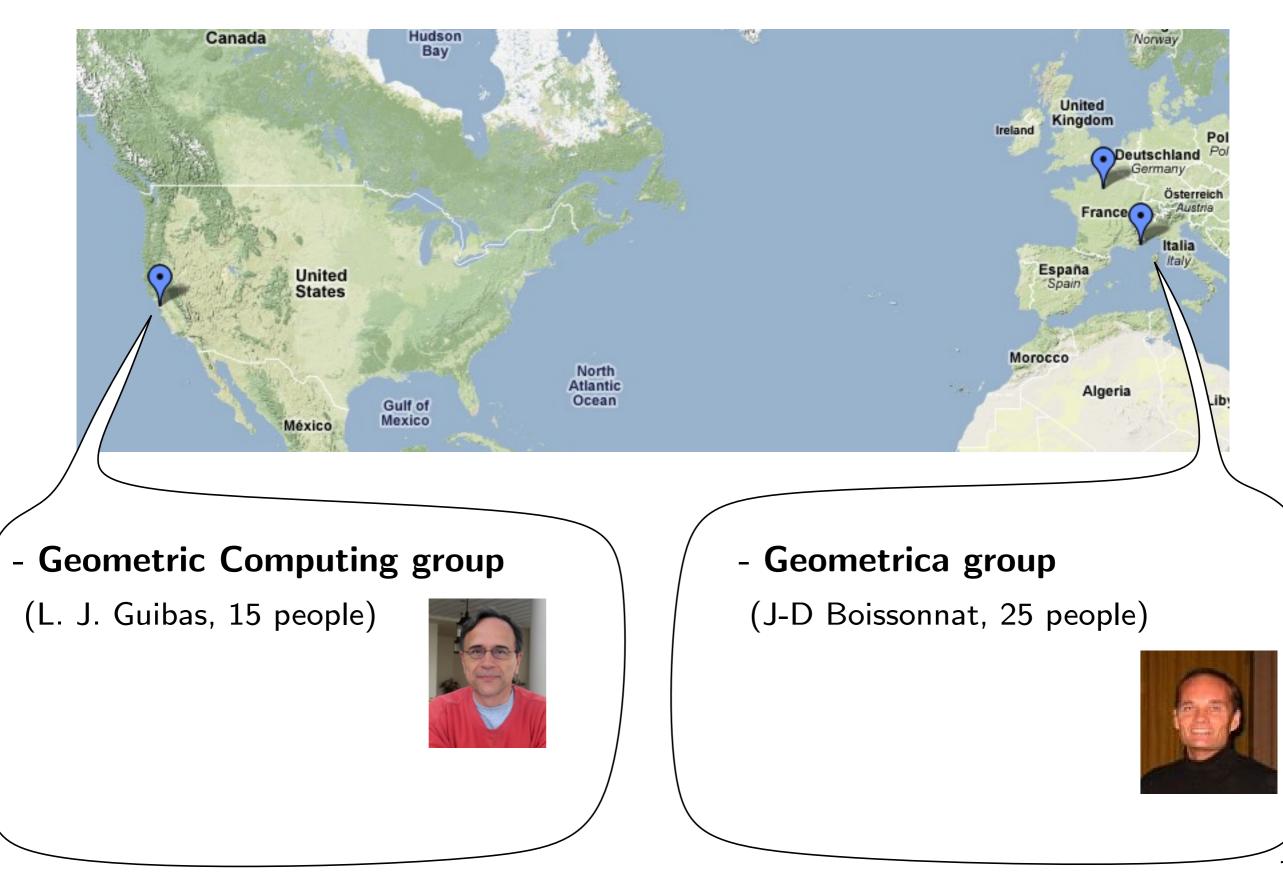
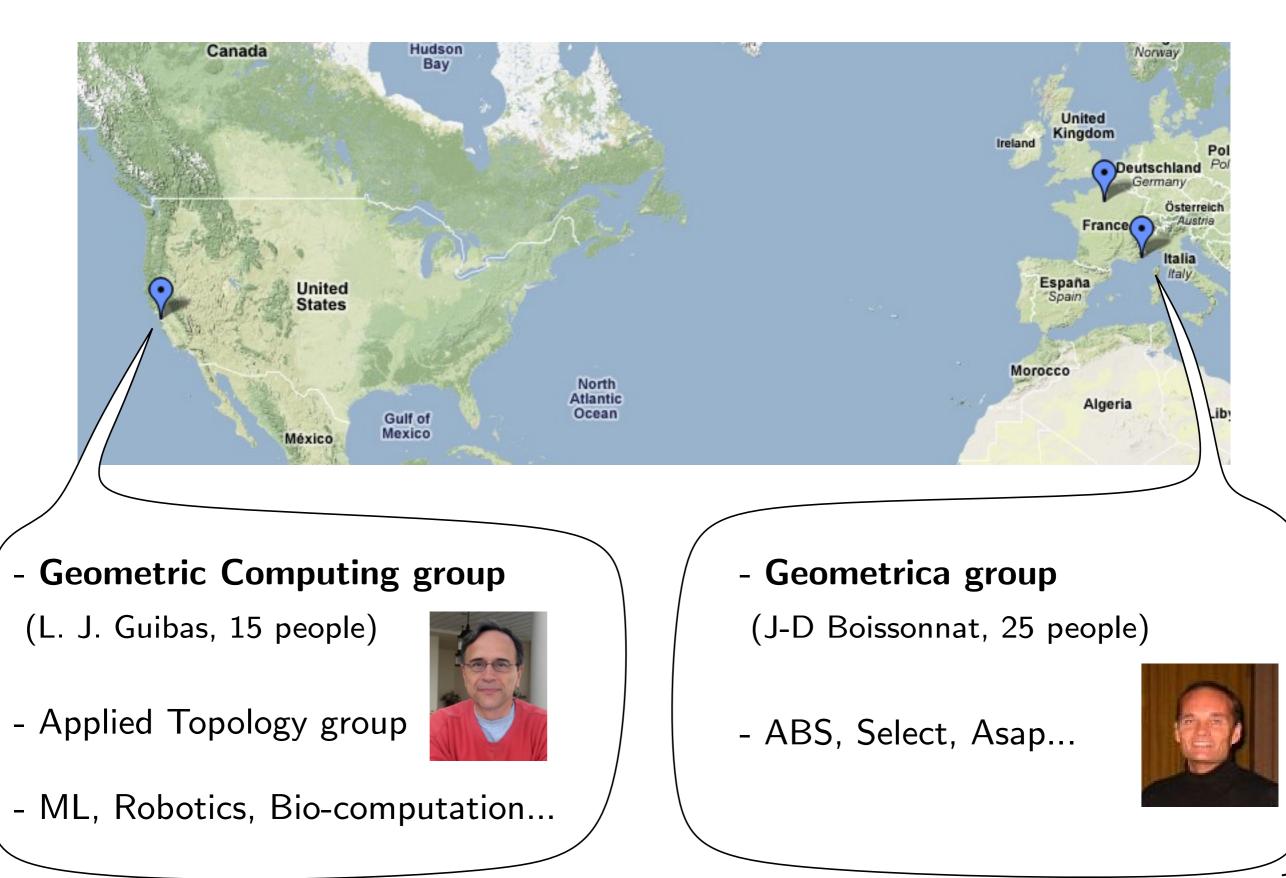
http://www-sop.inria.fr/geometrica/collaborations/TGDA/index.html

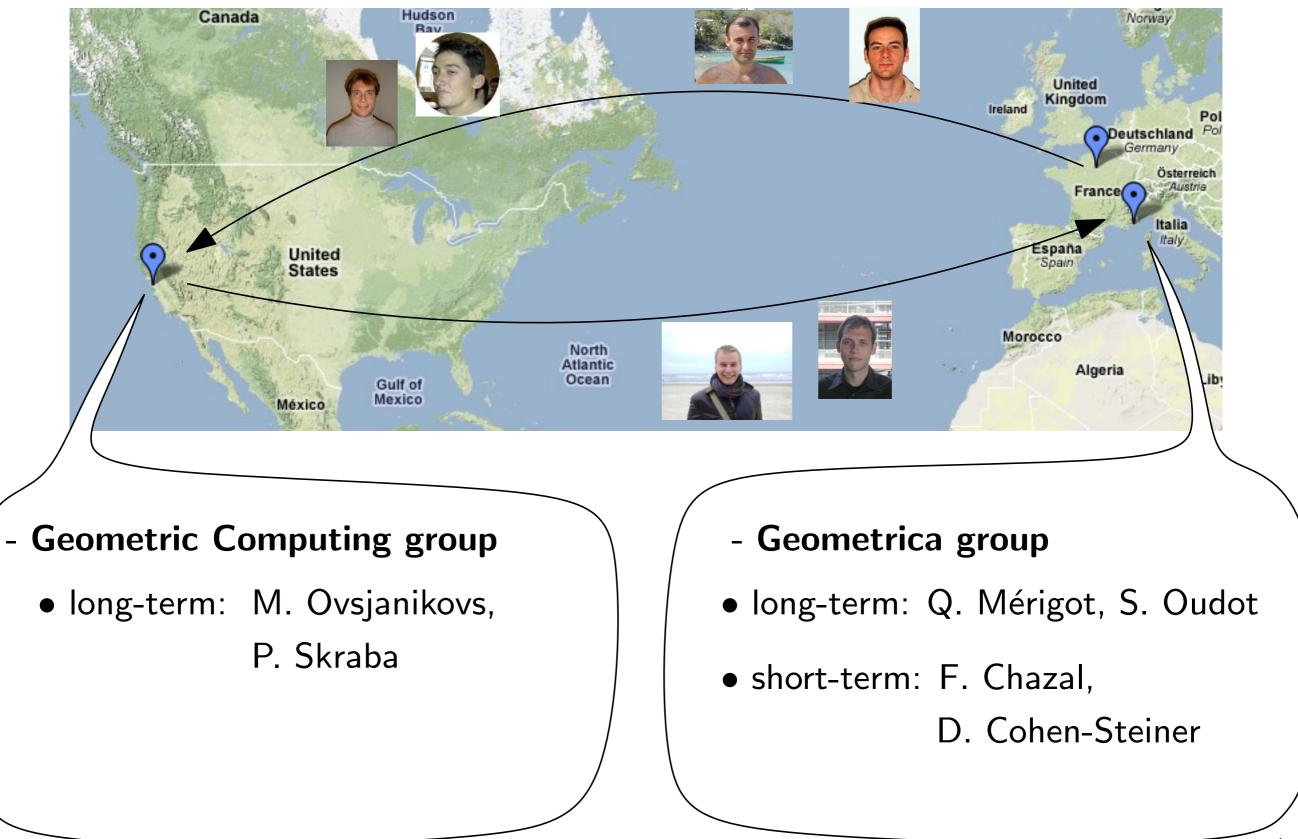
# **TGDA T**opological and **G**eometric **D**ata **A**nalysis


Geometric Computing group Stanford University

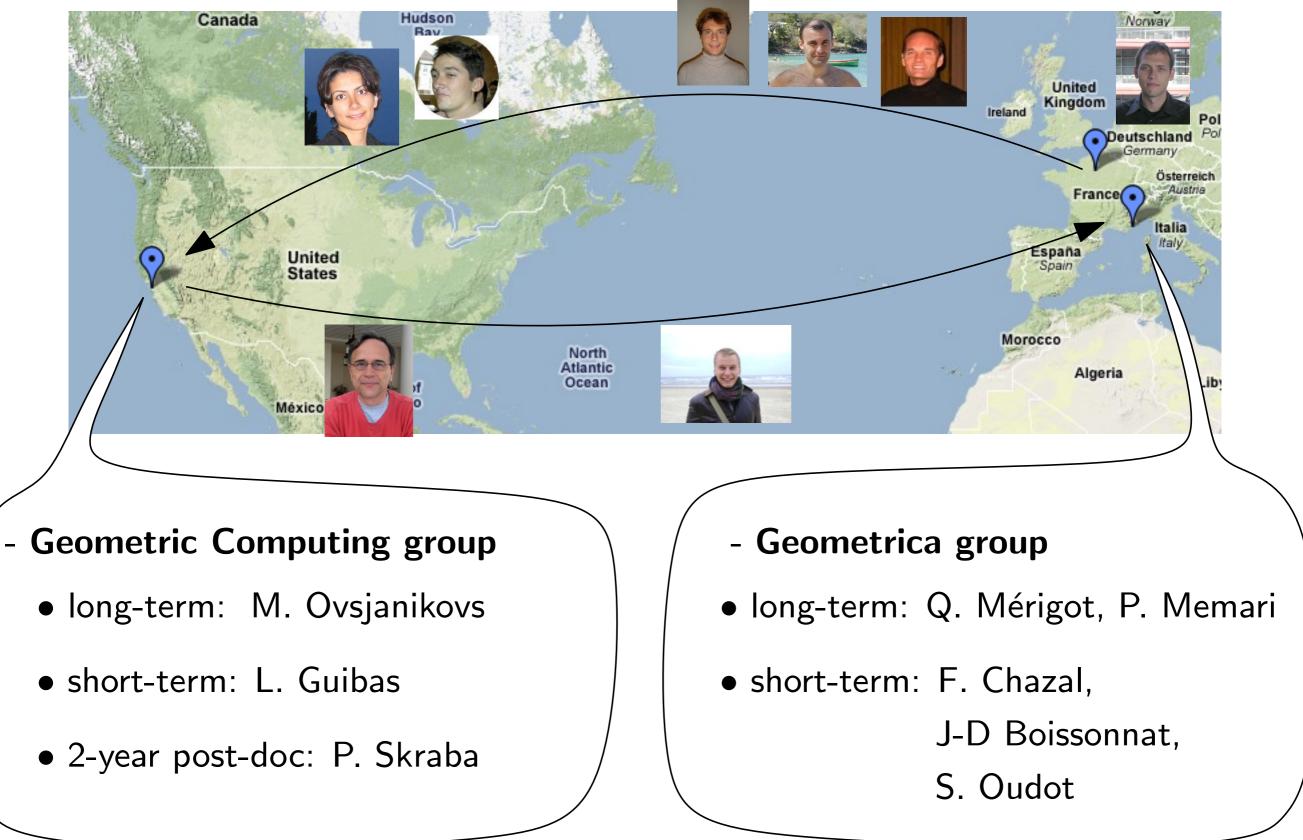



Geometrica group INRIA Saclay / Sophia

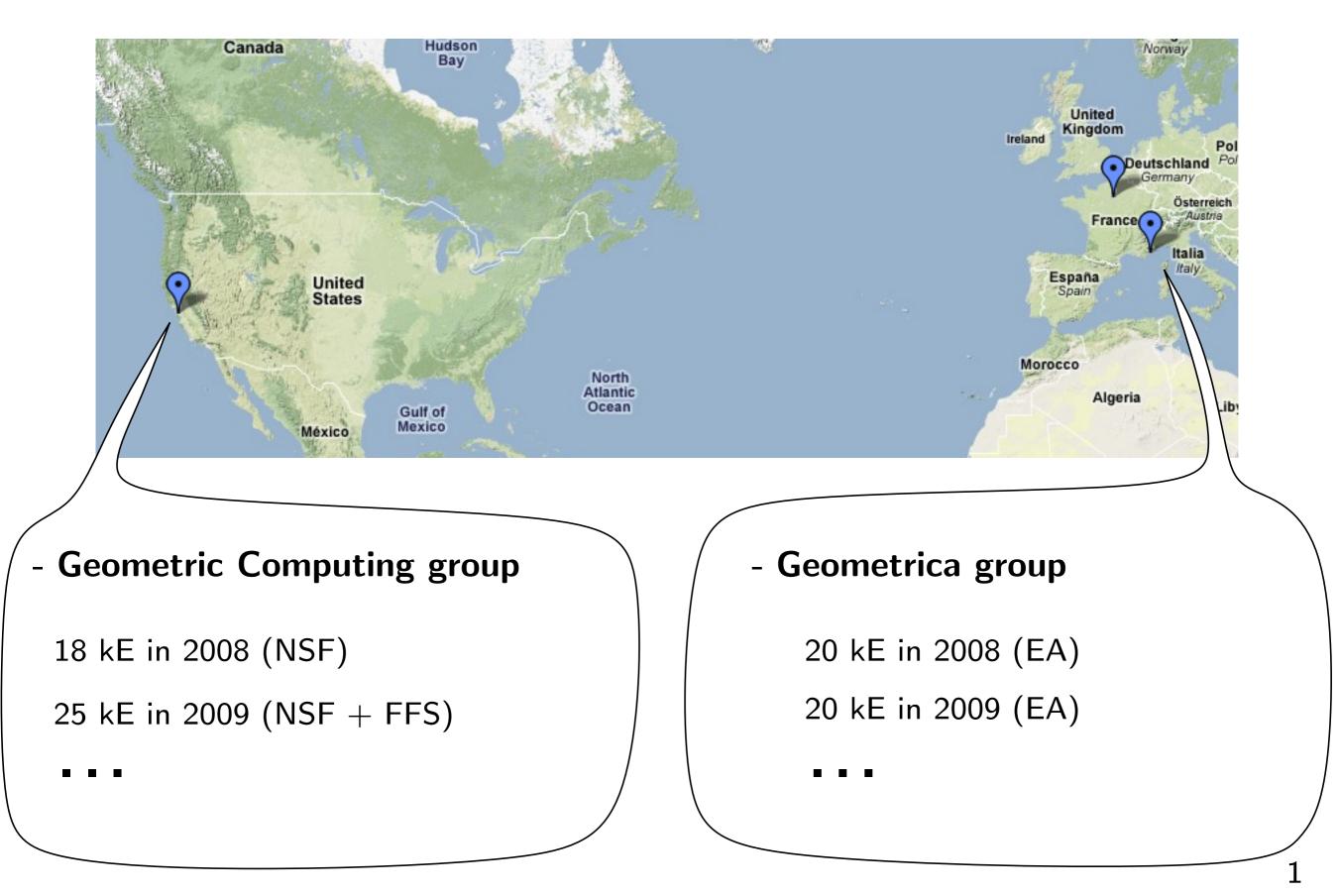



### Official colaboration between research groups




# Official colaboration between research groups



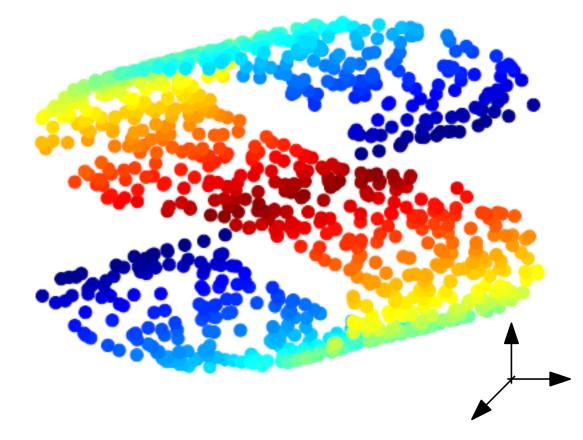

## Exchanges (2008)



# Exchanges (2009)



# Funding

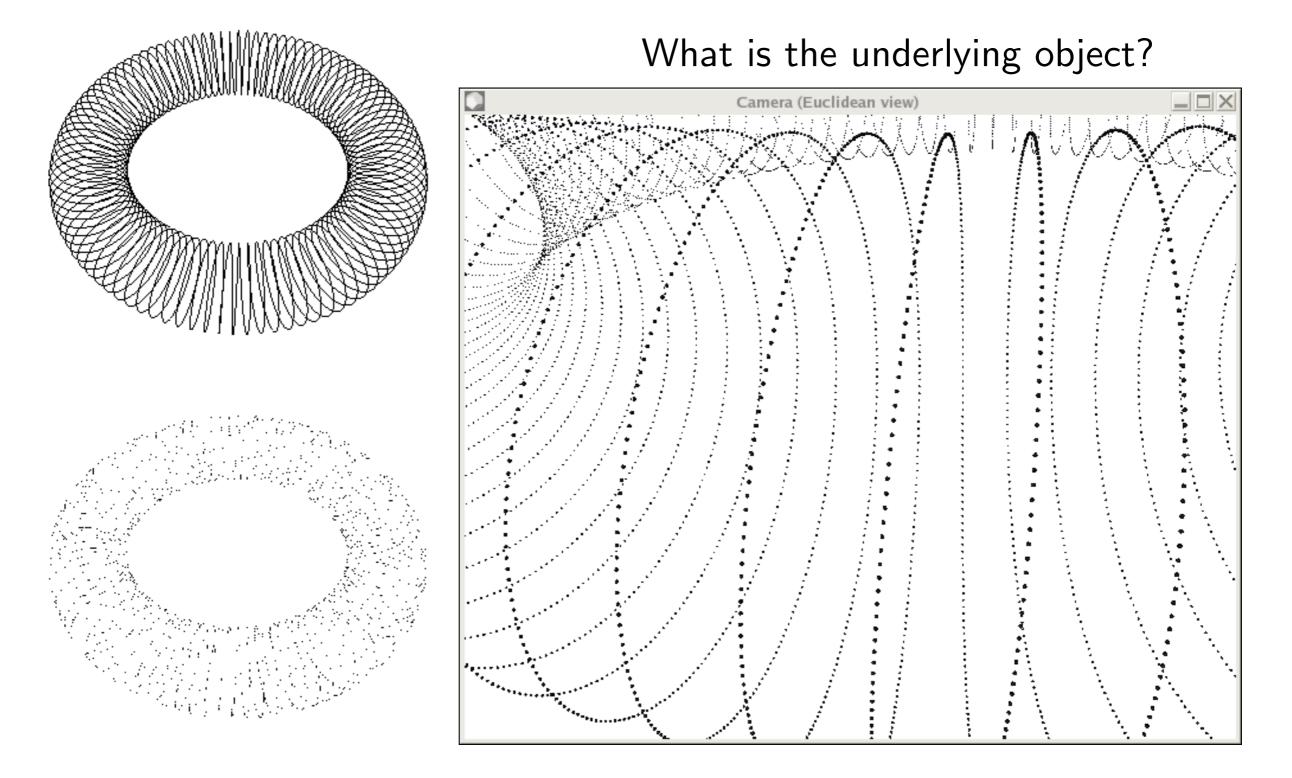



# Main Scientific Goals

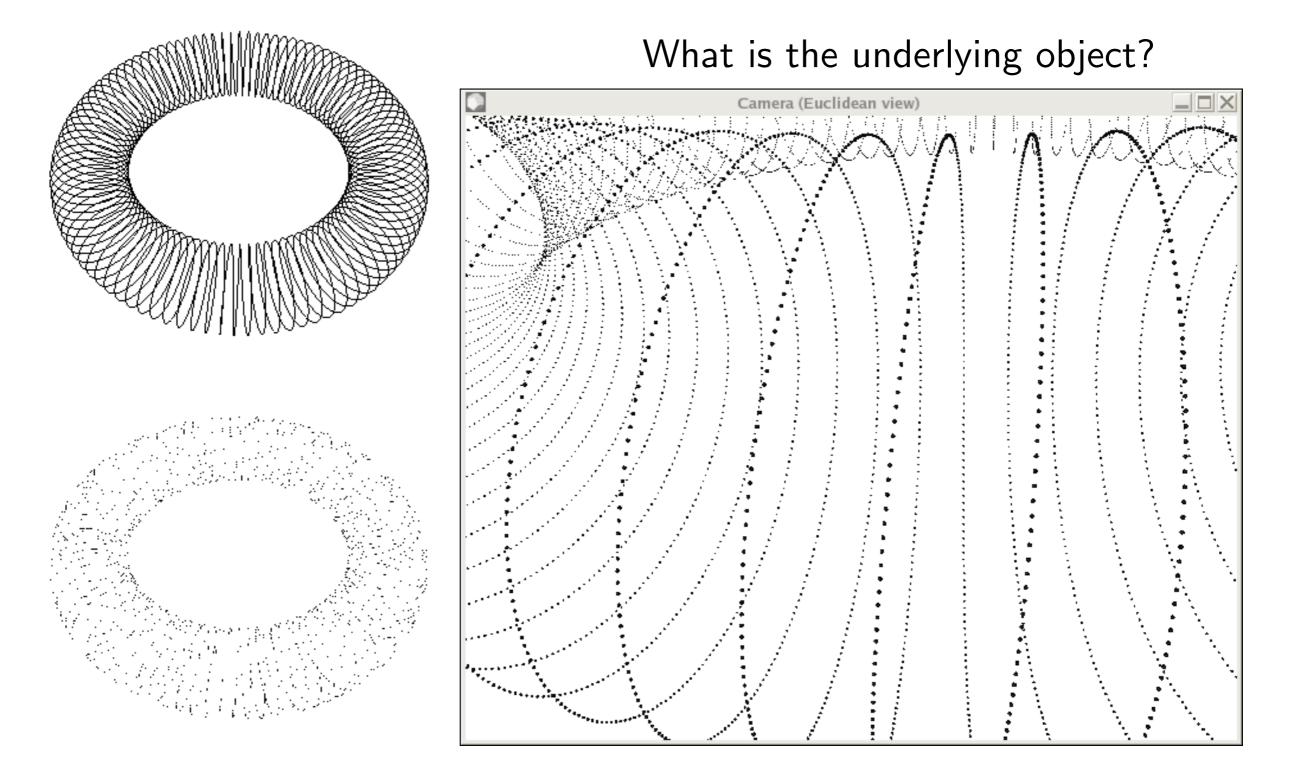
**Input:** a point cloud in a metric space.

Is there structure in the data? Can we infer topological invariants? Can we approximate differential quantities?






Example: set of 4096-dimensional data points, representing 64x64 pixels images of a same object, seen under various lighting and camera angles. (from Isomap, *Science* 290).


Lighting direction

Left-right pose

# Theoretical Challenges



# **Theoretical Challenges**



• perform multi-scale analysis (landmarking, topological persistence)

# Algorithmic Challenges

### **Curse of dimensionality**:

The  $\varepsilon$ -entropy ( $\varepsilon < 1$ ) of a smooth k-dimensional submanifold M of Euclidean space  $\mathbb{R}^d$  is of the order of  $-k \log(\varepsilon)$ . In other words, for any finite set X s.t.  $d_H(M, X) \leq \varepsilon$ ,  $|X| = \Omega((\frac{1}{\varepsilon})^k)$ .

# Algorithmic Challenges

### **Curse of dimensionality**:

The  $\varepsilon$ -entropy ( $\varepsilon < 1$ ) of a smooth k-dimensional submanifold M of Euclidean space  $\mathbb{R}^d$  is of the order of  $-k \log(\varepsilon)$ . In other words, for any finite set X s.t.  $d_H(M, X) \leq \varepsilon$ ,  $|X| = \Omega((\frac{1}{\varepsilon})^k)$ .

• assume high co-dimension:  $1 \lesssim k \ll d$ 

### **Double curse**:

For a finite set of points on a k-submanifold of  $\mathbb{R}^d$ , classical data structures from computational geometry and topology (Čech complex, Delaunay triangulation,  $\alpha$ -shape) scale up exponentially with d, not k.

# Algorithmic Challenges

### **Curse of dimensionality**:

The  $\varepsilon$ -entropy ( $\varepsilon < 1$ ) of a smooth k-dimensional submanifold M of Euclidean space  $\mathbb{R}^d$  is of the order of  $-k \log(\varepsilon)$ . In other words, for any finite set X s.t.  $d_H(M, X) \leq \varepsilon$ ,  $|X| = \Omega((\frac{1}{\varepsilon})^k)$ .

• assume high co-dimension:  $1 \leq k \ll d$ 

### **Double curse**:

For a finite set of points on a k-submanifold of  $\mathbb{R}^d$ , classical data structures from computational geometry and topology (Čech complex, Delaunay triangulation,  $\alpha$ -shape) scale up exponentially with d, not k.

• Build lightweight data structures (Rips complex, witness complex)

### Theoretical Tools

### Delaunay

- restricted Delaunay
- $\varepsilon$ -sampling theory
- $\alpha$ -shape
- Witness complex

### **Persistent Homology**

- filtrations (Čech, Rips, ...)
- persistence algorithm
- stability of diagrams

### **Distance Functions**

- offsets of compact sets
- critical point theory
- $\lambda$ -medial axis

### Theoretical Tools

### Delaunay

- restricted Delaunay
- $\varepsilon$ -sampling theory
- $\alpha$ -shape
- Witness complex

### **Persistent Homology**

- filtrations (Čech, Rips, ...)persistence algorithm
- stability of diagrams

### **Distance Functions**

- offsets of compact sets
- critical point theory
- $\lambda$ -medial axis

|               | Wednesday, July 8th                                                                |               | Thursday, July 9th                                                                                                                |
|---------------|------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 08:30 - 09:00 | Registration                                                                       | 09:00 - 09:20 | Registration                                                                                                                      |
| 09:00 - 09:20 | Opening remarks                                                                    | 09:20 - 10:30 | Key Note: An introduction to zigzag persistence                                                                                   |
| 09:20 - 10:30 | Key Note: Geometric entropy minimization                                           | 10:30 - 10:50 | Vin de Silva<br>Coffee break                                                                                                      |
| 10:30 - 10:50 | Coffee break                                                                       | 10:50 - 12:30 | Session 4: Persistence and unsupervised learning                                                                                  |
| 10:50 - 12:30 | Session 1: Reconstruction in 3D                                                    |               | Persistence-based clustering<br>Primoz Skraba                                                                                     |
|               | Scale space meshing<br>Julie Digne                                                 |               | Persistent cohomology and circular coordinates<br>Mikael Vejdemo-Johansson                                                        |
|               | Reconstructing 3D compact sets<br>Frédéric Cazals                                  | 12:30 - 14:00 | Lunch                                                                                                                             |
| 12:30 - 14:00 | Lunch                                                                              | 14:00 - 15:40 | Session 5: Signatures for shape classification                                                                                    |
| 14:00 - 15:40 | Session 2: Reconstruction in arbitrary dimensions                                  |               | Topo-geometric Modeling for 3D objects                                                                                            |
|               | Manifold Reconstruction from Tangential Complex<br>Arijit Ghosh                    |               | Gromov-Wasserstein stable signatures for object matching and the                                                                  |
|               | Model selection for simplicial approximation                                       |               | role of persistence<br>Facundo Mémoli                                                                                             |
| 15:40 - 16:00 | Coffee break                                                                       | 15:40 - 16:00 | Coffee break                                                                                                                      |
| 16:00 - 17:40 | Session 3: Geometric inference in the presence of outliers                         | 16:00 - 17:40 | Session 6: Shape matching                                                                                                         |
|               | Geometric Inference for Measures based on Distance Functions<br>Quentin Mérigot    |               | Heat Kernel Signature: A Concise and Provably Informative<br>Multi-scale Signature Based on Heat Diffusion<br>Maksims Ovsjanikovs |
|               | Efficient Approximation of the Distance to an Empirical Measure<br>Dmitriy Morozov |               | Deformable shape matching using linear programming<br>Qixing Huang                                                                |

| 09:00 - 10:40 | Session 7: Reconstruction and mesh generation in 3D                               |
|---------------|-----------------------------------------------------------------------------------|
|               | Finite Element Analysis of Computer Aided Design Assembly<br>Kirill Pichon Gostaf |
|               | Reconstruction from Cross-Sections<br>Pooran Memari                               |
| 10:40 - 11:00 | Coffee break                                                                      |
| 11:00 - 12:40 | Session 8: Delaunay triangulations                                                |
|               | Periodic Delaunay triangulations<br>Manuel Caroli                                 |
|               | A compact data structure to represent the Delaunay Triangulation Clément Maria    |
| 12:40 - 13:00 | Closing remarks                                                                   |

|               | Wednesday, July 8th                                                             |               | Thursday, July 9th                                                             |
|---------------|---------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------|
| 08:30 - 09:00 | Registration                                                                    | 09:00 - 09:20 | Registration                                                                   |
| 09:00 - 09:20 | Opening remarks                                                                 | 09:20 - 10:30 | Key Note: An introduction to zigzag persistence                                |
| 09:20 - 10:30 | Key Note: Geometric entropy minimization                                        | 10:30 - 10:50 | Vin de Silva<br>Coffee break                                                   |
| 10:30 - 10:50 | Coffee break                                                                    | 10:50 - 12:30 | Session 4: Persistence and unsupervised learning                               |
| 10:50 - 12:30 | Session 1: Reconstruction in 3D                                                 | ſ             | Persistence-based clustering                                                   |
|               | Scale space meshing<br>Julie Digne                                              | L             | Primoz Skraba<br>Persistent cohomology and circular coordinates                |
|               | Reconstructing 3D compact sets                                                  | 12:30 - 14:00 | Mikael Vejdemo-Johansson                                                       |
| 12:30 - 14:00 | Lunch                                                                           | 14:00 - 15:40 | Session 5: Signatures for shape classification                                 |
| 14:00 - 15:40 | Session 2: Reconstruction in arbitrary dimensions                               |               | Topo-geometric Modeling for 3D objects                                         |
|               | Manifold Reconstruction from Tangential Complex                                 | ſ             | Hamid Krim<br>Gromov-Wasserstein stable signatures for object matching and the |
|               | Model selection for simplicial approximation                                    |               | role of persistence<br>Facundo Mémoli                                          |
| 15:40 - 16:00 | Bertrand Michel<br>Coffee break                                                 | 15:40 - 16:00 | Coffee break                                                                   |
|               |                                                                                 | 16:00 - 17:40 | Session 6: Shape matching                                                      |
| 16:00 - 17:40 | Session 3: Geometric inference in the presence of outliers                      |               | Heat Kernel Signature: A Concise and Provably Informative                      |
|               | Geometric Inference for Measures based on Distance Functions<br>Quentin Mérigot |               | Multi-scale Signature Based on Heat Diffusion<br>Maksims Ovsjanikovs           |
|               | Efficient Approximation of the Distance to an Empirical Measure                 |               | Deformable shape matching using linear programming<br>Qixing Huang             |
| -             |                                                                                 | •             | Averal second                                                                  |

| 09:00 - 3 | 10:40 | Session 7: Reconstruction and mesh generation in 3D                                     |
|-----------|-------|-----------------------------------------------------------------------------------------|
|           |       | Finite Element Analysis of Computer Aided Design Assembly<br>Kirill Pichon Gostaf       |
|           |       | Reconstruction from Cross-Sections<br>Pooran Memari                                     |
| 10:40 - 1 | 11:00 | Coffee break                                                                            |
|           |       |                                                                                         |
| 11:00 - 1 | 12:40 | Session 8: Delaunay triangulations                                                      |
| 11:00 - 1 | 12:40 | Session 8: Delaunay triangulations<br>Periodic Delaunay triangulations<br>Manuel Caroli |
| 11:00 - 1 | 12:40 | Periodic Delaunay triangulations                                                        |

|               | Wednesday, July 8th                                                                |               | Thursday, July 9th                                                                                                                |
|---------------|------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 08:30 - 09:00 | Registration                                                                       | 09:00 - 09:20 | Registration                                                                                                                      |
| 09:00 - 09:20 | Opening remarks                                                                    | 09:20 - 10:30 | Key Note: An introduction to zigzag persistence                                                                                   |
| 09:20 - 10:30 | Key Note: Geometric entropy minimization                                           | 10:30 - 10:50 | Vin de Silva<br>Coffee break                                                                                                      |
| 10:30 - 10:50 | Alfred Hero<br>Coffee break                                                        | 10:50 - 12:30 | Session 4: Persistence and unsupervised learning                                                                                  |
| 10:50 - 12:30 | Session 1: Reconstruction in 3D                                                    | 10.50 12.50   | Persistence-based clustering                                                                                                      |
|               | Scale space meshing                                                                | L             | Primoz Skraba                                                                                                                     |
|               | Julie Digne                                                                        |               | Persistent cohomology and circular coordinates<br>Mikael Vejdemo-Johansson                                                        |
|               | Reconstructing 3D compact sets<br>Frédéric Cazals                                  | 12:30 - 14:00 | Lunch                                                                                                                             |
| 12:30 - 14:00 | Lunch                                                                              | 14:00 - 15:40 | Session 5: Signatures for shape classification                                                                                    |
| 14:00 - 15:40 | Session 2: Reconstruction in arbitrary dimensions                                  |               | Topo-geometric Modeling for 3D objects                                                                                            |
|               | Manifold Reconstruction from Tangential Complex                                    | l r           | Gromov-Wasserstein stable signatures for object matching and the                                                                  |
|               | Model selection for simplicial approximation                                       |               | role of persistence<br>Facundo Mémoli                                                                                             |
| 15:40 - 16:00 | Coffee break                                                                       | 15:40 - 16:00 | Coffee break                                                                                                                      |
| 16:00 - 17:40 | Session 3: Geometric inference in the presence of outliers                         | 16:00 - 17:40 | Session 6: Shape matching                                                                                                         |
|               | Geometric Inference for Measures based on Distance Functions<br>Quentin Mérigot    |               | Heat Kernel Signature: A Concise and Provably Informative<br>Multi-scale Signature Based on Heat Diffusion<br>Maksims Ovsjanikovs |
|               | Efficient Approximation of the Distance to an Empirical Measure<br>Dmitriy Morozov |               | Deformable shape matching using linear programming<br>Qixing Huang                                                                |

| 09:00 - 10:40 | Session 7: Reconstruction and mesh generation in 3D                                     |
|---------------|-----------------------------------------------------------------------------------------|
|               | Finite Element Analysis of Computer Aided Design Assembly<br>Kirill Pichon Gostaf       |
|               | Reconstruction from Cross-Sections<br>Pooran Memari                                     |
| 10:40 - 11:00 | Coffee break                                                                            |
|               |                                                                                         |
| 11:00 - 12:40 | Session 8: Delaunay triangulations                                                      |
| 11:00 - 12:40 | Session 8: Delaunay triangulations<br>Periodic Delaunay triangulations<br>Manuel Caroli |
| 11:00 - 12:40 | Periodic Delaunay triangulations                                                        |

|               | Wednesday, July 8th                                                                |               | Thursday, July 9th                                                                                                                |
|---------------|------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------|
|               |                                                                                    |               |                                                                                                                                   |
| 08:30 - 09:00 | Registration                                                                       | 09:00 - 09:20 | Registration                                                                                                                      |
| 09:00 - 09:20 | Opening remarks                                                                    | 09:20 - 10:30 | Key Note: An introduction to zigzag persistence                                                                                   |
| 09:20 - 10:30 | Key Note: Geometric entropy minimization                                           | 10:30 - 10:50 | Coffee break                                                                                                                      |
| 10:30 - 10:50 | Coffee break                                                                       | 10:50 - 12:30 | Session 4: Persistence and unsupervised learning                                                                                  |
| 10:50 - 12:30 | Session 1: Reconstruction in 3D                                                    |               | Persistence-based clustering<br>Primoz Skraba                                                                                     |
| _             | Scale space meshing<br>Julie Digne                                                 |               | Persistent cohomology and circular coordinates<br>Mikael Vejdemo-Johansson                                                        |
|               | Reconstructing 3D compact sets<br>Frédéric Cazals                                  | 12:30 - 14:00 | Lunch                                                                                                                             |
| 12:30 - 14:00 | Lunch                                                                              | 14:00 - 15:40 | Session 5: Signatures for shape classification                                                                                    |
| 14:00 - 15:40 | Session 2: Reconstruction in arbitrary dimensions                                  |               | Topo-geometric Modeling for 3D objects                                                                                            |
|               | Manifold Reconstruction from Tangential Complex<br>Arijit Ghosh                    | l l           | Gromov-Wasserstein stable signatures for object matching and the                                                                  |
|               | Model selection for simplicial approximation                                       |               | role of persistence<br>Facundo Mémoli                                                                                             |
| 15:40 - 16:00 | Coffee break                                                                       | 15:40 - 16:00 | Coffee break                                                                                                                      |
| 16:00 - 17:40 | Session 3: Geometric inference in the presence of outliers                         | 16:00 - 17:40 | Session 6: Shape matching                                                                                                         |
| [             | Geometric Inference for Measures based on Distance Functions<br>Quentin Mérigot    |               | Heat Kernel Signature: A Concise and Provably Informative<br>Multi-scale Signature Based on Heat Diffusion<br>Maksims Ovsjanikovs |
|               | Efficient Approximation of the Distance to an Empirical Measure<br>Dmitriy Morozov |               | Deformable shape matching using linear programming<br>Qixing Huang                                                                |
|               |                                                                                    |               |                                                                                                                                   |

| 09:00 - 10:40 | Session 7: Reconstruction and mesh generation in 3D                               |
|---------------|-----------------------------------------------------------------------------------|
|               | Finite Element Analysis of Computer Aided Design Assembly<br>Kirill Pichon Gostaf |
|               | Reconstruction from Cross-Sections<br>Pooran Memari                               |
| 10:40 - 11:00 | Coffee break                                                                      |
| 11:00 - 12:40 | Session 8: Delaunay triangulations                                                |
|               |                                                                                   |
|               | Periodic Delaunay triangulations<br>Manuel Caroli                                 |
|               |                                                                                   |