Geometric Inference for Probability distributions

F. Chazal ¹ D. Cohen-Steiner ² Q. Mérigot ²

¹Geometrica, INRIA Saclay,

²Geometrica, INRIA Sophia-Antipolis

2009 July 8

1 / 32

2009/07/08

F. Chazal , D. Cohen-Steiner , Q. MérigoGeometric Inference for Probability distrik

Outline

1 Geometric inference for measures.

Distance to a probability measures.

3 Applications

F. Chazal , D. Cohen-Steiner , Q. MérigoGeometric Inference for Probability distrik

Motivation

What is the (relevant) topology/geometry of a point cloud data set in \mathbb{R}^d ?

Motivations : Reconstruction, manifold learning and NLDR, clustering and segmentation, etc...

Geometric Inference

Question

Given an approximation C of a geometric object K, what geometric and topological quantities of K is it possible to approximate, knowing only C?

- The answer depends on the considered class of objects and a notion of distance between the objects (approximation);
- Some positive answers for a large class of compact sets endowed with the Hausdorff distance.
- In this talk :
 - can the considered objects be probability measures on \mathbb{R}^d ?
 - motivation : allowing approximations to have outliers or to be corrupted by "non local" noise.

Distance functions for geometric inference

Distance function and Hausforff distance

Distance to a compact $K \subseteq \mathbb{R}^d$: $d_K : x \mapsto \inf_{p \in K} ||x - p||$ Hausdorff distance between compact sets $K, K' \subseteq \mathbb{R}^d$: $d_H(K, K') = \inf_{x \in \mathbb{R}^d} |d_K(x) - d_{K'}(x)|$

- Replace K and C by d_K and d_C .
- Compare the topology of the offsets $\mathcal{K}^r = \mathrm{d}_{\mathcal{K}}^{-1}([0, r])$ and $\mathcal{C}^r = \mathrm{d}_{\mathcal{C}}^{-1}([0, r]).$

Stability properties of the offsets

Topological/geometric properties of the offsets of K are stable with respect to Hausdorff approximation :

- 1. Topological stability of the offsets of K (CCSL'06, NSW'06).
- 2. Approximate normal cones (CCSL'08).
- **3.** Boundary measures (CCSM'07), curvature measures (CCSLT'09), Voronoi covariance measures (GMO'09).

The problem of outliers

If $K' = K \cup \{x\}$ where $d_K(x) > R$, then $\|d_K - d_{K'}\|_{\infty} > R$: offset-based inference methods fail !

Question : Can we generalized the previous approach by replacing the distance function by a "distance-like" function having a better behavior with respect to noise and outliers?

The three main ingredients for stability

The stability in distance-based geometric inference relies on the three following facts :

- the 1-Lipschitz property for $d_{\mathcal{K}}$;
- 3 the 1-concavity on the function $d_{\mathcal{K}}^2 : x \to ||x||^2 d_{\mathcal{K}}^2(x)$ is convex.

 ${old 0}$ the stability of the map $K\mapsto {
m d}_K$:

$$\|\mathrm{d}_{\mathcal{K}} - \mathrm{d}_{\mathcal{K}'}\|_{\infty} = \sup_{x \in \mathbb{R}^d} |\mathrm{d}_{\mathcal{K}}(x) - \mathrm{d}_{\mathcal{K}'}(x)| = \mathrm{d}_{\mathrm{H}}(\mathcal{K}, \mathcal{K}')$$

A map $\phi : \mathbb{R}^d \to \mathbb{R}$ which verifies (1) and (2) is called *distance-like*.

Replacing compact sets by measures

A measure μ is a mass distribution on \mathbb{R}^d . Mathematically, it is defined as a map μ that takes a (Borel) subset $B \subset \mathbb{R}^d$ and outputs a nonnegative number $\mu(B)$. Moreover we ask that if (B_i) are disjoint subsets, $\mu(\bigcup_{i\in\mathbb{N}} B_i) = \sum_{i\in\mathbb{N}} \mu(B_i)$

- $\mu(B)$ corresponds to to the mass of μ contained in B
- a point cloud $C = \{p_1, \dots, p_n\}$ defines a measure $\mu_C = \frac{1}{n} \sum_i \delta_{p_i}$
- the volume form on a k-dimensional submanifold M of ℝ^d defines a measure vol_k|_M.

Distance between measures

The Wasserstein distance $d_W(\mu, \nu)$ between two probability measures μ, ν quantifies the optimal cost of pushing μ onto ν , the cost of moving a small mass dx from x to y being $||x - y||^2 dx$.

- μ and ν are discrete measures : $\mu = \sum_{i} c_i \delta_{x_i}$, $\nu = \sum_{j} d_j \delta_{y_j}$ with $\sum_{j} d_j = \sum_{i} c_i$.
- **2** Transport plan : set of coefficients $\pi_{ij} \ge 0$ with $\sum_i \pi_{ij} = d_j$ and $\sum_j \pi_{ij} = c_i$.
- Oost of a transport plan

$$C(\pi) = \left(\sum_{ij} \|x_i - y_j\|^2 \pi_{ij}\right)^{1/2}$$

$$d_{\mathrm{W}}(\mu, \nu) := \inf_{\pi} C(\pi)$$

Wasserstein distance

Examples :

- If $\#C_1 = \#C_2$, then $d_W^2(\mu_{C_1}, \mu_{C_2})$ is the cost of a minimal least-square matching between C_1 and C_2 ;
- If C = {p₁,..., p_n} and C' = {p₁,..., p_{n-k-1}, o₁,..., o_k} with $d(o_i, C) = R$, then $d_H(C, C') ≥ R$ while

$$\mathrm{d}_{\mathrm{W}}(\mu_{\mathcal{C}},\mu_{\mathcal{C}'}) \leq m(R+\mathrm{diam}(\mathcal{C})) \text{ with } m=rac{k}{n};$$

- 3 If μ is a probability measure, $\mathrm{d}_{\mathrm{W}}(\mu * \mathcal{N}(\mathsf{0},\sigma),\mu) \leq \sigma$;
- If X_1, \ldots, X_N are iid with law μ , then (in general), $\frac{1}{N} \sum_{i=1}^N \delta_{X_i}$ converges to μ whp as N tends to ∞ .

Outline

Geometric inference for measures.

2 Distance to a probability measures.

3 Applications

F. Chazal , D. Cohen-Steiner , Q. MérigoGeometric Inference for Probability distrik

The distance to a measure

Distance function to a measure, first attempt

Let $m \in]0,1[$ be a positive mass, and μ a probability measure on \mathbb{R}^d :

$$\delta_{\mu,m}(x) = \inf \left\{ r > 0; \ \mu(\mathrm{B}(x,r)) > m
ight\}$$

- δ_{μ,m} is the smallest distance needed to attain a mass of at least m;
- Coincides with the distance to the k-th neighbor when m = k/n and $\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{p_i}$: $\delta_{\mu,k/n}(\mu) = ||x p_C^k(x)||.$

Unstability of $\mu \mapsto \delta_{\mu,m}$

Distance to a measure, first attempt

Let $m\in]0,1[$ be a positive mass, and μ a probability measure on \mathbb{R}^d :

$$\delta_{\mu,m}(x) = \inf \{r > 0; \ \mu(\mathbf{B}(x,r)) > m\}$$

Unstability under Wasserstein perturbations :

$$\mu_{\varepsilon} = (1/2 - \varepsilon)\delta_0 + (1/2 + \varepsilon)\delta_1$$

for $\varepsilon > 0$: $\forall x < 0$, $\delta_{\mu_{\varepsilon}, 1/2}(x) = |x - 1|$
for $\varepsilon = 0$: $\forall x < 0$, $\delta_{\mu_0, 1/2}(x) = |x - 0|$

Consequence : the map $\mu \mapsto \delta_{\mu,m} \in C^0(\mathbb{R}^d)$ is discontinuous whatever the (reasonable) topology on $C^0(\mathbb{R}^d)$.

The distance function to a measure.

Definition

If μ is a measure on \mathbb{R}^d and $m_0>$ 0, one let :

$$\mathrm{d}_{\mu,m_0}: x \in \mathbb{R}^d \mapsto \left(\frac{1}{m_0} \int_0^{m_0} \delta^2_{\mu,m}(x) \mathrm{d}m\right)^{1/2}$$

Example. Let $C = \{p_1, \ldots, p_n\}$ and $\mu = \frac{1}{n} \sum_{i=1}^n \delta_{p_i}$. Let $p_C^k(x)$ denote the *k*th nearest neighbor to *x* in *C*, and set $m_0 = k_0/n$:

$$d_{\mu,m_0}(x) = \left(\frac{1}{k_0}\sum_{k=1}^{k_0} \left\|x - p_C^k(x)\right\|^2\right)^{1/2}$$

F. Chazal , D. Cohen-Steiner , Q. MérigoGeometric Inference for Probability distrib

The distance function to a discrete measure.

Example (continued) Let $C = \{p_1, \ldots, p_n\}$ and $\mu = \frac{1}{n} \sum_{i=1}^n \delta_{p_i}$. Let $p_C^k(x)$ denote the *k*th nearest neighbor to *x* in *C*, and set $m_0 = k_0/n$:

$$d_{\mu,m_0}(x) = \left(\frac{1}{k_0} \sum_{k=1}^{k_0} \left\| x - p_C^k(x) \right\|^2 \right)^{1/2}$$

$$\nabla \mathrm{d}_{\mu,m_0}(x) = \frac{\frac{1}{k_0} \sum_{k=1}^{k_0} \left[x - \mathrm{p}_{\mathcal{C}}^k(x) \right]}{\mathrm{d}_{\mu,m_0}(x)}$$

F. Chazal , D. Cohen-Steiner , Q. MérigoGeometric Inference for Probability distrik

Another expression for d_{μ,m_0}

Proposition

The distance $d_{\mu,m_0}(x)$ coincides with the partial Wasserstein distance between the Dirac mass $m_0 \delta_x$ and μ . More precisely :

$$\begin{split} \sqrt{m_0} \mathrm{d}_{\mu,m_0}(x) &= \min \{ \mathrm{d}_{\mathrm{W}}(m_0 \delta_x, \nu); \nu \leq \mu \text{ and } \max(\nu) = m_0 \} \\ &= \min \left\{ \left(\int_{\mathbb{R}^d} \|y - x\|^2 \, \mathrm{d}\nu(y) \right)^{1/2}; \nu \leq \mu, \max(\nu) = m_0 \right\} \end{split}$$

Let $\mu_{\mathbf{x},m_0}$ be a measure realizing this minimum.

The measure μ_{x,m0} gives mass to the *multiple* "projections" of x on μ;
For the point cloud case, when m₀ = k₀/n and x is not on a k-Voronoï face,

$$\mu_{x,m_0} = \sum_{k=1}^{k_0} \frac{1}{n} \delta_{\mathbf{p}_{\boldsymbol{C}}^k(x)}$$

1-Concavity of the squared distance function

Regularity

$$\begin{split} m_0 d^2_{\mu,m_0}(x+h) &= \int_{\mathbb{R}^d} \|x+h-z\|^d d\mu_{x+h,m_0}(z) \\ &\leq \int_{\mathbb{R}^d} \|x+h-z\|^d d\mu_{x,m_0}(z) \\ &\leq m_0 d^2_{\mu,m_0}(x) + 2 \int_{\mathbb{R}^d} \langle h|x-z \rangle d\mu_{x,m_0}(z) + m_0 \|h\|^2 \end{split}$$

That is :

$$egin{aligned} &\mathrm{d}^2_{\mu,m_0}(x+h) \leq \mathrm{d}^2_{\mu,m_0}(x) + \langle h |
abla \mathrm{d}^2_{\mu,m_0}(x)
angle + \|h\|^2 \ & ext{with }
abla \mathrm{d}^2_{\mu,m_0}(x) := 2m_0^{-1} \int_{\mathbb{R}^d} (x-z) \mathrm{d}\mu_{x,m_0}(z) \end{aligned}$$

Theorem

The distance function d_{μ,m_0} is *distance-like,ie*.

1 the function
$$x \mapsto d_{\mu,m_0}(x)$$
 is 1-Lipschitz;

② the function
$$x\mapsto \|x\|^2-\mathrm{d}^2_{\mu,m_0}(x)$$
 is convex;

Theorem

The map $\mu\mapsto d_{\mu,m_0}$ from probability measures to continuous functions is $\frac{1}{\sqrt{m_0}}\text{-Lipschitz},$ ie

$$\left\| \mathrm{d}_{\mu, m_0} - \mathrm{d}_{\mu', m_0} \right\|_\infty \leq rac{1}{\sqrt{m_0}} \mathrm{d}_\mathrm{W}(\mu, \mu')$$

19 / 32

2009/07/08

Outline

Geometric inference for measures.

Distance to a probability measures.

F. Chazal , D. Cohen-Steiner , Q. MérigoGeometric Inference for Probability distrik

Consequences of the previous properties

- existence of an analogous to the medial axis
- stability of a filtered version of it (as with the μ-medial axis) under Wasserstein perturbation
- stability of the critical function of a measure
- ${f 0}$ the gradient $abla {
 m d}_{\mu,m_0}$ is ${
 m L}^1$ -stable

5 ...

 \implies the distance functions d_{μ,m_0} share many stability and regularity properties with the usual distance function.

Example : square with outliers

10% outliers, k = 150

 $\delta_{\mu,m_0}, \ m_0 = 1/10$

F. Chazal , D. Cohen-Steiner , Q. MérigoGeometric Inference for Probability distrik

2009/07/08 22 / 32

Example : square with outliers

 d_{μ,m_0}

 $\|\nabla \mathbf{d}_{\boldsymbol{\mu},\boldsymbol{m_0}}\|$

・ 伊 ト ・ ヨ ト ・ ヨ ト

F. Chazal , D. Cohen-Steiner , Q. MérigoGeometric Inference for Probability distril

æ

A 3D example

Reconstruction of an offset from a noisy dataset, with 10% outliers

F. Chazal , D. Cohen-Steiner , Q. MérigoGeometric Inference for Probability distril

A reconstruction theorem

Theorem

Let μ be a probability measure of dimension at most k > 0 with compact support $K \subset \mathbb{R}^d$ such that $r_{\alpha}(K) > 0$ for some $\alpha \in (0, 1]$. For any $0 < \eta < r_{\alpha}(K)$, there exists positive constants $m_1 = m_1(\mu, \alpha, \eta) > 0$ and $C = C(m_1) > 0$ such that : for any $m_0 < m_1$ and any probability measure μ' such that $W_2(\mu, \mu') < C\sqrt{m_0}$, the sublevel set $d_{\mu',m_0}^{-1}((-\infty, \eta])$ is homotopy equivalent (and even isotopic) to the offsets $d_K^{-1}([0, r])$ of K for $0 < r < r_{\alpha}(K)$.

2009/07/08 25/32

Density is estimated using $x\mapsto rac{m_0}{\omega_{d-1}(\delta_{\mu,m_0}(x))},\ m_0=150/1200.$

F. Chazal , D. Cohen-Steiner , Q. MérigoGeometric Inference for Probability distrik

2009/07/08 26 / 32

Density is estimated using $x \mapsto \frac{m_0}{vol_d(B(x,\delta_{\mu,m_0}(x)))}, m_0 = 150/1200$ (Devroye-Wagner '77).

2009/07/08 27 / 32

- the gradient of the estimated density can behave wildly
- exhibits peaks near very dense zone
- 1. can be fixed using d_{μ,m_0} (because of the semiconcavity) 2. shows that the *distance function* is a better-behaved geometric object to associate to a measure.

- the gradient of the estimated density can behave wildly
- exhibits peaks near very dense zone
- 1. can be fixed using d_{μ,m_0} (because of the semiconcavity)
- **2.** shows that the *distance function* is a better-behaved geometric object to associate to a measure.

Pushing data along the gradient of d_{μ,m_0}

- Mean-Shift like algorithm (Comaniciu-Meer '02)
- Theoretical guarantees on the convergence of the algorithm and "smoothness" of trajectories.

2009/07/08

30 / 32

Pushing data along the gradient of d_{μ,m_0}

Summary

- $\mu \mapsto d_{\mu,m_0}$ provide a way to associate geometry to a measure in Euclidean space.
- d_{μ,m0} is robust to Wasserstein perturbations : outliers and noise are easily handled (no assumption on the nature of the noise).
- d_{μ,m_0} shares regularity properties with the usual distance function to a compact.
- Geometric stability results in this measure-theoretic setting : topology/geometry of the sublevel sets of d_{μ,m_0} , stable notion of persistence diagram for μ_i .
- Algorithm : for finite point clouds d_{μ,m_0} and $\nabla(d_{\mu,m_0})$ can be easily and efficiently computed pointwise in any dimension.