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Outline

@ Geometric inference for measures.
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Motivation

What is the (relevant) topology/geometry of a point cloud data set
in RY?

Motivations : Reconstruction, manifold learning and NLDR, clustering and
segmentation, etc...
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Geometric Inference

Question

Given an approximation C of a geometric object K, what geometric and
topological quantities of K is it possible to approximate, knowing only C7

@ The answer depends on the considered class of objects and a notion of
distance between the objects (approximation);

@ Some positive answers for a large class of compact sets endowed with
the Hausdorff distance.

@ In this talk :
- can the considered objects be probability measures on RY ?
- motivation : allowing approximations to have outliers or to be
corrupted by “non local” noise.
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Distance functions for geometric inference

Distance function and Hausforff distance

Distance to a compact K C RY : dk : x + infpek ||x — p|| Hausdorff
distance between compact sets K, K’ C RY :
dH(K, KI) = ianeRd ’dK(X) — dK/(X)’

@ Replace K and C by dx and dc.

o Compare the topology of the offsets
K™ =d,}([0, r]) and
¢ =dc'([0, ).

zzzz
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Stability properties of the offsets

Topological /geometric properties of the offsets of K are stable with
respect to Hausdorff approximation :

1. Topological stability of the offsets of K (CCSL'06, NSW'06).
2. Approximate normal cones (CCSL'08).

3. Boundary measures (CCSM'07), curvature measures (CCSLT'09),
Voronoi covariance measures (GMO'09).

zzzz
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The problem of outliers

If K= KU {x} where dg(x) > R, then ||dx — dk/||o > R : offset-based
inference methods fail !

Question : Can we generalized the previous approach by replacing the
distance function by a “distance-like” function having a better behavior

with respect to noise and outliers 7
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The three main ingredients for stability

The stability in distance-based geometric inference relies on the three
following facts :

@ the 1-Lipschitz property for dg ;
@ the 1-concavity on the function d% : x — ||x||? — d%(x) is convex.
© the stability of the map K — dk :

ldk —dkrllo = sup ldk (x) — dk/(x)| = du(K, K')
x€eR

A map ¢ : R? — R which verifies (1) and (2) is called distance-like.

zzzz
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Replacing compact sets by measures

A measure /i is a mass distribution on RY.

Mathematically, it is defined as a map pu that takes a (Borel) subset

B C RY and outputs a nonnegative number j(B). Moreover we ask that if
(B;) are disjoint subsets, 11 (U;en Bi) = 2 e 1(Bi)

@ 1(B) corresponds to to the mass of i contained in B
e a point cloud C = {p1,...,pn} defines a measure yc = 3,5,

@ the volume form on a k-dimensional submanifold M of RY defines a
measure volg|,,.

zzzz
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Distance between measures

The Wasserstein distance d(u, ) between two probability measures
i, v quantifies the optimal cost of pushing i onto v, the cost of moving a
small mass dx from x to y being ||x — y||* dx.

ClQ: """"" ’Od © 1 and v are discrete measures : p =) . ¢idx;,
1 .
ﬂ'ij“O V:ch/j5yj with Zjdj:z:i G-

O= d; @ Transport plan : set of coefficients 7;; > 0 with
Q’O’O doimj=djand > mj = .
Q :O © Cost of a transport plan
) \1/2
C(m) = (Sy I = > m3)
m Q dw(u,v) :=inf C(m)

zzzz
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Wasserstein distance

Examples :

o

2]

If #C = #G, then d%v(ucl,uCQ) is the cost of a minimal
least-square matching between C; and G ;

If C={p1,...,pntand C"={p1,...,Pn_k_1,01,--., 0k} with
d(oj, C) = R, then du(C, C’) > R while

dw (jics per) < m(R + diam(C)) with m = <;
n

If v is a probability measure, dyw (u* N(0,0), 1) < o;

If X1,..., Xy are iid with law g, then (in general), % Z,N:1 dx;
converges to y whp as N tends to co.

zzzz
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Outline

© Distance to a probability measures.
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The distance to a measure

Distance function to a measure, first attempt

Let m €]0, 1] be a positive mass, and y a probability measure on R :

dum(x) =inf{r > 0; u(B(x,r)) > m}

® 0,,m is the smallest distance needed to attain a
mass of at least m;

o Coincides with the distance to the k-th
neighbor when m = k/nand =137 .5, :
Sy /n1e) = [|x = PEX)]].

zzzz
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Unstability of p+— &, m

Distance to a measure, first attempt

Let m €]0, 1 be a positive mass, and 1 a probability measure on RY :

du,m(x) = inf {r > 0; u(B(x,r)) > m}

Unstability under Wasserstein perturbations :

pe = (1/2 —e)do + (1/2 4 €)d;
fore >0: Vx <0, 6, 1/2(x) =[x =1
fore =0: Vx <0, 0u9,1/2(x) =[x =0

Consequence : the map 11+ 6, m € C°(R9) is discontinuous whatever the
(reasonable) topology on CO(RY).

zzzz
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The distance function to a measure.

Definition

If 11 is a measure on R? and mg > 0, one let :

d 1[5 12
dymy : X ER = (m_o/o 6ﬂ7m(x)dm>

Example. Let C = {p1,...,pn} and u= L3577 5,.. Let p&(x) denote

the kth nearest neighbor to x in C, and set mg = ko/n :

- pkc(x))F)

ko 1/2

o) = (kio )

zzzz
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The distance function to a discrete measure.

Example (continued) Let C = {p1,...,py} and p =137 5, Let
pk(x) denote the kth nearest neighbor to x in C, and set mg = ko/n :

- pkc<x))]2>

Ls~ko re pk(x
Vel g (x) = ko 2wk=1 [ pel( )]

ko 1/2

Qo (X) = (kio )

d“va (X)

zzzz
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Another expression for d;, m,

Proposition

The distance d, m,(x) coincides with the partial Wasserstein distance
between the Dirac mass mgdyx and p. More precisely :

Vmod,, mo(x) = min{dw(modx,v);v < p and mass(v) = mg}

1/2
= min (/ ly — X||2d1/(y)) ;v < p,mass(v) = mo
Rd

Let ix,m, be a measure realizing this minimum.

@ The measure pix,m, gives mass to the multiple “projections” of x on f;

e For the point cloud case, when my = ko/n and x is not on a
k-Voronoi face,

Hx,mo = Z n pc E@

"
zzzz
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1-Concavity of the squared distance function
Regularity
o+ 0) = [l b= 2 Qi m(2)
< [ Ik b2l (@)

< o () +2 [ (bl = 2 () + o

That is :
g (% 1) < 5 g () + (A, 1y (x)) + [
with Vdi mo(X) = 2my / (x — 2)dfx,mo (2)
) Rd

zzzz
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Theorem
The distance function dy,me is distance-like,ie.
© the function x — d, m,(x) is 1-Lipschitz;

@ the function x — ||x||* — d? e (x) is convex;

Theorem

TP11e map p +— d,, m, from probability measures to continuous functions is
\/—m—o—LlpSChltZ, ie

1
”dlhmo - dlﬁlvmoHoo < \/_m—odW('UJa ,L‘/)
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Outline

© Applications
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Consequences of the previous properties

Q existence of an analogous to the medial axis

@ stability of a filtered version of it (as with the u-medial axis) under
Wasserstein perturbation

© stability of the critical function of a measure
Q the gradient Vd,, m, is L-stable
o ..

= the distance functions d,, m, share many stability and regularity
properties with the usual distance function.

zzzz
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Example : square with outliers
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Example : square with outliers

IV dy,mo|

d/”va
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A 3D example

Reconstruction of an offset from a noisy dataset, with 10% outliers

2009/07/08 24 / 32
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A reconstruction theorem

Theorem

Let 1 be a probability measure of dimension at most k > 0 with compact
support K C RY such that r,(K) > 0 for some a € (0,1]. For any

0 < n < ro(K), there exists positive constants m; = my(u, @, ) > 0 and
C = C(m) > 0 such that :

for any mp < my and any probability measure 4/ such that

Wa(p, 1) < Cy/mq, the sublevel set dl;}mo((—oo,n]) is homotopy
equivalent (and even isotopic) to the offsets d;l([O, r]) of K for

0 < r < r(K).

zzzz
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k-NN density estimation vs distance to a measure

Density is estimated using x +—

7, Mo = 150/1200.

mo
Wd—1(5u7m0 (x)

F. Chazal , D. Cohen-Steiner , Q. MérigoGeometric Inference for Probability distril 2009/07/08 26 / 32



k-NN density estimation vs distance to a measure

a0 100 180 200 260 300 350 400 450 500 50 00 150 200 250 300 350 400 450 SO0

density log(1 +1/dy,m,)

Density is estimated using x — vold(B(X";‘:L ) Mo = 150/1200
) ,mg
(Devroye-Wagner '77). Q

"
ETRICA
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k-NN density estimation vs distance to a measure

O the gradient of the estimated density
can behave wildly

@ exhibits peaks near very dense zone

10 20 30 40 s 60 70 81 90 100

1. can be fixed using d,, m, (because of the
semiconcavity)

2. shows that the distance function is a
better-behaved geometric object to associate
to a measure.

10 20 ;| 40 &1 60 70 8D 90 100 g
o

"
ETRICA
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k-NN density estimation vs distance to a measure

O the gradient of the estimated density
can behave wildly

@ exhibits peaks near very dense zone

semiconcavity)
2. shows that the distance function is a
better-behaved geometric object to associate

\) 1. can be fixed using d,, m, (because of the

to a measure.

\

zzzz
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Pushing data along the gradient of d,, m,

@ Mean-Shift like algorithm (Comaniciu-Meer '02)

@ Theoretical guarantees on the convergence of the algorithm and
“smoothness” of trajectories.
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Pushing data along the gradient of d,, m,
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Summary

@ s+ d, m, provide a way to associate geometry to a measure in
Euclidean space.

@ d, m, is robust to Wasserstein perturbations : outliers and noise are
easily handled (no assumption on the nature of the noise).

® d,, m, shares regularity properties with the usual distance function to a
compact.

o Geometric stability results in this measure-theoretic setting :
topology/geometry of the sublevel sets of d,, m,, stable notion of
persistence diagram for u,.

o Algorithm : for finite point clouds d,; m, and V(d,, m,) can be easily
and efficiently computed pointwise in any dimension.
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