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Abstract

Given a real-valued functionf defined over some metric
spaceX, is it possible to recover some structural information
aboutf from the sole information of its values at a finite set
L ⊆ X of sample points, whose pairwise distances inX are
given? We provide a positive answer to this question. More
precisely, taking advantage of recent advances on the front
of stability for persistence diagrams, we introduce a novel
algebraic construction, based on a pair of nested families
of simplicial complexes built on top of the point cloudL,
from which the persistence diagram off can be faithfully
approximated. We derive from this construction a series of
algorithms for the analysis of scalar fields from point cloud
data. These algorithms are simple and easy to implement,
have reasonable complexities, and come with theoretical
guarantees. To illustrate the generality of the approach,
we present some experimental results obtained in various
applications, ranging from clustering to sensor networks (see
the electronic version of the paper for color pictures).

1 Introduction

Given an unknown domainX and a scalar fieldf : X → R

whose values are known only at a finite setL ⊆ X of sam-
ple points, our goal is to extract structural information about
f from the sole information of the pairwise geodesic dis-
tances between the data points and of their function values.
No parametrization ofX is assumed — in other words, no
coordinates are needed for the points ofL. This problem
finds applications in many scientific fields, including sensor
networks, where the data points correspond to sensor nodes
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and their function values to measurements of some physical
quantity (temperature, humidity, etc.), or unsupervised learn-
ing, where the data points are sampled from some unknown
density distribution, a rough estimate of which is computed
at each sample.

The nature of the sought-for information is highly
application-dependent. In the aforementioned examples, one
is mainly interested in finding the peaks and valleys of the
function f , together with their respective basins of attrac-
tion1. In addition, it is desirable to have a mechanism for
distinguishing between significant and insignificant peaks
or valleys of f , which requires to introduce some notion
of prominance for the critical points of a function. This
is wheretopological persistencecomes into play. Inspired
from Morse theory, this framework describes the evolution
of the topology of the sublevel-sets off , i.e. the sets of type
f−1((−∞, α]), as parameterα ranges from−∞ to +∞.
Topological changes occur only at critical points off , which
can be paired in some natural way. The outcome is a set of
intervals (called apersistence barcode[3]), each of which
gives the birth and death times of a topological feature in the
sublevel-sets off — see Figure 1. An equivalent represen-
tation is by a multiset of points in the plane, called aper-
sistence diagram, where the coordinates of each point corre-
spond to the endpoints of some interval in the barcode. Such
representations are used to guide the simplification of scalar
fields by iterative cancellations of critical pairs [16, 17]. As
such, they provide meaningful information about the promi-
nence of the critical points of a scalar field.

Thus, our goal becomes to approximate the persistence
diagram of an unknown scalar fieldf from its values at a
finite setL of sample points, and from the pairwise distances
between these points. We provide a theoretically sound
solution to this problem; in Section 3 we exhibit a novel
algebraic construction, based on a pair of nested families of
simplicial complexes, from which the persistence diagram
of f is approximated (Theorem 3.1). This construction
is provably robust to noise both in pairwise distances and
function values (Theorem 3.2). From these structural results,
we derive algorithms (Section 4) for approximating the
persistence diagram off from its values at the points of
L, both in static (fixedf ) and in dynamic (time-varyingf )

1In the context of clustering, this approach to the problem isreminiscent
of Mean Shift [13].
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Figure 1: Top row, left: a noisy scalar fieldf defined over a sampled
planar square domainX; center and right: approximations of the 0- and
1-dimensional persistence barcodes of(−f) generated by our method from
the values off at the sample points and from their approximate pairwise
geodesic distances inX. The six long intervals in the 0-dimensional barcode
correspond to the six prominent peaks off (including the top of the crater),
while the long interval in the 1-dimensional barcode reveals the ring shape
of the basin of attraction of the top of the crater. Bottom row: approximate
basins of attraction of the peaks off , before (left) and after (right) merging
non-persistent clusters, thus revealing the intuitive structure off .

settings. We also show how to find the basins of attraction
of the peaks off inside the point cloudL, and how to merge
them according to the persistence information, as shown in
Figure 1 (right). Our algorithms are based on variants [11,
12] of the celebrated persistence algorithm [16, 26]. They
can be easily implemented, have reasonable complexities,
and are provably correct. Finally, we show experimental
results in a variety of applications (Section 5): while we do
not provide definitive solutions to these problems, the results
demonstrate the potential of our method and its possible
interest for the community.

Related work. Topological persistence has already been
used in the past for the analysis and simplification of scalar
fields. The original persistence paper [16] showed how to
simplify the graph of a piecewise-linear (PL) real-valued
function f defined over a simplicial complexX in R

3, by
iteratively cancelling the pairs of critical points provided
by the persistence barcode off . This approach was later
refined, in the special case whereX is a triangulated 2-
manifold, to only cancel the pairs corresponding to short
intervals in the barcode, thus removing the topological noise
up to a certain prescribed amplitude [17]. In parallel,
others have considered computing complete or simplified
representations of Morse-Smale complexes, which capture
important information about the structure of scalar fields.
Building upon the idea of iterative cancellations of pairs
of critical points, it is possible to construct hierarchies
of increasingly coarse Morse-Smale complexes from PL
functions defined over triangulated 2- or 3-manifolds [1, 5,
15, 20, 21]. All these methods are restricted to the low-

dimensional PL setting, and in this respect our work suggests
a way of extending the approach to a more general class
of spaces via finite sampling and modulo some (controlled)
errors in the output. Although finding and merging the basins
of attraction of the peaks of a scalar fieldf is simpler than
computing a full hierarchy of Morse-Smale complexes, it is
already a challenge in our context, where the knowledge off

is very weak, and where the potentially high dimensionality
of the data makes PL approximations prohibitively costly.

Another line of work in which persistence has played
a prominent role is homology inference from point cloud
data, where the goal is to recover the homological type of
some unknown compact setX ⊂ R

d from a finite setL
of sample points. Under a sufficient sampling density, the
distance toL in R

d approximates the distance toX, therefore
their persistence diagrams are close, by a stability resultof
[10]. This makes the inference of the homology ofX from
the persistence of the distance toL theoretically possible
[8, 10]. In practice, computing this distance at every point
of the ambient spaceRd is prohibitively expensive. It is then
necessary to resort to auxiliary algebraic constructions,such
as theRips complexRδ(L), defined as the abstract simplicial
complex whose simplices correspond to non-empty subsets
of L of diameter less thanδ. As proved in [9], a pair
of nested Rips complexesRδ(L) ⊆ Rδ′(L) can provably
capture the homology of the underlying spaceX, though the
the individual complexes do not. Our algebraic construction
(see Section 3) is directly inspired from this property, andin
fact our theoretical analysis is articulated in the same way
as in [9], namely: we first work out structural properties
of unions of geodesic balls, which we prove to also hold
for their nerves (also calleďCech complexes); then, using
the strong relationship that exists betweenČech and Rips
complexes, we derive structural properties for families of
Rips complexes. Note that the core of our analysis differs
significantly from [9], because our families of complexes are
built differently. In particular, the classical notion of stability
of persistence diagrams, as introduced in [10], is not broad
enough to encompass our setting, where it is replaced by a
generalized version recently proposed by Chazalet al. [6].

2 Background

Throughout the paper we use singular homology with co-
efficients in a commutative ringR, assumed to be a field
and omitted in the notations. We also use elements of Rie-
mannian geometry and of Morse theory (in Section 4.2).
Thorough introductions to these topics may be found in
[4, 22, 23].

2.1 Persistence modules and filtrations.The main alge-
braic objects under study here are persistence modules. A
persistence module is a family{Φα}α∈R of R-modules to-
gether with a family{φβ

α : Φα → Φβ}α≤β∈R of homo-



morphisms such that∀α ≤ β ≤ γ, φγ
α = φ

γ
β ◦ φβ

α and
φα

α = idΦα
. For simplicity of notation, we remove the ranges

of indices when they are obvious. Persistence modules are
often derived fromfiltrations, i.e. families {Fα} of topo-
logical spaces that are nested with respect to inclusion. For
all α ≤ β, the canonical inclusion mapFα →֒ Fβ induces
homomorphisms between the homology groupsHk(Fα) →
Hk(Fβ) of all dimensionsk ∈ N. Thus, for any fixedk
the family{Hk(Fα)}, together with the homomorphisms in-
duced by inclusions, form a persistence module, called the
kth persistent homology module of{Fα}. An important class
of filtrations are thesublevel-sets filtrations. Given a topo-
logical spaceX and a functionf : X → R, the sublevel-sets
filtration of f is the family{Fα} of subspaces ofX of type
Fα = f−1((−∞, α]). This family forms a filtration because
f−1((−∞, α]) ⊆ f−1((−∞, β]) wheneverα ≤ β. By de-
fault, thekth persistent homology module off refers to the
one of its sublevel-sets filtration{Fα}.

2.2 Persistence diagrams, tameness, stability.Follow-
ing [6], we say that a persistence module({Φα}, {φ

β
α}) is 0-

tame(or simplytame) if the rank ofφβ
α is finite for allα < β.

Observe that persistent homology modules of nested families
of finite simplicial complexes are always tame. Therefore, all
the persistence modules introduced in the following sections
of the paper will be tame.

The persistence diagram of a tame persistence module
({Φα}, {φ

β
α}) is defined as a multiset of points in the ex-

tended planēR2, whereR̄ = R ∪ {−∞,+∞}. This mul-
tiset is obtained as the limit of the following iterative pro-
cess: given arbitrary valuesa, ε > 0, we discretize the
persistence module over the integer scalea + εZ, consid-
ering the subfamily{Φa+kε}k∈Z of vector spaces together
with the subfamily{φa+lε

a+kε}k≤l∈Z of linear maps. Its per-
sistence diagram is defined naturally from [10] as the set
of vertices of the regular grid(a + εZ) × (a + εZ) in R̄

2,
plus the diagonal∆ = {(x, x), x ∈ R̄}, where each grid
vertex (a + kε, a + lε) is given the (finite) multiplicity2

mult(a + kε, a + lε) = rank φ
a+(l−1)ε
a+kε − rank φa+lε

a+kε +

rank φa+lε
a+(k−1)ε − rank φ

a+(l−1)ε
a+(k−1)ε, while each point of∆

is given infinite multiplicity. Then, the persistence diagram
of ({Φα}α∈R, {φ

β
α}α≤β∈R) is the limit multiset obtained as

ε→ 0. It is known to be independent of the choice ofa [6].
An important property of persistence diagrams is that

they are stable under small perturbations of the persistence
modules. The first result in this vein was devised for the
special case of persistent homology modules of continuous
functions [10]. Recently, Chazalet al. [6] dropped the func-
tional setting and proposed instead the following generalized

2Roughly speaking, the multiplicity of point(a+kε, a+lε) corresponds
to the number of homological features that are born between timesa+(k−
1)ε anda + kε and that die between timesa + (l − 1)ε anda + lε.

notion of proximity between persistence modules:

DEFINITION 2.1. Two persistence modules
({Φα}α∈R, {φβ

α}α≤β∈R) and ({Ψα}α∈R, {ψβ
α}α≤β∈R)

are (strongly) ε-interleaved if there exist two families
of homomorphisms,{µα : Φα → Ψα+ε}α∈R and
{να : Ψα → Φα+ε}α∈R, such thatφβ

α = νβ−ε ◦ ψ
β−ε
α+ε ◦ µα

andψβ
α = µβ−ε ◦ φ

β−ε
α+ε ◦ να for all β ≥ α+ 2ε.

Under this condition, they proved the following generalized
stability result [6]:

THEOREM 2.1. If two tame persistence modules areε-
interleaved, then, in the extended planeR̄

2 endowed with the
l∞ norm, the bottleneck distance between their persistence
diagrams is at mostε.

Recall that the bottleneck distanced∞
B (A,B) between two

multisets in (R̄2, l∞) is the quantityminγ maxp∈A ‖p −
γ(p)‖∞, whereγ ranges over all bijections fromA to B.
An important special case is when the persistence modules
are thekth persistent homology modules of two filtrations
{Fα}α∈R and{Gα}α∈R such thatFα ⊆ Gα+ε andGα ⊆
Fα+ε for all α ∈ R (we then say that{Fα} and {Gα}
are ε-interleaved, by analogy). In this case, the maps
µα and να induced at homology level by the inclusions
Fα →֒ Gα+ε andGα →֒ Fα+ε make the two persistence
modulesε-interleaved, and Theorem 2.1 guarantees that
their persistence diagrams areε-close, if they are tame. To
simplify the exposition, we call a filtration or functiontame
if all its persistent homology modules are tame. Then, its
kth persistence diagramis the persistence diagram of itskth
persistent homology module.

2.3 Geodesic ε-samples on Riemannian manifolds.
From now on, and unless otherwise stated,X denotes a com-
pact Riemannian manifold, possibly with boundary, anddX

denotes its geodesic distance. We also letL be a finite set
of points ofX that form ageodesicε-sampleof X, that is:
∀x ∈ X, dX(x,L) < ε. Our theoretical claims will assumeε
to be at most a fraction of thestrong convexity radiusof X,
denoted̺ c(X). It is defined as the largest value such that ev-
ery open geodesic ballBX(x, r) = {y ∈ X, dX(x, y) < r}
of centerx ∈ X and radiusr < ̺c(X) is strongly con-
vex, namely: for every pair of pointsy, y′ in the closure of
BX(x, r), there exists a unique shortest path inX betweeny
andy′, and the interior of this path is included inBX(x, r).
The strong convexity radius plays an important role in the
paper because strongly convex sets are contractible3 and in-
tersections of strongly convex sets are also strongly convex.

3A topological space is contractible if it can be continuously deformed
to a point within itself.



2.4 Offsets, nerves, Rips complexes.For all δ > 0, let
Lδ denote theδ-offset of L, defined as the union of the
open geodesic balls of same radiusδ about the points of
L, namely: Lδ =

⋃
p∈LBX(p, δ). Its nerve, also called

Čech complexand notedCδ(L), is the abstract simplicial
complex of vertex setL whose simplices correspond to non-
empty subsets of the family of open balls{BX(p, δ)}p∈L

whose elements have a non-empty common intersection.
The topology ofCδ(L) is related to the topology of its dual
union of balls through the Nerve Theorem [22,§4G]. This
makes thěCech complex a good candidate data structure in
theory. However, it can be difficult to compute in practice,
where it is often replaced by the(Vietoris-)Rips complex
Rδ(L), whose simplices correspond to non-empty subsets
of L of geodesic diameter less thanδ. This condition only
involves distance comparisons, which are much easier to
check than the emptiness of an intersection of geodesic balls.
In addition, the Rips complex is related to theČech complex
through the following sequence of inclusions [9]:

(2.1) ∀δ > 0, C δ
2

(L) ⊆ Rδ(L) ⊆ Cδ(L)

In the literature,̌Cech and Rips complexes are usually turned
into filtrations by letting parameterδ vary from0 to +∞. In
contrast, the following sections present algebraic construc-
tions whereδ remains fixed to some constant value while the
vertex set grows from∅ toL.

3 Structural properties

Let X, L be defined as in Section 2, and letf : X → R be
tame andc-Lipschitz. AssumingX andf to be unknown, our
goal is to approximate thekth persistence diagram off from
its values at the points ofL. The main result of the section
(Theorem 3.1 below) claims that this is possible using an
algebraic construction based on Rips complexes. From now
on,Lα denotes the setL ∩ f−1((−∞, α]).

Our construction is inspired from [9], where it is shown
that a pair of nested Rips complexes can provably-well cap-
ture the homology of a domain even though none of the
individual Rips complexes does. Given a fixed parame-
ter δ > 0, we use two Rips-based filtrations simultane-
ously,{Rδ(Lα)}α∈R and{R2δ(Lα)}α∈R, and we consider
the persistence modules formed at homology level by the
images of the homomorphisms induced by the inclusions
Rδ(Lα) →֒ R2δ(Lα). Specifically, for allk ∈ N and all
α ≤ β we have the following induced commutative diagram
at homology level:

Hk(Rδ(Lβ)) → Hk(R2δ(Lβ))
↑ ↑

Hk(Rδ(Lα)) → Hk(R2δ(Lα))

Letting Γk
α be the image ofHk(Rδ(Lα)) → Hk(R2δ(Lα)),

we get that the above commutative diagram induces a map

γβ
α : Γk

α → Γk
β . Since this is true for allα ≤ β,

the family {Γk
α}α∈R of vector spaces, together with the

family {γβ
α}α≤β of linear maps, forms a persistence module.

By analogy with the terminology of Section 2, we call it
the kth persistent homology module of the nested pair of
filtrations {Rδ(Lα) →֒ R2δ(Lα)}α∈R, and its persistence
diagram thekth persistence diagram of the nested pair. In
fact, this construction is not specific to families of Rips
complexes, and it allows a persistence module to be defined
({Γk

α}, {γ
β
α}) from thek-dimensional homology groups of

any pair of filtrations{Gα} and{G′
α} that are nested with

respect to inclusion:∀α ∈ R,Gα ⊆ G′
α.

THEOREM 3.1. Let X be a compact Riemannian manifold
possibly with boundary,L a geodesicε-sample ofX, and
f : X → R a tamec-Lipschitz function. Ifε < 1

4̺c(X), then
for anyδ ∈ [2ε, 1

2̺c(X)) and anyk ∈ N, thekth persistent
homology modules off and of the nested pair of filtrations
{Rδ(Lα) →֒ R2δ(Lα)}α∈R are 2cδ-interleaved. Therefore,
the bottleneck distance between their persistence diagrams
is at most2cδ, by Theorem 2.1.

The proof, based on a technique of algebraic topology called
diagram chasing, is given in Section 3.1. Its robustness
with respect to noise in the distances or function values is
addressed in Section 3.2.

3.1 Proof of Theorem 3.1.We begin with some prelimi-
nary results about unions of geodesic balls and their nerves,
whose proofs can be found in the full version of the paper
[7]. Let δ > 0 be a fixed parameter.

LEMMA 3.1. Let X, f, L be as in Theorem 3.1. Then, for
any δ ≥ ε, the sublevel-sets filtration{Fα} of f is cδ-
interleaved with theδ-offsets filtration{Lδ

α}α∈R. Hence,
∀k ∈ N, the bottleneck distance between theirkth persis-
tence diagrams is at mostcδ, by Theorem 2.1.

Using a variant of the Nerve Theorem introduced in [9], we
can extend the above result to the nervesCδ(Lα) of the δ-
offsetsLδ

α:

LEMMA 3.2. Let X, f, L be as in Theorem 3.1. Ifε <

̺c(X), then,∀k ∈ N, there exists a family of isomorphisms
{Hk(Cδ(Lα)) → Hk(Lδ

α)}α∈R, ε≤δ<̺c(X) such that the
following diagrams (where horizontal homomorphisms are
induced by inclusions) commute:∀α ≤ α′ ∈ R, ∀δ ≤ δ′ ∈
[ε, ̺c(X)),

Hk(Cδ(Lα)) → Hk(Cδ′(Lα′))
↓ ↓

Hk(Lδ
α) → Hk(Lδ′

α′)

Hence, ∀k ∈ N, ∀δ ∈ [ε, ̺c(X)), the kth persistent
homology modules of{Cδ(Lα)}α∈R and {Lδ

α}α∈R are 0-
interleaved, which implies that their persistence diagrams
are identical, by Theorem 2.1.



With these preliminary results at hand, we can now proceed
to the proof of Theorem 3.1:

Proof of Theorem 3.1.For convenience, we letε′ = δ, ε′′ =
2δ, Gα = Rδ(Lα), andG′

α = R2δ(Lα). Given some fixed
k ∈ N, let ({Γk

α}, {γ
β
α}) be thekth persistent homology

module of the nested pair of filtrations{Gα →֒ G′
α}α∈R.

Since 2ε ≤ ε′ ≤ ε′′

2 , Eq. (2.1) induces the following
commutative diagram atkth homology level:∀α ≤ β,

(3.2)

Hk(Cε(Lα))
iβ
α→ Hk(Cε(Lβ))

↓ aα ↓ aβ

Hk(Gα)
jβ
α→ Hk(Gβ)

↓ bα ↓ bβ

Hk(Cε′(Lα))
lβα→ Hk(Cε′(Lβ))

↓ dα ↓ dβ

Hk(G′
α)

mβ
α→ Hk(G′

β)

↓ eα ↓ eβ

Hk(Cε′′(Lα))
nβ

α→ Hk(Cε′′(Lβ))

This diagram emphasizes the relationship between the per-
sistence module({Γk

α}, {γ
β
α}) and the homology of a family

of Čech complexes. In addition, Lemma 3.1 tells us that the
homology of the sublevel-sets filtration{Fα} of f is related
to the homology of theε-, ε′- andε′′-offsets ofLα through
the following sequence of homomorphisms induced by in-
clusions:∀α, β s.t.β − α ≥ c(ε+ ε′′),

(3.3)

Hk(Fα−cε) Hk(Fβ+cε′′)
↓ tα ↑ wβ

Hk(Lε
α) Hk(Lε′′

β )

↓ uα ↑ vβ

Hk(Lε′

α ) Hk(Lε′

β )

↓ vα ↑ uβ

Hk(Lε′′

α ) Hk(Lε
β)

↓ wα ↑ tβ

Hk(Fα+cε′′)
sβ

α→ Hk(Fβ−cε)

Now, for all α ∈ R we lethα : Hk(Cε(Lα)) → Hk(Lε
α),

h′α : Hk(Cε′(Lα)) → Hk(Lε′

α ) andh′′α : Hk(Cε′′(Lα)) →
Hk(Lε′′

α ) be the isomorphisms provided by Lemma 3.2 —
which are well-defined sinceε ≤ ε′ ≤ ε′′ < ̺c(X).
Combining these isomorphisms with Eqs. (3.2) and (3.3), we
get a full diagram relating({Γk

α}, {γ
β
α}) to thekth persistent

homology module of{Fα}. This diagram may not commute:
for instance, there is no particular reason whymβ

α should
coincide withdβ ◦ bβ ◦ aβ ◦ h−1

β ◦ tβ ◦ sβ
α ◦ wα ◦ h′′α ◦

eα. Nevertheless, the subdiagram of Eq. (3.2) commutes
because it is induced by inclusions. Furthermore, Lemma
3.2 ensures that the following subdiagrams (where the new
homomorphismsl′βα andn′βα are induced by inclusions) also

commute:∀α ≤ β, ∀γ ∈ {α, β},

(3.4)

Hk(Cε(Lγ))
hγ
→ Hk(Lε

γ)
↓ bγ◦aγ ↓ uγ

Hk(Cε′(Lγ))
h′

γ
→ Hk(Lε′

γ )
↓ eγ◦dγ ↓ vγ

Hk(Cε′′(Lγ))
h′′

γ
→ Hk(Lε′′

γ )

(3.5)
Hk(Cε′(Lα))

lβα−→ Hk(Cε′(Lβ))
↓ h′

α ↓ h′

β

Hk(Lε′

α )
l′

β
α−→ Hk(Lε′

β ).

(3.6)
Hk(Cε′′(Lα))

nβ
α−→ Hk(Cε′′(Lβ))

↓ h′′

α ↓ h′′

β

Hk(Lε′′

α )
n′β

α−→ Hk(Lε′′

β )

For allα ∈ R, letφα : Γk
α → Hk(Fα+cε′′) be the restriction

of the mapwα ◦h′′α ◦ eα to the subspaceΓk
α = im dα ◦ bα ⊆

Hk(G′
α). Symmetrically, letψα−cε : Hk(Fα−cε) → Γk

α be
the mapdα ◦ bα ◦aα ◦h−1

α ◦ tα. Its image is indeed included
in the subspaceΓk

α = im dα ◦ bα ⊆ Hk(G′
α). To prove

that the persistence module({Γk
α}, {γ

β
α}) is cε′′-interleaved

with thekth persistent homology module of{Fα}, it suffices
to show that (a.) the mapψβ−cε◦s

β
α ◦φα is equal tomβ

α over
the subspaceΓk

α ⊆ Hk(Gα) for all β ≥ α + c(ε+ ε′′), and
(b.) the mapφβ ◦m

β
α ◦ψα−cε is equal to the homomorphism

s
β+cε′′

α−cε : Hk(Fα−cε) → Hk(Fβ+cε′′) induced by inclusion
for all β ≥ α.
(a.) Consider the mapψβ−cε◦s

β
α◦φα. Since by definition we

haveΓk
α = im dα ◦bα ⊆ im dα, the fact thatψβ−cε ◦s

β
α ◦φα

coincides withmβ
α over Γk

α is a direct consequence of the
fact that the mapψβ−cε ◦ s

β
α ◦ φα ◦ dα equalsmβ

α ◦ dα over
Hk(Cε′(Lα)), which we will now prove. Replacingφα and
ψβ−cε by their definitions, we getdβ ◦ (bβ ◦ aβ ◦h−1

β ) ◦ tβ ◦

sβ
α ◦wα ◦ (h′′α ◦eα ◦dα), which by commutativity of (3.4) is

equal todβ ◦h
′−1
β ◦uβ ◦tβ ◦s

β
α ◦wα ◦vα ◦h

′
α. Now, observe

thatuβ ◦ tβ ◦ sβ
α ◦wα ◦ vα is nothing but the homomorphism

l′
β
α induced by the inclusionLε′

α →֒ Lε′

β . Therefore, we have

ψβ−cε ◦ sβ
α ◦ φα ◦ dα = dβ ◦ (h′

−1
β ◦ l′βα ◦ h′α), which

is equal todβ ◦ lβα by commutativity of (3.5). Finally, we
havedβ ◦ lβα = mβ

α ◦ dα by commutativity of (3.2). Thus,
ψβ−cε ◦ s

β
α ◦ φα coincides withmβ

α overΓk
α.

(b.) Consider now the mapφβ ◦mβ
α ◦ ψα−cε. Replacingφβ

andψα−cε by their definitions, we getwβ ◦h′′β ◦ (eβ ◦mβ
α) ◦

dα ◦ bα ◦ aα ◦ h−1
α ◦ tα, which by commutativity of (3.2) is

equal towβ ◦h
′′
β ◦(nβ

α◦eα)◦dα◦bα◦aα◦h
−1
α ◦tα. Now, the

commutativity of (3.4) implies thateα ◦dα ◦ bα ◦aα ◦h−1
α =

h′′
−1
α ◦ vα ◦ uα, thereforeφβ ◦ mβ

α ◦ ψα−cε is equal to



wβ ◦(h′′β ◦n
β
α ◦h

′′−1
α )◦vα ◦uα ◦ tα, which by commutativity

of (3.6) is equal towβ ◦ n′βα ◦ vα ◦ uα ◦ tα = s
β+cε′′

α−cε . �

3.2 Robustness with respect to noise in the data.Theo-
rem 3.1 assumes that exact geodesic distances and function
values are used in the construction of the Rips complexes.
In practice however, function values from physical measure-
ments are inherently noisy, while geodesic distances are esti-
mated through some neighborhood graph distance. We claim
that our framework is generic enough to handle these practi-
cal situations:

THEOREM 3.2. Let X, f, L be as in Theorem 3.1, and let
k ∈ N.

(i) Supposef is known within a precision ofζ at the
points ofL. Then, for anyδ ∈ [2ε, 1

2̺c(X)), the
kth persistent homology modules off and of the
nested pair of filtrations{Rδ(Lα) →֒ R2δ(Lα)}α∈R

are (2cδ + ζ)-interleaved, hence their persistence
diagrams are(2cδ + ζ)-close.

(ii) Suppose the Rips complexes are now defined with
respect to some distancẽdX that is related todX

through some scaling factorλ ≥ 1, relative error
µ ≥ 1, and additive errorν ≥ 0: ∀p, q ∈ L,
dX(p,q)

λ
≤ d̃X(p, q) ≤ ν + µ

dX(p,q)
λ

. Then, for any
δ ≥ ν + 2µ ε

λ
and anyδ′ ∈ [ν + 2µδ, 1

λ
̺c(X)),

the kth persistent homology modules off and of the
nested pair of filtrations{R̃δ(Lα) →֒ R̃δ′(Lα)}α∈R

arecλδ′-interleaved, hence their persistence diagrams
are cλδ′-close.

While the meaning of assertion (i) is self-explanatory, asser-
tion (ii) deserves a few words of context. We use the nota-
tionsR̃δ(Lα) andR̃δ′(Lα) to emphasize that the Rips com-
plexes are now defined with respect tod̃X. The latter is usu-
ally taken to be the distancedG in some neighborhood graph
G built on top of the point cloudL, whose edges can be either
weighted or unweighted, depending on the application. Both
classes of graphs are known to provide distancesdG satisfy-
ing the hypotheses of (ii) for some quantitiesλ, µ, ν [18, 24].
In addition, parametersδ, δ′ are required to be somewhat re-
laxed: specifically,δ must be sligthly larger than2 ε

λ
andδ′

slightly larger than2δ.

Proof of Theorem 3.2. Assume first that for each point
p ∈ L we are given a valuẽf(p) 6= f(p), and letζ =
maxp∈L |f̃(p) − f(p)|. For convenience, for allα ∈ R

we introduce the set̃Lα of points of L whose f̃ -values
are at mostα. Note thatL̃α may neither contain nor be
contained inLα in general. However, we havẽLα ⊆ Lα+ζ ,
which, plugged into the proof of Lemma 3.1, implies that
the sublevel-sets filtration off is (cδ + ζ)-interleaved with
{L̃δ

α}α∈R. The rest of the analysis of Section 3.1 carries
through, withLα replaced bỹLα for all α ∈ R andcε and

cε′′ replaced respectively bycε+ ζ andcε′′ + ζ in Eq. (3.3)
and in the rest of the proof of Theorem 3.1.

Assume now thatdX is replaced by some distancẽdX

satisfying the inequalities of (ii), and letε′ = λδ andε′′ =
λδ′. Under this assumption, we prove in the full version of
the paper [7] that the following sequence of inclusions holds
for all valuesα ∈ R:

(3.7) Cε(Lα) ⊆ R̃δ(Lα) ⊆ Cε′(Lα) ⊆ R̃δ′(Lα) ⊆ Cε′′(Lα).

Letting Gα = R̃δ(Lα) andG′
α = R̃δ′(Lα), we can then

override Eq. (2.1) with Eq. (3.7) in the proof of Theorem
3.1, which gives the desired result.�

4 Algorithms

We only provide brief descriptions of the core algorithm
(Section 4.1), of its variants (Sections 4.2, and 4.3), and of
their guarantees. A thorough treatment is done in the full
version of the paper [7].

4.1 Core algorithm. The algorithm takes as input an-
dimensional vectorv, a n × n distance matrixD, and a
parameterδ ≥ 0. The entries ofv give the function values
at the data points, while the entries ofD give their pairwise
distances. No geographic coordinates are required, so that
the algorithm can virtually be applied in any metric space.
For simplicity, we assume the entries ofv to be sorted (v1 ≤
v2 ≤ · · · ≤ vn), although they are not in our implementation.
The algorithm proceeds in two steps:

1. It builds two families of nested Rips complexes:
Rδ({1}) ⊆ Rδ({1, 2}) ⊆ · · · ⊆ Rδ({1, 2, · · · , n})
and R2δ({1}) ⊆ R2δ({1, 2}) ⊆ · · · ⊆
R2δ({1, 2, · · · , n}). The ith complex in each family
is computed from the sub-matrix ofD spanned by the
rows and columns of indices1, · · · , i. The time of ap-
pearance of its simplices that are not in the (i − 1)th
complex is set tovi.

2. For k ranging from zero to the dimension of the
nth complex, the algorithm computes thekth per-
sistence diagram of the nested pair of filtrations
{Rδ({1, · · · , i}) →֒ R2δ({1, · · · , i})}1≤i≤n.

Upon termination, the algorithm returns the persistence dia-
grams computed at step 2.

Quality of the output. Observe that the filtrations built at
step 1. are the same as the ones considered in Theorem 3.1,
which therefore provides the following theoretical guarantee:
if the data points form a geodesicε-sample of some Rieman-
nian manifoldX, with ε < 1

4 ̺c(X), and if the input distance
matrixD gives the exact geodesic distances between the data
points, then, for any tamec-Lipschitz functionf : X → R

whose values at the data points are given exactly by the input
vectorv, thekth persistence diagram output by the algorithm
lies at bottleneck distance at most2cδ of thekth persistence



diagram off , provided that the input parameterδ satisfies
2ε ≤ δ < 1

2̺c(X).
Similar theoretical guarantees are obtained from Theo-

rem 3.2 in cases where the entries of the input vectorv or ma-
trix D are noisy, provided that2δ is replaced byδ′ & 2δ in
the algorithm. This is quite useful in practice, when geodesic
distances are estimated using some neighborhood graph.

Implementation and complexity. A useful property
of the Rips complex is that its simplices are in bijec-
tion with the cliques of its 1-skeleton graph [9]. At step
1. of the algorithm, we build the 1-skeleton graph of
R2δ({1, · · · , n}) in O(n2) time, then we enumerate all its
cliques using version 1 of the Bron-Kerbosch algorithm4 [2]
in O(Nn log n) time, whereN is the total number of sim-
plices ofR2δ({1, · · · , n}). Finally, we encode the filtrations
of parametersδ and 2δ as two orderings on the simplices
of R2δ({1, · · · , n}), which takesO(N logN) time. At step
2., we apply the modified persistence algorithm of [11] on
our two filtrations, which raises the overall running time to
O(N3).

In principle,R2δ({1, · · · , n}) could span the full (n −
1)-simplex and have as many as2n simplices. In practice
however, data points are often drawn from manifolds of low
dimensionsm. Then, under a uniform sampling condition,
a packing argument shows that the size of the complex is
at most22m

n, and that it even drops down to2O(m2)n if a
reasonable upper bound onm is known [9]. This reduces the
running time of the algorithm to2O(m2)n3 and thus makes
the approach tractable. Sampling uniformity is a stringent
condition, but it is achieveable by a landmarking strategy
[19].

4.2 Extracting spatial information. The input is the
same as in Section 4.1, and we callX the underlying space,
f the unknown scalar field, andL the set of data points. We
want to partitionL into clusters, each of which consists of the
points that flow down to a same minimum off when mov-
ing opposite to the gradient vector field off in X. Stated in
Morse-theoretic terms, our goal is to compute the trace inL

of the descending regions of the minima5 of f . We assume
for simplicity that the values off at the points ofL are all
different, which is easily ensured by an infinitesimal pertur-
bation off .
After building the 1-skeleton graphG2δ of R2δ(L) as in
Section 4.1, we proceed in two steps:

1. at each pointp ∈ L we compute a rough estimate of
the direction of steepest descent off , by connectingp
to its neighbor inG2δ with lowestf -value (and to itself

4This algorithm was designed to enumerate maximal cliques, but it
actually enumerates all cliques.

5Symmetrically, we can approximate the ascending regions of themax-
ima off by using−f in our computations.

if p is a local minimum); the local minima off in G2δ

are then promoted to the status of cluster centers, and
L is partitioned according to their descending regions
in G2δ;

2. we apply the core algorithm to approximate of the0th
persistence diagram off , which is then used to merge
clusters of lifespan less than some input thresholdτ

into longer-lasting clusters.
The procedure is illustrated in Figure 1. The clusters con-
struction at step 1. is inspired from [14], and we refer the
reader to [25] for a detailed implementation in our point
cloud setting. This construction is known to be quite unsta-
ble under small perturbations ofL or f , and the novelty of
our approach resides in the way we use persistence to merge
clusters and regain some stability at step 2. Specifically, the
approximate persistence diagram consists of a set of critical
pairs(v, e), wherev is a local minimum off in G2δ ande is
an edge ofG2δ that links the connected component created
by v in G2δ to the one created by some lower minimumu. If
the lifespan6 of the connected component ofv is shorter than
τ , then the algorithm merges the cluster ofv into the cluster
of u.

Our implementation makes a single pass through the 1-
skeleton graphG2δ, creating and merging clusters on the
fly using the modified union-find data structure of [16].
OnceG2δ has been built, the remaining running time is
O(NA−1(N)), whereN is the size ofG2δ and A the
Ackermann function.

The number of clusters output by the algorithm is guar-
anteed by Theorem 3.1 to coincide with the number of de-
scending regions of minima off of lifespan at leastτ in X,
provided that the0th persistence diagram off satisfies some
well-separatedness condition made explicit in the full ver-
sion of the paper. In addition to this stability guarantee, it
would be desirable to have an approximation result7 bound-
ing the distances inX between the computed clusters and
their corresponding descending regions of minima off in X.
This question remains open for now.

4.3 Time-varying functions. Suppose now thatX andL
remain fixed whilef varies with time. More precisely, our
input is now a finite sequence(v1, · · · , vs) of n-dimensional
vectors, each of which is asnapshotof f at the points of
L and at a certain timeti ≤ ti+1. For convenience, we let
fi : X → R denotef at timeti, and we callci its Lipschitz
constant. Our aim is to approximate the persistence diagrams
of thefi.

The naive approach applies the core algorithm at each
time step separately. By Theorem 3.1, the output persistence

6Defined as the difference between the times at whiche andv appear in
the 1-skeleton graphG2δ .

7Our experimental results, detailed in Section 5, suggest theexistence of
such a guarantee.



data set dimension # vertices # edges Rips graph (sec.) clustering (sec.) total (sec.)

crater 2 1,048 7,095 0.01 0.00 0.01
torus 3 2,034 7,650 0.01 0.00 0.01

four Gaussians 2 6,354 51,946 0.07 0.02 0.09
hand 2 19,470 158,395 0.27 0.05 0.32

double spiral 2 114,563 2,116,035 2.43 0.61 3.04

Table 1:Timings on an Intel Core 2 Duo T7500 @ 2.20GHz with 2GB of RAM. The pacing phase of the approach is the construction of the Rips graph,
which performs a linear number of proximity queries, implemented using the C++ library ANN [27]. Theclusteringphase comprises both steps of the
algorithm of Section 4.2, which are performed simultaneously.

diagrams at timeti approximate the ones offi within a
bottleneck distance of2δci, under a sampling condition and
with a choice of parameterδ that are time-independent. The
total running time isO(sN3), whereN is the number of
simplices of the Rips complexR2δ(L).

A more elaborate variant inspired from [12] exploits the
fact thatR2δ(L) remains fixed throughout the process, and
that the sole orderings of its simplices corresponding to the
filtrations of parametersδ and2δ have to be updated between
ti−1 andti. For each filtration, we permute the order of the
simplices ofR2δ(L) usinginsertion sort, which decomposes
the permutation into a sequence ofmi simple transpositions
of simplices. This sequence is given as input to thevineyards
algorithm [12], which updates the persistence diagrams in
O(miN) time. In the worst case, this bound is no better than
O(N3). However, it is sensitive to the timewise variations
of f , which can be small. A more formal discussion on this
point can be found in the full version of the paper.

5 Applications and discussion

We illustrate the relevance and generality of our approach
through three specific applications. For each application,
we describe the context and present some experimentation
validation. Timings on our data sets are given in Table 1.

5.1 Sensor networks.Our approach was originally de-
signed with the sensor network framework in mind, where
physical quantities such as temperature or humidity are mea-
sured by a collection of communicating sensors, and where
the goal is to answer qualitative queries such as how many
significanthot spotsare being sensed. Purely geometric ap-
proaches cannot be applied in this setting, since geographic
location is usually unavailable. Rough pairwise geodesic dis-
tances however are available, in the form of graph distances
in the communication network. With this data at hand, the
algorithms of Section 4 can find the number of hot spots,
provide an estimation of their prominance and of their size in
the network, and track them as the quantity being measured
changes. As a by-product, they also compute the homology
of the underlying domain as the linear span of the infinitely-
persistent homological features in the output barcodes. The
computations are done in a centralized way, after a data ag-

gregation step. A sample result is shown in Figure 1.

5.2 Clustering. Clustering attempts to group points by as-
suming they are drawn from some unknown probability dis-
tribution. Our approach is inspired by Mean-Shift clustering
[13]. Given an input point cloudL, we use a simple density
estimator to approximate the local density at the points ofL.
As Figure 2 shows, our estimator can be quite noisy. How-
ever, our emphasis is not on accurate density estimation, but
rather on clustering with noisy density estimates. Our esti-
mator is provided together withL as input to the algorithm
of Section 4.2, which clusters the points ofL according to
the basins of attraction of the local maxima of the estimator
in the Rips graphG2δ built overL. Due to the noisy nature
of the estimator, we get a myriad of small clusters before the
merging phase. The novelty of our approach is to provide
visual feedback to the user in the form of an approximate
persistence barcode of the estimator, from which the user
can choose a relevant merging parameterτ . For instance,
the example of Figure 2 is highly non-linear and noisy, yet
the barcode clearly shows two long intervals, suggesting that
there are two main clusters.

Another important feature of our approach is to make
a clear distinction between the merging criterion, governed
by τ and based solely on persistence information, and the
approximation accuracy of the basins of attraction of the
maxima, governed by the Rips parameterδ and based solely
on spatial information. In the example of Figure 2, reducing
δ while keepingτ fixed enabled us to separate the two
spirals from the background while keeping them separate
and integral.

5.3 Shape Segmentation.The goal of shape segmentation
is to partition a given shape intomeaningfulsegments, such
as fingers on a hand. This problem is ill-posed by nature,
as meaningfulness is a subjective notion. Given a sampled
shapeX, our approach is to apply the algorithm of Section
4.2 on somesegmentation functionf : X → R derived from
the geometric features ofX. The output is a partition of the
point cloud into clusters corresponding roughly to the basins
of attraction of the significant peaks off . Thus, we cast
the segmentation problem into another problem, namely the
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Figure 2: A result in clustering. The top row shows the input provided to the algorithm of Section 4.2: the data points (left), or rather their pairwise
Euclidean distances, and the estimated density functionf (center and right). The 3-d view off illustrates how noisy this function can be in practice,
thereby emphasizing the importance of our robustness result (Theorem 3.2). The bottom row shows the estimated basins ofattraction of the peaks off ,
before (left) and after (right) merging non-persistent clusters. The 0-dimensional persistence barcode of(−f) (center) contains two prominent intervals
corresponding to the two main clusters. Since the estimateddensity is everywhere non-negative, the barcode has been thresholded at0. Thus, intervals
reaching0 correspond to independent connected components in the Ripsgraph. Among those, the ones that appear lately are treated as noise and their
basins of attraction shown in black, since their corresponding density peaks are low.

one of finding a relevant segmentation functionf for a given
class of data.

In our experiments, we definedf(x) to be the diameter
of the set of sample points on the boundary of the shape that
are closest tox, normalized by their distance tox. We chose
this particular function as a demonstration, but our method
can be applied virtually with any segmentation function. The
barcode computed by the algorithm measures the stability
of the various segments, as illustrated in Figure 3. As
such, it provides feedback on the relevance of the chosen
segmentation function on the considered class of shapes.

6 Final remarks

The potential of our approach stems from the observation
that many problems can be reduced to the analysis of some
scalar field defined over a given point cloud data. With
the theoretical and algorithmic tools developed in this paper
at hand, the user can cast each of these problems into the
one of finding the scalar field that is most suitable for his
particular purpose. Thus, clustering is turned into a density

estimation problem, while shape segmentation is turned into
finding a relevant segmentation function for a given class
of shapes. Many application-specific questions arise from
this paradigm, which we do not pretend to solve in the
paper. Some of them, related to the above scenarios, will
be addressed in subsequent work.
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Basel, Berlin, 1992.

[5] F. Cazals, F. Chazal, and T. Lewiner. Molecular shape anal-
ysis based upon the Morse-Smale complex and the Connolly
function. InProc. 19th Annu. ACM Sympos. Comput. Geom.,
pages 237–246, 2003.

[6] F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Y.
Oudot. Proximity of persistence modules and their diagrams.
Research Report 6568, INRIA, November 2008.

[7] F. Chazal, L. J. Guibas, S. Y. Oudot, and P. Skraba. Analysis
of scalar fields over point cloud data. Research Report 6576,
INRIA, July 2008.

[8] F. Chazal and A. Lieutier. Stability and computation of
topological invariants of solids inRn. Discrete Comput.
Geom., 37(4):601–617, 2007.

[9] F. Chazal and S. Y. Oudot. Towards persistence-based recon-
struction in Euclidean spaces. InProc. 24th ACM Sympos.
Comput. Geom., pages 232–241, 2008.

[10] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of
persistence diagrams. InProc. 21st ACM Sympos. Comput.
Geom., pages 263–271, 2005.

[11] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and D. Morozov.
Persistent homology for kernels and images. Preprint, 2008.

[12] D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov. Vines
and vineyards by updating persistence in linear time. InProc.
22nd Sympos. on Comput. Geom., pages 119–126, 2006.

[13] D. Comaniciu and P. Meer. Mean shift: A robust approach to-
ward feature space analysis.IEEE Trans. on Pattern Analysis
and Machine Intelligence, 24(5):603–619, May 2002.

[14] T. K. Dey and R. Wenger. Stability of critical points with
interval persistence.Discrete Comput. Geom., 38:479–512,
2007.

[15] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical

Morse complexes for piecewise linear 2-manifolds. InProc.
17th Annu. Sympos. Comput. Geom., pages 70–79, 2001.

[16] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topolog-
ical persistence and simplification.Discrete Comput. Geom.,
28:511–533, 2002.

[17] H. Edelsbrunner, D. Morozov, and V. Pascucci. Persistence-
sensitive simplification of functions on 2-manifolds. InProc.
22nd Sympos. on Comput. Geom., pages 127–134, 2006.

[18] J. Gao, L. Guibas, S. Oudot, and Y. Wang. Geodesic De-
launay triangulation and witness complex in the plane. Full
version, partially published inProc. 18th ACM-SIAM Sym-
pos. on Discrete Algorithms, pages 571–580, 2008. Full draft
available at: http://graphics.stanford.edu/projects/

lgl/papers/ggow-gtwcp-08/ggow-gdtwcp-08-full.pdf .
[19] L. G. Guibas and S. Y. Oudot. Reconstruction using witness

complexes. InProc. 18th Sympos. on Discrete Algorithms,
pages 1076–1085, 2007.

[20] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and
B. Hamann. Topology-based simplification for feature ex-
traction from 3d scalar fields. InProc. IEEE Conf. Visualiza-
tion, pages 275–280, 2005.

[21] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and
B. Hamann. A topological approach to simplification of
three-dimensional scalar fields.IEEE Trans. Vis. Comput.
Graphics, 12(4):474–484, 2006.

[22] A. Hatcher. Algebraic Topology. Cambridge Univ. Press,
2001.

[23] John W. Milnor. Morse Theory. Princeton University Press,
Princeton, NJ, 1963.

[24] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global
geometric framework for nonlinear dimensionality reduction.
Science, 290(5500):2319–2323, 2000.

[25] X. Zhu, R. Sarkar, and J. Gao. Shape segmentation and
applications in sensor networks. InProc. INFOCOM, pages
1838–1846, 2007.

[26] A. Zomorodian and G. Carlsson. Computing persistent ho-
mology. Discrete Comput. Geom., 33(2):249–274, 2005.

[27] http://www.cs.umd.edu/ ˜ mount/ANN/ .


