Reconstructing 3D compact sets

F. Cazals; ABS; D. Cohen-Steiner, Geometrica; INRIA Sophia-Antipolis

July 8, 2009

Outline

Reconstruction?

The Flow Complex (A Gentle Introduction)

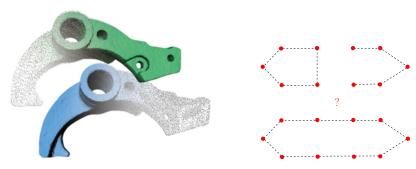
Flow Complex Based Reconstruction

Comments on Related Works

Conclusion - Outlook

Surface Reconstruction

▷Pb.: Compute a (piece-wise) surface from a point cloud
 ▷Context: Reverse Engineering, Medical data processing, Geology,
 Cultural Heritage



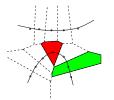
Description Science S

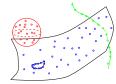
Reconstruction Difficulties

- ▶ Using an a priori model: classical surface-based reconstruction
 - (Compact) Smooth surfaces versus sharps features, boundaries
 - Samples may not comply with the model:
 - Unstable estimates for differential geometry based quantities: normals, principal curvatures

The sampling may not be a surface at all

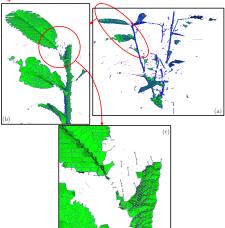
- Unique versus plausible reconstructions
- ▶ Calls for a general reconstruction strategy:
 - No a priori: handling compact sets
 - Providing multi-scale reconstruction i.e. plausible shapes





Practically: Reconstructing the Boundary of a Solid?

▶ Thin parts might just be too thin



▶ Calls for a general reconstruction strategy

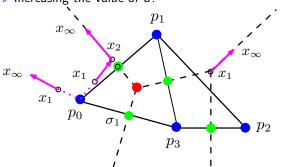
Beech tree reconstruction, with parameters $t_r = 2.2$, $t_p = 1.1$ (a) Overview of this noisy and under-sampled model (b,c) Zoom near a an under-sampled peduncle. The point cloud is courtesy of J-C. Chambelland et al, UMR 547 PIAF - INRA/UBP.

Distance Function to Sample Points

▶ Given a collection of points $\{p_i\}_{i=1,...,n}$, consider:

$$d(p) = \min_{i} \mid\mid pp_{i} \mid\mid$$

▶ Increasing the value of *d*:

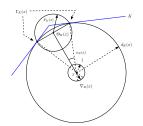


minimum saddle maximum

Flow trajectories (orbits)

Distance function to a compact set K

▶ Distance function to a compact set K



- Distance function :
$$d_K(x) = \min_{v \in K} d(x, v)$$

– Gradient :
$$\nabla d_K(x) = \frac{x - \Theta_K(x)}{d_K(x)}$$
 – Its norm:

 $||\nabla d_{\mathcal{K}}(x)|| = \cos \alpha_{\mathcal{K}}(x)$

▶ Key properties

 $abla d_K$ can be integrated to define a continuous flow (Euler scheme converges)

(Non degenerate) Critical point: (interior) of the convex hull of $\Gamma_K(x)$

Easy interpretation if $K = point \ cloud$: cf Delaunay-Voronoi diagrams

The Morse Puzzle of the Distance Function

Flow Complex

Critical points
Stable manifolds
Unstable manifolds

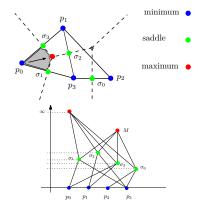
Morse-Smale diagram

regions of homogeneous flow:
Of (un)stable manifolds

Hasse diagram

orbits of the distance function through consecutive crit. pts

▶Ref: Giesen, John; ACM SODA; 2003
▶Ref: Cazals. Pion: ACM SoCG: 2008



Construction of S2 and U1

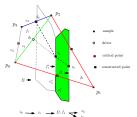
▶ Stable manifolds, generically:

Recursive structure Complicated case S2: neither in Delaunay nor in Voronoi

▶ Stable manifolds, generically:

U1: dissection of the two-skeleton

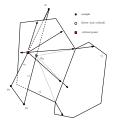
▶ S2:



▶Ref: Giesen and John, ACM SODA 03

Ref: Giesen, Ramos, Sadri; ACM SoCG 06

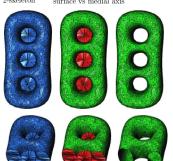
▶Ref: Cazals, Parameswaran, Pion; ACM SoCG 08



Flow Based Surface Reconstruction: Separating Critical Points

\triangleright ε -samples accommodate a separation of critical points:

Flow complex: Tagged critical points:
2-skeleton surface vs medial axis
Reconstruction



Algo. based on the separation of c.p.: surface c.p.: angle criterion MA c.p.: distance criterion wrt poles

Under mild hypothesis on the sampling: Reconstruction \hat{S} :

 $\hat{\mathcal{S}} \subset \mathsf{tube} \; \mathsf{around} \; \mathcal{S}$

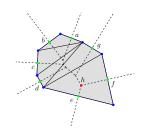
 \hat{S} isotopic to S

Ref: Dev, Giesen, Ramos, Sadri; ACM SoCG 2005

Generalization to Compact Sets: Finding Cuts from the Hasse Diagram

▶ Reconstruction:

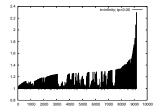
- Collection of Stable Manifolds (SM) of all indices i.e. 0 to 3
- Governed by a parameter $t_r > 0$
- Abusing terminology: inserting a Hasse node \sim inserting its SM
- ▶ Key ingredient: ratio V(b)/V(a) between crit. values of incicdent crit. pts in the Hasse diagram
- ▶ Initialization: selected Gabriel edges
- ▶ Upflow extension:
 - a in reconstruction; index(b) = index(a) + 1a sponsors b with priority $r_u = V(b)/V(a)$
- ▶ Regularization:
 - h in reconstruction
 - h triggers insertion of a, b, c, d, e, f, g; $r_r = 1$
- ▶ Horizontal extension:
 - a in reconstruction; index(b) = index(a)
 - a sponsors b with priority $r_h = \max(V(a)/V(b), V(b)/V(a))$



The Three Steps: Canonical Ordering of Insertions

Reconstruction Profiles

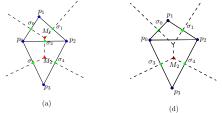
- ▶ Initialization: start from selected one-dimensional SM
 - Gabriel edge $e = (v_0, v_1)$ is an init edge iff v_1 if the nearest neighbor of v_0 or vice-versa
- ▶ Sponsoring as an iterative process:
 - sponsored nodes placed into a priority queue Q
 - priority : least r_u , r_r , r_h ratio from any sponsor
 - requires insertion and/or updates of nodes already in Q
 - induces a canonical insertion of nodes: take the easiest step i.e. pop node with least priority provided it is $< t_r$
- ▶ Reconstruction profile: $(r_i)_{i\geq 1}$ for $t_r = \infty$
 - encompasses all possible reconstructions



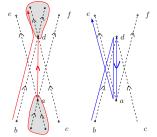
Example recons. profile (more later!) Note: tail of diagram \sim <u>features</u> (significant maxima) of the model

Widening the Gaps: Persistence on the Hasse Diagram

- ▶ Insufficient sampling: widen the gaps
- ▶ Cancelling pairs of *nearby* critical points: reverting the flow



▶ Hasse simplification: multiplexing and redistribution of SMs

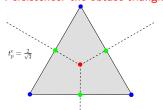


Hasse Simplification Cont'd

▶ Algorithm

- Iterative process based on the persistence priority p(a, b) = V(b)/V(a)
- Incremental cancellation of all pairs up to priority $\leq t_p$

▶ Persistence: the obtuse triangle



 $t_p > t_p^e$ cancels edges-triangle

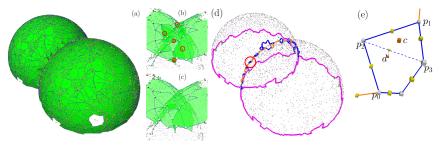
▶ Key steps

- Update of the Hasse diagram remove edges incident on nodes cancelled add edges of bipartite graph $In(b) \times Out(a)$
- Redistribution of SM

- surface with boundaries: may create leaks of SM
- but not systematic:
 SM rescued thanks to multiplexing

Non Manifold Reconstruction

▶ Reconstructing two intersecting spheres

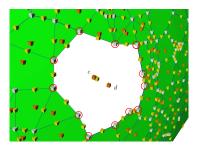


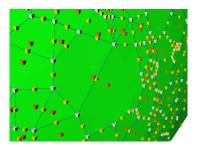
- (a) $t_r = 1.9$, $t_p = 0$
- (b) Transparent view of (a)
- (c) $t_r = 2.5$, $t_p = 1.05$:

- (d) $t_r = 2.5$, $t_p = 1.05$, multiplicity of Gabriel edges: zero one three four five
- (e) Circled region of Fig. (d): intersection curve stretched to a disk

Enumerating Plausible Reconstructions

▶ Do the circled points punch a hole or not?





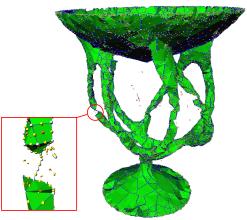
(a) At $t_r = 1.9$, $t_p = 0$: hole (b) At $t_r = 2.1$, $t_p = 0$: hole filled

On the Importance of Persistence

▶ Undesirable extensions

(a) At $t_r = 1.7, t_p = 0$: fin

▶ Fixed by persistence



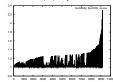
(b) At $t_r = 2, t_p = 1.02$: fin is gone

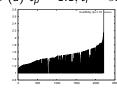
Untangling the Role of Persistence

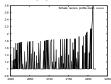
- (a,b)The extension path followed by the algorithm–red arrows.
- (c) Pairing by persistence: d paired to an index one critical point e
- ▶ Note: offers a local control so as to fix the sampling

Combining Parameters t_r and t_p : the Exple of Vase

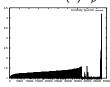
$$ightharpoonup$$
 Vase: (a) $t_p=0, t_r=\infty$ (a) $t_p=1.1, t_r=\infty$ (c) Tail of (b)

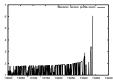






$$ightharpoonup$$
 Mechanic.: (a) $t_p=0, t_r=\infty$ (b) $t_p=1.1, t_r=\infty$ (c) Tail of (b)



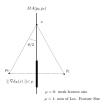


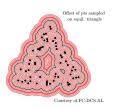
▶ Recommendations

- values of $t_p \in [1.02, 1.2]$ and $t_r \in [1.9, 2.1]$ yield comparable results
- beyond $t_r \in [1.9, 2.1]$: number of <u>features</u> of the model (significant max.)

Reconstruction Guarantees: Background

- ▶ **Def.** The μ -medial axis of a compact set $K \subset \mathbb{R}^n$ is the set of points $x \notin K$ such that $||\nabla d_K(x)|| < \mu$. The μ -reach of K, denoted by $r_{\mu}(K)$, is the minimum distance between a point in K and a point in the closure of its μ -medial axis.
- ▶ **Def.** Given two non-negative real numbers κ and μ , we say that a compact set $P \subset \mathbb{R}^n$ is a (κ, μ) -approximation of a compact set $K \subset \mathbb{R}^n$ if the Hausdorff distance between K and P does not exceed κ times the μ -reach of K.





- ▶ **Thm.** Reconstructing with offsets:
- $-P \subset \mathbb{R}^n$ is a (κ, μ) -approximation of a compact set K
- Under suitable conditions:
 - P^{α} is homotopy equivalent to K^{η} for sufficiently small η .

Reconstruction Guarantees

- \triangleright **Def.** Point cloud P is a ρ -uniform approximation of a compact set K if half the distance between the two closest sample points in P is at least ρ times the the Hausdorff distance between P and K, where $0 < \rho < 1$.
- ▶ **Thm.** Let K be a compact subset of \mathbb{R}^3 ; Assume P is a ρ -uniform (κ, μ) -approximation of K. If

$$\frac{4}{\rho\mu^2} < t_r < \frac{\mu^2}{4\kappa} - 1,$$

then the reconstruction is homotopy equivalent to K^{η} for small enough η .

Proof sketch:

$$P_{\alpha}: \text{ flow shape} \xrightarrow{\text{Homot. Equiv.}} \begin{array}{c} \text{Edelsbrunner'95} & \text{Recons. thm.} \\ \hline F_{\alpha}: \text{ flow shape} & \xrightarrow{\text{Homot. Equiv.}} \begin{array}{c} \alpha\text{-shape} & \xrightarrow{\text{Homot. Equiv.}} \end{array} \quad P^{\alpha}: \text{ union balls} & \xrightarrow{\text{Homot. Equiv.}} K^{\eta}: \text{ compact set} \\ \hline (\cup \text{ of domains of simplices}) & \text{ of simplices} \end{array}$$

▶ **Note.** Thm uses uniform sampling; algorithm does not.

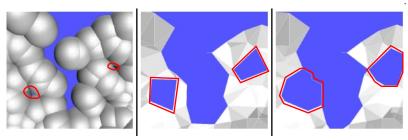
Union of balls, α -shapes, Flow-shapes

ightharpoonup Topology of a union of balls: union of balls \sim flow shape $\sim lpha$ -shape

union of balls and α -shapes are homotopy equivalent [Edelsbrunner, 92] α -shapes and flow shapes are homotopy equivalent [Dey, Giesen, John, 03]

▶ Key differences

Events triggering addition in α -shape: Gabriel simplices critical points



Union of balls

 α -complex / α -shape

Flow shape

Connexions to Recent Previous Work

▶ Multi-scale reconstruction



▶Ref: Guibas, Oudot; DCG 08

▶ Topological simplification of 3D scalar functions

⊳Ref: Gvulassv et al., IEEE TVCG, 06

- Based on the witness complex
- Incremental construction of subset of the Del. triangulation of L ⊂ W, and associated Betti numbers complex is the v-witness complex C.W.(L)
- Provably correct reconstruction of curves and surfaces contains a manifold isotopic to the surface
- approach radically different; we handle non manifold shapes

Morse-Smale diagram simplification

- Operations: cancellations $(m, \sigma_1), (\sigma_1, \sigma_2), (\sigma_2, M)$
- Simplified complex is that of some scalar function: topological constraints respected
- Our simplified MS diagram is not realized

Conclusion - Outlook

Flow complex based reconstruction versatile strategy (cf strata) complex to build, yet tractable for models of (moderate) size

Developments called for computing stratifications handling noise approximation scheme based on Delaunay (some restricted Delaunay) gazing on the high dimensional side. . .

