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Motivation

What is the (relevant) topology/geometry of a point cloud data set
in Rd ?

Motivations : Reconstruction, manifold learning and NLDR, clustering and
segmentation, etc...
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Geometric Inference

Question

Given an approximation C of a geometric object K , what geometric and
topological quantities of K is it possible to approximate, knowing only C ?

The answer depends on the considered class of objects and a notion of
distance between the objects (approximation) ;

Some positive answers for a large class of compact sets endowed with
the Hausdor� distance.

In this talk :
- can the considered objects be probability measures on Rd ?
- motivation : allowing approximations to have outliers or to be
corrupted by �non local� noise.
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Distance functions for geometric inference

Distance function and Hausfor� distance

Distance to a compact K ⊆ Rd : dK : x 7→ infp∈K ‖x − p‖ Hausdor�
distance between compact sets K ,K ′ ⊆ Rd :
dH(K ,K ′) = infx∈Rd |dK (x)− dK ′(x)|

Replace K and C by dK and dC .

Compare the topology of the o�sets

K r = d−1K ([0, r ]) and
C r = d−1C ([0, r ]).
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Stability properties of the o�sets

Topological/geometric properties of the o�sets of K are stable with
respect to Hausdor� approximation :

1. Topological stability of the o�sets of K (CCSL'06, NSW'06).

2. Approximate normal cones (CCSL'08).

3. Boundary measures (CCSM'07), curvature measures (CCSLT'09),
Voronoi covariance measures (GMO'09).
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The problem of outliers

If K ′ = K ∪ {x} where dK (x) > R , then ‖dK − dK ′‖∞ > R : o�set-based
inference methods fail !

Question : Can we generalized the previous approach by replacing the
distance function by a �distance-like� function having a better behavior
with respect to noise and outliers ?
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The three main ingredients for stability

The stability in distance-based geometric inference relies on the three
following facts :

1 the 1-Lipschitz property for dK ;

2 the 1-concavity on the function d2K : x → ‖x‖2 − d2K (x) is convex.

3 the stability of the map K 7→ dK :

‖dK − dK ′‖∞ = sup
x∈Rd

|dK (x)− dK ′(x)| = dH(K ,K ′)

A map φ : Rd → R which veri�es (1) and (2) is called distance-like.
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Replacing compact sets by measures

A measure µ is a mass distribution on Rd .
Mathematically, it is de�ned as a map µ that takes a (Borel) subset
B ⊂ Rd and outputs a nonnegative number µ(B). Moreover we ask that if
(Bi ) are disjoint subsets, µ

(⋃
i∈N Bi

)
=
∑

i∈N µ(Bi )

µ(B) corresponds to to the mass of µ contained in B

a point cloud C = {p1, . . . , pn} de�nes a measure µC = 1
n

∑
i δpi

the volume form on a k-dimensional submanifold M of Rd de�nes a
measure volk |M .
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Distance between measures

The Wasserstein distance dW(µ, ν) between two probability measures
µ, ν quanti�es the optimal cost of pushing µ onto ν, the cost of moving a
small mass dx from x to y being ‖x − y‖2 dx .

µ ν

c1
d1

dj

ci πi,j

π

1 µ and ν are discrete measures : µ =
∑

i ciδxi ,
ν =

∑
j djδyj with

∑
j dj =

∑
i ci .

2 Transport plan : set of coe�cients πij ≥ 0 with∑
i πij = dj and

∑
j πij = ci .

3 Cost of a transport plan

C (π) =
(∑

ij ‖xi − yj‖2 πij
)1/2

4 dW(µ, ν) := infπ C (π)
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Wasserstein distance

Examples :

1 If #C1 = #C2, then d2W(µC1 , µC2) is the cost of a minimal
least-square matching between C1 and C2 ;

2 If C = {p1, . . . , pn} and C ′ = {p1, . . . , pn−k−1, o1, . . . , ok} with
d(oi ,C ) = R , then dH(C ,C ′) ≥ R while

dW(µC , µC ′) ≤ m(R + diam(C )) with m =
k

n
;

3 If µ is a probability measure, dW(µ ∗ N (0, σ), µ) ≤ σ ;
4 If X1, . . . ,XN are iid with law µ, then (in general), 1

N

∑N
i=1 δXi

converges to µ whp as N tends to ∞.
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The distance to a measure

Distance function to a measure, �rst attempt

Let m ∈]0, 1[ be a positive mass, and µ a probability measure on Rd :

δµ,m(x) = inf {r > 0; µ(B(x , r)) > m}

x

µ

δµ,m(x)

µ(B(x, δµ,m(x)) = m

δµ,m is the smallest distance needed to attain a
mass of at least m ;

Coincides with the distance to the k-th
neighbor when m = k/n and µ = 1

n

∑n
i=1 δpi :

δµ,k/n(µ) =
∥∥x − pkC (x)

∥∥.
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Unstability of µ 7→ δµ,m

Distance to a measure, �rst attempt

Let m ∈]0, 1[ be a positive mass, and µ a probability measure on Rd :

δµ,m(x) = inf {r > 0; µ(B(x , r)) > m}

Unstability under Wasserstein perturbations :

µε = (1/2− ε)δ0 + (1/2 + ε)δ1

for ε > 0 : ∀x < 0, δµε,1/2(x) = |x − 1|

for ε = 0 : ∀x < 0, δµ0,1/2(x) = |x − 0|

Consequence : the map µ 7→ δµ,m ∈ C0(Rd ) is discontinuous whatever the
(reasonable) topology on C0(Rd ).
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The distance function to a measure.

De�nition

If µ is a measure on Rd and m0 > 0, one let :

dµ,m0 : x ∈ Rd 7→
(

1

m0

∫ m0

0

δ2µ,m(x)dm

)1/2

Example. Let C = {p1, . . . , pn} and µ = 1
n

∑n
i=1 δpi . Let p

k
C (x) denote

the kth nearest neighbor to x in C , and set m0 = k0/n :

dµ,m0(x) =

(
1

k0

k0∑
k=1

∥∥∥x − pkC (x)
∥∥∥2)1/2
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The distance function to a discrete measure.

Example (continued) Let C = {p1, . . . , pn} and µ = 1
n

∑n
i=1 δpi . Let

pkC (x) denote the kth nearest neighbor to x in C , and set m0 = k0/n :

dµ,m0(x) =

(
1

k0

k0∑
k=1

∥∥∥x − pkC (x)
∥∥∥2)1/2

∇dµ,m0(x) =
1
k0

∑k0
k=1

[
x − pkC (x)

]
dµ,m0(x)
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Another expression for dµ,m0

Proposition

The distance dµ,m0(x) coincides with the partial Wasserstein distance
between the Dirac mass m0δx and µ. More precisely :

√
m0dµ,m0(x) = min{dW(m0δx , ν); ν ≤ µ and mass(ν) = m0}

= min

{(∫
Rd

‖y − x‖2 dν(y)

)1/2

; ν ≤ µ,mass(ν) = m0

}

Let µx ,m0 be a measure realizing this minimum.

The measure µx ,m0 gives mass to the multiple �projections� of x on µ ;

For the point cloud case, when m0 = k0/n and x is not on a
k-Voronoï face,

µx ,m0 =

k0∑
k=1

1

n
δpk

C
(x)
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1-Concavity of the squared distance function

Regularity

m0d
2
µ,m0

(x + h) =

∫
Rd

‖x + h − z‖d dµx+h,m0
(z)

≤
∫

Rd

‖x + h − z‖d dµx ,m0(z)

≤ m0d
2
µ,m0

(x) + 2

∫
Rd

〈h|x − z〉dµx ,m0(z) + m0 ‖h‖2

That is :

d2µ,m0
(x + h) ≤ d2µ,m0

(x) + 〈h|∇d2µ,m0
(x)〉+ ‖h‖2

with ∇d2µ,m0
(x) := 2m−10

∫
Rd

(x − z)dµx ,m0(z)
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Theorem

The distance function dµ,m0 is distance-like,ie.

1 the function x 7→ dµ,m0(x) is 1-Lipschitz ;

2 the function x 7→ ‖x‖2 − d2µ,m0
(x) is convex ;

Theorem

The map µ 7→ dµ,m0 from probability measures to continuous functions is
1√
m0

�Lipschitz, ie

∥∥dµ,m0 − dµ′,m0

∥∥
∞ ≤

1
√
m0

dW(µ, µ′)
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Consequences of the previous properties

1 existence of an analogous to the medial axis

2 stability of a �ltered version of it (as with the µ-medial axis) under
Wasserstein perturbation

3 stability of the critical function of a measure

4 the gradient ∇dµ,m0 is L1-stable

5 ...

=⇒ the distance functions dµ,m0 share many stability and regularity
properties with the usual distance function.

F. Chazal , D. Cohen-Steiner , Q. Mérigot (Geometrica)Geometric Inference for Probability distributions 2009/07/08 21 / 32



Example : square with outliers

10% outliers, k = 150 δµ,m0 , m0 = 1/10
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Example : square with outliers

dµ,m0

‖∇dµ,m0‖
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A 3D example

Reconstruction of an o�set from a noisy dataset, with 10% outliers
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A reconstruction theorem

Theorem

Let µ be a probability measure of dimension at most k > 0 with compact
support K ⊂ Rd such that rα(K ) > 0 for some α ∈ (0, 1]. For any
0 < η < rα(K ), there exists positive constants m1 = m1(µ, α, η) > 0 and
C = C (m1) > 0 such that :
for any m0 < m1 and any probability measure µ′ such that
W2(µ, µ

′) < C
√
m0, the sublevel set d−1µ′,m0

((−∞, η]) is homotopy

equivalent (and even isotopic) to the o�sets d−1K ([0, r ]) of K for
0 < r < rα(K ).
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k-NN density estimation vs distance to a measure

data

Density is estimated using x 7→ m0
ωd−1(δµ,m0 (x)) , m0 = 150/1200.
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k-NN density estimation vs distance to a measure

density log(1 + 1/dµ,m0)

Density is estimated using x 7→ m0
vold (B(x ,δµ,m0 (x))) , m0 = 150/1200

(Devroye-Wagner '77).
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k-NN density estimation vs distance to a measure

1 the gradient of the estimated density
can behave wildly

2 exhibits peaks near very dense zone

1. can be �xed using dµ,m0 (because of the
semiconcavity)
2. shows that the distance function is a
better-behaved geometric object to associate
to a measure.
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Pushing data along the gradient of dµ,m0

Mean-Shift like algorithm (Comaniciu-Meer '02)

Theoretical guarantees on the convergence of the algorithm and
�smoothness� of trajectories.
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Pushing data along the gradient of dµ,m0
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Summary

µ 7→ dµ,m0 provide a way to associate geometry to a measure in
Euclidean space.

dµ,m0 is robust to Wasserstein perturbations : outliers and noise are
easily handled (no assumption on the nature of the noise).

dµ,m0 shares regularity properties with the usual distance function to a
compact.

Geometric stability results in this measure-theoretic setting :
topology/geometry of the sublevel sets of dµ,m0 , stable notion of
persistence diagram for µ,.

Algorithm : for �nite point clouds dµ,m0 and ∇(dµ,m0) can be easily
and e�ciently computed pointwise in any dimension.
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