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Persistence-Based Clustering in Riemannian Manifolds
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We present a clustering scheme that combines a mode-seeking phase with a cluster merging phase in the
corresponding density map. While mode detection is done by a standard graph-based hill-climbing scheme,
the novelty of our approach resides in its use of topological persistence to guide the merging of clusters.
Our algorithm provides additional feedback in the form of a set of points in the plane, called a persistence
diagram (PD), which provably reflects the prominences of the modes of the density. In practice, this feedback
enables the user to choose relevant parameter values, so that under mild sampling conditions the algorithm
will output the correct number of clusters, a notion that can be made formally sound within persistence
theory. In addition, the output clusters have the property that their spatial locations are bound to the ones
of the basins of attraction of the peaks of the density.

The algorithm only requires rough estimates of the density at the data points, and knowledge of
(approximate) pairwise distances between them. It is therefore applicable in any metric space. Meanwhile,
its complexity remains practical: although the size of the input distance matrix may be up to quadratic in
the number of data points, a careful implementation only uses a linear amount of memory and takes barely
more time to run than to read through the input.
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1. INTRODUCTION

Unsupervised learning or clustering is an important tool for understanding and inter-
preting data in a variety of fields. Obtaining the most natural clustering is an ill-posed
problem in general, and it is particularly difficult with massive and high-dimensional
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41:2 F. Chazal et al.

data sets where visualization techniques fail. The breadth of the existing work on clus-
tering [Hartigan 1975] shows the high interest this topic has aroused among the scien-
tific community. Here we recount a few classical methods to show where our approach
stands with respect to the literature:

K-means [Lloyd 1982] is perhaps the most commonly used approach. Given a fixed
number k of clusters, it tries to place cluster centers and define cluster boundaries
so as to minimize the sum of the squared distances to the center within each cluster.
This minimization problem is known to be NP-hard, so k-means resorts to an iterative
expectation-maximization procedure that is guaranteed to converge at least to some
local minimum. This minimum is not guaranteed to be global, however. Another issue
with k-means and its variants is that they produce bad results on highly non-convex
clusters.

Spectral clustering [von Luxburg 2007] was designed specifically to work on non-
convex data. It first computes an embedding of the data set endowed with a diffusion
distance between the points, given by a Laplacian of some neighborhood graph. Then,
it applies the standard k-means method in the new ambient space. Computing the
embedding requires an eigendecomposition of the Laplacian, which may have numer-
ical issues as the size of the data grows. The presence of a gap in the spectrum of the
Laplacian gives an indication of the correct number k of clusters. However, problems
arise when there are more than a small number of outliers in the data, in which case
no such gap may exist.

Density-based techniques make the assumption that the data points are drawn from
some unknown density function f . Clustering becomes then a problem of understand-
ing the structure of f , as estimated from the samples. A popular approach consists in
thresholding the density at some fixed level α, then treating the connected components
of the superlevel-set Fα = f −1([α, +∞)) as clusters and the rest of the data as noise.
In practice, the density f is unknown so its superlevel Fα needs to be approximated
from the data, which algorithms like DBSCAN [Ester et al. 1996; Sander et al. 1998]
do by various graph-based heuristics. Unfortunately, due to the use of a fixed density
threshold α, these techniques do not respond well to hierarchical data sets, in which
subtle multiscale clustering phenomena may occur.

Another popular approach, called mode-seeking, consists in detecting the local peaks
of f in order to use them as cluster centers and to partition the data according to their
basins of attraction. The precise notion of the basin of attraction Bp of a peak p varies
between references, yet the bottom line remains that Bp corresponds to the subset of
the data points that eventually reach p by some greedy hill-climbing procedure. This
line of work started with the algorithm of Koontz et al. [1976] and was followed by
numerous variants and extensions, including Mean-Shift [Comaniciu and Meer 2002]
and its successors [Sheikh et al. 2007; Vedaldi and Soatto 2008]. A common issue faced
by these techniques is that the gradient and extremal points of a density function
are notoriously unstable, so their approximation from a density estimator can lead
to unpredictable results. This is why methods such as Mean-Shift adopt a proactive
strategy that consists in smoothing the estimator before launching the hill-climbing
procedure, which in turn raises the difficult question of how much smoothing is needed
to remove the noise without affecting the signal, and to obtain the correct number of
clusters.

Enter Topological Persistence. In this article, we adopt a more reactive strategy that
consists in using topological persistence [Edelsbrunner et al. 2002; Zomorodian and
Carlsson 2005] to detect and merge unstable clusters after their computation, thus re-
gaining some stability. Although our method belongs to the same family as Mean-Shift,
the use of persistence makes it possible to link explicitly the input parameter values
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Persistence-Based Clustering in Riemannian Manifolds 41:3

Fig. 1. Sketch of topological persistence: (a) a new connected component is born in the superlevel-set Fα

when α = f (p), and it dies when α = f (s); its lifespan is represented as a point in the PD of f ; (b) a piecewise-
linear approximation f̃ of f ; (c) superimposition of the PDs of f (red) and f̃ (blue), showing the one-to-one
correspondence between the prominent peaks of f and f̃ .

to the output number of clusters. It also provides a sound theoretical framework for
characterizing the correct number of clusters, in the same spirit as spectral clustering.

Topological persistence estimates the prominence (also called persistence) of the den-
sity peaks and builds a hierarchy of the peaks based on it. The prominence of a peak
is defined as the difference between its height and the level at which its basin of at-
traction meets the one of a higher peak (its parent in the hierarchy). More precisely,
focusing on the 1-parameter family of superlevel-sets Fα = f −1([α, +∞)) of the density
function f , persistence studies the evolution of the connectivity (and more generally, of
the topology) of Fα as α ranges from +∞ to −∞. A new connected component C is born
in Fα when α reaches the height of a peak p of f , and dies when it gets connected in
Fα to the component of a higher peak (see Figure 1(a)). As mentioned previously, the
prominence of p is simply the height difference between birth and death values of C.
The lifespan of each connected component C can be represented as a point in the plane,
with the x-coordinate giving the birth time of C and the y-coordinate giving its death
time. The collection of such points is called the (0-dimensional) persistence diagram
(PD) of f , illustrated in Figure 1(c). The key insight of this planar data representa-
tion is that the PD reveals part of the topological structure of the density function f .
More precisely, each peak of f is uniquely represented by one point in the PD, and its
prominence is given by the vertical distance of this point to the diagonal y = x.

Originally defined in Morse theory, prominence is known to be more stable than other
measures of significance such as absolute height. For example, a small bump occurring
at a high density will have large absolute height but small prominence. The same kind
of stability holds for PDs. For instance, f and its noisy approximation f̃ (see Figure 1(b))
have similar PDs, in the sense that there is a one-to-one mapping of small amplitude
from the prominent peaks of f̃ to the ones of f , the rest of the peaks being treated as
topological noise and mapped to the diagonal in the PD (see Figure 1(c)). Thanks to this
fundamental stability property, with only limited knowledge of the underlying space
and a finite estimate of the density f it is possible to provably and efficiently approxi-
mate the PD of f . The combination of such guarantees with computational practicality
is at the heart of topological data analysis [Carlsson 2009; Carlsson et al. 2004, 2008;
Ghrist 2007], which includes this work.

It is worth noting that PDs are similar in spirit to the dendrograms provided by
agglomerative clustering schemes, whose principle is to build the clusters in a bottom-
up fashion, starting with each point being its own cluster and merging at each step
the most similar clusters together. The output dendrogram describes the sequence of
merges that have occurred during the process, thus encoding the hierarchical structure

Journal of the ACM, Vol. 60, No. 6, Article 41, Publication date: November 2013.



�

�

�

�

�

�

�

�

41:4 F. Chazal et al.

Fig. 2. Our approach in a nutshell: (a) estimation of the underlying density function f at the data points;
(b) result of the basic graph-based hill-climbing step; (c) approximate PD showing two points far off the
diagonal corresponding to the two prominent peaks of f ; (d) final result obtained after merging the clusters
of non-prominent peaks.

of the obtained family of clusterings. While these techniques bear some connections
with ours, they are actually based on a different clustering paradigm that suffers from
its own limitations—see, for example, Section 14.3.12 in Hastie et al. [2009].

Our Method. Our clustering scheme, called ToMATo (Topological Mode Analysis
Tool), combines the original graph-based hill-climbing algorithm of Koontz et al. [1976]
with a cluster merging step guided by persistence. As illustrated in Figure 2(b), hill-
climbing is very sensitive to perturbations of the density function f that arise from a
density estimator f̃ . Computing the PD of f̃ enables us to quantify the prominences
of its peaks and, in favorable cases, to distinguish those that correspond to peaks of
the true density f from those that are inconsequential. In Figure 2(c), for instance,
we can see two points (pointed to by arrows) that are further from the diagonal than
the other points: these correspond to the two prominent peaks of f̃ (one of them is at
y = −∞, since the highest peak never dies). To obtain the final clustering, we merge
every cluster of prominence less than a given thresholding parameter τ into its parent
cluster in the persistence hierarchy. As shown in Figures 2(c) and 2(d), the PD gives us
a precise understanding of the relationship between the choice of τ and the number of
obtained clusters.

In practice, we run ToMATo twice: in the first run we set τ = +∞ to merge all
clusters and thus compute the PD; then, using the PD we choose a value for τ (which
amounts to selecting the number of clusters) and re-run the algorithm to obtain the
final result. The feedback provided by the PD proves invaluable in interpreting the
clustering results in many cases. Indeed, the PD gives a clear indication of whether or
not there is a natural number of clusters, and because it is a planar point cloud we can
understand its structure visually, regardless of the dimensionality of the input data.

ToMATo is highly generic and agnostic to the choice of distance, underlying graph,
and density estimator. Our theoretical guarantees make use of graphs that do not
require the geographic coordinates of the data points at hand (only pairwise distances
are used) nor estimates of the density at extra points. This makes the algorithm appli-
cable in very general settings. ToMATo is also highly efficient: in the worst case it has
an almost-linear running time in the size of the underlying graph, and only a linear
memory usage in the number of data points. Most often, we use Euclidean distances;
however, other metrics such as diffusion distances can be used. Indeed, the choice of
metric and density estimator define the space we study, while our algorithm gives the
structure of this space. Finally, ToMATo comes with a solid mathematical formulation.
We show that, given a finite sampling of an unknown space with pointwise estimates
of an unknown density function f , our algorithm computes a faithful approximation
of the PD of f . Under conditions of a sufficient signal-to-noise ratio in this PD, we can
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Persistence-Based Clustering in Riemannian Manifolds 41:5

determine the correct number of clusters and show that significant clusters always
have stable regions. In some applications, the number of clusters is not obvious and we
see this in the corresponding PDs. However, in these cases, the relationship between
the choice of parameters and the number of obtained clusters is transparent.

Obtaining guarantees in such general settings using only simple tools like neigh-
borhood graphs is made possible by recent advances on the stability of persistence
diagrams [Chazal et al. 2009, 2012]. Previous stability results [Cohen-Steiner et al.
2007] required the use of piecewise-linear approximations of the density functions, as
in Figure 1(b) for instance. The construction of such approximations becomes quickly
intractable when the dimensionality of the data grows. This fact might explain why
topological persistence was never really exploited in mode analysis before, except in
some restricted or low-dimensional settings [Paris and Durand 2007].

Layout of the Article. In the first part of the article (Sections 2 through 5), we em-
phasize the experimental aspects of our work, describing the approach, giving an intu-
itive overview of its theoretical guarantees, discussing the choice of its parameters in
practice, and demonstrating its potential in terms of applications through a series of
experimental results obtained on synthetic and real-life data sets. The precise state-
ments and proofs of our theoretical claims are detailed in the second part of the article
(Sections 6 through 11).

Part I. Approach, Guarantees, and Results

2. THE ALGORITHM

We first provide an intuitive insight into our approach by considering the continuous
setting underlying our input. We then give the details of the algorithm in the discrete
setting.

The Continuous Setting. Consider an m-dimensional Riemannian manifold X and
a Morse function f : X → R, that is, a C∞-continuous function with nondegenerate
critical points such that all the critical values are distinct. Assume that f has a finite
number of critical points. The ascending region of a critical point m, noted A(m), is the
subset of the points of X that eventually reach m by moving along the flow induced
by the gradient vector field of f . For all x ∈ A(m), we call m the root of x. Ascending
regions of the peaks of f are known to form pairwise-disjoint open cells homeomorphic
to R

m. Furthermore, assuming X to have no boundary and f to be bounded from above
and proper,1 the ascending regions of the peaks of f cover X up to a subset of Hausdorff
measure zero. It is then natural to use them to partition (almost all) the space X into
regions of influence.

For any α ∈ R, let Fα denote the closed superlevel-set f −1([α, +∞)). Consider the
nested family of spaces {Fα}α∈R obtained by letting parameter α decrease from +∞ to
−∞. This family is called the superlevel-sets filtration of f . For any α ∈ R and x ∈ X, let
C(x, α) ⊆ Fα denote the path-connected component of Fα that contains x. Morse theory
tells us that when a local maximum mp of f enters the superlevel-sets filtration, at
time α = f (mp), a new path-connected component C(mp, α) appears in the superlevel-
set Fα. In homological terms, the peak mp is called the generator of the component born
at time f (mp). This component ceases to be independent in Fα when it gets connected
to another component generated by a higher peak mq. At that particular time, noted
α = d(mp), persistence theory tells us that C(mp, α) gets merged into C(mq, α). While

1Meaning that for any bounded closed interval [ a, b] ⊂ R, the pre-image f−1([ a, b]) is a compact subset
of X.
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41:6 F. Chazal et al.

mq remains the generator of the component C(mq, α), mp ceases to be a generator, and
by analogy we call mq its root, noted mq = r(mp). In the (0-dimensional) persistence
diagram D0f , the lifespan of mp as a generator is encoded by the point p of coordinates
px = f (mp) and py = d(mp) ≤ px. The difference px − py ≥ 0 between birth and
death times is called the prominence of the peak mp. Equivalently, we say that mp is
(px − py)-prominent. As for the peak mq, if it remains the generator of C(mq, α) for
all values α ≤ f (mq), then persistence theory sets its death-time d(mq) to −∞, so its
lifespan is represented in D0f by the point (f (mq), −∞) and its prominence is infinite.

Given a thresholding parameter τ ≥ 0, we restrict our focus to the peaks mp of
f of prominence at least τ . Intuitively, the points of X that are attracted by mp are
the ones belonging to ascending regions that are eventually merged by persistence
into the connected component of mp before being merged into the component of any
other peak of prominence at least τ . Formally, for every peak mq of f (of arbitrary
prominence), let us iterate the root map mq 
→ r(mq) until some peak of prominence
at least τ is reached.2 We call r∗

τ the thus iterated root map, and we note that every
peak of prominence at least τ is a fixed point of r∗

τ . The union of the ascending regions
of the peaks mapped to mp through r∗

τ is referred to as the basin of attraction of mp (of
parameter τ ) in the article, noted Bτ (mp):

∀mp s.t. px − py ≥ τ , Bτ (mp) =
⋃

r∗
τ (mq)=mp

A(mq). (1)

Note that Bτ (mp) contains A(mp) since mp is a fixed point of r∗
τ . More precisely, we have

A(mp) = B0(mp) ⊆ Bτ (mp). In addition, since the iterated root map mq 
→ r∗
τ (mq) is

uniquely defined, the basins of attraction form a partition of the union of all ascending
regions. These basins are our target clusters.

The Discrete Setting. ToMATo takes as input an unweighted simple graph G, whose
vertex set represents the data points and whose edges connect the points according to
some user-defined proximity rule. Each vertex i of G must be assigned a non-negative
value f̃ (i) corresponding to the estimated density at that point. In addition, ToMATo
takes in a nonnegative merging parameter τ , whose choice and use are elaborated in
the following tag. In this discrete setting, the algorithm mimics the process described
previously in the continuous setting by running the following procedures in this order.

(1) (Mode-seeking). To compute the initial clusters, ToMATo iterates over the vertices
of G sorted by decreasing f̃ -values : at each vertex i, it simulates the effect of the
gradient of the underlying density function by connecting i to its neighbor in G with
highest f̃ -value, if that value is higher than f̃ (i). Otherwise, all neighbors of i have
lower values, so i is declared a peak of f̃ . The resulting collection of pseudogradient
edges forms a spanning forest of the graph, and each tree in this forest can be
viewed as the analog within G of the ascending region of a peak of the true density
function in the underlying continuous domain.

(2) (Merging). To handle merges between trees, ToMATo iterates over the vertices of G
again, in the same order, while maintaining a union-find data structure U , where
each entry corresponds to a union of trees of the spanning forest. We call root of
an entry e, or r(e) for short, the vertex contained in e whose f̃ -value is highest. By
definition, this vertex is the root of one of the trees contained in e, that is, a local

2Such a prominent peak is always reached eventually, since the function f has finitely many peaks and since
the root map satisfies f (mq) < f (r(mq)), meaning that r(mq) is more prominent than mq.
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Persistence-Based Clustering in Riemannian Manifolds 41:7

peak of f̃ in G. During the iteration process, the following two different scenarios
may occur when a vertex i is considered.
(a) Vertex i is a peak of f̃ within G, that is, the root of some tree T. Then, i creates

a new entry e in U , in which T is stored, and we let r(e) = i.
(b) Vertex i is not a peak and therefore belongs to some tree stored in an existing

entry ei of U (of which i is not the root). Then, we compute the set E of the
entries of U that contain neighbors of i in G. We iterate over this set in any
order, and for each entry e ∈ E considered, we check whether e 
= ei and
min{f̃ (r(e)), f̃ (r(ei))} < f̃ (i) + τ , that is, whether the two entries differ and at
least one of them has a less than τ -prominent root. If so, then e and ei are
merged into a single entry e ∪ ei in U , and we let r(e ∪ ei) = argmax{r(e), r(ei)} f̃ ,
so in effect the entry with the lower root is merged into the one with the higher
root.

Upon termination, the (merged) clusters stored in the entries of the union-find data
structure U form a partition of the vertex set of G, and their roots are the peaks of f̃
of prominence at least τ within the graph. The output of ToMATo is then the subset
of this collection of clusters that is stored in those entries e such that f̃ (r(e)) ≥ τ . The
rest of the data points is stored in entries with roots lower than τ , so it is treated as
background noise and discarded from the data set.3

In addition to the clustering, ToMATo outputs the lifespans of all the entries that
have been created in the union-find data structure during the merging phase. By anal-
ogy with the continuous setting, an entry is born when it is created in U with a single
tree attached to it as described in scenario (a), and it dies when it gets merged into
another entry with higher root as described in scenario (b). For ease of visualization,
the lifespan is represented as a point (x, y) in the plane, where x is the birth time and
y the death time of the entry (y = −∞ if the entry never gets merged into another
one). It is easy to see that the thus obtained planar diagram of points coincides with
the persistence diagram of the scalar field f̃ when parameter τ is set to +∞, as the
condition min{f̃ (r(e)), f̃ (r(ei))} < f̃ (i) + τ in scenario (b) becomes always trivially satis-
fied and the merging rule is the one prescribed by persistence theory. When τ < +∞,
the entries whose roots are at least τ -prominent never get merged into other entries,
so their corresponding points in the output diagram are projected down vertically onto
the horizontal line y = −∞.

Implementation Details and Complexity. In practice, the mode-seeking and merg-
ing procedures can be run simultaneously during a single pass over the vertices of
the graph G: for each considered vertex i, the approximate gradient at i is computed,
then the possible merges in the union-find data structure U are performed—these
involve only previously visited vertices. The corresponding pseudo-code is given in
Algorithm 1.

The mode-seeking phase takes a linear time in the size of G once the vertices have
been sorted. As for the merging phase, it makes O(n) union and O(m) find queries
to the union-find data structure U , where n and m are respectively the number of
vertices and the number of edges of G. If an appropriate representation is used for U

3This extra filtering step departs from the approach described in the continuous setting. It stems from the
observation that the data points may not be densely sampled over the entire manifold X. Depending on the
proximity rule used in the definition of the neighborhood graph G, the sparseness of the data in low-density
regions may create independent connected components that give birth to spurious clusters with infinite
prominence—see Figure 6 for an illustrative example.
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41:8 F. Chazal et al.

(e.g., a disjoint-set forest [Cormen et al. 2001]), and if the vertex gradients and the
entry roots are stored in separate containers with constant-time access (e.g., arrays),
then the worst-case time complexity of Algorithm 1 becomes O(n log n + mα(n)), where
α stands for the inverse Ackermann function.

As for the space complexity, note that the graph G does not have to be stored entirely
in main memory, since only the neighborhood of the current vertex i is involved at the
ith iteration of the clustering procedure. The main memory usage is thus reduced
to O(n), where n is the number of vertices of G. The total space complexity remains
O(n + m) though, as the graph needs to be stored somewhere (e.g., on the disk).

ALGORITHM 1: Clustering

Input: simple graph G with n vertices, n-dimensional vector f̃ , real parameter τ ≥ 0.

Sort the vertex indices {1, 2, · · · , n} so that f̃ (1) ≥ f̃ (2) ≥ · · · ≥ f̃ (n);
Initialize a union-find data structure U and two vectors g, r of size n;
for i = 1 to n do

Let N be the set of neighbors of i in G that have indices lower than i;
if N = ∅ then

// vertex i is a peak of f̃ within G
Create a new entry e in U and attach vertex i to it;
r(e) ← i; // r(e) stores the root vertex associated with the entry e

else
// vertex i is not a peak of f̃ within G
g(i) ← argmaxj∈N f̃ (j); // g(i) stores the approximate gradient at vertex i
ei ← U .find(g(i));
Attach vertex i to the entry ei;
for j ∈ N do

e ← U .find(j);
if e 
= ei and min{f̃ (r(e)), f̃ (r(ei))} < f̃ (i) + τ then

U .union(e, ei);
r(e ∪ ei) ← argmax{r(e), r(ei)} f̃ ;
ei ← e ∪ ei;

end
end

end
end

Output: the collection of entries e of U such that f̃ (r(e)) ≥ τ .

3. PARAMETER SELECTION

ToMATo takes in three inputs: the neighborhood graph G, the density estimator f̃ , and
the merging parameter τ . Although the freedom left to the user in the choice of these
inputs gives our approach a lot of flexibility, the latter must not come at the expense of
a significant increase in the amount of effort needed to run the program. This is why
this section provides some insights into the choice of parameters.

Neighborhood Graph G. ToMATo relies heavily on the neighborhood information en-
coded in the input graph G. Choosing a relevant neighborhood graph (and thereby a
relevant metric) is a problem faced by many clustering techniques. In our experiments
we primarily used the δ-Rips graph, which connects two data points whenever they lie
within distance δ of each other. This purely metric definition makes it possible to use
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Persistence-Based Clustering in Riemannian Manifolds 41:9

these graphs in arbitrary metric spaces, and to interpret the structure of the obtained
PDs thanks to a sound theoretical framework (see Section 4). The choice of a particu-
lar value for δ corresponds more or less to the choice of a scale at which to inspect the
data. It can be tricky on some instances, where different choices of scale may reveal
different structures. This is why we recommend running ToMATo at several scales,
either sequentially or in parallel. This can be done even for large data sets thanks to
the efficiency of the algorithm. For too large values of δ, there will be no real structure
in the PD, while too small values of δ will produce too many infinitely prominent peaks
in the PD, corresponding to the connected components of the graph. By examining the
PDs obtained at different scales, one can find an appropriate trade-off.

Another popular choice of neighborhood graph is the k-nearest neighbor (k-nn)
graph. Its main advantage is that it remains sparse whatever the layout of the data.
We tested the algorithm with this graph and generally found that it performed well,
recovering the correct clusters under a suitable choice of parameter k. However, to the
best of our knowledge there currently exists no theory that validates these empiri-
cal observations, and in practice we were left with the task of choosing k, which we
accomplished by trial-and-error.

We also ran ToMATo using Delaunay graphs and some of their variants [Toussaint
1980]. These have the great advantage of being parameter-free, and the disadvantage
of creating long edges connecting high-density areas that are far apart, thus leading to
artificial merges between clusters. One way around this issue is to discretize the long
edges and to estimate the density at the newly created nodes, in order to reveal addi-
tional valleys that separate the prominent peaks. This requires the ability to estimate
the density outside the input point cloud, which is generally the case when a Delaunay
graph is built.

Density Estimator f̃ . While the algorithm is agnostic to the choice of density estima-
tor, we experimented with two of them: a truncated Gaussian kernel estimator, and
the distance to a measure estimator4 proposed in Biau et al. [2011]. Each of these esti-
mators uses one parameter, and we refer the reader to the appropriate references for
some insights into the choice of these parameters.

Merging Parameter τ . During the merging phase, ToMATo eventually merges all
clusters of prominence less than τ into clusters of prominence at least τ . In other
words, the choice of τ determines which peaks of f̃ are considered significant. To choose
τ , we run ToMATo twice. In the first run, τ is set to +∞, which makes ToMATo output
the PD of the scalar field f̃ over the graph G, just as the 0-dimensional version of the
standard persistence algorithm [Edelsbrunner et al. 2002] would do. This PD reveals
the topological structure of f̃ , providing the height and prominence of each peak of f̃ .
Hence it can be used to determine a suitable value for τ , to be assigned in a second run
of ToMATo that computes the final clustering.

In cases where the PD of f̃ shows a large gap separating a small set of k highly
prominent peaks from the rest of the structure, we infer that the number of clusters
is likely to be k, and so we set τ to be any value between the prominences of the k
distinguished peaks and the prominences of the rest of the PD. Then, the output of the
second run of ToMATo contains exactly k clusters. Detecting a large gap automatically
can be done by means of the following simple heuristic: we sort the points in the PD by
decreasing prominence (possibly weighted by the corresponding peak heights, to avoid

4Given an integer parameter k, the distance of a point x to the empirical measure of support a finite set of
points P is the square root of the average of the squared distances of x to its k nearest neighbors in P. The
inverse of this quantity is used as density estimator.
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a squeezing effect due to the presence of extremely or even infinitely prominent peaks),
and then we look for the largest drop in the sequence of (weighted) prominences. This
is reminiscent of what is commonly done in spectral clustering for finding a gap in a
Laplacian spectrum, and in fact our prominence gap and the spectral gap play very
similar roles, even if in completely different settings.

In cases where the PD of f̃ does not show any well-separated structure, it still pro-
vides a clear relationship between the choice of parameter τ and the number of clusters
obtained after rerunning ToMATo. The choice of a particular value (or of a collection
of values) for τ depends on the context, and in practice it requires to use additional
application-specific information on the data. This is what we did for instance on the
biological data set to distinguish between several possible choices of τ (see Section 5.2).

4. THEORETICAL GUARANTEES

In this section, we give an intuitive overview of the theoretical guarantees that come
along with ToMATo and validate these heuristics. Formal statements and proofs can
be found in the second part of the article (Sections 6 through 11).

Let X be an m-dimensional Riemannian manifold with positive convexity radius,5
and f : X → R a Lipschitz-continuous probability density function with respect to
the m-dimensional Hausdorff measure. We assume that the input data set P has been
sampled over X according to f in independent and identically distributed fashion, and
that the values of f at the data points and the geodesic distances in X between the data
points are known either exactly or within a small additive error. Finally, we assume
the input graph G to be the δ-Rips graph built over P using the estimated geodesic
distances, for some user-defined parameter δ.

Definition 4.1. Given two values d2 > d1 ≥ 0, the persistence diagram D0f is called
(d1, d2)-separated if every point of D0f lies either in the region D1 above the diagonal
line y = x − d1, or in the region D2 below the diagonal line y = x − d2 and to the right
of the vertical line x = d2.

This condition formalizes the intuitive notion that the points of D0f can be separated
between prominent peaks (region D2) and topological noise (region D1), as illustrated
in Figure 3. In this respect, it acts very similarly to a signal-to-noise ratio condition:
the larger the prominence gap d2 − d1, the more clearly the prominent peaks are
separated from the noise. In the limit case where d1 = 0, all peaks of f are at least
d2-prominent and none of them is viewed as noise. The additional condition that the
points of D2 must lie to the right of the vertical line x = d2 follows the description of the
extra filtering step performed by the algorithm after the merging phase, and it stems
from the fact that only some superlevel-set of the density f can be densely sampled by
the data points.

Our first result relates the number of clusters computed by the algorithm to the
number of prominent peaks of f . Using the stability of persistence diagrams [Chazal
et al. 2009, 2012] to relate the diagram of f to the diagram output by step 2 of the al-
gorithm, we can prove that the regions D1 and D2 remain disjoint under perturbations
caused by our approximation, and can therefore be separated using any value within
a certain range for the thresholding parameter τ . With such values of parameter τ as
input, the algorithm computes the correct number of clusters with high probability.

5Recall that the convexity radius of X is the infimum over the points x ∈ X of the supremum over the values
r ≥ 0 such that any geodesic ball of center x and radius r′ < r is geodesically convex, that is, any two points
in that ball are joined by a unique geodesic of length less than 2r′, and this geodesic is contained in the ball.
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Persistence-Based Clustering in Riemannian Manifolds 41:11

Fig. 3. The separation of the persistence diagram D0f between prominent peaks (region D2) and topological
noise (region D1).

RESULT 1 (THEOREM 9.2). If D0f is (d1, d2)-separated and if the Rips parameter
δ > 0 is smaller than a fraction of d2−d1 and of the convexity radius of X, then there is a
range [d1+O(δ), d2−O(δ)] of values of the thresholding parameter τ such that the num-
ber of clusters output by the algorithm is equal to the number of peaks of f of prominence
at least τ with probability at least 1 − e−�(n), where n is the number of data points.

Explicit bounds are given in Theorem 9.2. The big-O notations hide factors propor-
tional to the Lipschitz constant c of f . The big-� notation hides a factor increasing
monotonically with c and δ and depending on certain geometric quantities of the man-
ifold X. As can be seen fro the statement, the larger the prominence gap d2 − d1, the
larger the range of admissible values for τ , and of course the more easily this range can
be detected. In the meantime, the smaller δ, the larger the range, but also the smaller
the probability of success.6

Another question is how well the output of the algorithm approximates the basins
of attraction of the prominent peaks over the point cloud, assuming that f is of Morse
type. In full generality, this is a hopeless question since the basins of attaction are not
stable even in the smooth case. There are indeed many examples of very close functions
having very different basins of attraction, and clearly the algorithm cannot provably-
well approximate the unstable parts of the basins. An illustrative example is given in
Figures 4 and 5. Yet, we can ensure that the output of the algorithm approximates
some stable parts of the basins.

RESULT 2 (THEOREM 10.1). Under the same hypotheses as in Result 1, it holds
with probability at least 1 − e−�(n) that for every point p ∈ D2 the algorithm outputs
a cluster C such that C ∩ Fα = Bτ (mp) ∩ P ∩ Fα for all values α ∈ [ατ (mp) + d1 +
O(δ), f (mp)), where mp is the peak of f corresponding to point p, where Bτ (mp) denotes
the basin of attraction of mp in the underlying manifold X, and where ατ (mp) is the first
value of α at which Bτ (mp) gets connected to the basin of attraction of another peak of f
of prominence at least τ in the superlevel-set Fα.

In plain words, cluster C is the trace of the basin of attraction Bτ (mp) over the point
cloud P, until (approximately) the value ατ (mp) at which Bτ (mp) meets the basin of
another τ -prominent peak of f . Beyond that value, the cluster may start diverging from
the basin, which itself may start being unstable, as illustrated in Figures 4 and 5. As

6This follows the intuition that a minimum point density is required for the connectivity of the δ-Rips graph
to reflect the one of some superlevel-set of the density f .
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Fig. 4. A function f : [0, 1]2 → R with unstable basins of attraction. The three peaks m, m1, m2 have respec-
tive prominences f (m) − f (s2), f (m1) − f (s1), and +∞. When τ > f (m) − f (s2), the ascending region A(m) is
merged into the basin of attraction Bτ (m2) at the value α = f (s2). However, since f (s2) − f (s1) can be made
arbitrarily small compared to f (m1)− f (m), arbitrarily small perturbations of f compared to the prominence
gap f (m1) − f (m) + f (s2) − f (s1) merge A(m) into Bτ (m1) instead, thus making A(m) an unstable part of
Bτ (m2). In the discrete setting, where the square [0, 1]2 is replaced by a point cloud, different samplings
of the square or different values of parameter δ lead to different merges of the cluster associated with m.
This erratic behavior of the algorithm only stops when δ becomes small enough compared to the (arbitrarily
small) quantity f (s2) − f (s1).

Fig. 5. Outputs of the algorithm obtained from a uniform ε-sample P of the unit square (ε = 0.15) endowed
with the function f of Figure 4. We chose a value of τ that gives two clusters, and we used three different
values for the Rips parameter: δ = 0.27 (left), δ = 0.28 (center), δ = 0.6 (right). Notice how some values of δ

induce a correct merge of A(m) into Bτ (m2) whereas others induce an incorrect merge of A(m) into Bτ (m1).
The limit value of ε below which no such failure of the algorithm occurs depends on the arbitrarily small
quantity f (s2) − f (s1).

will be shown in Section 10 (Eq. (6)), we have ατ (mp) ≤ f (mp) − d2, so the length of the
interval of values of α for which C is the trace of Bτ (mp) over P is at least d2−d1−O(δ).

Our proof of Result 2 also shows an important fact, namely: that each basin of at-
traction Bτ (mp) is stable under small perturbations of the function f , at least between
values f (mp) and ατ (mp) + d1 + O(δ). This fact opens the door to a more statistical
approach to clustering: since we know the top parts of the basins (and therefore of the
clusters computed by the algorithm) are stable under small perturbations of the func-
tion, we can conduct multiple runs of the algorithm with random perturbations of the
function, and then find correspondences between the outputs of different runs. Each
point can then be assigned a quantitative measure of its classification stability over
the runs.

Note finally that the probabilistic nature of our theoretical results does not stem
from the algorithm itself, which is deterministic, but from the fact that the input data
set must form a dense sampling of some superlevel-set of f for the algorithm to produce
a faithful approximation of D0f . This event can only occur with some probability since
the data points are sampled at random from f .
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Fig. 6. The twin spirals data set from Figure 2, processed using a smaller Rips parameter: (a) the persis-
tence diagram; (b) the final clustering with late appearing connected components filtered out (in black).

5. EXPERIMENTAL RESULTS

We focused on three types of inputs: (1) structured synthetic data sets in R
2 and R

3,
where direct data inspection allowed us to check our results visually; (2) simulated
alanine-dipeptide protein conformations in R

21, where the knowledge of the intrinsic
parameters of the simulation allowed us to check our results a posteriori; (3) image
pixels distributions in color space, where the quality of the clustering could be checked
visually on the resulting image segmentation. In our experiments we used the two
estimators mentioned in Section 3: truncated Gaussian kernel and distance to a mea-
sure. Our implementation was done in C++, and it was run on a PC with 8 CPU cores
running at 2.4 GHz and 8 GB of RAM.7 The code is publicly available at the following
address: http://geometrica.saclay.inria.fr/data/ToMATo/.

5.1. Synthetic Data

Our first data set consists of 10k points sampled from two twin spirals in the unit
square, shown in Figure 2(a). Using a δ-Rips graph, with δ = 0.04, and the distance to
a measure density estimator, we obtain the PD in Figure 2(c). Choosing τ by the gap
heuristic we obtain the clustering shown in Figure 2(d). A smaller Rips parameter,
δ = 0.02, gives many infinitely persistent components (Figure 6(a)), with all but one
appearing late in the PD (near the lower-left corner). Components in this part of the PD
are discarded by the extra filtering step performed by the algorithm after completion
of the merging phase, which removes much of the background noise (Figure 6(b)).

We also experimented with the k-nn graph (taking k = 35) and the Delaunay graph.
The obtained PDs are shown in Figure 7. Although not identical, they share the same
overall structure with 2 prominent clusters, and the resulting clusterings are virtually
identical to Figure 2(d).

To illustrate the scalability of our approach, we generated a second data set with
about 100k samples from the same probability distribution. It only took ToMATo a few
seconds to cluster this data set using the Rips graph. The result is shown in Figure 8.
The PD is much better separated than previously because the approximation of the
PD of the underlying density function provably improves as the number of samples
increases, as stated in our theoretical results.

7Each run used only one core and a fraction of the available memory.
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Fig. 7. PDs obtained on the twin spirals data set of Figure 2 using (a) the k-nn graph with k = 35 and
(b) the Delaunay graph. The resulting clusterings are virtually the same as in Figure 2(d).

Fig. 8. The twin spirals data set with 100k points, processed using the Rips graph: (a) the persistence
diagram; (b) the final clustering.

For comparison, we ran spectral clustering [Chen et al. 2008] on the twin spirals
data set with 10k samples, using the k-nn graph. The result, shown in Figure 9, was
consistent across choices of input parameters. It is explained by the effect of the back-
ground noise on the k-means procedure in eigenspace. We were unable to run the code
on δ-Rips graphs or on the data set with 100k points because of numerical issues in
the eigenvalues computation.

We also considered another synthetic example, made of four noisy interlocked rings
in R

3 with uniform background noise added (Figure 10(a)). Spectral clustering again
failed on this data set (Figure 10(b)), for the same reason as before. It did obtain correct
clusters with much of the background noise removed, but this required significant
tweaking of the number of neighbors: too many resulted in bad clustering and too few
resulted in numerical instability in the computation. For comparison, Figure 11 shows
the outputs of ToMATo.

5.2. Alanine-Dipeptide Conformations

Next we cluster conformations of the alanine-dipeptide molecule. The data consist of
short trajectories of conformations generated by atomistic simulations of this small
protein [Chodera et al. 2006]. Accurate simulation by molecular dynamics must be
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Fig. 9. Result of spectral clustering on the twin spirals data set with 10k samples: (a) a plot of the first 10
eigenvalues, and (b) the obtained clustering.

Fig. 10. (a) The rings data set with the estimated density function. (b) The result obtained using spectral
clustering.

Fig. 11. Outputs of ToMATo on the rings data set: the obtained PDs with (a) δ-Rips graph, (b) k-nn graph,
and (c) Delaunay graph. (d) Clustering obtained with the δ-Rips graph.

done at the atomic scale, generally limiting the length of simulations to picoseconds
because of the small time steps needed to integrate stiff bond length and angle poten-
tials. Biologically interesting dynamics, however, often occur on the scale of millisec-
onds. One solution to this issue is to generate a coarser model using metastable states
[Huisinga and Schmidt 2005]. These are conformational clusters between which tran-
sitions are infrequent and independent. Such coarser representations are tractable
using Markovian models [Chodera et al. 2006, 2007a, 2007b] while still allowing for
useful simulations. A key problem is the discovery of these metastable states.

The alanine-dipeptide was chosen as example because its dynamics are relatively
well understood: it is known that there are only two relevant degrees of freedom, and
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Fig. 12. Biological data set: (a) input point cloud, projected down to the (φ, ψ) domain for visualization
purposes; (b) output PD represented on a log-log scale; (c) output clustering with 7 clusters.

Fig. 13. Quantitative evaluation of the quality of the output of ToMATo on the biological data set:
(a) metastability of the obtained clustering versus the number of clusters; (b) corresponding intervals sorted
by decreasing prominence.

these are known a priori. This makes it possible to visualize the clustering results
by projecting the points onto these coordinates which are referred to as φ and ψ (Ra-
machandran plots). In previous work [Chodera et al. 2006], clustering was done man-
ually into 6 clusters. Subsequent work [Chodera et al. 2007a] tried to automatically
recover these 6 clusters, as we did using our method.

Our input consisted of 960 trajectories, each one made of 200 protein conformations,
each conformation being represented as a 21-dimensional vector with 3 coordinates
per atom of the protein. For our experiments we took the trajectories and treated the
conformations as 192,000 independent samples in R

21. The metric used on this point
cloud was root-mean-squared deviation (RMSD) after the best possible rigid matching
computed using the method of [Theobald 2005]. The RMSD distance matrix was the
only input to our clustering scheme. The output is shown in Figure 12.

It appears from the persistence diagram that there could be anywhere from 4 to 7
clusters. The first 4 clusters are much more prominent than the following 3 clusters.
Since there is clearly a multiscale behavior, we plot the PD on a log-log scale. From
this perspective, the first 4 clusters are still prominent but relative to their height the
5th and 6th clusters are prominent as well. While the 7th cluster is not as prominent,
it is still more prominent than the following clusters, suggesting that 7 is also a
reasonable number of clusters. To confirm this insight we came back to the original
problem of finding clusters that maximize the metastability (as defined in Huisinga
and Schmidt [2005]): we computed the metastabilities of all our candidate clusterings,
and we reported them in the table and plot of Figure 13. These results show that the
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metastability increases linearly with the number of clusters, up to 7 clusters, after
which it starts leveling off. So, choosing 4, 5, 6, or 7 clusters should not affect the
metastability significantly, thus confirming the observations made from the PD. This
is an example of a scenario where the insights into the number of clusters provided
by the PD can be validated by exploiting further application-specific information on
the data.

Computing the input RMSD distance matrix took the most time: all pairwise dis-
tances between conformations were estimated, which took about a day of computa-
tion. In order to save space, for each conformation we only recorded the distances to
its 15,000 closest conformations in the matrix. On this input, ToMATo only took a
few minutes to run. Meanwhile, the amount of memory used remained approximately
constant, which enabled us to make several runs in parallel to find a suitable Rips
parameter δ.

5.3. Image Segmentation

Finally, we use our approach to segment color images. Turning image segmentation
into a clustering problem can be done by mapping the pixels in the image to points
in some color space like Luv, where they are to be clustered according to the basins
of attraction of the peaks of their underlying density function. The segments in the
image are then the pre-images of the clusters through the mapping. This is the ap-
proach taken, for example, by Mean-Shift [Comaniciu and Meer 2002]. The reason
why Luv is preferred over other color spaces like RGB is because the Euclidean dis-
tance in Luv space is known to capture the subjective notion of perceptual difference
reasonably well.

Clustering in Luv space is oblivious to proximity relations between pixels in the
image, allowing pixels that are far apart in the image to end up in a same cluster.
Depending on the context, this property can be viewed either as a feature or as a
drawback. Removing it requires to take spatial information into account during the
clustering phase, which is usually done by appending the two pixel coordinates to the
three color channels, thus yielding a 5-dimensional point cloud. The obvious drawback
is that the contributions of color and spatial coordinates must be balanced properly
in the computation of distances, because the scales of the color channels and spatial
coordinates are unrelated. This is an issue in its own right.

In the context of our method, it is natural to consider the pixels in the image domain
and in Luv space separately, building the neighborhood graph G in the image domain
while estimating the density in Luv space. An advantage of this approach is that, due
to the grid structure of the image, the number of neighbors of a pixel in the graph G
is constant, and therefore the graph is sparse. However, applied naively, this approach
does not work, since pixels belonging to well-separated high-density areas in Luv space
can be neighbors in the image, thus leading to the premature merge of some of these
areas by the algorithm. For instance, consider a black-and-white image with the same
number of black and white pixels. Then, the data points in Luv space are gathered at
two distinct hotspots: the black spot, and the white spot. Now, the density function is
constant over the image domain, and since black and white regions are neighbors in
the image, they all get merged together (resulting in a single cluster) whatever small
positive value is assigned to the prominence threshold τ , and regardless of the actual
black and white patterns in the image.

To overcome this defect, we modify the proximity rule used for building G as follows,
so that it also takes color information into account: two pixels are connected in G if
and only if they are close both in the image domain and in Luv space. In practice the
spatial constraint is checked first, so that the neighborhoods of the data points have
constant size from the beginning. Typically, in practice we used 5 × 5 windows in the
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Fig. 14. Outputs of ToMATo in color image segmentation. Top row: input color images. Middle row: his-
tograms of the prominences of the peaks of the estimated density in the neighborhood graph. Each arrow
shows the choice of parameter τ made by the user. Bottom row: segmentation obtained after rerunning the
clustering algorithm with the chosen value of τ .

image domain, and the graph construction and clustering phases took barely more
than a second each on images with a few hundreds of thousands of pixels. Computing
the truncated Gaussian estimator in Luv space was more expensive, however it only
took 10 to 20 seconds on each image using the ANN library [Mount and Arya 2010] for
proximity queries.

Since natural images have textures, the corresponding point clouds in Luv space
contain lots of very small clusters independent from the rest of the data. As a result of
our proximity rule, the outputs of ToMATo also contained a lot of very small clusters,
which we simply discarded in a post-processing step—in practice, all clusters contain-
ing fewer than 100 points were discarded, and the corresponding pixels were marked
in black in the segmented images.

The results obtained with this approach are shown in Figure 14. For each input im-
age we show a histogram of the prominences of the peaks detected by the algorithm
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(ignoring the highest peak, whose prominence is infinite), as well as the segments
obtained after choosing a suitable value for parameter τ (this value is indicated by
the arrow in each histogram). The segments are shown in fake colors, so the segmen-
tation structure is better highlighted: for instance, one can see that on the mandrill
image the algorithm discriminated the left cheek from the right cheek and the left eye
from the right eye, due to their separation in the image domain. Again, the black pix-
els in the segmentation results do not correspond to a single cluster, but rather to a
myriad of clusters with fewer than 100 points each, which were discarded in a post-
processing step. Focusing now on the histograms, observe that none of them exhibits
a clear prominence gap. Instead, they exhibit a series of smaller gaps, which suggests
that the correct number of clusters may not be readily identified, thus following the
widely accepted idea that image segmentation is an ill-posed problem. Nevertheless,
the histograms still provide a precise understanding of the relationship between the
choice of parameter τ and the number of obtained segments on each image.

Part II. Theoretical Analysis

Our analysis makes consistent use of topological persistence theory, as introduced in
Edelsbrunner et al. [2001] and later developed in Edelsbrunner et al. [2002], and
Zomorodian and Carlsson [2005]. We therefore begin this part of the article with a
brief description of the theory (Section 6), referring to two recent surveys [Chazal and
Cohen-Steiner 2007; Edelsbrunner and Harer 2007] for further details.

The analysis per se is then carried out in Sections 7 through 11, where X, f and P
denote the following mathematical objects:

— X is an m-dimensional Riemannian manifold with positive convexity radius 	(X),
— f : X → R is a c-Lipschitz probability density function with respect to the m-

dimensional Hausdorff measure on X,
— P is a finite set of points sampled over X according to f in independent and identi-

cally distributed fashion.

In Sections 7 through 10, we consider a simplified model for our input, where the val-
ues of f at the points of P and the pairwise geodesic distances between these points are
assumed to be known exactly. We also take the δ-Rips graph Rδ(P) as the neighborhood
graph used by the algorithm. The analysis proceeds as follows:

(1) we show that some superlevel-set of f is densely sampled by P with high probability
(Section 7);

(2) under this condition and a relevant choice of parameter δ, we show that the persis-
tence diagram computed by the clustering algorithm approximates a large part of
the persistence diagram of f (Section 8);

(3) we deduce that the algorithm can recover the correct number of clusters under
some sufficient signal-to-noise ratio condition on the persistence diagram of f
(Section 9);

(4) we show that under the same condition the clusters computed by the algorithm ap-
proximate the stable parts of the basins of attraction of the peaks of f (Section 10).

Then, in Section 11, we consider a more realistic model for our input, where density
values and geodesic distances are known with some small uncertainty, and we study
the stability of the output of the algorithm with respect to small perturbations of the
input.
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6. BACKGROUND ON TOPOLOGICAL PERSISTENCE

We use singular homology with coefficients in a commutative ring, assumed to be a
field and omitted in our notations. We refer the reader to Hatcher [2001] for a thorough
introduction to homology theory.

A persistence module X is a finite directed system of finite-dimensional vector spaces
connected by linear maps:

Xm −→ Xm−1 −→ · · · −→ X1 −→ X0.

The structure of this system is encoded as a planar point set, called the persistence
diagram of X and noted DX . Formally, DX is defined as a multiset of points in the
extended plane R

2
, where R = R ∪ {−∞, +∞}, contained in the union of the extended

diagonal 
 = {(x, x) : x ∈ R} and of the extended grid {(i, j ) : m ≥ i > j ≥ 0} ∪
{(i, −∞) : m ≥ i ≥ 0}. The multiplicities of the points of 
 are set to +∞, while
the multiplicities of the grid points are defined by finite alternating sums of ranks of
composed homomorphisms Xl → Xk, l > k [Chazal et al. 2009; Cohen-Steiner et al.
2005]. Since all the spaces are finite-dimensional, these ranks are finite, and so the
diagram DX only contains finitely many points off the diagonal 
. Intuitively, every
such point (i, j ) encodes the lifespan of some generator appearing at time i and dying
at time j < i in the sequence of vector spaces.8

In the following, we consider persistence modules defined by continuous sequences
of vector spaces {Xα}α∈R, connected by linear maps Xα → Xβ for all α ≥ β, such that
Xα → Xα is the identity map and Xα → Xβ → Xγ commute with Xα → Xγ for all α ≥
β ≥ γ . The definition of persistence diagram can be extended to this continuous setting
via a limit process [Chazal et al. 2009], under some tameness condition stating that the
homomorphisms Xα → Xβ have finite ranks for all α > β. Under this condition, the
persistence diagram DX may contain infinitely many points off the extended diagonal

, however all its accumulation points belong to 
, so DX is finite outside any offset
of 
.

A natural measure of proximity between persistence diagrams is the bottleneck dis-
tance [Cohen-Steiner et al. 2005]. Given two tame persistence modules X and Y, a
multi-bijection γ between DX and DY is a bijection

γ :
⋃

p∈|DX |

μ(p)∐
i=1

p →
⋃

q∈|DY |

μ(q)∐
i=1

q,

where |DX | denotes the support of DX , that is, the set DX considered as a subset of R
2

without any multiplicities, and where μ(p) denotes the multiplicity of point p ∈ |DX |
in DX . Note that such bijections always exist since the points on the diagonal 
 have
infinite multiplicities. The bottleneck distance d∞

B (DX , DY) between DX and DX is the
quantity minγ maxp∈DX ‖p − γ (p)‖∞, where γ ranges over all multibijections between
DX and DY, and where ‖ · ‖∞ denotes the l∞-norm.

Stability is an important property of persistence diagrams. It can be stated in
terms of a measure of proximity between persistence modules called interleaving
[Chazal et al. 2009]. Formally, two tame persistence modules X and Y are (strongly)
ε-interleaved if there exist two families of homomorphisms {φβ : Xβ → Yβ−ε}β∈R and

8Note that we depart from the usual way of introducing persistence by reversing the time flow, which goes
from +∞ to −∞ here. This choice is purely formal and does not affect the validity of the theory.

Journal of the ACM, Vol. 60, No. 6, Article 41, Publication date: November 2013.



�

�

�

�

�

�

�

�

Persistence-Based Clustering in Riemannian Manifolds 41:21

{ψβ : Yβ → Xβ−ε}β∈R, such that for all values β ′ ≥ β the following diagrams of vector
spaces commute:

Xβ ′+ε

φβ′+ε ����������
�� Xβ−ε

Yβ ′ �� Yβ

ψβ

����������

Xβ ′−ε �� Xβ−ε

Yβ ′ ��

ψβ′
����������
Yβ

ψβ

�����������

Xβ ′ �� Xβ

φβ

�����
���

��

Yβ ′+ε

ψβ′+ε

����������
�� Yβ−ε

Xβ ′ ��

φβ′ ���������� Xβ

φβ

�����������

Yβ ′−ε �� Yβ−ε

(2)

Intuitively, the commutativity of these diagrams means that every generator appear-
ing (respectively, dying) in X at a given time β ∈ R must appear (respectively, die)
in Y within the time range [β − ε, β + ε], and vice-versa. The currently most general
stability theorem in persistence theory says that any ε-interleaved pair of tame per-
sistence modules has ε-close persistence diagrams in the bottleneck distance [Chazal
et al. 2009, 2012].

In the context of clustering, we will primarily focus on persistence modules X
induced at 0-dimensional homology level by the sequence of superlevel-sets of a
real-valued function f . Consider the nested family of closed superlevel-sets Fα =
f −1([α, +∞)), and take for {Xα}α∈R the induced family of 0-dimensional homology
groups H0(Fα), connected by the homomorphisms H0(Fα) → H0(Fβ) induced by the
canonical inclusions Fα ↪→ Fβ for all α ≥ β. This persistence module encodes the evo-
lution of the path-connectivity of the superlevel-sets Fα as parameter α decreases from
+∞ to −∞, and its persistence diagram DX is precisely what we called the persistence
diagram of f (noted D0f ) in the first part of the article.

7. SAMPLING THE SUPERLEVEL-SETS OF f
In our analysis, we use the following classical notion of sampling density, where dX

denotes the geodesic distance in the Riemannian manifold X.

Definition 7.1. Given a subset Y ⊆ X and a parameter ε > 0, P is a geodesic ε-
sample of Y if every point of Y lies within geodesic distance ε of P, that is: ∀y ∈ Y,
minp∈P dX(y, p) ≤ ε.

Since the points of P are drawn according to f in independent and identically dis-
tributed fashion, the more points are drawn the more chances we have that P sat-
isfies the above condition over some prescribed superlevel-set Fα. This simple fact is
proved formally in Theorem 7.2. Before stating the theorem, we need to introduce a
few measure-theoretic quantities. Given a subset A of X and a parameter r > 0, let
Vr(A) ≥ 0 denote the infimum of the Hausdorff measures achieved by geodesic balls of
radius r centered in A, that is:

Vr(A) = inf
x∈A

Hm(BX(x, r)), where BX(x, r) = {y ∈ X, dX(x, y) ≤ r}. (3)

Let also Nr(A) ∈ N ∪ {+∞} be the r-covering number of A, that is, the minimum number
of closed geodesic balls of same radius r needed to cover A (the balls do not have to be
centered in A).

THEOREM 7.2. Let X be an m-dimensional Riemannian manifold, and f : X → R a
c-Lipschitz probability density function. Consider a set P of n points sampled according
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to f in independent and identically distributed fashion. Then, for any parameters ε > 0
and α > cε, we are guaranteed that P forms an ε-sample of Fα with probability at least
1 − Nε/2(Fα) e−n(α−cε)Vε/2(Fα).

PROOF. If Nε/2(Fα) = +∞ or Vε/2(Fα) = 0, then the lower bound on the probability
of success given in the conclusion is nonpositive, therefore its holds trivially.

Assume from now on that Nε/2(Fα) < +∞ and Vε/2(Fα) > 0. Consider a family
{Bi}1≤i≤l of closed geodesic balls of same radius ε

2 such that Fα ⊆ ⋃l
i=1 Bi and l =

Nε/2(Fα) is minimal. For each integer i in the range [1, l], let pi be a point of Bi ∩ Fα.
Such a point exists because otherwise the cover would not be minimal. Since f is c-
Lipschitz, at every point x ∈ Bi we have f (x) ≥ f (pi) − c dX(x, pi) ≥ α − cε > 0.
Therefore,

∀i ∈ {1, . . . , l},
∫

Bi

f dHm ≥ (α − cε)Hm(Bi) ≥ (α − cε)Vε/2(Fα).

Let Ei denote the event that P ∩ Bi = ∅. Then, ∪iEi is the event that at least one
ball Bi contains no point of P. When the complement of this event occurs, the triangle
inequality tells us that P is a geodesic ε-sample of Fα, and so our goal is to work
out an upper bound on the probability Pr[∪iEi]. For each event Ei taken separately,
we have

Pr[Ei] =
(

1 −
∫

Bi

f dHm
)n

≤ (
1 − (α − cε)Vε/2(Fα)

)n .

Then, by the union bound, we have

Pr[∪iEi] ≤
l∑

i=1

Pr[Ei] ≤ l
(
1 − (α − cε)Vε/2(Fα)

)n .

Observe now that the quantity e−x + x − 1 is nonnegative for all x ≥ 0. Letting x be
equal to (α − cε)Vε/2(Fα), we obtain

1 − (α − cε)Vε/2(Fα) ≤ e−(α−cε)Vε/2(Fα),

which implies

Pr[∪iEi] ≤ l
(
1 − (α − cε)Vε/2(Fα)

)n ≤ l e−n(α−cε)Vε/2(Fα) = Nε/2(Fα) e−n(α−cε)Vε/2(Fα).

Theorem 7.2 can be interpreted in various different ways.

— When the probability density function f is given and a fixed superlevel-set Fα (α >
0) is considered, the theorem ensures that after drawing sufficiently many points
according to f in independent and identically distributed fashion the superlevel set
Fα will be densely sampled with high probability.

— Conversely, when the set P of sample points is fixed and a target sampling pa-
rameter ε is given, the theorem ensures that for large enough values9 of α the
superlevel-set Fα is ε-sampled by P with high probability. In particular, α has to be
larger than cε.

In both scenarios, the probability of success is influenced by two quantities that
are intrinsic to the Riemannian manifold X: the covering number Nε/2(Fα), and the
minimum geodesic ball measure Vε/2(Fα). In particular, the probability of success can
be positive only when Nε/2(Fα) is finite and Vε/2(Fα) is positive, two conditions that

9As α grows, Nε/2(Fα) decreases while Vε/2(Fα) increases, therefore the probability of success increases.
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are met by a large class of Riemannian manifolds X, including the ones with bounded
absolute sectional curvature (among which are the compact Riemannian manifolds
and the Euclidean spaces).

LEMMA 7.3. If X is a complete Riemannian manifold with bounded absolute sec-
tional curvature, then for any α > 0 and any ε < 2	(X) we have Nε/2(Fα) < +∞ and
Vε/2(Fα) > 0.

PROOF. Let α > 0. Since X is complete with bounded absolute sectional curva-
ture, the Bishop-Gunther inequality [Gallot et al. 2004, Theorem 3.101] ensures that
Vr(X) > 0 for all values r within the range (0, 	(X)). This holds in particular for r = ε/2,
and so we have Vε/2(Fα) ≥ Vε/2(X) > 0.

To show that Nε/2(Fα) is finite, take any ε
4 -packing of Fα, that is, any set S ⊆ Fα

such that dX(s, s′) > ε
2 for all pairs of points s, s′ ∈ S, s 
= s′. Let r = min{ α

2c , ε
4 } > 0.

Since f is c-Lipschitz, we have

∀s ∈ S, ∀x ∈ BX(s, r), f (x) ≥ f (s) − cr ≥ α

2
,

which means that the geodesic ball BX(s, r) is included in the superlevel-set Fα/2. More-
over, the geodesic balls in the collection {BX(s, r)}s∈S are pairwise-disjoint since r ≤ ε

4
and S is an ε

4 -packing. As a result, we have

Hm(Fα/2) ≥ Hm

⎛
⎝⋃

s∈S

BX(s, r)

⎞
⎠ =

∑
s∈S

Hm (BX(s, r)) ≥ Vr(Fα) |S|. (4)

Now, since f is a probability density function, we have

1 =
∫
X

f dHm ≥
∫

Fα/2
f dHm ≥ α

2
Hm(Fα/2). (5)

It follows from Eqs. (4)–(5) that |S| ≤ 2
α Vr(Fα)

. Since this inequality holds for any ε
4 -

packing S of Fα, we conclude by the Kolmogorov-Tikhomirov inequality [Kolmogorov
and Tikhomirov 1961] that Nε/2(Fα) ≤ 2

α Vr(Fα)
, which is finite since both α and Vr(Fα)

are positive.

8. APPROXIMATING THE PERSISTENCE DIAGRAM OF f
Recall that in our analysis we are assuming the neighborhood graph used by the clus-
tering algorithm to be the δ-Rips graph Rδ(P). In this section, we are also assuming
that the merging parameter τ is set to +∞.

During the merging phase (described in Section 2), the algorithm builds a nested
family of subgraphs of Rδ(P) by inserting the vertices one at a time, in decreasing
order of their function values. Each time a vertex v is inserted, all the edges of its upper
star (i.e., the edges of Rδ(P) that connect v to vertices with higher function values) are
inserted as well. We call this family the upper-star Rips filtration, noted Rf

δ(P), and we
write it formally as follows:

Rf
δ(P) = {Rδ(P ∩ Fα)}α∈R,

where Rδ(P ∩ Fα) is the δ-Rips graph of the vertex subset P ∩ Fα, and where parameter
α decreases from +∞ to −∞. Since each graph Rδ(P ∩ Fα) is finite, the family Rf

δ(P)
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induces a tame persistence module at 0-dimensional homology level. The persistence
diagram output by the algorithm is precisely the persistence diagram of this module,
noted D0Rf

δ(P), and our goal is to determine to what extent it is close to D0f .
This scenario is reminiscent of the one considered in Chazal et al. [2011], where the

following approximation result was proven.10

THEOREM 8.1. [CHAZAL ET AL. 2011]. Let X be a compact Riemannian manifold,
possibly with boundary, and f : X → R a c-Lipschitz function. Let also P be a geodesic
ε-sample of X. If ε < 1

4	(X), then for any δ ∈ [4ε, 	(X)), the bottleneck distance between

D0f and D0Rf
δ(P) is at most cδ.

Unfortunately, this result is not directly applicable in our context because our sce-
nario differs in the following crucial ways:

(1) in our case, the manifold X may not be compact; for instance, when it is some
Euclidean space R

m;
(2) in our case, the point cloud P may not be dense over the entire manifold X, es-

pecially when the points are drawn from a probability distribution whose support
does not cover X entirely.

Our main result (Theorem 8.2) addresses these two issues, assuming that the point
cloud P forms a dense sampling of some superlevel-set of the function f , as guaranteed
with high probability by Theorem 7.2. In the statement of the theorem, QNE

α , QSE
α , QSW

α ,
and QNW

α denote respectively the quadrants (α, +∞] × (α, +∞], (α, +∞] × [−∞, α],

[−∞, α] × [−∞, α], and [−∞, α] × (α, +∞] in the extended plane R
2
.

THEOREM 8.2. Let X be a Riemannian manifold, possibly noncompact, possibly
with boundary. Assume that its convexity radius 	(X) is positive. Let P ⊆ X be a finite
point cloud and f : X → R a c-Lipschitz function. Then, for any positive δ < 	(X), for any
α ∈ R such that P is a geodesic δ

4 -sample of Fα = f −1([α, ∞)), there is a multibijection

γ : D0f → D0Rf
δ(P) such that:

(i) ∀p ∈ D0f ∩ QNE
α , ‖p − γ (p)‖∞ ≤ cδ;

(ii) ∀q ∈ D0Rf
δ(P) ∩ QNE

α , ‖γ −1(q) − q‖∞ ≤ cδ;
(iii) ∀p ∈ D0f ∩ QSE

α , |px − γ (p)x| ≤ cδ;
(iv) ∀q ∈ D0Rf

δ(P) ∩ QSE
α , |γ −1(q)x − qx| ≤ cδ.

The theorem is illustrated in Figure 15 (left). Assertions (i)–(ii) ensure that the
multi-bijection γ does not move the points of both diagrams by more than cδ within the
upper-right quadrant QNE

α corresponding to the superlevel-set of f that is δ
4 -sampled

by P. In cases where P is a δ
4 -sample of the entire manifold X (α = −∞), assertions

(i)–(ii) imply that the bottleneck distance between both persistence diagrams is at most
cδ, as stated in Theorem 8.1.

Assertions (iii)–(iv) provide weaker guarantees in the lower-right quadrant QSE
α , by

ensuring that every 0-dimensional homology generator appearing at time αb > α in

10The result of Chazal et al. [2011] holds in fact for homology groups of arbitrary dimensions, but it uses
two upper-star Rips filtrations in parallel in the algorithm: Rf

δ/2(P) and Rf
δ(P). As reported in Section 4.3 of

that article, in the special case of 0-dimensional homology, using both filtrations or only Rf
δ(P) gives exactly

the same results.
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Fig. 15. Left: the multi-bijection of Theorem 8.2. Right: for the proof of Lemma 8.3.

the superlevel-sets filtration of f must appear within [αb −cδ, αb + cδ] in the upper-star
filtration Rf

δ(P), and vice-versa. By contrast, death times are not fully controlled: if the
homology generator dies at time αd < α in the superlevel-sets filtration of f , then all
we can say is that its death time in Rf

δ(P) must be less than α + cδ, because if it were
not then by (ii) the point of D0f corresponding to the generator would be located in
QNE

α instead of QSE
α .

Finally, due to the potentially low sampling density outside the superlevel-set Fα,
there is no guarantee concerning the portion of D0f lying in the quadrant QSW

α located
to the left of the vertical line x = α. This part of the diagram corresponds indeed to
homological generators appearing at times less than α in the superlevel-sets filtration
of f , which may or may not be captured in Rf

δ(P).

PROOF OF THEOREM 8.2. The key to the proof of the theorem is the following tech-
nical result, whose purely algebraic proof is deferred to Appendix A.

LEMMA 8.3. Let X and Y be two tame persistence modules that are (strongly) ε-
interleaved above some given time α ∈ R. Then, there is a multibijection γ : DX → DY
satisfying assertions (i) through (iv) of Theorem 8.2, with D0f replaced by DX , with
D0Rf

δ(P) replaced by DY, and with cδ replaced by ε.

A few words of explanation are in order. Two tame persistence modules X and Y are
ε-interleaved above a given time α ∈ R if there exist two families of homomorphisms
{φβ : Xβ → Yβ−ε}β≥α and {ψβ : Yβ → Xβ−ε}β≥α such that the diagrams of Eq. (2)
commute for all values β ′ ≥ β ≥ α. Intuitively, the commutativity of these diagrams
means that every generator appearing (respectively, dying) in X at some time β ≥ α
must appear (resp. die) in Y within [β − ε, β + ε], and vice-versa. This statement is the
analog of assertions (i)–(ii) of Theorem 8.2. Furthermore, every generator appearing in
X at time βb ≥ α and dying at time βd ≤ α must appear within [βb −ε, βb +ε] and die at
some time below α + ε in Y, and vice-versa. This statement is the analog of assertions
(iii)–(iv) of Theorem 8.2.

With Lemma 8.3 at hand, the proof of the theorem becomes a straightforward adap-
tation of the proof of Theorem 8.1 given in Chazal et al. [2011]. Indeed, exactly the
same sequence of arguments as in Chazal et al. [2011, Section 3.1] shows that there
exist two families of homomorphisms {φβ : H0(Fβ) → H0(Rδ(P ∩ Fβ−cδ))}β≥α and
{ψβ : H0(Rδ(P ∩ Fβ)) → H0(Fβ−cδ)}β≥α that make the persistence modules {H0(Fβ)}β∈R
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and {H0(Rδ(P ∩ Fβ))}β∈R (strongly) cδ-interleaved above time α. It follows then from
Lemma 8.3 that there is a multibijection γ : D0f → D0Rf

δ(P) satisfying assertions (i)
through (iv).

9. ESTIMATING THE NUMBER OF PROMINENT PEAKS OF f
In this section, we prove that the algorithm can recover the correct number of clusters
provided that the peaks of the density function f are prominent enough compared to
the topological noise. To state the result formally, we need to introduce some notation
for partitioning the persistence diagram of f .

For any d > 0, we call 
d the shifted diagonal line y = x−d. Let 
S
d denote the closed

half-plane lying below 
d, and 
N
d the open half-plane lying above 
d. Similarly, we

call �W
d (respectively, �E

d ) the closed (respectively, open) half-plane lying to the left
(respectively, right) of the vertical line x = d, and �S

d (respectively, �N
d ) the closed

(respectively, open) half-plane lying below (respectively, above) the horizontal line y =
d. Definition 4.1 can now be restated as follows.

Definition 9.1. Given two values d2 > d1 ≥ 0, the persistence diagram of f is called
(d1, d2)-separated if it has the following structure:

D0f = D1 ∪ D2, where D1 ⊂ 
N
d1

and D2 ⊂ 
S
d2

∩ �E
d2

.

As mentioned after Definition 4.1, the condition that D0f is partitioned into two dis-
joint subsets D1 ⊂ 
N

d1
and D2 ⊂ 
S

d2
with d2 > d1 can be interpreted as a signal-

to-noise ratio condition: the relevant peaks of f (in D2) must be significantly more
prominent than the nonrelevant ones (in D1) for the algorithm to be able to detect
the correct number of clusters. The additional condition that D2 ⊂ �E

d2
follows the

description of the extra filtering step performed by the algorithm after the merging
phase, and it stems from the fact that only some superlevel-set Fα of f can be densely
sampled by the input point set P, as expressed in Theorem 7.2. Due to a lack of sample
points outside Fα, the persistence diagram of the upper-star Rips filtration built by the
algorithm cannot be controlled in the region �W

α , which must therefore be discarded as
illustrated in Figure 6(a).

THEOREM 9.2. Let X be a Riemannian manifold with positive convexity radius, and
let f : X → R be a c-Lipschitz probability density function. If D0f is (d1, d2)-separated,
with d2 > d1 ≥ 0, then for any positive parameter δ < min{	(X), d2−d1

5c } and any
threshold τ ∈ (d1 +2cδ, d2 −3cδ), on any input of n sample points drawn according to f
in an independent and identically distributed fashion the number of clusters computed
by the algorithm is equal to the number of peaks of f of prominence at least d2 with
probability at least 1 − Nδ/8(Fcδ)e−n 3

4 cδVδ/8(Fcδ).

PROOF. Let α = cδ and ε = δ/4. According to Theorem 7.2, the input point
set P forms a δ

4 -sample of the superlevel-set Fcδ with probability at least 1 −
Nδ/8(Fcδ)e−n 3

4 cδVδ/8(Fcδ). Assume from now on that P is indeed a δ
4 -sample of Fcδ. By

Theorem 8.2, there is a multibijection γ : D0f → D0Rf
δ(P) satisfying conditions (i)

through (iv) of Theorem 8.2. Let us prove that under these conditions the diagram of
Rf

δ(P) is separated into two parts, one of which is in (multi-)bijection with the set of
peaks of f of prominence at least d2. The proof requires us to analyze where an ar-
bitrary point p of D0f can be mapped to by γ . Referring to Figure 16(a), we split our
analysis into five different cases depending on the region of D0f that contains p. We
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first consider Regions I and II, which correspond to the case p ∈ D1, and we show that
their images through γ are included in 
N

d1+2cδ ∪ �W
d1+2cδ.

— p lies in Region I, that is, p ∈ 
N
d1

∩ �N
cδ. Then, we have p ∈ QNE

cδ , and (i) implies

that ||p − γ (p)||∞ ≤ cδ. Therefore, γ (p) ∈ 
N
d1+2cδ.

— p lies in Region II, that is, p ∈ 
N
d1

∩ �S
cδ. Then, a quick computation (see Figure

16(b)) shows that p lies in �W
d1+cδ. If γ (p) were located in �E

d1+2cδ, then (iv) would

imply that p = γ −1(γ (p)) ∈ �E
d1+cδ, thereby raising a contradiction. Therefore,

γ (p) ∈ �W
d1+2cδ.

Thus, γ (D1) ⊆ 
N
d1+2cδ ∪ �W

d1+2cδ. We now proceed with Regions III, IV, V, which corre-
spond to the case p ∈ D2, and we show that their images through γ do not intersect

N

d1+2cδ ∪ �W
d1+2cδ.

— p lies in Region III, that is, p ∈ 
S
d2

∩ �N
cδ = 
S

d2
∩ �N

cδ ∩ �E
d2+cδ. Then, we have p ∈

QNE
cδ and therefore ||γ (p)−p||∞ ≤ cδ, by (i), which implies that γ (p) ∈ 
S

d2−2cδ∩�E
d2

,

which is disjoint from 
N
d1+2cδ ∪�W

d1+2cδ since by hypothesis we have d2 > d1 +4cδ.

— p lies in Region IV, that is, p ∈ �S
cδ ∩ �E

d2+cδ. Then, (iii) implies that γ (p) ∈ �E
d2

.

In addition, we have γ (p) ∈ �S
2cδ since otherwise γ (p) would belong to QNE

cδ and
by (ii) p = γ −1(γ (p)) would belong to �N

cδ, a contradiction. Thus, we have γ (p) ∈
�S

2cδ ∩ �E
d2

, which is disjoint from 
N
d1+2cδ ∪ �W

d1+2cδ since by hypothesis we have
d2 > d1 + 4cδ.

— p lies in Region V, that is, p ∈ 
S
d2

∩�E
d2

∩�W
d2+cδ. Then, p belongs to QSE

cδ , therefore

(iii) implies that γ (p) ∈ �E
d2−cδ. In addition, γ (p) must lie in �S

2cδ or we have a

contradiction by (ii) as in the previous case. Hence, γ (p) ∈ �E
d2−cδ ∩ �S

2cδ, which is

disjoint from 
N
d1+2cδ ∪ �W

d1+2cδ since by hypothesis we have d2 > d1 + 5cδ.

Thus, the persistence diagram D0Rf
δ(P) is partitioned into two disjoint subsets: DR

1 and
DR

2 , which are the respective images of D1 and D2 through γ , and which lie respectively
in the disjoint regions γ (I ∪ II) and γ (III ∪ IV ∪ V), as depicted in Figure 16(b). Then,
for any choice of parameter τ within the range (d1 + 2cδ, d2 − 3cδ), the subset DR

2 (as
well as D2) is located in the region 
S

τ ∩ �E
τ , whereas DR

1 (as well as D1) is located in
its complement 
N

τ ∪ �W
τ . This implies that the algorithm discards DR

1 and keeps only
DR

2 , which has same (finite) total multiplicity as D2 since both sets contain no point of
the diagonal 
 and are in multibijection. This concludes the proof of the theorem.

10. APPROXIMATING THE BASINS OF ATTRACTION OF THE PROMINENT PEAKS OF f
The next natural question is whether the clusters output by the algorithm are faithful
approximations to the actual basins of attraction of the underlying probability density
function f . Using the terminology of Section 2, given a parameter τ ≥ 0 and a peak mp
of f of prominence at least τ , we call basin of attraction of mp of parameter τ , noted
Bτ (mp), the union of the ascending regions of all the peaks mapped to mp through the
iterated root map r∗

τ , as per Eq. (1). Recall that the root map r takes each peak mq of f
and maps it to the higher peak r(mq) such that the connected component generated by
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Fig. 16. For the proof of Theorem 9.2.

mq in the superlevel-sets filtration of f gets merged by persistence into the component
generated by r(mq). The iterated root map r∗

τ iterates this process until some peak of
prominence at least τ is reached. Given such a peak mp, we call ατ (mp) the time at
which the connected component generated by mp first gets connected to the one gener-
ated by another peak of prominence at least τ . Assuming D0f to be (d1, d2)-separated
and τ to lie within the range [ d1, d2], we have the following inequalities:

∀mp such that px − py ≥ τ , px − d2 ≥ ατ (mp) ≥ py. (6)

The first inequality follows from the fact that for any peak mq 
= mp of prominence
at least τ , C(mp, α) and C(mq, α) cannot get connected with each other above time
α = px − d2, because otherwise the prominence of the younger connected component
would be less than d2 and therefore less than τ since D0f is (d1, d2)-separated. The
second inequality follows from the fact that, at time α = py, C(mp, α) gets connected
to another connected component, of prominence higher than px − py ≥ τ , which means
that time ατ (mp) has been reached.

As reported in Section 4, guaranteeing that the entire basins of attraction of the
prominent peaks of f are approximated by the output of the algorithm is hopeless.
However, Theorem 10.1 gives a partial approximation guarantee (where we abuse no-
tations by writing Bτ (p) for Bτ (mp) and ατ (p) for ατ (mp)).

THEOREM 10.1. Let X be a Riemannian manifold with positive convexity radius,
and let f : X → R be a c-Lipschitz probability density function. If D0f is (d1, d2)-
separated, with d2 > d1 ≥ 0, then for any positive parameter δ < min{	(X), d2−d1

5c }
and any threshold τ ∈ (d1 + 2cδ, d2 − 3cδ), on any input P of n sample points drawn
according to f in an independent and identically distributed fashion the following is
true with probability at least 1 − Nδ/8(Fcδ)e−n 3

4 cδVδ/8(Fcδ): for each point p ∈ D2 there is
a cluster BR

τ (p) output by the algorithm such that BR
τ (p) ∩ Fα = Bτ (p) ∩ L ∩ Fα at all

times α ∈ (ατ (p) + d1 + 5
2cδ, px].

In plain words, the conclusion of the theorem means that, within the superlevel-set
Fα, the cluster BR

τ (p) is the trace of the basin of attraction Bτ (p) over the point cloud
P. This holds from the time px at which the basin Bτ (p) appears in the superlevel-sets
filtration of f , almost until the time ατ (p) at which Bτ (p) ceases to be disconnected
from the other basins of attraction of parameter τ in the filtration. In view of Eq. (6),
the duration of this phase is at least d2 − d1 − 5

2cδ > 0, which as in Theorem 9.2
can be interpreted as a signal-to-noise ratio condition. As explained in Section 4 and
illustrated in Figures 4 and 5, below time ατ (p) it is not possible to guarantee the
approximation of the basin of attraction Bτ (p) on all instances.
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The rest of Section 10 is devoted to the proof of Theorem 10.1. A noticeable feature
of our proof is to not depend on a particular choice of pseudogradient edges within
the Rips graph Rδ(P) during the mode-seeking phase of the algorithm (see Section 2).
Indeed, it holds as long as the following conditions are met.

— Every vertex is the origin of one pseudo-gradient edge.
— Every pseudogradient edge connects its origin to a neighbor with a higher function

value.

This feature is an indicator of the stability of our clustering technique, and it opens
the door to various strategies for selecting the pseudogradient edges in the graph.

PROOF OF THEOREM 10.1. According to Theorem 7.2, the point cloud P forms a δ
4 -

sample of Fcδ with probability at least 1−Nδ/8(Fcδ)e−n 3
4 cδVδ/8(Fcδ). We assume from now

on that P is indeed a δ
4 -sample of Fcδ.

The equality BR
τ (p) ∩ Fα = Bτ (p) ∩ L ∩ Fα will be proved by mutual inclusion:

BR
τ (p) ∩ Fα ⊆ Bτ (p) ∩ L ∩ Fα (Lemma 10.6) and BR

τ (p) ∩ Fα ⊇ Bτ (p) ∩ L ∩ Fα

(Lemma 10.7). We begin with a series of easy technical results (Lemmas 10.2 through
10.5) that will be key to proving the theorem.

LEMMA 10.2. For any p, q ∈ D2 and any α, α′ ∈ R, if p 
= q, then

∀x ∈ Bτ (p) ∩ Fα, ∀y ∈ Bτ (q) ∩ Fα′
, dX(x, y) ≥ max{α − αm, 0} + max{α′ − αm, 0}

c
,

where αm = min{ατ (p), ατ (q)}.
PROOF. If α > f (mp) or α′ > f (mq), then Bτ (p) ∩ Fα = ∅ or Bτ (q) ∩ Fα′ = ∅ and

the conclusion holds trivially. If Bτ (p) ∩ Fα 
= ∅ and Bτ (q) ∩ Fα′ 
= ∅, then take x ∈
Bτ (p) ∩ Fα, y ∈ Bτ (q) ∩ Fα, and consider a shortest path11 [ x, y] between x and y in X.
Let z be a point of [ x, y] where the value of f is minimal. Since Bτ (p) or Bτ (q) cannot
get connected to any other basin of attraction of paramater τ above time αm, we have
f (z) ≤ αm. We deduce that dX(x, z) ≥ α−αm

c and dX(y, z) ≥ α′−αm
c , since f is a c-Lipschitz

function. Note that these lower bounds are negative when α, α′ < αm. Since z is on a
shortest path between x and y, we conclude that

dX(x, y) = dX(x, z) + dX(z, y) ≥ max{α − αm, 0} + max{α′ − αm, 0}
c

.

For any p ∈ D2, we let

vp = argmaxv∈Bτ (p)∩Pf (v).

This point is well defined because Bτ (p) ∩ P is not empty. Indeed, by Lemma 10.2
and Eq. (6) we have min{dX(mp, y) | y ∈ X \ Bτ (p)} ≥ f (mp)−ατ (p)

c ≥ d2
c > τ

c ≥ δ ≥
min{dX(mp, x) | x ∈ P}, which implies that Bτ (p) contains at least one point of P.

LEMMA 10.3. For any p ∈ D2, we have f (mp) ≥ f (vp) ≥ f (mp) − c δ
4 .

PROOF. The first inequality follows from the definition of mp as the argmax of f
over Bτ (p), which contains vp. To prove the second inequality, we use our assumption

11Since we did not make any assumption regarding the existence of shortest paths between arbitrary points
on the manifold X, it may happen that no shortest path exists between x and y. However, we can always
consider paths [x, y] of length at most dX(x, y) + ζ , for arbitrarily small values ζ > 0.
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that P forms a δ
4 -sample of Fcδ and therefore of Fd2 since d2 ≥ cδ by hypothesis. Then,

because p belongs to D2 ⊂ �E
d2

, we have mp ∈ Fd2 and therefore there is a point v ∈ P
such that dX(v, mp) ≤ δ/4. Since f is c-Lipschitz, we have f (v) ≥ f (mp) − cδ/4. To
complete the proof, we only need to show that v actually lies in the basin Bτ (p), which
will imply that f (vp) ≥ f (v) ≥ f (mp) − cδ/4. By Lemma 10.2, the geodesic distance of

mp to X \ Bτ (p) is at least f (mp)−ατ (p)

c = px−ατ (p)
c , which by Eq. (6) is at least d2

c , which
by hypothesis is greater than 5δ. It follows then from the triangle inequality that the
geodesic distance of v to X \ Bτ (p) is strictly positive, which means that v ∈ Bτ (p).

It follows from the previous results that vp is a peak of f in the Rips graph Rδ(P).
Indeed, Lemma 10.3 guarantees that f (vp) ≥ f (mp)− cδ/4 = px − cδ/4, which by Eq. (6)
is at least ατ (p)+ d2 − cδ/4. Therefore, Lemma 10.2 ensures that the geodesic distance
of vp to X \ Bτ (p) is at least d2

c − δ
4 , which by hypothesis is greater than δ. This implies

that every neighbor v of vp in the Rips graph Rδ(P) lies in the basin Bτ (p), and by
definition of vp that f (v) ≤ f (vp). Thus, vp is a local maximum in Rδ(P). As a result,
at time f (vp) a new connected component CR(vp, f (vp)) appears in the upper-star Rips
filtration Rf

δ(P), or more precisely in the subgraph Rδ(P ∩ Fα). In homological terms,
this connected component is generated by the peak vp. Its lifespan is encoded as a
point pR in the persistence diagram D0Rf

δ(P). Note that this point may or may not be
identical to the point γ (p) associated with p by the multibijection introduced in the
proof of Theorem 9.2. Defining regions DR

1 and DR
2 as in the proof of Theorem 9.2, we

have the following.

LEMMA 10.4. For all p ∈ D2, pR ∈ DR
2 .

PROOF. At any time α ∈ (ατ (p) + cδ/2, f (vp)], Lemma 10.2 guarantees that every
point of P ∩ Fα ∩ Bτ (p) (including vp itself) is disconnected from every point of P ∩
Fα \ Bτ (p) in the subgraph Rδ(P ∩ Fα), therefore the connected component CR(vp, α)

is included in Bτ (p). This implies that vp remains the argmax of f over CR(vp, α), and
therefore that CR(vp, α) still exists as an independent connected component in the
subgraph Rδ(P ∩ Fα). It follows that pR

y ≤ ατ (p) + cδ/2, which in turn implies that
pR

x − pR
y ≥ f (vp) − ατ (p) − cδ/2. By Lemma 10.3, this quantity is at least f (mp) −

ατ (p) − 3cδ/4 = px − ατ (p) − 3cδ/4, which by Eq. (6) is at least d2 − 3cδ/4. Thus, pR

lies in 
S
d2−3cδ/4 ⊂ 
S

d2−3cδ. In addition, we have pR
x = f (vp) ≥ f (mp) − cδ

4 = px − cδ
4 ,

which is at most d2 − c δ
4 since by hypothesis p ∈ D2 ⊂ �E

d2
. Hence, pR also lies in

�E
d2−cδ/4 ⊂ �E

d2−3cδ, which proves that pR ∈ DR
2 since d2 > d1 + 5cδ.

According to Lemma 10.4, p 
→ pR is a map D2 → DR
2 . This map is clearly injective,

since by definition pR corresponds to the connected component of Rf
δ(P) generated by

the peak vp which belongs to the basin Bτ (p) and to none other. In fact, the map is
bijective since by Theorem 9.2 the cardinalities of D2 and DR

2 are the same. Another
important consequence of Lemma 10.4 is that vp is in fact the generator of a whole
cluster output by the algorithm. We call BR

τ (p) this cluster.
Given a point x ∈ P, we denote by r(x) the root of the tree to which x is attached

during the mode-seeking phase of the algorithm (see Section 2). For each merge of an
entry e into another entry e′ performed in the union-find data structure during the
merging phase of the algorithm, we call e′ the root of e, noted e′ = r(e). We can then
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iterate the root map, starting at x, until we reach the root of the cluster containing x in
the output of the algorithm. This root is denoted r∗

τ (x), by analogy with the continuous
setting. By construction, r∗

τ (x) is the only peak of f (within the Rips graph Rδ(P)) of
prominence at least τ in its cluster. Therefore, in the persistence diagram D0Rf

δ(P),
r∗
τ (x) corresponds to some point q ∈ DR

2 . Let p ∈ D2 be such that pR = q. Such a point
exists since the map p 
→ pR is a bijection D2 → DR

2 . The cluster containing x in the
output of the algorithm is then BR

τ (p), and its root is r∗
τ (x) = vp.

LEMMA 10.5. ∀x ∈ P, ∀α ≤ f (x) − d1 − 2cδ, CR(x, α) = CR(r∗
τ (x), α).

PROOF. By definition of the root r(x), there is a path from x to r(x) in the Rips graph
Rδ(P) such that f increases along this path. This means that x and r(x) belong to the
same connected component of the subgraph Rδ(P ∩ Ff (x)). Since α ≤ f (x), we deduce
that CR(x, α) = CR(r(x), α).

For convenience, we let x0 = r(x), x1 = r(x0), · · ·, xl−1 = r(xl−2), and xl = r(xl−1) =
r∗
τ (x). We have f (xl) ≥ f (xl−1) ≥ · · · ≥ f (x0) ≥ f (x). By construction, the cluster out-

put by the algorithm that contains the xi does not contain any peak of f of promi-
nence τ or more beside xl. This means that, for any i < l, the peak xi is less than
τ -prominent and therefore corresponds to some point of DR

1 in the diagram D0Rf
δ(P).

It follows in particular that the prominence of xi is less than d1 + 2cδ, which means
that CR(xi, f (xi)−d1 −2cδ) = CR(xi+1, f (xi)−d1 −2cδ). Now, we have f (xi)−d1 −2cδ ≥
f (x) − d1 − 2cδ ≥ α, which implies that CR(xi, α) = CR(xi+1, α). Since this is true for
all i < l, we conclude that CR(x0, α) = CR(x1, α) = · · · = CR(xl, α) = CR(r∗

τ (x), α). This
fact, combined with the observation that CR(x, α) = CR(r(x), α) = CR(x0, α), concludes
the proof of the lemma.

We are now ready to prove our first inclusion.

LEMMA 10.6. For all p ∈ D2 and all α > ατ (p) + d1 + 5
2cδ, BR

τ (p) ∩ Fα ⊆ Bτ (p) ∩
P ∩ Fα.

PROOF. For any α > f (vp), BR
τ (p) ∩ Fα is empty and so the inclusion holds trivially.

Assume from now on that ατ (p)+ d1+ 5
2cδ < α ≤ f (vp), and consider a point x ∈ BR

τ (p)∩
Fα. Since f (x) ≥ α, Lemma 10.5 guarantees that CR(x, α − d1 − 2cδ) = CR(r∗

τ (x), α −
d1 − 2cδ). In other words, x and r∗

τ (x) belong to the same connected component of the
subgraph Rδ(P ∩ Fα− d1 − 2cδ). Since by hypothesis α − d1 − 2cδ is greater than ατ (p) +
cδ/2, Lemma 10.2 ensures that every point of P ∩ Fα−d1−2cδ ∩ Bτ (p), including vp =
r∗
τ (x) itself, is disconnected from every point of P ∩ Fα−d1−2cδ \ Bτ (p) in the subgraph

Rδ(P ∩ Fα−d1−2cδ). This implies that x belongs to Bτ (p).

We now proceed with the inclusion in the other direction.

LEMMA 10.7. For all p ∈ D2 and all α > ατ (p) + d1 + 5
2cδ, Bτ (p) ∩ P ∩ Fα ⊆

BR
τ (p) ∩ Fα.

PROOF. Since by definition vp is the argmax of f over Bτ (p) ∩ P, for all α > f (vp)
the set Bτ (p) ∩ P ∩ Fα is empty and so the inclusion holds trivially. Assume from now
on that ατ (p) + d1 + 5

2cδ < α ≤ f (vp), and let x ∈ Bτ (p) ∩ P ∩ Fα. Let q ∈ D2 be such
that vq = r∗

τ (x). Since f (x) ≥ α, Lemma 10.5 guarantees that CR(x, α − d1 − 2cδ) =
CR(vq, α − d1 − 2cδ). Now, since α − d1 − 2cδ > ατ (p) + cδ/2, Lemma 10.2 ensures that
every point of P ∩ Fα−d1−2cδ ∩ Bτ (p), including x itself, is disconnected from every point
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of P ∩ Fα−d1−2cδ \ Bτ (p) in the subgraph Rδ(P ∩ Fα−d1−2cδ). This implies that vq belongs
to Bτ (p), and therefore that vq = vp. Hence, x belongs to BR

τ (p).

The conclusion of Theorem 10.1 follows from the mutual inclusions stated in
Lemmas 10.6 and 10.7.

11. ROBUSTNESS OF THE APPROACH

In the previous sections, we assumed the input function f̃ to be the true density func-
tion f . In many practical scenarios, however, density values are not supplied and must
be estimated from the data set P. In this section, we show that the output of the al-
gorithm is robust to small perturbations of these values, thus making our approach
practical. More precisely, we assume the density estimator f̃ to approximate the true
density function f over the point cloud P within an additive error η:

sup
v∈P

|f̃ (v) − f (v)| < η. (7)

Then, without any modification to the algorithm, the persistence diagram given as
output still approximates the persistence diagram of f , with a slighty degraded ap-
proximation bound.

THEOREM 11.1. Under the hypotheses of Theorem 8.2, and assuming that Eq. (7)
is satisfied by f̃ , for any positive δ < 	(X) and any α > 0 the following holds with
probability at least

(
1−Nδ/8(Fα) e−|P|(α−cδ/4)Vδ/8(Fα)

)
: there is a multibijection γ between

the persistence diagrams of f and of the upper-star filtration Rf̃
δ(P) induced by f̃ on the

Rips graph Rδ(P), such that:

(i) ∀p ∈ D0f ∩ QNE
α+η, ‖p − γ (p)‖∞ ≤ cδ + η.

(ii) ∀q ∈ D0Rf̃
δ(P) ∩ QNE

α+η, ‖γ −1(q) − q‖∞ ≤ cδ + η.
(iii) ∀p ∈ D0f ∩ QSE

α+η, |px − γ (p)x| ≤ cδ + η.

(iv) ∀q ∈ D0Rf̃
δ(P) ∩ QSE

α+η, |γ −1(q)x − qx| ≤ cδ + η.

PROOF. Eq. (7) implies that the upper-star filtrations Rf
δ(P) and Rf̃

δ(P) are inter-
leaved with respect to inclusion:

∀α ∈ R, Rδ(P ∩ Fα) ⊆ Rδ(P ∩ F̃α−η) ⊆ Rδ(P ∩ Fα−2η).

Therefore, their induced persistence modules at 0-dimensional homology level are
(strongly) η-interleaved. As a consequence, the bottleneck distance between their
persistence diagrams is bounded by η. In addition, it follows from Theorem 7.2
that P forms a δ

4 -sample of the superlevel-set Fα with probability 1 − Nδ/8(Fα)

e−|P|(α−cδ/4)Vδ/8(Fα). So, with the same probability P statisfies the assumptions of The-
orem 8.2, which implies that D0f and D0Rf

δ(P) satisfy assertions (i) through (iv) of
Theorem 8.2. The result follows.

Theorem 11.1 replaces Theorem 8.2, and the rest of the analysis unfolds in the same
way as before.

Density estimation is an extensive research area and many methods to estimate the
values of f from the data set P can be used in practice (see, for example, Devroye and
Lugosi [2001]). Identifying the families of density estimators f̃ that satisfy Eq. (7) in
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full generality is beyond the scope of this article. Nevertheless, in some cases construct-
ing such an estimator is not too difficult, which we will now illustrate in the Euclidean
setting with a simple kernel-based estimator.

Suppose the Riemannian manifold X is the Euclidean space R
m. Let P be a finite

set of data points sampled according to some probability density function f : Rm → R.
We assume that the coordinates of the points of P are given, so that their pairwise
Euclidean distances can be computed exactly. The density f can then be approximated
using the following ball estimator:

f̃r(x) = 1
Vr

|P ∩ B(x, r)|
|P| , (8)

where B(x, r) is a concise replacement for BRm(x, r), the Euclidean m-ball of center x
and radius r, and where Vr is a concise replacement for Vr(R

m), the volume of any
Euclidean m-ball of radius r.

LEMMA 11.2. If f is c-Lipschitz, then for any value of parameter r and any ζ ≥ 0,
we have supv∈P |f̃r(v) − f (v)| ≤ cr + ζ with probability at least 1 − |P|e−2|P|(ζVr)

2
.

PROOF. Let μ be the measure associated with the density function f . Given a point
v ∈ P, we know from the path-connectivity of B(v, r) and from the Intermediate Value
Theorem that there is a point x ∈ B(v, r) such that f (x) equals the average value of f
inside the ball, that is:

f (x) = μ(B(v, r))
Vr

. (9)

Since f is c-Lipschitz, we have |f (v) − f (x)| ≤ cr. Combined with Eq. (9), this gives:∣∣∣∣f (v) − μ(B(v, r))
Vr

∣∣∣∣ ≤ cr. (10)

In addition, the Bounded Differences Inequality tells us that, for any ξ > 0, we have:∣∣∣∣ |P ∩ B(v, r)|
|P| − μ(B(v, r))

∣∣∣∣ ≤ ξ (11)

with probability at least 1 − e−2|P|ξ2
. Letting ξ = ζVr in this expression and combining

it with Eqs. (8) and (10), we obtain:∣∣∣f̃r(v) − f (v)

∣∣∣ ≤ cr + ζ (12)

with probability at least 1 − e−2|P|(ζVr)
2
. The lemma follows then from the application

of the union bound on the set P.

Notice that the ball estimator (8) strongly relies on the property that the volume of
a Euclidean m-ball of radius r in R

m does not depend on the location of its center. This
is not the case in general Riemannian manifolds. To overcome this issue, it is possible
to consider kernels of the following form:

g̃(x) =
∑

p∈P K(dX(p, x))

|P| , (13)

where K : R → R is a non negative function such that
∫ ∞
−∞ K(u)du = 1 and K(u) =

K(−u). Then, under some conditions, g̃ can be seen as an estimator of the convolution
of f with K ◦ dX, assuming that P has been sampled according to f . We refer the reader
to Devroye and Gyorfi [1985] and Tsybakov [2008] for further details on kernel-based
density estimation.
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Perturbing Distances. Slightly increasing the Rips parameter value used in the al-
gorithm makes the output also robust to small perturbations of the geodesic distances
between the data points. In the analysis, this very mild change to the algorithm al-
lows one to combine a result from Chazal et al. [2011] (namely Theorem 4) with our
Theorem 8.2, making the latter resilient to some degree of fuzziness in the values of
the geodesic distances. The formal statements and proofs are technical and do not bear
any conceptual novelty, furthermore a very similar analysis was already performed in
Chazal et al. [2011, Section 3.3]; therefore, we refer the reader to that article for the
details.

12. CONCLUSION

We have introduced a new clustering algorithm that combines a classical mode-seeking
step with a novel persistence-based cluster merging step. It is straightforward to im-
plement and provably robust to noise. Rather than rely on heuristics, it returns struc-
tural information about the modes of the density function in the form of a persistence
diagram, which allows the user to see the relationship between the choice of parame-
ter values and the number of obtained clusters. In many cases, this diagram provides
insights into the correct number of clusters, which can be automatically inferred by
further processing. Our method can work with any density estimator and any metric,
including Euclidean, geodesic, and diffusion distances. The point is that the persis-
tence diagram only displays the information that is present in the density function
and underlying space (known through the input distance matrix).

Our theoretical developments provide an understanding of when the data has a clear
number of clusters, and which parts of the clusters are stable under small perturba-
tions of the input. This opens up the possibility of doing soft-clustering, where each
point is assigned to a cluster with some probability. Finally we note that, because
we use a topological framework, additional features can be extracted from the data
through higher-dimensional persistence diagrams [Chazal et al. 2011], such as the cir-
cular structure of the rings in the synthetic data set of Figure 10(a)—although it is not
yet clear how this type of information can be exploited.

APPENDIX A. PROOF OF LEMMA 8.3

Let X = {Xβ}β∈R and Y = {Yβ}β∈R be two tame persistence modules that are (strongly)
ε-interleaved above some given time α. Let {xβ

β ′ : Xβ ′ → Xβ}β ′≥β be the family of homo-

morphisms associated with X , and {yβ

β ′ : Yβ ′ → Yβ}β ′≥β the family of homomorphisms

associated with Y. We define a new persistence module X̃ from X as follows:{ ∀β ≥ α − ε, X̃β = Xβ

∀β < α − ε, X̃β = 0

⎧⎨
⎩

∀β ≥ α − ε, ∀β ′ ≥ β, x̃β

β ′ = xβ

β ′

∀β < α − ε, ∀β ′ ≥ β, x̃β

β ′ = 0
(14)

Clearly, x̃β

β ′ ◦ x̃β ′
β ′′ = xβ

β ′ ◦xβ ′
β ′′ = xβ

β ′′ = x̃β

β ′′ when β ≥ α−ε, whereas x̃β

β ′ ◦ x̃β ′
β ′′ = 0 = x̃β

β ′′ when

β < α − ε. Thus, X̃ is indeed a persistence module. The fact that x̃β

β ′ = xβ

β ′ whenever

β ′ ≥ β ≥ α − ε implies that DX ∩ QNE
α−ε = DX̃ ∩ QNE

α−ε, by the definition of persistence
diagram.12 Let then γX : DX → DX̃ be a multibijection such that γX and γ −1

X leave the

12The part of DX that lies in the quadrant QNE
α−ε is fully determined by the ranks of the homomorphisms xβ

β′
for β ′ ≥ β ≥ α − ε, and the same goes for DX̃ . We refer the reader to Section 3 in Chazal et al. [2009] for the
technical details.
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points within QNE
α−ε fixed. We will show that the total multiplicities of DX and DX̃ are

equal within any given vertical half-line {β ′}×[−∞, β] where β ′ > β ≥ α − ε, which will
enable us to further assume that γX and γ −1

X only move the points vertically within
the lower-right quadrant QSE

α−ε, as illustrated in Figure 15 (right).
Using the terminology introduced in Chazal et al. [2009], given any η > 0 we

discretize X and X̃ over the integer scale α − ε + ηZ, to get respectively Xα−ε+ηZ

and X̃α−ε+ηZ. Their persistence diagrams are then snapped onto the regular grid
(α − ε + ηZ) × (α − ε + ηZ), as per Theorem 3.7 of Chazal et al. [2009] (the snap-
ping directions are reversed here, since time flows from +∞ to −∞). For any in-
tegers i > j ∈ Z, the total multiplicity of DXα−ε+ηZ within the vertical half-line
{α − ε + iη} × [−∞, α − ε + jη] is given by the sum of the multiplicities of the points
(α − ε + iη, α − ε + (j − k)η) for k ranging over N ∪ {+∞}:

μtot
η,i,j(DXα−ε+ηZ) = μ(α − ε + iη, −∞) +

∑
k∈N

μ(α − ε + iη, α − ε + (j − k)η), (15)

where by definition13 the multiplicity of point (α − ε + iη, α − ε + (j − k)η), k ∈ N, is
given by:

μ(α − ε + iη, α − ε + (j − k)η) =
(
rank xα−ε+(j−k+1)η

α−ε+iη − rank xα−ε+(j−k+1)η

α−ε+(i+1)η

)
−

(
rank xα−ε+(j−k)η

α−ε+iη − rank xα−ε+(j−k)η

α−ε+(i+1)η

)
.

(16)

Since the persistence module X is tame, the ranks in Eq. (16) are finite. Notice
that the sequence

(
rank xα−ε+(j−k)η

α−ε+iη

)
k∈N is nonincreasing, bounded from below by

zero, and takes integer values. Hence, it becomes stationary after a while. The
same argument holds for the sequence

(
rank xα−ε+(j−k)η

α−ε+(i+1)η

)
k∈N, and so the difference(

xα−ε+(j−k)η

α−ε+iη − rank xα−ε+(j−k)η

α−ε+(i+1)η

)
is the same for all values of k beyond some finite

threshold km. We then have μ(α − ε + iη, α − ε + (j − k)η) = 0 for all k > km, and
the sum in Eq. (15) is a finite sum where most of the terms of Eq. (16) cancel out:

μtot
η,i,j(DXα−ε+ηZ) = μ(α − ε + iη, −∞) +

(
rank xα−ε+(j+1)η

α−ε+iη − rank xα−ε+(j+1)η

α−ε+(i+1)η

)
−

(
rank xα−ε+(j−km)η

α−ε+iη − rank xα−ε+(j−km)η

α−ε+(i+1)η

)
.

(17)

In addition, the term
(
rank xα−ε+(j−km)η

α−ε+iη − rank xα−ε+(j−km)η

α−ε+(i+1)η

)
in Eq. (17) is by defini-

tion14 equal to the multiplicity of point (α − ε + iη, −∞). Hence,

μtot
η,i,j(DXα−ε+ηZ) = rank xα−ε+(j+1)η

α−ε+iη − rank xα−ε+(j+1)η

α−ε+(i+1)η
. (18)

The same is true for X̃α−ε+ηZ (which is tame since Xα−ε+ηZ is), that is:

μtot
η,i,j(DX̃α−ε+ηZ) = rank x̃α−ε+(j+1)η

α−ε+iη − rank x̃α−ε+(j+1)η

α−ε+(i+1)η
. (19)

Assuming now that i > j ≥ −1, that is, that the endpoint of the vertical half-line
{α − ε + iη} × [−∞, α − ε + jη] lies on or above the horizontal line y = α − ε − η, we

13See Definition 3.2 in Chazal et al. [2009] and recall that coordinates are reversed here because time flows
from +∞ to −∞.
14See Definition 3.2 and the related comments in Section 3.1 of Chazal et al. [2009].
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have x̃α−ε+(j+1)η

α−ε+iη = xα−ε+(j+1)η

α−ε+iη and x̃α−ε+(j+1)η

α−ε+(i+1)η
= xα−ε+(j+1)η

α−ε+(i+1)η
, and so μtot

η,i,j(DX̃α−ε+ηZ) =
μtot

η,i,j(DXα−ε+ηZ) by Eqs. (18) and (19). Since this is true for any η > 0, it follows from
the definition of persistence diagram that the total multiplicities of the diagrams DX
and DX̃ in any vertical half-line {β ′} × [−∞, β] with β ′ > β ≥ α − ε are the same. We
may thus further assume that the multi-bijection γX : DX → DX̃ defined previously is
such that γX and γ −1

X move the points within the lower-right quadrant QSE
α−ε vertically,

in addition to keeping the points within the upper-right quadrant QNE
α−ε fixed.

The same construction as in Eq. (14) can be applied to the tame persistence module
Y, thus yielding another tame persistence module Ỹ. By the same sequence of argu-
ments as previously described, we know that there is a multibijection γY : DY → DỸ
such that γY and γ −1

Y move the points within QSE
α−ε vertically while keeping the points

within QNE
α−ε fixed.

Observe now that the newly introduced persistence modules X̃ and Ỹ are (strongly)
ε-interleaved. Indeed, let {φβ : Xβ → Yβ−ε}β≥α and {ψβ : Yβ → Xβ−ε}β≥α be two
families of homomorphisms that make X and Y (strongly) ε-interleaved above time α.
We define two new families of homomorphisms between X̃ and Ỹ, indexed over R, as
follows: { ∀β ≥ α, φ̃β = φβ and ψ̃β = ψβ ,

∀β < α, φ̃β = 0 and ψ̃β = 0.

The fact that these two families of homomorphisms make the diagrams of Eq. (2) com-
mute for all β ′ ≥ β ≥ α comes from the fact that {φβ}β≥α and {ψβ}β≥α themselves make
the diagrams commute. The fact that the families {φ̃β}β∈R and {ψ̃β}β∈R make the dia-
grams commute across and below time α comes from the fact that they are identically
zero below time α. Thus, X̃ and Ỹ are (strongly) ε-interleaved over whole R, which
implies by the Extended Stability Theorem (Theorem 4.4 in Chazal et al. [2009]) that
there is a multibijection γ̃ : DX̃ → DỸ that moves the points by at most ε in the
l∞-distance. The map γ = γ −1

Y ◦ γ̃ ◦ γX is then a multibijection DX → DY satisfying
assertions (i) through (iv) of Theorem 8.2. This concludes the proof of Lemma 8.3.
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