ̄ = ρ
2 and η̄ = ϑdη. Our hypotheses imply ρ

2 ≥ ϑdη, so using (1) we can factor the
inclusion maps in (8) through Čech complexes with multipliers η̄ and ρ̄ as follows.

Rρεi(Pi+1)

Cρ̄εi−1(Pi) Cρ̄εi(Pi)oo

>>}}}}}}}}
// Cρ̄εi(Pi+1)

``AAAAAAAA

Cη̄εi−1(Pi)

OO

Cη̄εi(Pi)

OO

oo // Cη̄εi(Pi+1)

OO

Rηεi(Pi)

``AAAAAAA

>>}}}}}}}}

This commutative diagram induces the following interleaving between the oscillating Rips zigzag
and the image Čech zigzag.

HRρεi(Pi+1)

HC
ρ̄εi−1
η̄εi−1

(Pi) HCρ̄εiη̄εi(Pi)
oo

??~~~~~~~
// HCρ̄εiη̄εi(Pi+1)

__@@@@@@@

HRηεi(Pi)

__@@@@@@@

??~~~~~~~

Let U be the restriction of the oR-ZZ to HRρεk(Pk+1) ← · · · ← HRηεl(Pl), let W be the restric-
tion of the image Čech zigzag to HCρ̄εkη̄εk(Pk) → · · · ← HCρ̄εlη̄εl(Pl), and let V be the mixed zigzag
HCρ̄εkη̄εk(Pk) → HRρεk(Pk+1) ← HCρ̄εkη̄εk(Pk+1) ← HRηεk+1

(Pk+1) → HC
ρ̄εk+1

η̄εk+1
(Pk+1) → · · · → HC

ρ̄εl−1

η̄εl−1
(Pl−1) →

HRρεl−1
(Pl) ← HC

ρ̄εl−1

η̄εl−1
(Pl) ← HRηεl(Pl) → HCρ̄εlη̄εl(Pl). Our goal is to relate Pers(V) to both Pers(U)

and Pers(W), which we will do by turning V successively into U and W via arrow reversals and
space removals while tracking the changes in its persistence barcode. It is an elementary exercise to
show that the conditions bounding εl and εk satisfy the hypotheses of Theorem 4.1 with multipliers
η̄ and ρ̄. These conditions also satisfy the hypotheses of Theorem 2.5(iii) for α = η̄εi and β = ρ̄εi
and the sets Pi and Pi+1 for all i ∈ [k, l − 1]. Thus, these Theorems imply the following facts:

(i) all spaces in W are isomorphic to HXλ, and all maps in W are isomorphisms,
(ii) the map HRρεi(Pi+1)← HCρ̄εiη̄εi(Pi+1) is injective for any i ∈ [k, l − 1], and

(iii) the map HRηεi(Pi)→ HCρ̄εiη̄εi(Pi) is surjective for any i ∈ [k, l].
To turn V into W, we first use Theorem 3.1 to reverse every injective map HRρεi(Pi+1) ←
HCρ̄εiη̄εi(Pi+1) and every surjective map HRηεi(Pi)→ HCρ̄εiη̄εi(Pi), to get a new zigzag V∗ = HCρ̄εkη̄εk(Pk)→

12



HRρεk(Pk+1)→ HCρ̄εkη̄εk(Pk+1)← HRηεk+1
(Pk+1)← HC

ρ̄εk+1

η̄εk+1
(Pk+1)→ · · · ← HC

ρ̄εl−1

η̄εl−1
(Pl−1)→ HRρεl−1

(Pl)→
HC

ρ̄εl−1

η̄εl−1
(Pl) ← HRηεl(Pl) ← HCρ̄εlη̄εl(Pl) that has the same persistence barcode as V. Moreover, the

reverse maps provided by Theorem 3.1 make the triangles commute in the resulting diagram inter-
leaving V∗ and W.

HRρεi(Pi+1)

��@@@@@@@

HC
ρ̄εi−1
η̄εi−1

(Pi) HCρ̄εiη̄εi(Pi)

��~~~~~~~

oo

??~~~~~~~
// HCρ̄εiη̄εi(Pi+1)

HRηεi(Pi)

__@@@@@@@

Now, we remove the Rips complexes from V∗ by composing all the adjacent maps with same ori-
entation. Since composition preserves commutativity of the subdiagrams, the following diagram
involving W (straight path) and the newly obtained zigzag W∗ (curved path) commutes.

HC
ρ̄εi−1
η̄εi−1

(Pi) HCρ̄εiη̄εi(Pi)
oo

aa
//

  
HCρ̄εiη̄εi(Pi+1)

Hence, the zigzags W and W∗ are identical. It suffices now to compare Pers(V∗) to Pers(W∗).
Recall that W∗ is obtained from V∗ by removing the Rips complexes. In the process, every interval
of Pers(V∗) either vanishes or turns into some interval of Pers(W∗). By the Space Removal Theo-
rem 3.2, only the ephemeral intervals of Pers(V∗) may vanish because there are no consecutive Rips
complexes in V∗. Moreover, the full-length intervals of Pers(V∗) are mapped bijectively to those of
Pers(W∗) because V∗ and W∗ have the same endpoints. It follows then from (i) that Pers(V∗)—
and thus Pers(V)—contains only full-length intervals of multiplicity dimHXλ and possibly some
ephemeral intervals.

We turn V into U by removing the Čech complexes. First, we restrict V to HRρεk(Pk+1) ←
HCρ̄εkη̄εk(Pk+1) ← · · · ← HC

ρ̄εl−1
η̄εl−1

(Pl) ← HRηεl(Pl), thus removing the Čech complexes at either ends
of the zigzag. Since k < l, the Restriction Theorem 2.7 tells us that the full-length intervals in the
barcode of the shortened zigzag V∗ are in bijection with the ones in the barcode of V, while the
other intervals in Pers(V∗) come from length-zero intervals in Pers(V) and cannot be longer. We
then compose the incoming and outgoing maps at Čech complexes in the sequence to obtain U. By
the Space Removal Theorem 3.2, only the intervals starting or ending at a Čech complex can be
affected by this operation, and these can only be shortened. Therefore, the number of full-length
intervals remains the same as in the barcode of V∗, and the other intervals remain ephemeral.

4.3 Morozov zigzag

The limiting case of the oscillating Rips zigzag occurs when the multipliers η and ρ are equal. This
case has been integrated into the Dionysus library [14] since early 2009.

· · · ← Rρεi(Pi)→ Rρεi(Pi+1)← Rρεi+1(Pi+1)→ · · · (10)

We call the zigzag module induced at the homology level by this diagram the Morozov zigzag
(M-ZZ for short). The motivation for letting η = ρ is obvious from a computational point of
view; as η gets closer to ρ, fewer simplex additions and deletions are required during the zigzag
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persistence calculation. Moreover, as reported by its author [23], the M-ZZ has given surprisingly
good results in preliminary experiments, despite the fact that η = ρ clearly violates the hypotheses
of Theorem 4.2. We are able to provide the following weaker guarantee.

Theorem 4.3. Let ρ > 10 be a multiplier. Let X ⊂ Rd be a compact set and let P ⊂ Rd be such
that dH(P,X) < ε with ε < ρ−10

(3+10ϑd)ρ wfs(X). Then, for any l > k such that

10ε

ρ− 10
≤ εl ≤ εk < min

{
1

6
wfs(X)− ε, 5

(1 + 5ϑd)ρ+ 5
(wfs(X)− ε)

}
,

the M-ZZ restricted to HRρεk(Pk+1) ← · · · ← HRρεl(Pl) has a number of full-length intervals that
is at least the dimension of HXλ for any λ ∈ (0,wfs(X)).

Proof. Let V denote the restriction of the M-ZZ to

HRρεk(Pk+1)← · · · ← HRρεl(Pl).

Let U and W respectively be the image Čech zigzags with multipliers (η1, ρ1) and (η2, ρ2) restricted
to the index set of V, where

η1 =
ρ

2
− 2

(
1 +

ε

εl

)
, ρ1 =

ρ

2
, η2 = ϑdρ, and ρ2 = ϑdρ+ 2

(
1 +

ε

εl

)
.

The canonical inclusions between Čech complexes induce homomorphisms between the spaces
of U and W with the same index. This family of homomorphisms forms a module homomorphism
U → W. By (1), every inclusion Cρ1εi(Q) ↪→ Cη2εi(Q) factors through Rρεi(Q), so U → W itself

factors through V. Let U Φ−→ V Ψ−→W be the factorization.
The multipliers and the bounds on εl and εk have been carefully chosen to satisfy the hypotheses

of all three parts of Theorem 2.5 so that the following three statements are true for all i and j such
that k ≤ i ≤ j ≤ l.

(i) HCρ1εiη1εi(Pj) is isomorphic to HXλ for all λ ∈ (0,wfs(X)).

(ii) HCρ1εiη1εi(Pj)→ HCρ2εiη2εi(Pj) is an isomorphism.

(iii) HCρ1εiη1εi(Pj)→ HRρεi(Pj) is injective.

Items (i) and (ii) imply that the spaces in U are all isomorphic to HXλ and the maps in U
are all isomorphisms. Thus, Pers(V) contains at least dimHXλ full-length intervals. Item (ii) also
implies that Ψ◦Φ is an isomorphism. So, we may write V = im Φ⊕ker Ψ. The uniqueness clause of
the Interval Decomposition Theorem (Thm. 2.6) then implies that Pers(im Φ) ⊆ Pers(V). Item (iii)
implies that Φ is injective, and thus that Pers(im Φ) = Pers(U). This completes the proof as we have
shown that Pers(V) contains Pers(U), which contains at least dimHXλ full-length intervals.

Thus, the topological signal of X persists in the M-ZZ throughout a sweet range of the form
[O(ε), Ω(wfs(X))]. The question of the resilience of the topological noise within this range remains
open, and there is currently no theoretical evidence that the noise should not persist under the
mere assumption that X has positive weak feature size. This will be our motivation for introducing
a discretized variant of the Morozov zigzag that provably kills the residual noise in Section 4.4.

For now we will tackle the problem differently and add further restrictions to our setting: on
the one hand, the dimension of the homology groups will be restricted to be 0 or 1 (Section 4.3.1);
on the other hand, the shape X underlying the data points will be assumed to have positive µ-reach
for some large enough value µ (Section 4.3.2).
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4.3.1 0-th or 1-st homology

If we are only concerned with the 0-th or 1-st homology groups, then we can take advantage of the
following simple observation.

Lemma 4.4. For any Q ⊂ Rd and any β ≥ α ≥ 0,

rankH0(Rα(Q))→ H0(Rβ(Q)) = rankH0(Cα
2
(Q))→ H0(Cβ

2
(Q)),

rankH1(Rα(Q))→ H1(Rβ(Q)) ≤ rankH1(Cα
2
(Q))→ H1(Cβ

2
(Q)),

where the homomorphisms are induced at the homology level by canonical inclusions between the
complexes.

Proof. Recall from [15] that for any finite simplicial complexes X ⊆ Y , the rank of the homomor-
phism induced at the r-th homology level by the canonical inclusion X ⊆ Y is given by

rankHr(X)→ Hr(Y ) = dim
Zr(X)

Zr(X) ∩Br(Y )
, (11)

where Zr(X) denotes the space of r-cycles in X and Br(Y ) denotes the space of r-boundaries in Y
(both are subgroups of the space of r-chains in Y ).

When Q ⊂ Rd, it follows from the definitions of Čech and Rips complexes that C γ
2
(Q) and Rγ(Q)

have the same 1-skeleton, given any γ ≥ 0. Hence, Z0(Cα
2
(Q)) = Z0(Rα(Q)) and B0(Cβ

2
(Q)) =

B0(Rβ(Q)), which implies by (11) that the maps H0(Rα(Q)) → H0(Rβ(Q)) and H0(Cα
2
(Q)) →

H0(Cβ
2
(Q)) have same rank.

The definitions of Čech and Rips complexes also imply that the 2-skeleton of Rγ(Q) contains
the one of C γ

2
(Q), while their 1-skeleton is the same as mentioned previously. Hence, Z1(Cα

2
(Q)) =

Z1(Rα(Q)) andB1(Cβ
2
(Q)) ⊆ B1(Rβ(Q)), which implies by (11) that rankH1(Rα(Q))→ H1(Rβ(Q)) ≤

rankH1(Cα
2
(Q))→ H1(Cβ

2
(Q)).

Letting now P, ρ, ε, εk, εl follow the hypotheses of Theorem 4.3, we have by Lemma 4.4 and for
every index i ∈ [k, l]

rankH0(Rρεi+1(Pi+1))→ H0(Rρεi(Pi+1)) = rankH0(C ρ
2
εi+1

(Pi+1))→ H0(C ρ
2
εi(Pi+1)) = dim(H0(Xλ)),

rankH1(Rρεi+1(Pi+1))→ H1(Rρεi(Pi+1)) ≤ rankH1(C ρ
2
εi+1

(Pi+1))→ H1(C ρ
2
εi(Pi+1)) = dim(H1(Xλ)).

Hence, in 0-th or 1-st homology, the noise in the Morozov zigzag is killed when going through the
link Rρεi(Pi+1)← Rρεi+1(Pi+1). More precisely, given r ∈ {0, 1}, call V the restriction of the Moro-
zov zigzag to Hr(Rρεk(Pk+1))← · · · ← Hr(Rρεl(Pl)). On the one hand, the Restriction Theorem 2.7
implies that the total multiplicity of the intervals including [Hr(Rρεi(Pi+1)), Hr(Rρεi+1(Pi+1))] in
V is at most dim(Hr(X

λ)). On the other hand, Theorem 4.3 implies that the multiplicity of the
full-length interval in V is precisely dim(Hr(X

λ)). It follows that among the intervals contain-
ing [Hr(Rρεi(Pi+1)), Hr(Rρεi+1(Pi+1))], only the full-length one has non-zero multiplicity. Thus,
Persr(V) contains only full-length intervals and intervals of type [Hr(Rρεi(Pi)), Hr(Rρεi(Pi+1))].
These are not ephemeral in the index scale of V, however they become so once represented on the
scale of the geometric scales. Hence,
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Theorem 4.5. Given a choice of multiplier ρ > 10, suppose P ⊂ Rd and there is some compact
set X ⊂ Rd such that dH(P,X) < ε with ε < ρ−10

(3+10ϑd)ρwfs(X). Then, for any k < l such that

10ε

ρ− 10
≤ εk, εl < min

{
1

6
wfs(X)− ε, 5

(1 + 5ϑd)ρ+ 5
(wfs(X)− ε)

}
,

the zigzag module induced by (10) at the r-th homology level (r ∈ {0, 1}), once restricted to
Hr(Rρεk(Pk+1)) ← · · · ← Hr(Rρεl(Pl)), has a persistence barcode made only of two types of in-
tervals:
• full-length intervals (the signal), whose number is equal to the dimension of Hr(X

λ) for any
λ ∈ (0,wfs(X)),

• intervals of type [Hr(Rρεi(Pi)), Hr(Rρεi(Pi+1))] (the noise), which are ephemeral (length zero)
on the geometric scale.

4.3.2 Sampled compact sets of positive µ-reach

Let us assume that X has positive µ-reach, denoted rchµ(X) > 0, for some sufficiently large µ.
Recall that rchµ(X) is the infimum of distances from X to points outside of X where the gradient
of the distance to X is less than µ [6]. This quantity is smaller than wfs(X), so having positive
µ-reach (for some µ > 0) implies having positive weak feature size. Moreover it is a stricly stronger
hypothesis, under which the set X and its offsets enjoy further properties. Relevant to our problem
is the fact that, if dH(P,X) < ε with ε sufficiently small compared to rchµ(X) and µ sufficiently
large, then for some values of α the Rips complex Rα(P ) is homotopy equivalent to Xλ for λ ∈
(0, rchµ(X))—see [1, Theorem 14]. An immediate consequence of this result is that for a multiplier
ρ and an index i, Rρεi(Pi) and Rρεi(Pi+1) are both homotopy equivalent to Xλ for λ ∈ (0, rchµ(X))
whenever

µ(2− µ)(2ρεi − 2ϑdεi − 2(εi + ε))

1 + µ(1− µ)−
√

1− µ(2− µ)
(

(2ϑdρ+1)εi+ε
rchµ(X)

)2
> rchµ(X).

This condition depends on rchµ(X), its parameter µ, the multiplier ρ, the Hausdorff distance of
the sample ε, and εi. Attali et al. [1] showed that there do exist values for which the condition is
satisfied. We do not derive the space of valid assignment of constants here, but merely note that this
result implies that there is a multiplier ρ and a range of scales of the form [O(ε), Ω(rchµ(X))] for
which the M-ZZ exhibits no noise at all. This holds because Theorem 4.3 implies that the signal is
present in the sweet range and the Attali et al. result shows that every space in the strictly smaller
range has the same homology as Xλ. We call this the sweeter range. Note that the quantities
hidden in the big-O and big-Ω notations depend on µ, so the sweeter range requires a sufficiently
large µ to be non-empty. Moreover, since the upper bound depends on rchµ(X) rather than wfs(X),
the sweeter range can be arbitrarily smaller than the sweet range. However, when the input permits
a sweeter range, the guarantees regarding the signal-to-noise ratio are correspondingly stronger.

4.4 Discretized Morozov Zigzag

It is possible to construct the M-ZZ over just a subsequence of the indices 1 . . . n. Given such a
subsequence n1, . . . , nr with n1 = 1 and nr = n, the discretized Morozov zigzag (dM-ZZ for short)
is defined as

· · · ← Rρεni (Pni)→ Rρεni (Pni+1)← Rρεni+1
(Pni+1)→ · · · .

The dM-ZZ has the same guarantee as the M-ZZ with regards to preserving the signal in the sweet
range, but it also has the added benefit that it can kill all of the noise in that range.
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Theorem 4.6. Let ρ > 10 be a multiplier. Let X ⊂ Rd be a compact set, let P ⊂ Rd be a finite set,
and let ε = dH(P,X) where ε < ρ−10

(3+10ϑd)ρwfs(X). Let n1, . . . , nr be a subsequence of the indices

[1, n] such that

εni ≥ 2ϑdεni+1 +
4

ρ

(
ε+ εni+1

)
for all i ∈ [1, r − 1]. Then, for any nl > nk such that

10ε

ρ− 10
≤ εnl ≤ εnk < min

{
1

6
wfs(X)− ε, 5

(1 + 5ϑd)ρ+ 5
(wfs(X)− ε)

}
,

the dM-ZZ restricted to HRρεnk (Pnk+1
) ← · · · ← HRρεnl (Pnl) has a barcode with only three classes

of intervals:
• full-length intervals, whose number is equal to the dimension of HXλ for any λ ∈ (0,wfs(X)),
• ephemeral (length zero) intervals,
• intervals of the form [HRρεni (Pni), HRρεni (Pni+1)], which are ephemeral on the scale of the

geometric scales.

Proof. The proof of Theorem 4.3 applies verbatim to the dM-ZZ, with indices 1, 2, · · · , n replaced
by n1, n2, · · · , nr. Thus, the restriction V of the dM-ZZ to HRρεnk (Pnk+1

) ← · · · ← HRρεnl (Pnl)

has a persistence barcode with at least dim(HXλ) full-length intervals.
In the hypothesis, εni ≥ 2ϑdεni+1 + 4

ρ

(
ε+ εni+1

)
, the first term in the sum guarantees that

the inclusion Rρεni (Pni+1)← Rρεni+1
(Pni+1) factors through C ρ

2
εni

(Pni+1)← Cϑdρεni+1
(Pni+1). The

second term in the sum guarantees that the scale change is sufficiently large compared to the Haus-
dorff distance from Pni+1 to X, which is at most ε+ εni+1 . This allows us to apply Theorem 2.5(i)
to guarantee that

rank
(
HC ρ

2
εni

(Pni+1)← HCϑdρεni+1
(Pni+1)

)
= dim(HXλ).

Therefore, by composition we have

rank
(
HRρεni (Pni+1)← HRρεni+1

(Pni+1)
)
≤ dim(HXλ).

Intuitively, this means that only the signal can go through the link HRρεni (Pni+1)← HRρεni+1
(Pni+1),

and that the noise gets killed. More formally, by the Restriction Theorem 2.7 the total multiplicity
of the intervals spanning [HRρεni (Pni+1), HRρεni+1

(Pni+1)] in Pers(V) is at most dim(HXλ). It
follows that among these intervals only the full-length interval has non-zero multiplicity. Thus,
Pers(V) contains three types of intervals: full-length intervals, ephemeral intervals, and intervals of
the form [HRρεni (Pni), HRρεni (Pni+1)]. These last intervals are not ephemeral on the index scale,
but they are ephemeral on the geometric scale because the birth and death times are both ρεni .

Note that ε usually remains unknown in practice, so the user cannot directly choose the maximal
index set that guarantees εni ≥ 2ϑdεni+1 + 4

ρ

(
ε+ εni+1

)
. The bounds given in Theorem 4.6 suggest

to choose the indices

n1 = 1 and ni+1 = min{j > ni | εj ≤ ζεni} for i ≥ 1,

where

ζ =
3ρ+ 20

10(ϑdρ+ 2)
. (12)
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Thus,the conclusion of the theorem continues to hold within the same sweet range as long as
εni ≥ 10ε

ρ−10 . Any smaller value could be chosen for ζ without affecting the sweet range. Nevertheless,
a larger value of ζ has advantages, since the smaller the gaps on the geometric scale the more chances
there are that the set of discretization values {εni} intersects the sweet range, and furthermore,
smaller gaps mean smaller complexes.

4.5 Image Rips zigzag

We end this section with another Rips zigzag construction similar to the image Čech zigzag. It
consists of a nested pair of Morozov zigzags with multipliers ρ ≥ η ≥ 0. Canonical inclusions
between Rips complexes give the following commutative diagram at the homology level.

· · · ← HRρεi(Pi) → HRρεi(Pi+1)←HRρεi+1(Pi+1) →· · ·
↑ ↑ ↑

· · · ← HRηεi(Pi) → HRηεi(Pi+1)←HRηεi+1(Pi+1)→· · ·

The vertical arrows in this diagram form a module homomorphism from the M-ZZ with multiplier
η to the M-ZZ with multiplier ρ. The image Rips zigzag (iR-ZZ) is defined as the image of this
homomorphism. It is written as follows, where each HRρεrηεr(Ps) denotes the image of the map
HRηεr(Ps)→ HRρεr(Ps).

· · · ← Rρεiηεi(Pi)→ Rρεiηεi(Pi+1)← R
ρεi+1
ηεi+1(Pi+1)→ · · ·

Image Rips zigzags have been available in the Dionysus library [14] since early 2009, with no
theoretical guarantee on their behavior. Here we provide a guarantee on the output that is similar
to the one obtained in Theorem 4.2 for the oscillating Rips zigzag.

Theorem 4.7. Let ρ and η be multipliers such that ρ > 10 and 3
ϑd
< η < ρ−4

2ϑd
. Let X ⊂ Rd be a

compact set, let P ⊂ Rdbe a finite set, and let ε = dH(P,X). Then, for any l > k such that

max

{
3ε

ϑdη − 3
,

4ε

ρ− 2ϑdη − 4

}
≤ εl ≤ εk < min

{
1

6
wfs(X)− ε, 1

ϑdρ+ 1
(wfs(X)− ε)

}
,

the iR-ZZ restricted to HRρεkηεk(Pk+1)← · · · ← HRρεlηεl(Pl) contains only isomorphisms, and its spaces
are isomorphic to HXλ for any λ ∈ (0,wfs(X)). Therefore, its persistence barcode is made only of
full-length intervals, whose number equals the dimension of HXλ.

Proof. Our hypotheses imply ρ
2 ≥ ϑdη, so we can use (1) to obtain the following diagram where all

arrows are canonical inclusions.

· · · ← Cϑdρεi(Pi) → Cϑdρεi(Pi+1) ← Cϑdρεi+1
(Pi+1) →· · ·

↑ ↑ ↑
· · · ← Rρεi(Pi) → Rρεi(Pi+1) ← Rρεi+1(Pi+1) →· · ·

↑ ↑ ↑
· · · ← C ρ

2
εi(Pi) → C ρ

2
εi(Pi+1) ← C ρ

2
εi+1

(Pi+1) →· · ·
↑ ↑ ↑

· · · ← Cϑdηεi(Pi) → Cϑdηεi(Pi+1) ← Cϑdηεi+1
(Pi+1) →· · ·

↑ ↑ ↑
· · · ← Rηεi(Pi) → Rηεi(Pi+1) ← Rηεi+1(Pi+1) →· · ·

↑ ↑ ↑
· · · ← C η

2
εi(Pi) → C η

2
εi(Pi+1) ← C η

2
εi+1

(Pi+1) →· · ·
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This diagram induces a homomorphism Φ from the image Rips zigzag U of parameters η, ρ to the
image Čech zigzag V of parameters ϑdη, ϑdρ. Call U∗ (resp. V∗) the restriction of U (resp. V) to
the scale range [(εk, Pk+1), (εl, Pl)]. The restriction of Φ to U∗ is an isomorphism onto V∗. To see
this, pick an arbitrary index i in the range [k+1, l] and consider the following sequence of inclusions
between Čech complexes:

C η
2
εi(Pi)

a−→ Cϑdηεi(Pi)
b−→ C ρ

2
εi(Pi)

c−→ Cϑdρεi(Pi+1).

Under our geometric hypotheses, it follows from Theorem 2.5(i) that the maps c ◦ b ◦ a and
b induce homomorphisms of same rank at the homology level. Since a and c factor through
Rips complexes as shown above, rank inequalities induced by composition imply that the map
HRρεiηεi(Pi)→ HCϑdρεiϑdηεi

(Pi) is an isomorphism. The same argument holds for the map HRρεiηεi(Pi+1)→
HCϑdρεiϑdηεi

(Pi+1), with i ∈ [k, l − 1]. Thus, the restriction of Φ to U∗ is indeed an isomorphism onto

V∗. The conclusion of the theorem follows because the spaces in V∗ are isomorphic to HXλ and
the maps in V∗ are isomorphisms, as guaranteed by Theorem 4.1.

5 Complexity bounds

We assume that the ordering of the points of P is by furthest point sampling4. Then, every prefix
Pi is an εi-sparse εi-sample of P , and so standard ball packing arguments like the one used in [17,
Lemma 4.1] can be applied to bound the memory usage and running times of our Rips zigzags.
The corresponding bounds are given below. Note that they are stated in terms of the doubling
dimension of the input point set, because it may be smaller than the ambient Euclidean dimension
and thus gives sharper bounds.

Memory usage. The relevant parameter here is the multiplier ρ, which conditions the size of
the biggest complex in a Rips zigzag.

Theorem 5.1. Suppose P is sitting in some metric space of doubling dimension d. Then, for
any k ≥ 0, the number of k-simplices in the current complex at any time of the construction of
the M-ZZ of parameter ρ is at most 2O(kd log ρ)n, where n is the cardinality of P . The same bound
applies to the oR-ZZ and iR-ZZ of parameter ρ, regardless of the value of parameter η ≤ ρ. Finally,
given a constant ζ ∈ (0, 1] and indices n1 = 1 and ni+1 = min{j > ni | εj ≤ ζεni}, the number of

k-simplices in any complex of the dM-ZZ is at most 2
O(kd log ρ

ζ
)
n.

Proof. We prove the result in the case of the dM-ZZ; the other cases following by letting ζ = 1.
Let 1 = n1 < n2 < · · · < nr−1 < nr be the discretization indices. Since each prefix Pni is
εni-sparse, a standard ball packing argument shows that every point p ∈ Pni is connected to
at most 2O(d log ρ) neighbors in the Rips complex Rρεni (Pni). These neighbors can form at most(

2O(d log ρ)

k

)
= 2O(kd log ρ) k-simplices with p. Thus, the total number of k-simplices in Rρεni (Pni)

is at most 2O(kd log ρ)ni ≤ 2O(kd log ρ)n.
Let us now bound the size of Rρεni (Pni+1). It follows from the definition of ni+1 that Pni+1−1

is ζεni-sparse. Then, the same ball packing argument as above shows that every point p ∈ P has

at most 2
O(d log ρ

ζ
)

points of Pni+1−1 within distance ρεni . Applying this result to every p ∈ Pni+1 ,

4Arbitrary orderings may lead to local oversampling and thus to an uncontrolled local growth of the complex,
regardless of the zigzag considered.
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and observing that the set difference Pni+1 \ Pni+1−1 consists only of the point pni+1 , we deduce

that every vertex of Rρεni (Pni+1) has at most 2
O(d log ρ

ζ
)

neighbors, as previously. The rest of the
analysis follows.

Since the theoretical lower bounds on ρ derived in Section 4 are constant (ρ > 10), one is allowed
to set ρ to some constant value in practice and benefit from our guarantees on the quality of the
output. Meanwhile, Theorem 5.1 ensures that the number of k-simplices in the current complex
remains at most 2O(kd)n throughout the construction of the M-ZZ, oR-ZZ or iR-ZZ. When using
the dM-ZZ, one can also set ζ to be a constant as in (12), thus benefiting from the theoretical
guarantees on the quality of the output while maintaining the number of k-simplices in the current
complex below 2O(kd)n throughout the construction of the zigzag. Note however that the exact
complex size is bigger than the one achieved with the other types of Rips zigzags when ζ < 1.
These asymptotic bounds are as good in order of magnitude as the ones achieved with previous
lightweight structures [13, 24].

Runtime. In experiments, we observed a significant slowdown in the running time of the oR-ZZ
compared to the M-ZZ, iR-ZZ and dM-ZZ. This is a result of the oR-ZZ inserting and removing
the same simplices many times. Thus, the total number of insertions is a relevant indicator of
running time, and it is driven by the value of η: the closer it is to ρ, the fewer simplex insertions
and deletions occur during the zigzag calculation.

Theorem 5.2. Suppose P is sitting in some metric space of doubling dimension d. Then, for any
k ≥ 0, the total number of k-simplices inserted in the current complex throughout the construction
of the M-ZZ of parameter ρ is at most 2O(kd log ρ)n, where n is the cardinality of P . The same bound
applies to the iR-ZZ of parameter ρ, regardless of the value of parameter η ≤ ρ. For the oR-ZZ of
parameters η, ρ, the bound becomes 2O(kd log ρ)n2. Finally, given a constant ζ ∈ (0, 1] and indices

n1 = 1 and ni+1 = min{j > ni | εj ≤ ζεni}, the bound for the dM-ZZ is 2
O(kd log ρ

ζ
)
n.

Proof. We begin with the M-ZZ, for which we will use a simple charging argument. Observe that
simplex insertions occur only when a forward arrow is encountered in the zigzag. For any such
arrow, the current complex is enlarged by adding a new vertex pi+1 and connecting it to the rest
of the complex. By the same packing argument as in the proof of Theorem 5.1, pi+1 forms at most
2O(d log ρ) edges with the points of Pi, therefore the number of k-simplices in its star in Rρεi(Pi+1)
is at most 2O(kd log ρ). This is also the number of k-simplices created at this stage of the algorithm.
Hence, the total number of k-simplices inserted throughout the process is at most 2O(kd log ρ)n. This
bound applies also to the iR-ZZ, which maintains two Morozov zigzags: one of parameter ρ, the
other of parameter η ≤ ρ.

The case of the dM-ZZ is similar, with the additional twist that more than one vertex is added
to the current complex when going from Rρεni (Pni) to Rρεni (Pni+1). Nevertheless, as observed in
the proof of Theorem 5.1, the points of Pni+1−1 are ζεni-sparse, so the number of edges in the star

of any point of Pni+1 in Rρεni (Pni+1) is at most 2
O(d log ρ

ζ
)
, and the number of k-simplices is bounded

by 2
O(kd log ρ

ζ
)
. Hence, the total number of k-simplices inserted at this stage of the algorithm is at

most 2
O(d log ρ

ζ
)
(ni+1 − ni). The result follows.

Finally, the case of the oR-ZZ with parameters η < ρ is trickier. Due to the fact that both the
vertex set and the Rips parameter increase when a forward arrow is encountered in the zigzag, we
cannot simply charge the new simplex insertions to the newly added vertices: former vertices also
form new simplices together. In fact our bound is obtained by a cruder argument: for any forward
arrow, the current complex contains at most 2O(kd log ρ)n k-simplices before and after following the
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arrow. Hence, in the worst case the complex is rebuilt entirely, which means inserting at most
2O(kd log ρ)n k-simplices in total. Since this is true for any one of the n − 1 forward arrows, the
claimed quadratic bound follows.

6 Experiments

Our implementation of the Rips zigzags of Section 4 is available as a package (called homology-
zigzags) of the C++ library Dionysus [14].

Manufactured data. As a proof of concept, we ran our code on the so-called Clifford data set
from [19], which was obtained by evenly spacing 2, 000 points along the line l : y = 20x mod 2π
in the 2-d flat torus (R mod 2π)2, then mapping the points onto the Clifford torus in R4 via the
embedding f : (u, v) 7→ (cosu, sinu, cos v, sin v). This data set admits three non-trivial candidate
underlying spaces: at small scales, the image of l through f , which is a closed helicoidal curve on
the torus; at larger scales, the torus itself; at even larger scales, the 3-sphere of radius

√
2 on which

the torus is sitting.

zigzag parameters max. complex size total # insertions

M-ZZ ρ = 3 107927 398107

dM-ZZ ρ = 3, ζ = 0.9 162919 604084

iR-ZZ η = 3, ρ = 3.2 174436 1003215

oR-ZZ η = 3, ρ = 3.2 174436 7252772

Table 1: Maximum complex size (in number of simplices) and total number of simplex insertions.

Figure 1: Barcode of the M-ZZ.

We ran the M-ZZ, dM-ZZ, iR-ZZ and oR-ZZ using the parameter values given in Table 1.
Although these values lie outside the intervals prescribed by the theory, they were sufficient to
obtain good results in practice. The corresponding results for the M-ZZ and dM-ZZ are reported
in Figures 1 and 2 respectively. The barcodes are represented on a logarithmic geometric scale
(i.e. the horizontal axis shows the value of log2 εi), with ephemeral (length zero) intervals removed
for clarity. The results obtained with the iR-ZZ and oR-ZZ are similar to Figure 2 and therefore
omitted.

The three spaces underlying the input data (curve, torus, 3-sphere) appear in all these barcodes,
meanwhile the topological noise remains small (M-ZZ) or even ephemeral (dM-ZZ, iR-ZZ, oR-ZZ).
Of particular interest is the 3-sphere, whose corresponding 3-homology cycle appears only at large
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Figure 2: Barcode of the dM-ZZ.

scales and for a short while due to the fact that the 3-sphere is not densely sampled by the point
cloud. This delicate 3-cycle certainly exists in the barcode of the standard Rips filtration, however
it cannot be observed in practice. As mentioned in [19] the union of balls of radius α around the

data points covers the entire sphere only for α ≥
√

4− 2
√

2, so the corresponding 3-homology cycle

can appear in the Rips filtration only at a parameter value α ≥
√

4−2
√

2
ϑd

>
√

2. Now, a simulation
reveals that the 4-skeleton of the Rips complex at such parameter values contains more than 31
billion simplices, a size that lies at least 2 orders of magnitude beyond the sizes currently handled
by existing implementations. On a 24-GB machine we were able to store the 4-skeleton of the Rips
filtration and compute its persistent homology within the main memory up to α ≈ 0.625 using
Dionysus. The corresponding truncated barcode is represented on a log2 scale in Figure 3. As
expected, it shows only the curve and the torus, not the 3-sphere.

Figure 3: Barcode of the standard Rips filtration.

For comparison we recall in Figure 4 the barcode obtained by Hudson et al. using their mesh-
based filtration [19]. Although the scale has been adapted to be the same as in the previous figures,
any direct comparison of the barcodes should be made with the caveat that the intervals are half-
open as in [19], rather than closed as in the present paper. Nevertheless, the general trend here is
that although the three spaces underlying the input data do appear in the barcode, the amount
of noise is significant and its structure is quite irregular, despite the regularity of the data. Most
notably, the amplitude of the noise in 1- or 2-homology is larger than the amplitude of the signal in
3-homology, which tends to obscure the information carried within the barcode. The superiority of
Rips zigzags over mesh-based filtrations is also in terms of efficiency: as reported in [19] the mesh-
based filtration contains 12 million simplices, whereas our Rips zigzags contain less than 200,000
simplices at any given time—see Table 1. The oR-ZZ did perform over 7 million simplex insertions
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Figure 4: Barcode of the mesh-based filtration.

and deletions in total, however the other zigzags performed much fewer such operations as predicted
by Theorem 5.2. In practice, computing any of our Rips zigzags together with its barcode took
only a few minutes on a single Intel Xeon CPU core running at 2.40 GHz, whereas computing the
mesh-based filtration and its barcode took hours on a similar architecture.

Real data. To demonstrate the practicality of our approach, we applied it to a real-life example
derived from the statistics of natural images. The data set, described by Lee et al. in [22], consists
of 4.2 million high-contrast log-intensity 3 × 3 patches extracted from van Hateren’s collection of
still images [25]. Each patch is normalized in such a way that it can be represented as a point on
the unit sphere S7 in the Euclidean space R8.

(a) The 3-circles model (b) Barcode obtained with
k = 1, 200 and x = 30%

(c) Barcode obtained with
k = 24, 000 and x = 30%

Figure 5: Experimental results from [10] (images courtesy of G. Carlsson and V. de Silva).

This 8-dimensional data set was studied in depth by Carlsson and co-authors [5, 10], who used
the witness complex filtration to analyze its topological structure. Their findings led them to con-
jecture that the data are concentrated mostly around three circles with four points of intersection,
as depicted in Figure 5(a). To uncover this structure, they applied several statistical filters to the
point cloud (called P hereafter):

1. Since the focus was primarily on high-density areas of the data, they thresholded P by
density using the k-th nearest neighbor density estimator, keeping only the fraction x of the
data points with lowest k-th nearest neighbor distance. Varying k from 1, 200 to 24, 000 and
x from 10% to 30%, they obtained a collection Pk,x of high-density subsets of P .
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2. Considering each set Pk,x independently, they selected a subset Wk,x of 5, 000 random points
sampled uniformly, which they took as their witness set.

3. Among the points of Wk,x they selected a subset Lk,x of 50 landmarks by a furthest-point
sampling strategy.

After this preprocessing phase, they computed the barcode of the witness complex filtration for
each pair (Lk,x,Wk,x) independently. Their results in 1-homology show two trends :
• For smaller values of k, the barcodes reveal 5 long bars—see e.g. Figure 5(b)—corresponding

to the homology of the 3-circle model of Figure 5(a).
• For larger values of k, the barcodes reveal only 1 long bar—see e.g. Figure 5(c), suggesting

that one of the circles is prevailing over the other two, which once again corroborates the
3-circles model as depicted in Figure 5(a).

In [5], the authors also conjectured that the 3 circles might actually lie on a Klein bottle. Their in-
tuition came from the observation that the 3 circles can be combined into a natural parametrization
of the space of high-contrast 3× 3 patches that has the topology of a Klein bottle. Unfortunately,
as intellectually pleasing as this hypothesis may be, they were not able to verify it beyond any
doubt in practice, as it took them a fair amount of tweaking to make the Klein bottle appear in
their barcodes. One possible explanation is that they were using too few landmarks in an attempt
to keep the size of the witness complex filtration from becoming intractable. The question of the
size and choice of the landmarks set has an impact on the validity of their experimental results as
a whole, since after all, there are not so many shapes out there that can be faithfully sampled with
only 50 points. Thus, even their results in 1-homology call for further experimental validation.

Figure 6: Barcode of the M-ZZ of Wk,x with k = 1, 200 and x = 30.

Our Rips zigzags are particularly relevant for this validation. Using the same preprocessed
data, we took the whole set Wk,x as landmarks and computed the persistence (up to 7 dimensions)
of their associated Morozov zigzags. We subsampled the data down to 500 points to compute the
diagrams for dimensions 4 and up. This took less than an hour per data set and used less than 2
GB of RAM. The barcodes obtained for Wk,x with (k = 1, 200, x = 30) and (k = 24, 000, x = 30)
are shown in Figures 6 and 7 respectively. While they do corroborate the results of Figure 5, they
show a clear absence of any higher-dimensional topological structure. This further strengthens the
3-circles model hypothesis, while weakening the Klein bottle model hypothesis. It does not discard
the latter entirely though, since our results are subject to the initial density filtering step, which
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Figure 7: Barcode of the M-ZZ of Wk,x with k = 24, 000 and x = 30.

might be too rough in its current form. A more subtle statistical preprocessing of the data might
change the situation5, and so the question of the presence (or not) of the Klein bottle in this data
set is left open.

7 Discussion

In this paper, we explored several Rips zigzags that achieve both small size and bounded topo-
logical noise for homology inference. While our size bounds are comparable to those obtained in
previous work, our bounds on the noise are clearly better since they guarantee the noise is either
totally absent or just ephemeral. Our proofs rely on general new techniques for manipulating and
comparing zigzag modules. We hope that these techniques will find further use and stimulate new
research and applications of zigzag persistence. For now we provide an in-depth discussion of the
potential and limitations of our results.

Choosing among the Rips zigzags in practice. Each one of our zigzags has its own strengths
and weaknesses, whether in terms of output quality or in terms of computing efficiency. Table 2
summarizes their theoretical behavior with respect to the key aspects of our analysis: length of
the sweet range, amplitude of the topological noise, memory usage and running time versus the
number of input points.

zigzag sweet range topological noise size vs input runtime vs input

iR-ZZ widest none linear linear

oR-ZZ widest ephemeral linear quadratic

dM-ZZ close to widest ephemeral on geometric scale linear linear

M-ZZ close to widest potentially large linear linear

Table 2: Theoretical behaviour of the Rips zigzags of Section 4.

This table gives a clear advantage to the iR-ZZ and should encourage the user to prefer it over the
other zigzags in practice. However, it is somewhat misleading because only the asymptotic memory

5This idea was suggested in [5], where it led to further tweaking of the data.
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usage and running time bounds are given. In fact, maintaining two Morozov zigzags requires up
to twice the amount of memory required to maintain just one, which makes a huge difference
on some datasets, including in terms of actual running time. Moreover, the iR-ZZ requires an
implementation of the zigzag persistence algorithm for images, a version that is likely to be less
efficient than its non-image counterpart. For instance, in our experiments on the Clifford data set
the iR-ZZ was ten times slower to compute than the M-ZZ.

Among the other zigzags, the oR-ZZ clearly gives the best results in terms of quality, both in
theory and in practice. Unfortunately, its computation turns out to be much slower than those
of the other zigzags. In our experiments the slow-down factor compared to the M-ZZ went up to
thousands.

The discretized Morozov zigzag achieves a good trade-off between running time and output
quality. In our experiments the running times were comparable to that of the M-ZZ (only slower
by a factor of 2 at most), while the output barcodes contained much less topological noise. A
shortcoming though is that large discretization steps tend to over-simplify the barcodes, sometimes
treating some relevant yet delicate topological features as noise and removing the corresponding
bars in the output. Such issues occur less often with the other zigzags, which insert the data points
one by one instead of in batches.

Thus, as a general rule of thumb, we suggest to use the Morozov zigzag first in practice when
dealing with a new data set. This is especially true if the data are supposed to be sampled from
“simple” shapes (e.g. ones with positive reach or µ-reach), in which case the quality of the output
should be comparable to that achieved with the other zigzags (albeit with a smaller sweet range).
Then, in cases where the quality of the result is not sufficient and one needs to obtain cleaner
(less noisy) barcodes, either one of the three variants may be considered: dM-ZZ, oR-ZZ, or iR-ZZ.
Although we did prefer the dM-ZZ for its good trade-off in general, in some specific scenarios the
iR-ZZ or oR-ZZ was definitely the better choice.

Beyond Euclidean spaces. The geometric part of our analysis of the Rips zigzags of Section 4
assumes the vertex set is sitting in some Euclidean space, Hausdorff-close to some compact set.
This hypothesis is made for the sake of convenience as it allows us to refer to the sampling theory
for compact sets developped by Chazal and co-authors [6]. However, it does not reflect the variety
of scenarios in which Rips zigzags can be used.

Since their construction only requires a matrix of pairwise distances as input, Rips zigzags
are applicable in any metric space. Although they come with no theoretical guarantees in such
a generality, there are many contexts in which some things can be said about their persistence
barcodes. Finite samples of a compact subset of Rd is but one example. Another important
example is when P is sampled from a compact Riemannian manifold, or more generally from a
compact Alexandrov space with curvature bounded from above, or even more generally from any
compact length space X with positive convexity radius — see e.g. [3] for an introduction to these
spaces. It is beyond the scope of this paper to redo our analysis in this context, however for
completeness we provide high-level directions on how to adapt it:
• Compact spaces with positive convexity radius admit finite covers with (small enough) convex

metric balls, so the Nerve Lemma and its persistent variant hold. One can then reproduce the
results of Section 2.2, and in particular Theorem 2.5, with X being the whole space instead of
some compact subset, and with the convexity radius of X playing the role formerly played by
the weak feature size6. This settles most of the geometric aspects of the analysis of Section 4.

6The analysis is even simpler in this case since Čech complexes of a suitable parameter carry the same homological
information as X, as opposed to the images of inclusions between Čech complexes.
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• The one part of the analysis that still remains to be adapted is when the results by Attali,
Lieutier and Salinas [1] are invoked to bound the amplitude of the noise in the barcode of the
Morozov zigzag. These results require P to be sitting close to some compact set with positive
µ-reach in Rd. However, it turns out that they follow previous work by Hausmann [18] and
Latschev [21], which focuses precisely on cases where P lies on Riemannian manifolds or more
general length spaces, and whose results apply directly to the present context.

• Once these geometric aspects have been adapted, the rest of the analysis can be reproduced
and theorems similar to the ones of Section 4 can be derived for the oR-ZZ, M-ZZ, dM-ZZ,
and iR-ZZ. While the lower bounds of the sweet ranges still depend on the sampling density
parameter ε, the upper bounds now depend on the convexity radius rather than on the weak
feature size.

Zigzags manipulations and functoriality. The topological part of our analysis of Rips zigzags
relies on manipulating zigzags via arrow reversals or space removals, and of paramount importance is
the fact that such manipulations can be performed while preserving (most of) the internal structure
of the zigzags as well as the commutativity of the diagrams. In a sense, one can see the Arrow
Reversal and Space Removal theorems as providing operators from the class of zigzags of a certain
type τ to the class of zigzags of another type τ∗. In the arrow reversal case, τ and τ∗ differ by a
single arrow orientation, while in the space removal case they differ by a single space. An important
question is to understand when and why these operators would preserve commutativity, which can
be cast mathematically into the question of whether these operators can be made functorial.

To formalize this question, we use the language of quiver theory, in which a module type τ is
called a quiver and is represented as a directed graph whose undirected version is a simple path, as
in the following example.

• −→ • ←− • −→ • −→ •

A zigzag module V of type τ is called a representation of τ . The class of all representations of τ ,
together with the module homomorphisms connecting them, forms a category denoted Repτ . In the
case of arrow reversals, we are given another module type τ∗ that differs from τ by a single arrow
orientation, and we ask ourselves whether there exist functors F : Repτ → Repτ∗ that preserve the
interval decompositions of τ ’s representations, i.e.,

∀V ∈ Repτ , Pers(V) = Pers(F(V)). (13)

Beyond the question of the existence of such functors (which remains a mystery to us at present)
lies that of their intrinsic properties. Considering that the arrow reversal operator is naturally
reversible (applying it twice to a module V gives either V itself or some module isomorphic to it,
depending on the choice of isomorphism in the Interval Decomposition Theorem 2.6), it is desireable
that the functor F be also reversible in some sense. There exist many notions of reversibility for
functors in the theory of categories, and here we check F against the following classical notions:
(a) isomorphism of categories, (b) equivalence of categories, (c) left or right adjoint. There is
a natural gradation between these concepts: isomorphisms are equivalences and equivalences are
adjoint.

We show in Appendix A that, given τ, τ∗ as above, there is no covariant functor F : Repτ →
Repτ∗ of type (a), (b) or (c) that satisfies (13). In other words, there is no hope to find reversible
covariant arrow-reversing functors that preserve persistence diagrams, at least for the aforemen-
tioned classical notions of functor reversibility. We also show that a similar conclusion holds for
contravariant functors, under the extra hypothesis that the length of τ, τ∗ (i.e. the number of nodes
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in the graph) is at least 3 and not just 2. Indeed, for module types of length 2, plain vector space
duality induces a contravariant functor that is an isomorphism of categories.

These negative results regarding the functoriality of arrow reversals are a pretty bad piece of
news. And unfortunately, claims of a similar flavor can be made for space removals as well7. This
being said, we have only scratched the surface of the problem so far. For instance, we still do not
know if functors satisfying (13) exist. Further investigations should be conducted to assess the real
potential of the arrow reversal and space removal operators, to derive more canonical variants, and
to make connections with other operations on quivers such as for instance reflection and Coxeter
functors [2].
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A Appendix: Functoriality

To prove that no functor of type (c) exists—and thus no functor of type (a) or (b) either, we use
the fact that left (resp. right) adjoint functors are right (resp. left) exact, i.e., they preserve right
(resp. left) exact sequences [20, §3.3.6].

Lemma A.1. Let τ, τ∗ be module types of length at least 2 that differ by a single arrow orientation.
Then, there is no covariant functor F : Repτ → Repτ∗ satisfying (13) that is either left or right
exact.

Proof. By the restriction principle we only need to focus on module types of length 2. Let then τ
be the quiver • −→ • and τ∗ the quiver • ←− •. Suppose that there exists a covariant functor F :
Repτ → Repτ∗ that satisfies (13). Then, consider the following sequence of module homomorphisms
(drawn horizontally) connecting various representations of τ (drawn vertically upwards), where k
denotes the field of coefficients:

0
0−→ k

1−→ k
0−→ 0

0−→ 0
↑0 ↑0 ↑1 ↑0 ↑0
0

0−→ 0
0−→ k

1−→ k
0−→ 0

It is easily seen that this sequence is exact. By (13) it is sent to a sequence of the following form
through F, where the spaces A,B,C,D are isomorphic to k:

0
0−→ A

0−→ C
0−→ 0

0−→ 0
↓0 ↓0 ↓∼= ↓0 ↓0
0

0−→ 0
0−→ B

0−→ D
0−→ 0

Note that the map A −→ C has to be zero for the quadrant A,C,B, 0 to commute. Idem, the
map B −→ D has to be zero for the quadrant C, 0, D,B to commute. Thus, this new sequence is
neither left nor right exact.

Lemma A.2. Let τ, τ∗ be module types of length at least 3 that differ by a single arrow orientation.
Then, there is no contravariant functor F : Repτ → Repτ∗ satisfying (13) that is either left or right
exact.

Proof. By the restriction principle we only need to focus on module types of length 3. Let then τ be
the quiver • −→ • ←− • and τ∗ the quiver • −→ • −→ •, the other option (τ = • ←− • −→ • and
τ∗ = • −→ • −→ •) being similar and left as an exercise. Suppose that there exists a contravariant
functor F : Repτ → Repτ∗ that satisfies (13). Then, consider the following sequence of module
homomorphisms (drawn horizontally) connecting various representations of τ (drawn vertically
upwards), where k denotes the field of coefficients:

0
0−→ 0

0−→ k
1−→ k

0−→ 0
↓0 ↓0 ↓1 ↓0 ↓0
0

0−→ k
1−→ k

0−→ 0
0−→ 0

↑0 ↑0 ↑1 ↑0 ↑0
0

0−→ 0
0−→ k

1−→ k
0−→ 0
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It is easily seen that this sequence is exact. By (13) it is sent to a sequence of the following form
through F, where the spaces A,B,C,D,E, F are isomorphic to k:

0
0←− 0

0←− D ←− F
0←− 0

↑0 ↑0 ↑∼= ↑0 ↑0
0

0←− A
0←− C

0←− 0
0←− 0

↑0 ↑0 ↑∼= ↑0 ↑0
0

0←− 0
0←− B

0←− E
0←− 0

Note that the map A←− C has to be zero for the quadrant A,C,B, 0 to commute. Idem, the map
B ←− E has to be zero for the quadrant C, 0, E,B to commute. Thus, this new sequence is neither
left nor right exact.
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