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Surface Reconstruction

.Pb.: Compute a (piece-wise) surface from a point cloud

.Context: Reverse Engineering, Medical data processing, Geology,
Cultural Heritage

?

.Sc. Challenge(s): Sampling models –minimal amount of
information required to reconstruct faithfully (geometry, topology)
.Previous work: heuristics before Amenta - Bern (98): local
Feature Size —aka Local Width



Reconstruction Difficulties

. Using an a priori model: classical surface-based reconstruction

– (Compact) Smooth surfaces versus sharps features, boundaries
– Samples may not comply with the model:

Unstable estimates for differential geometry based quantities:
normals, principal curvatures

The sampling may not be a surface at all
– Unique versus plausible reconstructions

. Calls for a general reconstruction strategy:

– No a priori: handling compact sets
– Providing multi-scale reconstruction i.e. plausible shapes



Practically: Reconstructing the Boundary of a Solid?
. Thin parts might just be too thin

(a)
(b)

(c)

. Calls for a general reconstruction strategy

Beech tree reconstruction, with parameters tr = 2.2, tp = 1.1 (a) Overview of this noisy and under-sampled model
(b,c) Zoom near a an under-sampled peduncle. The point cloud is courtesy of J-C. Chambelland et al, UMR 547

PIAF - INRA/UBP.



Distance Function to Sample Points

. Given a collection of points {pi}i=1,...,n, consider:

d(p) = min
i
|| ppi ||

. Increasing the value of d :
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Distance function to a compact set K

. Distance function to a compact set K
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– Distance function :
dK (x) = miny∈K d(x , y)

– Gradient : ∇dK (x) = x−ΘK (x)
dK (x)

– Its norm:
|| ∇dK (x) ||= cosαK (x)

. Key properties

∇dK can be integrated to define a continuous flow (Euler scheme converges)

(Non degenerate) Critical point:
(interior) of the convex hull of ΓK (x)

Easy interpretation if K = point cloud :
cf Delaunay-Voronoi diagrams

.Ref: Lieutier; Computer Aided Design, 2004



The Morse Puzzle of the Distance Function

Flow Complex
Critical points
Stable manifolds
Unstable manifolds

Morse-Smale diagram
regions of homogeneous flow:⋂

of (un)stable manifolds

Hasse diagram
orbits of the distance function
through consecutive crit. pts
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.Ref: Giesen, John; ACM SODA; 2003

.Ref: Cazals, Pion; ACM SoCG; 2008



Construction of S2 and U1

. Stable manifolds, generically:

Recursive structure
Complicated case S2:

neither in Delaunay nor in Voronoi

. S2:
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. Stable manifolds, generically:

U1: dissection of the two-skeleton
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.Ref: Giesen and John, ACM SODA 03

.Ref: Giesen, Ramos, Sadri; ACM SoCG 06

.Ref: Cazals, Parameswaran, Pion; ACM SoCG 08



Flow Based Surface Reconstruction:
Separating Critical Points

. ε-samples accommodate a separation of critical points:

2-skeleton

Flow complex: Tagged critical points:

surface vs medial axis
Reconstruction

Algo. based on the separation of c.p.:
surface c.p.: angle criterion
MA c.p.: distance criterion wrt poles

Under mild hypothesis on the sampling:

Reconstruction Ŝ :

Ŝ ⊂ tube around S

Ŝ isotopic to S

.Ref: Dey, Giesen, Ramos,Sadri; ACM SoCG 2005



Generalization to Compact Sets:
Finding Cuts from the Hasse Diagram

. Reconstruction:
– Collection of Stable Manifolds (SM) of all indices i.e. 0 to 3
– Governed by a parameter tr > 0
– Abusing terminology: inserting a Hasse node ∼ inserting its SM

. Key ingredient: ratio V (b)/V (a)
between crit. values of incicdent crit. pts in the Hasse diagram

. Initialization: selected Gabriel edges

. Upflow extension:
a in reconstruction; index(b) = index(a) + 1
a sponsors b with priority ru = V (b)/V (a)

. Regularization:
h in reconstruction
h triggers insertion of a, b, c, d , e, f , g ; rr = 1

. Horizontal extension:
a in reconstruction; index(b) = index(a)
a sponsors b with priority rh = max(V (a)/V (b), V (b)/V (a))

b
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The Three Steps: Canonical Ordering of Insertions
Reconstruction Profiles

. Initialization: start from selected one-dimensional SM
– Gabriel edge e = (v0, v1) is an init edge iff

v1 if the nearest neighbor of v0 or vice-versa

. Sponsoring as an iterative process:
– sponsored nodes placed into a priority queue Q
• priority : least ru, rr , rh ratio from any sponsor
• requires insertion and/or updates of nodes already in Q

– induces a canonical insertion of nodes: take the easiest step
i.e. pop node with least priority provided it is < tr

. Reconstruction profile: (ri )i≥1 for tr =∞
– encompasses all possible reconstructions
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Widening the Gaps: Persistence on the Hasse Diagram

. Insufficient sampling: widen the gaps

. Cancelling pairs of nearby critical points: reverting the flow
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. Hasse simplification: multiplexing and redistribution of SMs
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Hasse Simplification Cont’d

. Algorithm

– Iterative process based on the
persistence priority p(a, b) = V (b)/V (a)

– Incremental cancellation of
all pairs up to priority ≤ tp

. Key steps

– Update of the Hasse diagram
remove edges incident on nodes cancelled
add edges of bipartite graph

In(b)× Out(a)
– Redistribution of SM

. Persistence: the obtuse triangle

tep = 2√
3

tp > te
p cancels edges-triangle

– surface with boundaries:
may create leaks of SM

– but not systematic:
SM rescued thanks to multiplexing



Non Manifold Reconstruction

. Reconstructing two intersecting spheres

(a) (b)

(c)

(d)
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(a) tr = 1.9, tp = 0
(b) Transparent view of (a)
(c) tr = 2.5, tp = 1.05:

maxima cancelled

(d) tr = 2.5, tp = 1.05,
multiplicity of Gabriel edges:
zero one three four five
(e) Circled region of Fig. (d):
intersection curve stretched to a disk



Enumerating Plausible Reconstructions

. Do the circled points punch a hole or not?

c

d

(a) At tr = 1.9, tp = 0: hole (b) At tr = 2.1, tp = 0: hole filled



On the Importance of Persistence

. Undesirable extensions

(a) At tr = 1.7, tp = 0: fin

. Fixed by persistence

(b) At tr = 2, tp = 1.02: fin is gone



Untangling the Role of Persistence

(a)

c
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d
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(a,b)The extension path followed by the algorithm–red arrows.
(c) Pairing by persistence: d paired to an index one critical point e

. Note: offers a local control so as to fix the sampling



Combining Parameters tr and tp: the Exple of Vase

. Vase: (a) tp = 0, tr = ∞ (a) tp = 1.1, tr = ∞ (c) Tail of (b)
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. Mechanic.: (a) tp = 0, tr = ∞ (b) tp = 1.1, tr = ∞ (c) Tail of (b)
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. Recommendations

– values of tp ∈ [1.02, 1.2] and tr ∈ [1.9, 2.1] yield comparable results
– beyond tr ∈ [1.9, 2.1]: number of features of the model (significant max.)



Reconstruction Guarantees: Background
. Def. The µ-medial axis of a compact set K ⊂ Rn is the set of points x /∈ K
such that ||∇dK (x)|| < µ. The µ-reach of K , denoted by rµ(K), is the
minimum distance between a point in K and a point in the closure of its
µ-medial axis.

. Def. Given two non-negative real numbers κ and µ, we say that a compact
set P ⊂ Rn is a (κ, µ)-approximation of a compact set K ⊂ Rn if the Hausdorff
distance between K and P does not exceed κ times the µ-reach of K .

θ/2

p0 p1

x

|| ∇dK(x) ||< µ

µ = 0: weak feature size

µ = 1: min of Loc. Feature Size

MA(p0, p1) Offset of pts sampled
on equil. triangle

Courtesy of FC-DCS-AL

. Thm. Reconstructing with offsets:

– P ⊂ Rn is a (κ, µ)-approximation of a compact set K
– Under suitable conditions:

Pα is homotopy equivalent to Kη for sufficiently small η.

.Ref: Chazal, Cohen-Steiner, Lieutier; ACM SoCG 06



Reconstruction Guarantees

. Def. Point cloud P is a ρ-uniform approximation of a compact set K if half
the distance between the two closest sample points in P is at least ρ times the
the Hausdorff distance between P and K , where 0 < ρ < 1.

. Thm. Let K be a compact subset of R3;
Assume P is a ρ-uniform (κ, µ)-approximation of K . If

4

ρµ2
< tr <

µ2

4κ
− 1,

then the reconstruction is homotopy equivalent to Kη for small enough η.

. Proof sketch:

Fα: flow shape α-shape

Recons. thm.Dey-Gisen-John’03

Pα: union balls Kη: compact set

Edelsbrunner’95

(∪ stable manifolds)
(∪ of domains

Homot. Equiv.Homot. Equiv.Homot. Equiv.

of simplices)

. Note. Thm uses uniform sampling; algorithm does not.



Union of balls, α-shapes, Flow-shapes

. Topology of a union of balls: union of balls ∼ flow shape ∼ α-shape

union of balls and α-shapes are homotopy equivalent [Edelsbrunner, 92]

α-shapes and flow shapes are homotopy equivalent [Dey, Giesen, John, 03]

. Key differences

Events triggering addition in α-shape: Gabriel simplices
critical points

Union of balls α-complex / α-shape Flow shape



Connexions to Recent Previous Work

. Multi-scale reconstruction

– Based on the witness complex
– Incremental construction of

subset of the Del. triangulation of L ⊂ W ,
and associated Betti numbers

complex is the ν-witness complex CW
ν (L)

– Provably correct reconstruction of curves and surfaces
contains a manifold isotopic to the surface

→ approach radically different; we handle non manifold shapes

.Ref: Guibas, Oudot; DCG 08

. Topological simplification of 3D scalar functions

Morse-Smale diagram simplification
– Operations: cancellations (m, σ1), (σ1, σ2), (σ2,M)
– Simplified complex is that of some scalar function:

topological constraints respected

→ Our simplified MS diagram is not realized
.Ref: Gyulassy et al., IEEE TVCG, 06



Conclusion - Outlook

. Flow complex based reconstruction
versatile strategy (cf strata)
complex to build, yet tractable for models of (moderate) size

. Developments called for
computing stratifications
handling noise
approximation scheme based on Delaunay (some restricted Delaunay)
gazing on the high dimensional side. . .
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