3D Reconstruction from Cross-Sections

Pooran MEMARI, Jean-Daniel BOISSONNAT

Projet Geometrica, INRIA Sophia Antipolis

TGDA 2009

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

Motivations

(a) Input: 2D Images + Orientation of the captor

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

Motivations

(b) Actual Technology

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

Different cross-sections positions

Parallel planes

Non-parallel serial sequence of planes

Arbitrary cutting planes

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

Geometric Methods (parallel case)

Most of methods use the superposition of the contours.

Bajaj et al. [1996]

Barequet et al. [1996-2004]

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

・ロト・日本・日本・日本・日本・日本

Outline

Voronoi Diagram and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

Outline

Voronoi Diagram and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

Planar Cross-Sections of an Object

$\mathcal{O} \subset \mathbb{R}^3$ is a compact 3-manifold with boundary (denoted by $\partial \mathcal{O}$) of class C^1 .

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

Planar Cross-Sections of an Object

 \mathcal{O} is cut by a set of cutting planes P.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

In each cell C of the arrangement of the cutting planes, $\mathcal{O}_{\mathcal{C}} := \mathcal{O} \cap \mathcal{C}$ will be reconstructed independently.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらぐ

Voronoi Diagram of a Section

The Voronoi diagram of a section A, $V_{\mathcal{C}}(A)$.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

・ロト ・ 日下 ・ 山下・ ・ 日下 ・ 今々ぐ

Lift and Height of a Section

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Reconstructed Object

 $\mathcal{R}_{\mathcal{C}} := \bigcup_{A \in \mathcal{S}_{\mathcal{C}}} \bigcup_{a \in A} [a, \mathrm{lift}(a)].$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④��

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

Approximation Guarantees

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

Outline

Voronoi Diagram and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

Internal and External Medial Axes of $\partial \mathcal{O}$

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

Consider $\partial \mathcal{O}$ as a 2-manifold embedded in \mathbb{R}^3 . MA($\partial \mathcal{O}$), contains two different parts:

• Internal Part: $MA_i = MA(\mathbb{R}^3 \setminus \mathcal{O})$, that lies in \mathcal{O} .

• External Part: $MA_e = MA(\mathcal{O})$, that lies in $\mathbb{R}^3 \setminus \mathcal{O}$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

 $\operatorname{reach}(\mathcal{O}) := \min_{m \in \operatorname{MA}(\partial \mathcal{O})} d(m, \partial \mathcal{O}).$

For a cell $\mathcal C$ of the arrangement:

 $\operatorname{reach}_{\mathcal{C}}(\mathcal{O}) = \min_{m \in \operatorname{MA}(\partial \mathcal{O}) \cap \mathcal{C}} d(m, \partial \mathcal{O}).$

If $MA(\partial \mathcal{O}) \cap \mathcal{C} = \emptyset$ then $\operatorname{reach}_{\mathcal{C}}(\mathcal{O})$ is infinite. reach $(\mathcal{O}) = \min_{\mathcal{C}} (\operatorname{reach}_{\mathcal{C}}(\mathcal{O}))$ is positive. 3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

For $\epsilon > 0$, we have an ϵ -cut sample of \mathcal{O} if :

- 1. Any connected component of \mathcal{O} is cut by at least one cutting plane.
- For any cell C of the arrangement of the cutting planes and for any section A ∈ S_C we have h_A < ε.reach_C(O).

Any refinement of an ϵ -cut sample is an ϵ -cut sample as well.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity petween the Sections

Fopological Guarantees

・ロト・日本・日本・日本・日本・日本

A Sufficient Condition for Having an ϵ -Cut Sample.

Definition (Bounding Planes and Height of a Polyhedron)

Let C be a 3D polyhedron. The supporting planes of the faces of C are called the *bounding* planes of C. The *height* of C is defined as the maximum distance between a point in C and a bounding plane of C.

Lemma: For any $\epsilon \leq 2$, if the height of any cell is less than ϵ .reach(\mathcal{O}), then we have an ϵ -cut sample of \mathcal{O} .

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

Lemma (Separation Lemma)

If the sample of cutting planes forms an ϵ -cut sample of \mathcal{O} , for some $\epsilon \leq 1$, then $\mathrm{MA}_i \subset \mathcal{R}$ and $\mathrm{MA}_e \subset \mathbb{R}^3 \setminus \mathcal{R}$. In other words, $\partial \mathcal{R}$ separates the internal and external parts of the medial axis of $\partial \mathcal{O}$.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

Theorem (Hausdorff Distance)

Let D_1 be the maximum of reach_C(\mathcal{O}) for all cells \mathcal{C} that intersect MA($\partial \mathcal{O}$).

Let D_2 be the maximum diameter of the cells that do not intersect MA(∂O).

Then in an ϵ -cut sample of \mathcal{O} , we have $d_H(\mathcal{O}, \mathcal{R}) < \max\{2\epsilon D_1, D_2\}.$

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

・ロト・日本・日本・日本・日本・日本

Voronoi Diagram and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

In an ϵ -cut sample of \mathcal{O} , for an $\epsilon \leq 1$, for any cell \mathcal{C} of the arrangement, there is a bijection between the connected components of $\mathcal{O}_{\mathcal{C}}$ and the connected components of $\mathcal{R}_{\mathcal{C}}$.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

・ロト・日本・山田・山田・山田・

Connectivity between the Sections

Lemma

Two sections are connected in $\mathcal{O}_{\mathcal{C}}$ iff they are connected in $\mathcal{R}_{\mathcal{C}}$.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

・ロト ・ 通 ト ・ 画 ・ ・ 画 ・ 今 の ぐ

$\mathsf{Proof}\;\mathsf{of}\Longrightarrow$

If two sections are connected in $\mathcal{O}_{\mathcal{C}}$ then they are connected in $\mathcal{R}_{\mathcal{C}}.$

Proof:

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

▲ロト ▲理ト ▲ヨト ▲理 - のんの

$\mathsf{Proof} \; \mathsf{of} \Longleftarrow$

If two sections are connected in $\mathcal{R}_{\mathcal{C}}$ then they are connected in $\mathcal{O}_{\mathcal{C}}.$

Lemma: Let *a* be in ∂A , and $A' \in S_{\mathcal{C}}$ be s.t. $[am_i(a)]$ intersects $V_{\mathcal{C}}(A')$. Then A and A' are connected in $\mathcal{R}_{\mathcal{C}}$.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへで

Proof of \Leftarrow

If two sections are connected in $\mathcal{R}_{\mathcal{C}}$ then they are connected in $\mathcal{O}_{\mathcal{C}}$.

Proof: Take a path γ in $\partial \mathcal{O}$ between $a \in \partial A$ and $a' \in \partial A'$, for some section $A' \in \{A_i\}_{i \in I}$. For any point $x \in \partial \mathcal{O}$, we define $J(x) = m_i(x)$ if $m_i(x) \in C$, and $J(x) = [xm_i(x)] \cap \partial C$ otherwise. J is a continuous function that maps γ to a connected path in $MA_i \cup \{A_i\}_{i \in I}$, between J(a') and J(a). As $[am_i(a)]$ does not intersect the Voronoi cells of the other sections of S_C . J(a) is either $m_i(x) \in V_C(A)$ or is a. In both cases, J(a) is in $V_C(A)$. Two possible cases:

- ► $\exists A_0 \in S_C$, distinct from A, s.t. $J(\gamma)$ intersects $V_C(A_0)$. Thus, A is connected to A_0 in \mathcal{R}_C .
- Otherwise, $J(\gamma)$ lies entirely in $V_{\mathcal{C}}(A)$. In particular, $J(a') \in V_{\mathcal{C}}(A)$. Hence, $[a'm_i(a')]$ intersects $V_{\mathcal{C}}(A)$, and A' is connected to A in $\mathcal{R}_{\mathcal{C}}$.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Fopological Guarantees Voronoi Diagram and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

Topology?

Good Connections \implies Good Topology ?

Yes, with an ϵ -cut sample of \mathcal{O} , for $\epsilon \leq \frac{1}{2}$

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

・ロト ・ 日本・ モー・ モー・ クタマ

Topology?

Good Connections \implies Good Topology ?

Yes, with an ϵ -cut sample of \mathcal{O} , for $\epsilon \leq \frac{1}{2}$.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

・ロト・日本・日本・日本・日本・日本

$\frac{1}{2}$ -Cut Sample's Property

Let $m \in V_{\mathcal{C}}(A)$ s.t. $\operatorname{lift}(m) \in \partial V_{\mathcal{C}}(A')$. In an $\frac{1}{2}$ -cut sample of \mathcal{O} : If $m \in \operatorname{MA}_i$, then $\operatorname{lift}(m) \in \operatorname{lift}(A) \cap \operatorname{lift}(A')$. If $m \in \operatorname{MA}_e$, then $\operatorname{lift}(m) \notin \operatorname{lift}(A)$ and $\operatorname{lift}(m) \notin \operatorname{lift}(A')$.

Proof: $d(m, \partial \mathcal{O}) < ||m|| \le ||m| \operatorname{lift}(m)|| + ||\operatorname{lift}(m)|| \le 2.\epsilon \operatorname{reach}_{\mathcal{C}}(\mathcal{O}) \le \operatorname{reach}_{\mathcal{C}}(\mathcal{O}) \le d(m, \partial \mathcal{O})$, a contradiction. A similar proof shows that if $m \in \operatorname{MA}_e$ then $\pi_{\mathcal{A}'}(m) \notin \mathcal{A}'$.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

Lemma

In an $\frac{1}{2}$ -cut sample of \mathcal{O} , any hole in $lift(\mathcal{R}_{\mathcal{C}})$ is in the intersection of the lift of some holes in the sections. In particular, this situation does not happen:

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

・ロト・日本・山田・山田・山田・

Main Theorem

In an ϵ -cut sample of $\mathcal{O},$ for $\epsilon \leq \frac{1}{2},$ for any cell \mathcal{C} of the arrangement:

 $\mathcal{R}_{\mathcal{C}}$ is homotopy equivalent to $\mathcal{O}_{\mathcal{C}}.$

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらぐ

Pant Definition

Pant Definition A topological sphere from which two dimensional disks have been removed. For a set of disjoint closed curves $\{D_i\}_{i \in I}$, a $\{D_i\}_{i \in I}$ -pant is a topological sphere passing through $\{D_i\}_{i \in I}$ from which the disks bounded by $\{D_i\}_{i \in I}$ have been removed.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

・ロト・日本・日本・日本・日本・日本

A $\partial \mathcal{R}_{\mathcal{C}}$ -patch is a connected component of $\partial \mathcal{R} \cap \mathcal{C}$. A $\partial \mathcal{O}_{\mathcal{C}}$ -patch is a connected component of $\partial \mathcal{O} \cap \mathcal{C}$.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらぐ

$\partial \mathcal{R}_{\mathcal{C}}$ and $\partial \mathcal{O}_{\mathcal{C}}$ -Patches are topological Pants

Lemma (1)

In an $\frac{1}{2}$ -cut sample of \mathcal{O} , let $\overline{\mathcal{F}}$ be a connectivity class of the holes of sections. The $\partial \mathcal{R}_{\mathcal{C}}$ -patch that passes through the holes of $\overline{\mathcal{F}}$ is a $\overline{\mathcal{F}}$ -pant.

Lemma (2)

In an $\frac{1}{2}$ -cut sample of \mathcal{O} , let $\overline{\mathcal{F}}$ be a connectivity class of the holes of sections. The $\partial \mathcal{O}_{\mathcal{C}}$ -patch that passes through the holes of $\overline{\mathcal{F}}$ is a $\overline{\mathcal{F}}$ -pant.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity petween the Sections

Topological Guarantees K' is the $\partial \mathcal{O}_{\mathcal{C}}$ -patch that passes through the holes of $\overline{\mathcal{F}}$. Let H' be a handle in K'. Take a path $\lambda' \subset MA_i$ that passes through this handle.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

・ロト・日本・日本・日本・日本・日本

Proof of Lemma (2)

K' is the $\partial \mathcal{O}_{\mathcal{C}}$ -patch that passes through the holes of $\overline{\mathcal{F}}$. Let H' be a handle in K'. Take a path $\lambda' \subset MA_i$ that passes through this handle. $\operatorname{lift}(\lambda')$ in $\operatorname{VD}(\mathcal{S}_{\mathcal{C}})$ intersects the lift of the holes of $\overline{\mathcal{F}}$. Contradiction with the $\frac{1}{2}$ -cut sample's property.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

・ロト ・日ト ・日ト ・日 ・ うへぐ

Any $\partial \mathcal{R}_{\mathcal{C}}$ -patch passes through a contour-section. Any $\partial \mathcal{O}_{\mathcal{C}}$ -patch passes through a contour-section as well. Thus, there is a bijection Q from the $\partial \mathcal{R}_{\mathcal{C}}$ -patches to the $\partial \mathcal{O}_{\mathcal{C}}$ -patches, such that for any $\partial \mathcal{R}_{\mathcal{C}}$ -patch K, K is homotopy equivalent to Q(K).

 $\mathcal{R}_{\mathcal{C}}$ is homotopy equivalent to $\mathcal{O}_{\mathcal{C}}$.

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらぐ

- Generalization of the classical overlapping criterion
- Topologically correct solution for the correspondence problem
- Justification of most of existing methods in parallel case

Thank you

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

・ロト・日本・日本・日本・日本・日本

2D Problem

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

・ロト・西ト・市・ 市・ うんぐ

2D Method

3D Reconstruction from Cross-Sections

Pooran Memari, J-D Boissonnat

Voronoi and Reconstruction

Sampling Conditions

Connectivity between the Sections

Topological Guarantees

200