Model selection for simplicial approximation

C. Caillerie and <u>B. Michel</u>

INRIA Geometrica team

TGDA, Paris, july 2009

2 Model selection and simplicial complexes

3 Experimental results

< ∃ >

Motivations

2 Model selection and simplicial complexes

3 Experimental results

4 Discussion

- Observations $X_1, \ldots, X_n \in \mathbb{R}^D$.
- probabilist version of PCA :

Model : $x_i = z_i + \varepsilon_i$ where $z_i \in E_d$ affine subspace of R^Q

PCA : least square minimization to find E_d .

- Main limitation : linearity of E_d.
- Extension : principal curves.

Data analysis with simplicial complexes

- Simplicial complex (s.c.) ${\mathcal C}$:
 - Any face of a simplex from ${\mathcal C}$ is also in ${\mathcal C}.$
 - The intersection of any two simplices s₁, s₂ ∈ C is either a face of both s₁ and s₂, or empty.
- Ex : Delauney, Rips complex, α -shape, witness complex ...
- s.c. are used for:
 - dimension estimation,
 - topological inference,
 - reconstruction.
- Initial idea of this work : fit a s.c. on the data.

- Observations X_1, \ldots, X_n .
- Choose some landmarks points.
- Several possible s.c. can be defined on the landmarks :
 → a collection of s.c. (C_{α∈A}) indexed by a scale parameter α.
- Which s.c should be chosen ?

Framework of the talk

- ∢ ≣ →

bias-variance tradeoff

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

Framework of the talk

Aims of this work :

- Define a statistical framework for the simplicial approximation.
- Use some model selection tools to find a "convenient" s.c. in the collection.

Motivations

2 Model selection and simplicial complexes

3 Experimental results

4 Discussion

Geometric model

• $\mathcal G$ is an unknown geometric object embedded in $\mathbb R^D$,

 $\forall i = 1, \dots, n, \quad X_i = \bar{x}_i + \sigma \xi_i \quad \text{with} \quad \bar{x}_i \in \mathcal{G}$

where the original points \bar{x}_i are unknown. The r.v. ξ_i are independent standard Gaussian vectors.

equivalent statement :

$$\mathbf{X} = \bar{\mathbf{x}} + \sigma \boldsymbol{\xi}$$
 with $\bar{\mathbf{x}} \in \mathcal{G}^n$,

 Best approximating point of x̄ belonging to Cⁿ is the least square estimator (LSE) of x̄ associated to Cⁿ :

$$\mathbf{\hat{x}}_{\mathcal{C}} := \operatorname{argmin}_{\mathbf{t} \in \mathcal{C}^{n}} \|\mathbf{X} - \mathbf{t}\|^{2}.$$

Notation : $\forall u \in \mathbb{R}^{nD}$, $\|u\|^2 := \frac{1}{nD} \sum_{i=1}^{nD} u_i^2$.

• A collection of s.c. $(\mathcal{C}_{\alpha\in\mathcal{A}}) \to a$ collection of LSE : $(\hat{\mathbf{x}}_{\alpha})_{\alpha\in\mathcal{A}}$

Asymptotic model selection criterion

• Model selection via penalization :

$$\operatorname{crit}(m) = \gamma_n(\hat{x}_m) + \operatorname{pen}(m)$$

 γ_n : empirical contrast: least squares or log likelihood. pen : $\mathcal{A} \to \mathbb{R}^+$: penalty function.

- C_p Mallows : penalized least square regression, pen = $2D\sigma^2/n$.
- AIC : density estimation, pen = D/n
- BIC : density estimation pen = $D \log n/n$
- All these criterion are based on asymptomatic results.
- In our context : can be hardly applied since
 - no theoretical justifications,
 - what is D ?

Non asymptotic Gaussian model selection

- Birgé and Massart : non asymptotic model selection theory.
- Gaussian model selection (in our context)

$$\mathbf{X} = ar{\mathbf{x}} + \sigma oldsymbol{\xi}$$
 with $ar{\mathbf{x}} \in \mathbb{R}^{oldsymbol{Q}}$

- Collection of models (C_α)_{α∈A}, where C_α ⊂ ℝ^Q
 → LSE estimators (x̂_α)_{α∈A}.
- Risk of $\hat{\boldsymbol{x}}_{\alpha}$: $\mathbb{E}_{\bar{\boldsymbol{x}}} \left(\| \bar{\boldsymbol{x}} \hat{\boldsymbol{x}}_{\alpha} \|^2 \right)$.
- Oracle (unknown): $\alpha_{or} := \underset{\alpha \in \mathcal{A}}{\operatorname{argmin}} \mathbb{E}_{\bar{\mathbf{x}}} \left(\| \bar{\mathbf{x}} \hat{\mathbf{x}}_{\alpha} \|^2 \right).$
- ullet Aim : find a penalty function pen such that the risk of $m{\hat{x}}_{\hat{lpha}}$ where

$$\hat{lpha} := \operatorname*{argmin}_{lpha \in \mathcal{A}} \left\{ \| \mathbf{X} - \hat{\mathbf{x}}_{lpha} \|^2 + \operatorname{pen}(lpha) \right\},$$

is close to the benchmark $\min_{lpha \in \mathcal{A}} \mathbb{E}_{ar{m{x}}} \left(\|ar{m{x}} - m{\hat{x}}_{lpha}\|^2
ight).$

Non asymptotic Gaussian model selection

- The penalty function depends on (see the theorem hereafter)
 - the "size" of the model collection,
 - 2 the complexity of the models.
- Hypothesis on the model collection "size" : some weights w_{lpha} fulfills

$$\sum_{\alpha\in\mathcal{A}}e^{-w_{\alpha}}=\Sigma<\infty.$$

• Complexity of each model : entropy measure. For all $\alpha \in A$, the auxiliary entropic function Φ_{α} is defined by

$$\Phi_{\alpha}(u) = \kappa \int_{0}^{u} \sqrt{\mathsf{H}(C_{\alpha}, \|\cdot\|, r)} \, dr.$$

For all $\alpha \in \mathcal{A}$ let d_{α} defined by the equation (if it exits)

$$\Phi_{\alpha}\left(\frac{2\sigma\sqrt{Q}}{\sqrt{d_{\alpha}}}\right) = \frac{\sigma d_{\alpha}}{\sqrt{Q}}.$$

Non asymptotic Gaussian model selection

Theorem 1 - Birgé Massart 01 [2]

Let $\eta > 1$. For a penalty such that

$$\mathsf{pen}(lpha) \geq \eta \, \sigma^2 \left(\sqrt{\mathsf{d}_lpha} + \sqrt{2 \mathsf{w}_lpha}
ight)^2$$

Then, almost surely, there exists a minimizer \hat{lpha} of the penalized criterion

$$\operatorname{crit}(\alpha) = \|\mathbf{X} - \hat{\mathbf{x}}_{\alpha}\|^{2} + \operatorname{pen}(\alpha).$$

Furthermore, the following risk bound holds for all $ar{m{x}} \in \mathbb{R}^Q$

$$\mathbb{E}_{\bar{\boldsymbol{x}}} \| \boldsymbol{\hat{x}}_{\hat{\alpha}} - \bar{\boldsymbol{x}} \|^2 \leq c_\eta \left[\inf_{\alpha \in \mathcal{A}} \left\{ d(\bar{\boldsymbol{x}}, \mathit{C}_{\alpha})^2 + \mathsf{pen}(\alpha) \right\} + \sigma^2 (\Sigma + 1) \right]$$

where c_{η} depends only on η and $d(\bar{\mathbf{x}}, C_{\alpha}) := \inf_{\mathbf{y} \in C_{\alpha}} \|\bar{\mathbf{x}} - \mathbf{y}\|.$

Non asymptotic linear Gaussian model selection

- The models C_{α} are linear subspaces of \mathbb{R}^{nD} .
- d_{α} is equal to the dimension of C_{α} .
- Risk bound : true oracle inequality :

$$\mathbb{E}_{\bar{\boldsymbol{x}}} \| \boldsymbol{\hat{x}}_{\hat{\alpha}} - \bar{\boldsymbol{x}} \|^2 \leq c_{\eta}' \left[\inf_{\alpha \in \mathcal{A}} \left\{ \mathbb{E}_{\bar{\boldsymbol{x}}} \left(\| \bar{\boldsymbol{x}} - \boldsymbol{\hat{x}}_{\alpha} \|^2 \right) \right\} + \sigma^2 (\Sigma + 1) \right]$$

• But if C_{α} is a simplicial complex, of course $C_{\alpha} = C_{\alpha}^{n}$ is not a linear subspace.

Model selection on simplicial complexes

- $(\mathcal{C}_{lpha})_{lpha\in\mathcal{A}}$ a collection of k-homogeneous s.c. in \mathbb{R}^D
- Hypothesis on the collection "size". Weights : $w_{lpha} = L \ln |\mathcal{C}_{lpha}|_k$ with

$$\sum_{\alpha \in \mathcal{A}} \frac{1}{x_{\alpha}^{L}} = \Sigma < \infty$$

Notation :

 Δ_s : diameter of the smallest including ball of the simplex s. $|\mathcal{C}|_k := (\sum_{s \in \mathcal{C}^+} \Delta_s^k)^{1/k}$ and $\delta_{\mathcal{C}} := \inf_{s \in \mathcal{C}_{\alpha}^+} \Delta_s$ where \mathcal{C}_{α}^+ is the subset of simplices of \mathcal{C}_{α} of maximal dimension k.

• Hypothesis on the s.c. complexity. For all $lpha \in \mathcal{A}$,

$$\sigma \leq \delta_{\mathcal{C}_{\alpha}} \sqrt{\frac{D}{k}} \left[4\kappa \left(\sqrt{\ln \frac{4|\mathcal{C}_{\alpha}|_{k}}{\delta_{\mathcal{C}_{\alpha}}}} + \sqrt{\pi} \right) \right]^{-1}$$

Theorem 2 - Caillerie and M. (2009) [4]

There exists some absolute constants c_1 and c_2 such that for all $\eta > 1$, if

$$\operatorname{pen}(\alpha) \geq \eta \sigma^2 \left(c_1 n k \left[\ln \frac{|\mathcal{C}_{\alpha}|_k \sqrt{D}}{\sigma \sqrt{k}} + c_2 \right] \right),$$

then, almost surely, there exists a minimizer \hat{lpha} of the penalized criterion

$$\operatorname{crit}(\alpha) = \|\mathbf{X} - \hat{\mathbf{x}}_{\alpha}\|^{2} + \operatorname{pen}(\alpha)$$

and the penalized estimator $\hat{m{x}}_{\hat{lpha}}$ satisfies the following risk bound

$$\mathbb{E}_{\bar{\mathbf{x}}} \| \hat{\mathbf{x}}_{\hat{\alpha}} - \bar{\mathbf{x}} \|^2 \leq c_\eta \left[\inf_{\alpha \in \mathcal{A}} \left\{ d(\bar{\mathbf{x}}, \mathcal{C}_{\alpha}^n)^2 + \mathsf{pen}(\alpha) \right\} + \sigma^2 (\Sigma + 1) \right].$$

Remarks

- A quite general result.
- A qualitative result.
- Roughly speaking : pen is proportional to ln |C_α|_k.
 For a collection of graph : |C_α|₁ is the graph length.
- Not exactly an oracle inequality ... additional work necessary to control the shape of the risk.
- If the true positions $\bar{\mathbf{x}}$ are sampled on $\mathcal G$ according to $\mu,$ for the integrated risk :

$$\int_{\bar{x}\in\mathcal{G}}\mathbb{E}_{\bar{x}}\|\hat{x}_{\hat{\alpha}}-\bar{x}\|^2\,d\mu(\bar{x})\leq c_\eta\left[\inf_{\alpha\in\mathcal{A}}\left\{\int_{\bar{x}\in\mathcal{G}}d(\bar{x},\mathcal{C}_{\alpha})^2\,d\mu(\bar{x})+\mathsf{pen}(\alpha)\right\}+\sigma^2(\Sigma+1)\right]$$

•
$$C_{\alpha} = C_{\alpha}^{n}$$

- Q = nD
- Based on the following entropic result :

Proposition

For all k-homogeneous simplicial complex $\mathcal C$ of $\mathbb R^D$ and all $r \leq \delta_\mathcal C$

$$\mathsf{N}(\mathcal{C}^n, \|\cdot\|, r) \leq \left(\frac{4|\mathcal{C}|_k}{r}\right)^{nk}.$$

1 Motivations

2 Model selection and simplicial complexes

③ Experimental results

4 Discussion

- The penalty type is known : $pen(\alpha) = c \log |\mathcal{C}_{\alpha}|_k$, but c is unknown.
- Slope heuristics method :
 - Solution For each simplicial complex, compute the sum of squares SS(α) := || x̂_α - X||².
 - Plot the point cloud {ln |C_α|_k, SS(α)}_{α∈A} and check that a linear trend is observed for large α.
 - Sompute the slope $\hat{\beta}$ of the linear regression of $SS(\alpha)$ on $\ln |\mathcal{C}_{\alpha}|_k$ for large α .
 - Select the simplicial complex in the collection minimizing

$$\operatorname{crit}(lpha) = \|oldsymbol{ar{x}} - oldsymbol{\hat{x}}_lpha \|^2 - 2 \hat{eta} \ln |\mathcal{C}_lpha|_k$$
 .

• Theoretical results on the slope heuristics [3, 1].

Slope heuristics for graphs

"the optimal penalty is twice the minimal penalty"

- An observed sample X_1, \ldots, X_n .
- Define a set of landmarks from the X_i .
- Define a collection of α -graphs (α -shape of dim 1).
- For each graph, compute the length $l(\alpha)$ and $SS(\alpha) := \|\hat{x}_{\alpha} X\|^2$.
- Proceed the slope heuristics method to select a graph.

Lissajous curve (1)

- True points : $\bar{x}_1, \ldots, \bar{x}_n$ (n = 5000) sampled on the Lissajous curve.
- Observed points : $\forall i = 1, \dots, n$, $X_i = \bar{x}_i + \sigma \xi_i$, $\sigma = 0.005$.
- Landmarks points : Furthest point strategy on a set of <u>true</u> points (located on the Lissajous curve) \rightarrow 500 landmark points.
- Compute the α -graphs on the landmark points.
- Compute the same experience 500 times to estimate the oracle graph (with fixed landmarks).

Lissajous curve (1) - extremal graphs

Lissajous curve (1) - risk and $SS(\alpha)$

Lissajous curve (1) oracle and selected graphs

$\alpha \times 10^{-3}$	α_{min}	1	.129	1.255	1.256	1.283	1.286	1.298	1.344
$N(\alpha)$	0		1	369	6	19	77	3	10
Selection perc.	0		0.2	73.8	1.2	3.8	15.4	0.6	2
Length	0.03	94 1	6.86	17.30	17.37	17.45	17.50	17.57	17.64
Risk $\times 10^{-5}$	298	41 2	.627	2.589	2.588	2.591	2.594	2.594	2.596
$\alpha \times 10^{-1}$	3	1.493	1.603	3 1.643	3 1.669	9 1.672	1.748	$ lpha_{ma}$	x
$N(\alpha)$		6	4	1	2	1	1	0	
Selection p	erc.	1.2	8.0	0.2	0.4	0.2	0.2	0	
Length		17.71	17.9	7 18.10) 18.32	l 18.46	18.61	185.8	3
Risk ×10	-5	2.606	2.61	3 2.623	3 2.639	9 2.641	2.642	3.946	5

Lissajous curve (2)

- Initial point set \mathcal{P} : $X_i = \bar{x}_i + \sigma \xi_i$, ($\sigma = 0.005$) where the \bar{x}_i are sampled on the Lissajous curve.
- \mathcal{P} is randomly separated into \mathcal{P}_o (5000 points) and \mathcal{P}_l (5000 points)
- Observed points : \mathcal{P}_o
- Landmark points : 500 landmarks points defined from \mathcal{P}_I thanks to the neural-gas algorithm.
- Compute the α -graphs on the landmark points.
- Simulate \mathcal{P}_o 500 times to estimate the oracle graph (with fixed landmarks).

Lissajous curve (2) - risk and $SS(\alpha)$

 \Rightarrow the slope heuristics can be applied.

Lissajous curve (2) oracle and selected graphs

$\alpha \times 10^{-3}$	α_{\min}	0.9537	0.9891	1.051	1.076	1.078	1.084
$N(\alpha)$	0	38	3	107	36	281	2
Selection perc.	0	7.6	0.6	21.4	7.2	56.2	0.4
Length	0.03083	17.45	17.64	17.87	17.97	18.02	18.09
Risk $\times 10^{-4}$	308	1.1910	1.1899	1.1897	1.1942	1.1939	1.1937
<u> </u>							
lpha $ imes$ 10 ⁻³	1.126	1.183	1.187	1.200	1.205	1.271	$ lpha_{max}$
$N(\alpha)$	13	12	0	4	1	3	0
Selection perc.	2.6	2.4	0	0.8	0.2	0.6	0
Length	18.29	18.34	18.38	18.49	18.55	18.82	146.1
Risk $ imes 10^{-4}$	1.1898	1.1886	1.1885	1.1899	1.1932	1.1944	1.6823

Real data : locations of earthquakes

34 / 38

Earthquakes : $SS(\alpha)$

35 / 38

Real data : selected graph

1 Motivations

2 Model selection and simplicial complexes

3 Experimental results

- A first attempt to use modern model selection tools for geometric inference.
- Model selection via penalization : a general result gives the penalty form.
- For application : the slope heuristics does not work all the times (lpha -Rips)
- Future works :
 - theoretical aspects : a theory on s.c. approximation to control the bias.
 - heterogeneous s.c. ?
 - application : the same procedure in higher dimensions, other s.c families...

🔋 S. Arlot and P Massart.

Data-driven calibration of penalties for least-squares regression. *J.Mach.Learn.Res.*, 10:245–279, 2009.

- Lucien Birgé and Pascal Massart.
 Gaussian model selection.
 J. Eur. Math. Soc. (JEMS), 3:203–268, 2001.
- Lucien Birgé and Pascal Massart. Minimal penalties for Gaussian model selection. Probab. Theory Related Fields, 138:33–73, 2007.
- C. Caillerie and B. Michel.
 Model selection for simplicial approximation.
 Technical Report 6981, INRIA, 2009.

Pascal Massart.

Concentration Inequalities and Model Selection, volume Lecture Notes in Mathematics.

Springer-Verlag, 2007.