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Context

I We have an implementation of the incremental algorithm for
constructing Delaunay triangulations in any dimension.

I constructs step by step the 1-skeleton of the triangulation.

I runs out of RAM quickly.
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Aim

I Compress the 1-skeleton’s graph to reach bigger dimensions
and/or triangulate more vertices.

I queries supported :
I neighbor listing
I addition and deletion of edges

in order to work in parallel to the previous implementation.
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Strategy

Assuming the fact that two vertices which are close in the graph
have close labels.

For a vertex v :

I with sorted adjacency list {v1, ..., vk}
I we store the successive differences [v1 − v ; v2 − v1 ; ... ;

vk − vk−1].
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I we code integer i as a sequence of k-bit blocks
I each block begins with a continue bit
I if i ≤ 2k−1 :

I continue bit = zero
I we store i − 1 in the k − 1 free bits of the block

I else
I continue bit = 1
I we store (i − 1)mod[2k−1] in the current block
I continue recursively coding b i−1

2k−1 c
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Then, to code a vertex v :
I we code contiguously :

I the degree of v
I the differences [v1 − v ; v2 − v1 ; ... ; vk − vk−1] (with a sign

bit for the first).

I We form an adjacency table by concatenating the code of the
vertices in the order of their labels.
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Sorting the points along a Hilbert Curve

I Already implemented in the Delaunay triangulation
construction.

I Divides the space in cubes and labelizes them successively.

I Done only one time in a pre-processing phase.

I It garantees that two nodes with close labels are close in
space.

I We hope that “close in the space” implies “close in the
graph” for a Delaunay triangulation.
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Using Edge-Separator Tree

I We hope that the graph of the 1-skeleton of a Delaunay
triangulation satisfies good edge-separator properties

I i.e. the graph may be partitionned into two subgraphs, with
approximatively the same number of vertices, by deleting few
edges and the two subgraphs satisfies this property.

Clément Maria A Compact Data Structure to Represent the Delaunay Triangulation



Introduction
The Compact Representation

Labeling the Vertices
The Dynamic Data Structure

Sorting the points along a Hilbert Curve
Using Edge-Separator Tree
Child-Flipping
Results for the static data structure

Using Edge-Separator Tree

To separate the graph, we give a priority to edges and we merge
multivertices n times to construct a separator tree.
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Child-Flipping

For all node v ,

I if N1 and N2 are respectively the left and the right son of v
I if NL and NR are respectively the left child of v ’s left ancestor

and the right child of v ’s right ancestor
I if EA,B = number of edges between multivertices A and B

we insure that ENL,N1 + ENR ,N2 ≥ ENL,N2 + ENR ,N1 .
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Results for the static data structure

For the triangulation of a uniform repartion of points :

I we compress 4.5 times the structure

I separator tree and Hilbert sort methods seem equivalent
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The Dynamic Data Structure

I A memory block of fixed size for each vertex
I An array of blocks
I A pool of spare memory blocks
I A pointer to another block at the end of each block
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The Dynamic Data Structure

We keep uncompressed the last used vertices in a cache.
To add/delete a edge, we look in the cache

I if need be, we uncompress the nodes of the edge and store
them in the cache

I we treat the adjacency lists

We can treat independantly each node.
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