Manifold Reconstruction

Steve Oudot

(steve.oudot@inria.fr)
Q What do you see?

Why?
Reconstruction Paradigm

Input: point cloud $P \subset \mathbb{R}^d$ finite

Prior: points of P are sampled along some *unknown shape* M (manifold, compact set etc.), according to some *unknown measure* μ.

Goal: (support estimation) build an *approximation* (implicit, PL, simplicial, etc.) that is *structurally faithful* (homotopic, homeomorphic, isotopic, etc.) and *close* (in Hausdorff distance, in ℓ^2-distance, etc.) to M.
Reconstruction Paradigm

Reconstruction problem is ill-posed by nature.
Reconstruction problem is ill-posed by nature.

→ make *regularity assumptions* on M (fixed dimension, topological type, differentiability, etc.) and *sampling assumptions* (uniform measure, growth rate, etc.)
Reconstruction problem is ill-posed by nature.

→ make *regularity assumptions* on M (fixed dimension, topological type, differentiability, etc.) and *sampling assumptions* (uniform measure, growth rate, etc.)

→ for a suitable choice of hypotheses, the solution becomes unique up to a set of deformations (solution never unique!)
Reconstruction problem is ill-posed by nature.

→ make *regularity assumptions* on M (fixed dimension, topological type, differentiability, etc.) and *sampling assumptions* (uniform measure, growth rate, etc.)

→ for a suitable choice of hypotheses, the solution becomes unique up to a set of deformations (solution never unique!)
Various forms of inference
Various forms of inference

clustering
Various forms of inference

clustering

topological inference
Various forms of inference

- clustering
- topological inference
- reconstruction
Where do the data come from?

3D scans

Sources

- LASER
- stereo vision
- mechanical sensor

Applications

- Reverse engineering
- Prototyping
- Quality control
- Cultural heritage

Stanford Michelangelo Project
(raw data with 2 billion polygons, sampling with a precision of 0.25 mm)
Where do the data come from?

Medical Imaging

Sources
- MRI scan
- echograph
- ...

Applications
- Diagnostic
- Endoscopy simulation
- Chirurgical intervention planning
Where do the data come from?

Geography, Geology

Sources

- satellite/aerial images
- ground probing
- seismograph

Applications

- Maps making / Terrain modeling
- Prospection (tunnels, oil)
Where do the data come from?

Higher-Dimensions

Sources
- Databases
- Simulations

Applications
- Machine Learning
- Robotics
- Image processing
- Biocomputing

conformation space of cyclo-octane

C$_8$H$_{16}$
Topological Criteria

These three surfaces are *homeomorphic* (they all have genus 1)
There exists a continuous bijection between surfaces, whose inverse is also continuous (formal definition given on the board)

isotopic surfaces (unknotted torus)

There exists a family of homeomorphisms which continuously transform the surfaces

knotted torus
Geometric Criteria

Hausdorff distance (order 0):\[d_H(P, M) = \inf\{\varepsilon \mid P^\varepsilon \supseteq M \text{ and } M^\varepsilon \supseteq P\}\]

Normals (order 1):

Curvature (order 2):
Geometric simplicial complexes

vertex set: $V = \{v_0, v_1, \ldots, v_{n-1}\} \subset \mathbb{R}^d$

k-simplex: $\sigma = \text{CH}\{v_{i_0}, v_{i_1}, \ldots, v_{i_k}\}$

Inclusion property (τ face of σ):

$\sigma \in K$ and $V(\tau) \subseteq V(\sigma) \implies \tau \in K$

Intersection property:

$\sigma_1, \sigma_2 \in K$ and $\sigma_1 \cap \sigma_2 \neq \emptyset \implies \\
\sigma_1 \cap \sigma_2 \in K$ and is a face of both
Reconstruction using Delaunay
What Delaunay has to do with reconstruction
What Delaunay has to do with reconstruction

→ faithful approximation of the curve appears as a subcomplex of the Delaunay
→ should hold whenever the point cloud is sufficiently densely sampled
What Delaunay has to do with reconstruction

→ faithful approximation of the curve appears as a subcomplex of the Delaunay
→ should hold whenever the point cloud is sufficiently densely sampled

Q What is this *good* subcomplex? Can it be defined in some canonical way?
Restricted Delaunay triangulation
Restricted Delaunay triangulation

Def: $\mathcal{D}^M(P) := \{\sigma \in \mathcal{D}(P) \mid \sigma^* \cap M \neq \emptyset\}$
Restricted Delaunay triangulation

Def: $D^M(P) := \{\sigma \in D(P) \mid \sigma^* \cap M \neq \emptyset\}$
Def: $\mathcal{D}^M(P) := \{\sigma \in \mathcal{D}(P) \mid \sigma^* \cap M \neq \emptyset\}$
Sampling Condition

Def: \(P \) is an \(\varepsilon \)-sample of \(M \) if \(\forall x \in M, \min\{\|x - p\| \mid p \in P\} \leq \varepsilon \).
Regularity Condition

Medial axis: \(\Gamma_M = \text{cl}\{x \in \mathbb{R}^d \mid |\text{NN}_M(x)| \geq 2\} \)

Local feature size: \(\forall x \in \mathbb{R}^d, \ lfs(x) = \min\{\|x - m\| \mid m \in \Gamma_M\} \)

Reach: \(\varrho_M = \min\{lfs(x) \mid x \in M\} \)
Regularity Condition

Medial axis: \(\Gamma_M = \text{cl}\{x \in \mathbb{R}^d \mid |\text{NN}_M(x)| \geq 2\} \)

Local feature size: \(\forall x \in \mathbb{R}^d, \ lfs(x) = \min\{\|x - m\| \mid m \in \Gamma_M\} \)

Reach: \(\varrho_M = \min\{\text{lfs}(x) \mid x \in M\} \)

\(x \mapsto x^3 \sin \frac{1}{x} \)

\(\varrho_M = +\infty \) (convex)

\(\varrho_M = r \) \(C^{1,1} \) but not \(C^2 \)

\(\varrho_M = 0 \) \(C^1 \) but not \(C^{1,1} \)
Regularities Condition

→ Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: \(\forall x \in M, \forall c \in M^\perp(x), \|x - c\| \leq \text{lfs}(x) \Rightarrow \nabla \left(B^o(c, \|x - c\|) \cap M = \emptyset \right). \)
Regularity Condition

→ Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: \(\forall x \in M, \forall c \in M^\perp(x), \|x - c\| \leq \text{lfs}(x) \Rightarrow B^o(c, \|x - c\|) \cap M = \emptyset. \)

Topological Ball Lemma:
If \(M \) is a \(k \)-manifold, then \(\forall B(c, r) \) s.t. \(B(c, r) \cap \Gamma_M = \emptyset \), \(B(c, r) \cap M \) is either empty or a point or homeomorphic to the ball \(B^k \).
Approximation via Restricted Delaunay

Theorem: [Amenta et al. 1998-99]
If M is a closed curve or surface with positive reach ϱ_M, and if P is an ε-sample of M with $\varepsilon < \varrho_M$ (curve) or $\varepsilon < 0.1 \varrho_M$ (surface), then:

- $\hat{D}^M(P)$ is homeomorphic to M (denoted $\hat{D}^M(P) \simeq M$),
- $d_H(\hat{D}^M(P), M) \in O(\varepsilon^2)$,
- $\forall \sigma \in \hat{D}^M(P), \forall p \in V(\sigma), \angle_{\sigma \perp M \perp}(p) \in O(\varepsilon)$,
- \cdots (similar areas, curvature estimation, etc.)
Approximation via Restricted Delaunay

Theorem: [Amenta et al. 1998-99]
If M is a closed curve or surface with positive reach ϱ_M, and if P is an ε-sample of M with $\varepsilon < \varrho_M$ (curve) or $\varepsilon < 0.1 \varrho_M$ (surface), then:

- $\hat{D}^M(P)$ is homeomorphic to M (denoted $\hat{D}^M(P) \simeq M$),
- $d_H(\hat{D}^M(P), M) \in O(\varepsilon^2)$,
- $\forall \sigma \in \hat{D}^M(P), \forall p \in V(\sigma), \angle \sigma \perp M \perp(p) \in O(\varepsilon)$,
- \cdots (similar areas, curvature estimation, etc.)

Reconstruction is uncertain if ε is not small enough compared to ϱ_M.
Approximation via Restricted Delaunay

Proof for curves:

show that every edge of $D^M(P)$ connects consecutive points of P along M, and vice-versa
Approximation via Restricted Delaunay

Proof for curves:

show that every edge of \(D^M(P) \) connects consecutive points of \(P \) along \(M \), and vice-versa

Let \(c \in pq^* \cap M \).

\[
r = \|c - p\| = \|c - q\| = d(c, P) \leq \varepsilon < \rho_M \leq lfs(c)
\]

\(\Rightarrow B(c, r) \cap M \) is a topological arc
Proof for curves:

show that every edge of $D^M(P)$ connects consecutive points of P along M, and vice-versa

Let $c \in pq^* \cap M$.

$r = \|c - p\| = \|c - q\| = d(c, P) \leq \varepsilon < \rho_M \leq lfs(c)$

$\Rightarrow B(c, r) \cap M$ is a topological arc

if $s \in P \setminus \{p, q\}$ belongs to this arc, then the arc is tangent to $\partial B(c, r)$ at the middle point (say s)

$q \Rightarrow d(c, P) = r = \|c - s\| \geq lfs(s) > \varepsilon.$

(contradiction with the hypothesis of the theorem)
Approximation via Restricted Delaunay

Proof for curves:

show that every edge of $\mathcal{D}^M(P)$ connects consecutive points of P along M, and vice-versa

Let $c \in \text{arc}_M(pq) \cap \partial p^*$. $c \in ps^*$ for some $s \in P \setminus \{p\}$

$\Rightarrow ps \in \mathcal{D}^M(P)$

$\Rightarrow p, s$ consecutive along M, with $c \in \text{arc}_M(ps)$

(by previous part of the proof)

$\Rightarrow s = q$
Approximation via Restricted Delaunay

Proof for curves:
show that every edge of $D^M(P)$ connects consecutive points of P along M, and vice-versa

$\Rightarrow D^M(P)$ is homeomorphic to M between each pair of consecutive points of P

Since $D^M(P)$ is embedded in $D(P)$, it does not self-intersect \Rightarrow global homeomorphism
Computing the Restricted Delaunay

Q How to compute $D^M(P)$ when M is unknown?

→ a whole family of algorithms use various Delaunay extraction criteria:

- crust
- power crust
- cocone
- tight cocone
- ...
Crust Algorithm
Crust algorithm
[Amenta et al. 1997-98]
Crust algorithm

1. Compute Delaunay triangulation of P

[Amenta et al. 1997-98]
Crust algorithm

1. Compute Delaunay triangulation of P

[Amenta et al. 1997-98]
Crust algorithm

2. Compute poles (furthest Voronoi vertices)

[Amenta et al. 1997-98]
Crust algorithm

[Amenta et al. 1997-98]

3. Add poles to the set of vertices
Crust algorithm

3. Add poles to the set of vertices

[Amenta et al. 1997-98]
Crust algorithm

4. Keep Delaunay simplices whose vertices are in P

[Amenta et al. 1997-98]
Crust algorithm

in 2-d, crust = \(\mathcal{D}^M(P) \approx M \)

[Amenta et al. 1997-98]
Crust algorithm

in 2-d, crust = \(D^M(P) \approx M \)

[Amenta et al. 1997-98]
Crust algorithm

[Amenta et al. 1997-98]

in 2-d, crust $= \mathcal{D}^M(P) \approx M$

in 3-d, crust $\supseteq \mathcal{D}^M(P) \approx M$
Crust algorithm
[Amenta et al. 1997-98]

in 2-d, crust $= \mathcal{D}^M(P) \approx M$

in 3-d, crust $\supseteq \mathcal{D}^M(P) \approx M$

\Rightarrow manifold extraction step in post-processing
Witness Complex
Motivation: effect of scale / dimensionality

What is the reconstruction?
Multi-scale reconstruction

[Guibas, O. 07]

- build a sequence of complexes approximating the input at various scales
- long stable sub-sequences correspond to plausible reconstructions

→ the witness complex enables the use of the Delaunay paradigm
Multi-scale reconstruction algorithm

[Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^n$

→ resample W iteratively, and maintain a simplicial complex:
Multi-scale reconstruction algorithm

[Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^n$

→ resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;
Multi-scale reconstruction algorithm

[Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^n$

→ resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

WHILE $L \not\subseteq W$

Let $q := \arg \max_{w \in W} d(w, L)$;
Multi-scale reconstruction algorithm

[Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^n$

→ resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

\[\text{WHILE } L \subsetneq W \text{ \WHILE}\]

Let $q := \arg\max_{w \in W} d(w, L)$;

$L := L \cup \{q\}$;

update simplicial complex;

END_WHERE
Multi-scale reconstruction algorithm

[Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^n$

→ resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

WHILE $L \subset W$

 Let $q := \arg\max_{w \in W} d(w, L)$;
 $L := L \cup \{q\}$;
 update simplicial complex;

END_WHILE
Multi-scale reconstruction algorithm

[Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^n$

→ resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

WHILE $L \subset W$

Let $q := \text{argmax}_{w \in W} d(w, L)$;
$L := L \cup \{q\}$;
update simplicial complex;

END WHILE

Output: the sequence of simplicial complexes
Witness complex
(definition)

Let $L \subseteq \mathbb{R}^d$ (landmarks) s.t. $|L| < +\infty$ and $W \subseteq \mathbb{R}^d$ (witnesses)
Witness complex
(definition)

Let $L \subseteq \mathbb{R}^d$ (landmarks) s.t. $|L| < +\infty$ and $W \subseteq \mathbb{R}^d$ (witnesses)

Def. $w \in W$ strongly witnesses $[v_0, \ldots, v_k]$ if

$$\|w - v_i\| = \|w - v_j\| \leq \|w - u\|$$

for all $i, j = 0, \ldots, k$ and all $u \in L \setminus \{v_0, \ldots, v_k\}$.

![Diagram of witness complex](image)
Witness complex
(definition)

Let $L \subseteq \mathbb{R}^d$ (landmarks) s.t. $|L| < +\infty$ and $W \subseteq \mathbb{R}^d$ (witnesses)

Def. $w \in W$ *strongly witnesses* $[v_0, \cdots, v_k]$ if $\|w - v_i\| = \|w - v_j\| \leq \|w - u\|$ for all $i, j = 0, \cdots, k$ and all $u \in L \setminus \{v_0, \cdots, v_k\}$.

Def. $w \in W$ *weakly witnesses* $[v_0, \cdots, v_k]$ if $\|w - v_i\| \leq \|w - u\|$ for all $i = 0, \cdots, k$ and all $u \in L \setminus \{v_0, \cdots, v_k\}$.
Let $L \subseteq \mathbb{R}^d$ (landmarks) s.t. $|L| < +\infty$ and $W \subseteq \mathbb{R}^d$ (witnesses)

Def. $w \in W$ **strongly witnesses** $[v_0, \cdots, v_k]$ if $\|w - v_i\| = \|w - v_j\| \leq \|w - u\|$ for all $i, j = 0, \cdots, k$ and all $u \in L \setminus \{v_0, \cdots, v_k\}$.

Def. $w \in W$ **weakly witnesses** $[v_0, \cdots, v_k]$ if $\|w - v_i\| \leq \|w - u\|$ for all $i = 0, \cdots, k$ and all $u \in L \setminus \{v_0, \cdots, v_k\}$.

Def. $C^W(L)$ is the largest abstract simplicial complex built over L, whose faces are weakly witnessed by points of W.
Witness complex

(properties)

Thm. 1 [de Silva 2003] \(\forall W, L, \forall \sigma \in C^W(L), \exists c \in \mathbb{R}^d \) that strongly witnesses \(\sigma \).

\[\Rightarrow C^W(L) \text{ is a subcomplex of } \mathcal{D}(L) \]

\[\Rightarrow C^W(L) \text{ is embedded in } \mathbb{R}^d \]

(if \(L \) lies in general position)
Weak witness theorem

Thm. 1 \(\forall W \subseteq \mathbb{R}^d, \forall L \subset \mathbb{R}^d \text{ s.t. } |L| < \infty, \forall \sigma \in C^W(L), \exists c \in \mathbb{R}^d \) that \textit{strongly witnesses} \(\sigma \).

\[\sigma \in C^W(L) \text{ iff } \forall \tau \subseteq \sigma, \tau \text{ weakly witnessed} \]
Weak witness theorem

\textbf{Thm. 1} \quad \forall W \subseteq \mathbb{R}^d, \forall L \subseteq \mathbb{R}^d \text{ s.t. } |L| < \infty, \forall \sigma \in C^W(L), \exists c \in \mathbb{R}^d \text{ that strongly witnesses } \sigma.

\sigma \in C^W(L) \text{ iff } \forall \tau \subseteq \sigma, \tau \text{ weakly witnessed}
Weak witness theorem

Thm. 1 \(\forall W \subseteq \mathbb{R}^d, \forall L \subset \mathbb{R}^d \) s.t. \(|L| < \infty \), \(\forall \sigma \in \mathcal{C}^W(L), \exists c \in \mathbb{R}^d \) that strongly witnesses \(\sigma \).

Proof. [Attali, Edelsbrunner, Mileyko 2007]

\(\rightarrow \) induction on the dimension of \(\sigma \):

- Case \(\sigma = [v_0] \): trivial (all witnesses of \(v_0 \) are strong)

\(\sigma \in \mathcal{C}^W(L) \) iff \(\forall \tau \subseteq \sigma, \tau \) weakly witnessed
Weak witness theorem

Thm. 1 \(\forall W \subseteq \mathbb{R}^d, \forall L \subset \mathbb{R}^d \) s.t. \(|L| < \infty \), \(\forall \sigma \in C^W(L) \), \(\exists c \in \mathbb{R}^d \) that *strongly* witnesses \(\sigma \).

Proof. [Attali, Edelsbrunner, Mileyko 2007]

\(\rightarrow \) induction on the dimension of \(\sigma \):

- Case \(\sigma = [v_0, \cdots, v_k] (k > 0) \):

\(\rightarrow \) induction on \(\# \{ \text{v}_i \text{'s equidistant to w} \} \)

assume that \(\|w - v_0\| = \cdots = \|w - v_{l-1}\| \)

\[\geq \|w - v_i\| \ \forall i \geq l \]
Weak witness theorem

Thm. 1 $\forall W \subseteq \mathbb{R}^d, \forall L \subset \mathbb{R}^d$ s.t. $|L| < \infty$, $\forall \sigma \in C^W(L)$, $\exists c \in \mathbb{R}^d$ that strongly witnesses σ.

Proof. [Attali, Edelsbrunner, Mileyko 2007]

→ induction on the dimension of σ:

• Case $\sigma = [v_0, \cdots, v_k]$ ($k > 0$):

→ induction on $\#\{ v_i's \text{ equidistant to } w\}$

assume that $\|w - v_0\| = \cdots = \|w - v_{l-1}\|$

$\geq \|w - v_i\| \\forall i \geq l$

let w_l be a strong witness of $[v_0, \cdots, v_{l-1}]$
Weak witness theorem

Thm. 1 \(\forall W \subseteq \mathbb{R}^d, \forall L \subset \mathbb{R}^d \) s.t. \(|L| < \infty \), \(\forall \sigma \in C^W(L) \), \(\exists c \in \mathbb{R}^d \) that strongly witnesses \(\sigma \).

Proof. [Attali, Edelsbrunner, Mileyko 2007]

\(\rightarrow \) induction on the dimension of \(\sigma \):

- **Case** \(\sigma = [v_0, \cdots, v_k] \) \((k > 0) \):

 \(\rightarrow \) induction on \(\# \{ v_i ' s equidistant to w \} \)

 assume that \(||w - v_0|| = \cdots = ||w - v_{l-1}|| \)

 \(\geq ||w - v_i|| \) \(\forall i \geq l \)

 let \(w_l \) be a strong witness of \([v_0, \cdots, v_{l-1}] \)

 \(\rightarrow \forall w' \in [w, w_l], B_{w'} \subseteq B_w \cup B_{w_l} \)
Weak witness theorem

Thm. 1 \[\forall W \subseteq \mathbb{R}^d, \forall L \subset \mathbb{R}^d \text{ s.t. } |L| < \infty, \forall \sigma \in C^W(L), \exists c \in \mathbb{R}^d \] that strongly witnesses \(\sigma \).

Proof. [Attali, Edelsbrunner, Mileyko 2007]

→ induction on the dimension of \(\sigma \):

• Case \(\sigma = [v_0, \cdots, v_k] \) (\(k > 0 \)):

→ induction on \(\#\{ v_i \text{'s equidistant to } w \} \)

assume that \(||w - v_0|| = \cdots = ||w - v_{l-1}|| \)

\[\geq ||w - v_i|| \ \forall i \geq l \]

let \(w_l \) be a strong witness of \([v_0, \cdots, v_{l-1}] \)

→ \(\forall w' \in [w, w_l], \ B_{w'} \subseteq B_w \cup B_{w_l} \)

move \(w \) to \(w' \) as shown opposite

→ \(B_{w'} \cap L = \{v_0, \cdots, v_k\} \)

→ \(|\partial B_{w'} \cap L| \geq l + 1 \)
Thm. 1 [de Silva 2003] \[\forall W, L, \forall \sigma \in C^W(L), \exists c \in \mathbb{R}^d \text{ that strongly witnesses } \sigma.\]

\[\Rightarrow C^W(L) \text{ is a subcomplex of } D(L)\]

\[\Rightarrow C^W(L) \text{ is embedded in } \mathbb{R}^d\]

(if \(L\) lies in general position)
Witness complex
(properties)

Thm. 1 [de Silva 2003] \(\forall W, L, \forall \sigma \in C_W(L), \exists c \in \mathbb{R}^d \) that strongly witnesses \(\sigma \).

\[\Rightarrow C_W(L) \text{ is a subcomplex of } D(L) \]
\[\Rightarrow C_W(L) \text{ is embedded in } \mathbb{R}^d \]
\[(\text{if } L \text{ lies in general position}) \]

Thm. 2 [de Silva, Carlsson 2004]
- The size of \(C_W(L) \) is \(O(d|W|) \)
- The time to compute is \(\text{Poly}(d, |W|, |L|) \)
Witness complex

(properties)

Thm. 1 [de Silva 2003] \(\forall W, L, \forall \sigma \in C_W^W (L), \exists c \in \mathbb{R}^d \) that strongly witnesses \(\sigma \).

\[\Rightarrow C_W^W (L) \text{ is a subcomplex of } D(L) \]
\[\Rightarrow C_W^W (L) \text{ is embedded in } \mathbb{R}^d \]
(if \(L \) lies in general position)

Thm. 2 [de Silva, Carlsson 2004]
- The size of \(C_W^W (L) \) is \(O(d|W|) \)
- The time to compute is \(\text{Poly}(d, |W|, |L|) \)

→ What if \(W, L \) lie on or near a submanifold \(M \)?

Thm. 3 [Guibas, Oudot 2007]
- [Attali, Edelsbrunner, Mileyko 2007]
Under some conditions, \(C_W^W (L) = D^M (L) \simeq M \)
Witness complex
(connection to reconstruction)

- $W \subseteq \mathbb{R}^d$ is given as input
- $L \subseteq W$ is generated
- underlying manifold M unknown
- only distance comparisons

\Rightarrow algorithm is applicable
 in any metric space

- In \mathbb{R}^d, $C_W(L)$ can be maintained by
 updating, for each witness w, the list of
 $d+1$ nearest landmarks of w.

\Rightarrow
 space $\leq O(d|W|)$
 time $\leq O(d|W|^2)$
The full algorithm

Input: a finite point set \(W \subset \mathbb{R}^d \).
The full algorithm

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C_W(L) = \{[p]\}$;

Invariant: $\forall w \in W$, the list of $d + 1$ nearest landmarks of w is maintained throughout the process.
The full algorithm

Input: a finite point set \(W \subset \mathbb{R}^d \).

Init: \(L := \{p\} \); construct lists of nearest landmarks; \(C^W(L) = \{[p]\} \);

Invariant: \(\forall w \in W \), the list of \(d+1 \) nearest landmarks of \(w \) is maintained throughout the process.

\[\text{while } L \subsetneq W \]
The full algorithm

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$;

Invariant: $\forall w \in W$, the list of $d+1$ nearest landmarks of w is maintained throughout the process.

\textbf{while} $L \subset W$

\hspace{1cm} insert $\arg\max_{w \in W} d(w, L)$ in L;

\hspace{1cm} update the lists of nearest neighbors;
The full algorithm

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$;

Invariant: $\forall w \in W$, the list of $d+1$ nearest landmarks of w is maintained throughout the process.

WHILE $L \subsetneq W$

insert $\text{argmax}_{w \in W} d(w, L)$ in L;
update the lists of nearest neighbors;
update $C^W(L)$;

END WHILE
The full algorithm

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$;

Invariant: $\forall w \in W$, the list of $d+1$ nearest landmarks of w is maintained throughout the process.

\[\text{while } L \subsetneq W \\text{ do}\]

insert $\text{argmax}_{w \in W} d(w, L)$ in L;
update the lists of nearest neighbors;
update $C^W(L)$;

\[\text{end while}\]
The full algorithm

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$;

Invariant: $\forall w \in W$, the list of $d+1$ nearest landmarks of w is maintained throughout the process.

\[\text{while } L \subsetneq W \]
\[\quad \text{insert } \arg\max_{w \in W} d(w, L) \text{ in } L; \]
\[\quad \text{update the lists of nearest neighbors;} \]
\[\quad \text{update } C^W(L); \]
\[\text{END_WHILE} \]

Output: the sequence of complexes $C^W(L)$
Relation with the restricted Delaunay

If M is a closed k-manifold smoothly embedded in \mathbb{R}^d, then, under sufficient sampling conditions, $C^W(L) = D^M(L) \simeq M$
Relation with the restricted Delaunay

If M is a closed k-manifold smoothly embedded in \mathbb{R}^d, then, under sufficient sampling conditions, $C^W(L) = D^M(L) \simeq M$

- Case $k = 1$:
 - $C^W(L) = D^M(L) \simeq M$

[Guibas, O. 07]
[Attali, Edelsbrunner, Mileyko 07]
Relation with the restricted Delaunay

If M is a closed k-manifold smoothly embedded in \mathbb{R}^d, then, under sufficient sampling conditions, $C^W(L) = D^M(L) \simeq M$

- **Case $k = 1$:**
 - $C^W(L) = D^M(L) \simeq M$

- **Case $k = 2$:**
 - $C^W(L) \subseteq D^M(L) \simeq M$
 - $C^W(L) \nsubseteq D^M(L)$

[Amenta, Bern 98]
[Attali, Edelsbrunner, Mileyko 07]
[de Silva, Carlsson 04]
[Guibas, O. 07]
Relation with the restricted Delaunay

If M is a closed k-manifold smoothly embedded in \mathbb{R}^d, then, under sufficient sampling conditions, $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$

- **Case $k = 1$:**
 - $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$

- **Case $k = 2$:**
 - $\mathcal{C}^W(L) \subseteq \mathcal{D}^M(L) \simeq M$
 - $\mathcal{C}^W(L) \not\subseteq \mathcal{D}^M(L)$

- **Case $k \geq 3$:**
 - $\mathcal{C}^W(L) \not\subseteq \mathcal{D}^M(L)$
 - $\mathcal{D}^M(L) \not\simeq M$

[Cheng, Dey, Ramos 05]
[O. 07]
Relation with the restricted Delaunay
(case of curves)

Conjecture [Carlsson, de Silva 2004]
$C^W(L)$ coincides with $D^M(L)$...
Relation with the restricted Delaunay
(case of curves)

Conjecture [Carlsson, de Silva 2004]
$C^W(L)$ coincides with $D^M(L)$...

... under some conditions on W and $L
Relation with the restricted Delaunay
(case of curves)

Thm: If M is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, M) \leq \delta$, $L \subseteq W$ ε-sparse ε-sample of W with $\delta \ll \varepsilon \ll \varrho_M$, then $C^W(L) = D^M(L) \simeq M$.
Relation with the restricted Delaunay
(case of curves)

Thm: If M is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, M) \leq \delta$, $L \subseteq W$ ε-sparse ε-sample of W with $\delta \ll \varepsilon \ll \delta_M$, then $C^W(L) = D^M(L) \simeq M$.

→ There is a plateau in the diagram of Betti numbers of $C^W(L)$.

There is a plateau in the diagram of Betti numbers of $CW(L)$.

Relation with the restricted Delaunay (case of curves)
Thm: If M is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, M) \leq \delta$, $L \subseteq W$ ε-sparse ε-sample of W with $\delta \ll \varepsilon \ll \rho_M$, then $C^W(L) = D^M(L) \simeq M$.

- $D^M(L) \subseteq C^W(L)$
Relation with the restricted Delaunay
(case of curves)

Thm: If M is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, M) \leq \delta$, $L \subseteq W$ ε-sparse ε-sample of W with $\delta \ll \varepsilon \ll \varrho_M$, then $C^W(L) = D^M(L) \simeq M$.

- $D^M(L) \subseteq C^W(L)$
Relation with the restricted Delaunay
(case of curves)

Thm: If M is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, M) \leq \delta$, $L \subseteq W$ ϵ-sparse ϵ-sample of W with $\delta \ll \epsilon \ll \rho_M$, then $C^W(L) = D^M(L) \simeq M$.

- $D^M(L) \subseteq C^W(L)$
Relation with the restricted Delaunay
(case of curves)

Thm: If M is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, M) \leq \delta$, $L \subseteq W$ ε-sparse ε-sample of W with $\delta \ll \varepsilon \ll \rho_M$, then $C_W(L) = D^M(L) \simeq M$.

- $D^M(L) \subseteq C_W(L)$
- $C_W(L) \subseteq D^M(L)$
Thm: If M is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, M) \leq \delta$, $L \subseteq W$ ε-sparse ε-sample of W with $\delta \ll \varepsilon \ll \varrho_M$, then $C^W(L) = D^M(L) \simeq M$.

- $D^M(L) \subseteq C^W(L)$
- $C^W(L) \subseteq D^M(L)$
Some results

Input:

Output:
Relation with the restricted Delaunay
(case of surfaces)

\[D^M(L) \not\subseteq C^W(L) \text{ if } W \subsetneq M \]

\[\varepsilon = 0.2, \ rch(M) \approx 0.25 \]
Relation with the restricted Delaunay
(case of surfaces)

\[D^M(L) \nsubseteq C^W(L) \text{ if } W \subsetneq M \]

order-2 Voronoi diagram

\[\varepsilon = 0.2, \ rch(M) \approx 0.25 \]
Relation with the restricted Delaunay
(case of surfaces)

\[D^M(L) \not\subset C^W(L) \text{ if } W \subsetneq M \]

\[\varepsilon = 0.2, \ rch(M) \approx 0.25 \]
Relation with the restricted Delaunay
(case of surfaces)

\[\mathcal{D}^M(L) \not\subseteq C^W(L) \text{ if } W \subsetneq M \]

Solution relax witness test.

\[\Rightarrow C^W(L) = D^M(L) + \text{slivers} \]
\[\Rightarrow C^W(L) \not\subseteq D(L) \]
\[\Rightarrow C^W(L) \text{ not embedded.} \]

Post-process extract manifold \(M \)
from \(C^W(L) \cap D(L) \)
[Amenta, Choi, Dey, Leekha]
Some results
Some results
Some results
Some results
Some results

Tangle Cube (diam.=4, rch=0.25, genus=5, delta=0.02, noise=0, 78,088 witnesses)

1

2

3
Some results

Asklepios (diam.=120, lrl=4, genus=4, delta=1, noise=0, 40,888 witnesses)

input model provided courtesy of IMATI by the Aim@Shape repository
Some results

Asklepios (diam.=120, lr=4, genus=4, delta=1, noise=0, 48,888 witnesses)

input model provided courtesy of IMATI by the Aim@Shape repository
Some results

Asklepios (diam.=128, l1=4, genus=4, delta=1, noise=0, 48,888 witnesses)

input model provided courtesy of IMATI by the Aim@Shape repository
Some results

Aklepios (diam.=120, l1=4, genus=4, delta=1, noise=0, 48,888 witnesses)
Some results

Asklepios (diam.=120, lrl=4, genus=4, delta=1, noise=0, 48,888 witnesses)

input model provided courtesy of IMATI by the Aim@Shape repository
Some results

Asklepios (diam.=120, l1=4, genus=4, delta=1, noise=0, 48,888 witnesses)

input model provided courtesy of IMATI by the Aim@Shape repository
Some results

Asklepios (diam.=120, lrl=4, genus=4, delta=1, noise=0, 48,888 witnesses)

input model provided courtesy of IMATI by the Aim@Shape repository
Some results

Asklepios (diam=120, lr1=4, genus=4, delta=1, noise=0, 48,888 witnesses)

input model provided courtesy of IMATI by the Aim@Shape repository
Some results

Asklepios (diam.=120, l1=4, genus=4, delta=1, noise=0, 48,888 witnesses)

input model provided courtesy of IMATI by the Aim@Shape repository
Some results

Asklepios \((\text{diam.} = 120, \text{lr1} = 4, \text{genus} = 4, \text{delta} = 1, \text{noise} = 0, \text{48,888 witnesses}) \)

input model provided courtesy of IMATI by the Aim@Shape repository
Some results

Filigree (diam.=1.2, rch=?, genus=65, delta=0.001, noise=0, 514,300 witnesses)

input model provided courtesy of Sensable Technologies by the Aim@Shape repository
Some results

Filigree (diam.=1.2, rch=?, genus=65, delta=0.001, noise=0, 514,300 witnesses)

input model provided courtesy of Sensable Technologies by the Aim@Shape repository
Some results

Filgree (diam.=1.2, rch=?, genus=65, delta=0.001, noise=0, 514,300 witnesses)

input model provided courtesy of Sensable Technologies by the Aim@Shape repository
Some results

Happy Buddha (diam.=0.1, rch=?, genus=104, delta=?, noise=?, 1,631,368 witnesses)

input model courtesy of the Computer Graphics Laboratory at Stanford University
Some results

Happy Buddha ($diam. = 0.1$, $rch = ?$, $genus = 104$, $delta = ?$, $noise = ?$, 1,631,360 witnesses)

input model courtesy of the Computer Graphics Laboratory at Stanford University
Some results

Happy Buddha (diam.=0.1, rch=?, genus=104, delta=?, noise=?, 1,631,368 witnesses)

input model courtesy of the Computer Graphics Laboratory at Stanford University
Relation with the restricted Delaunay

\(\partial[-\Delta, \Delta]^4 \subset \mathbb{R}^4 \)
\(\delta \ll 1 \ll \Delta \)

\(u(1, 0, 0, \Delta) \)
\(v(1, 1, 0, \Delta) \)
\(w(0, 1, 0, \Delta) \)
\(p_0(0, 0, \delta, \Delta) \)
\(c_0(\frac{1}{2}, \frac{1}{2}, \frac{\delta}{2}, \Delta) \)

\(\text{Relation with the restricted Delaunay} \)

(intrinsic dim. \(\geq 3 \))

[O. 2007]
Relation with the restricted Delaunay

\[\partial [-\Delta, \Delta]^4 \subset \mathbb{R}^4 \]
\[\delta \ll 1 \ll \Delta \]
\[t = \Delta + \delta/2 \]

\[\partial[-\Delta, \Delta]^4 \subset \mathbb{R}^4 \]
\[\delta \ll 1 \ll \Delta \]
\[t = \Delta + \delta/2 \]

[\(p, u, v, w\)]* is horizontal [CDR05]

\[\text{[O. 2007]} \]

\[\text{Relation with the restricted Delaunay (intrinsic dim. } \geq 3) \]

\[D^M(L) \not\cong M \]

\[u(1, 0, 0, \Delta) \]
\[v(1, 1, 0, \Delta) \]
\[w(0, 1, 0, \Delta) \]
\[p(0, 0, 0, \Delta + \delta) \]
Relation with the restricted Delaunay

(intrinsic dim. ≥ 3)

\[\partial[-\Delta, \Delta]^4 \subset \mathbb{R}^4 \]

\[\delta \ll 1 \ll \Delta \]

\[t = \Delta + \delta/2 \]

\[[p, u, v]^* \cap M = \{ c \} \]

\[[p, v, w]^* \cap M = \{ c \} \]

\[D^M(L) \nsubseteq M \]

\[u(1, 0, 0, \Delta) \]

\[v(1, 1, 0, \Delta) \]

\[w(0, 1, 0, \Delta) \]

\[p(0, 0, 0, \Delta + \delta) \]

\[c(\frac{1}{2}, \frac{1}{2}, \frac{\delta}{2}, \Delta + \frac{\delta}{2}) \]

\[[p, u, v, w]^* \text{ is horizontal} \]

[CDR05]

[O. 2007]
Relation with the restricted Delaunay

\[(\text{intrinsic dim. } \geq 3)\] [O. 2007]

\[\partial[-\Delta, \Delta]^4 \subset \mathbb{R}^4\]
\[\delta \ll 1 \ll \Delta\]

\[t = \Delta + \delta/2\]

\[\mathcal{D}^M(L) \not\cong M\]

\[u(1, 0, 0, \Delta)\]
\[v(1, 1, 0, \Delta)\]
\[w(0, 1, 0, \Delta)\]
\[p(0, 0, 0, \Delta + \delta)\]
\[c\left(\frac{1}{2}, \frac{1}{2}, \frac{\delta}{2}, \Delta + \frac{\delta}{2}\right)\]

\[[p, u, v, w]^* \text{ is horizontal} \ [\text{CDR05}]\]

\[[p, u, v]^* \cap M = \{c\} \Rightarrow \mathcal{D}^M(L) \text{ is no longer a closed hyper-surface if } c \text{ is moved downwards slightly}\]
Relation with the restricted Delaunay (arbitrary dimensions)

If M is a closed k-manifold smoothly embedded in \mathbb{R}^d, then, under reasonable sampling conditions, $C^W(L) = D^M(L) \simeq M$

- Case $k = 1$:
 - $C^W(L) = D^M(L) \simeq M$

- Case $k = 2$:
 - $C^W(L) \subseteq D^M(L) \simeq M$
 - $C^W(L) \not\subseteq D^M(L)$

- Case $k \geq 3$:
 - $C^W(L) \not\subseteq D^M(L)$
 - $D^M(L) \not\simeq M$

→ Source of problems: slivers

assign weights to the landmarks to remove all slivers from the vicinity of $D^M(L)$ [Cheng et al. 00]
Weighted Voronoi / Delaunay

Input: point cloud \(P \), weight function \(\omega : P \rightarrow \mathbb{R}_{\geq 0} \)

Metric:
\[
d(x, (p, \omega(p)))^2 = \|x - p\|^2 - \omega(p)^2
\]
Input: point cloud P, weight function $\omega : P \to \mathbb{R}_{\geq 0}$

Metric: $d(x, (p, \omega(p)))^2 = \|x - p\|^2 - \omega(p)^2$

Induced diagram: $V(p) = \{x \in \mathbb{R}^d \mid d(x, (p, \omega(p))) \leq d(x, (q, \omega(q))) \ \forall q \in P\}$
Weighted Voronoi / Delaunay

Input: point cloud P, weight function $\omega : P \rightarrow \mathbb{R}_{\geq 0}$

Metric: $d(x, (p, \omega(p)))^2 = \|x - p\|^2 - \omega(p)^2$

Induced diagram: $\mathcal{V}(p) = \{x \in \mathbb{R}^d | d(x, (p, \omega(p))) \leq d(x, (q, \omega(q))) \forall q \in P\}$

Prop: $x \in \mathcal{V}(p) \iff x$ center of sphere orthogonal to $B(p, \omega(p))$

and obtuse to $B(q, \omega(q))$ for all $q \in P \setminus \{p\}$
Point / sphere lifting

\[p^* = (p_1, \cdots, p_d, p_{d+1} = \sum_{i=1}^{d} p_i^2 - \omega(p)^2) \]
Point / sphere lifting

\[\Sigma^*_x : \sum_{i=1}^{d} (-x_i)y_i + y_{d+1} = r^2 - x^2 \]

\[\Sigma_x : y^2 - 2x \cdot y + x^2 = r^2 \]
$p^* \in \Sigma^*_x$

$B(p, \omega(p)) \subseteq \Sigma_x$
Point / sphere lifting
Point / sphere lifting

\[p^* \text{ above } \Sigma^*_x \]

\[\Sigma^*_x \]

\[\Sigma_x \]

\[x \]

\[\omega(p) \]

\[B(p, \omega(p)) \cap \Sigma_x \]
Point / sphere lifting

Lower CH

Weighted Delaunay
Sliver Removal [CDEFT’00]

- Each landmark \(u \in L \) is assigned a weight \(0 \leq \omega(u) < \frac{1}{2} d(u, L \setminus \{u\}) \).
- The Voronoi diagram of \(L \) is replaced by its weighted version, \(\mathcal{V}_\omega(L) \):
 \[
 p \in \text{cell}(u) \text{ iff } \forall v \in L, \ d(p, u)^2 - \omega(u)^2 \leq d(p, v)^2 - \omega(v)^2
 \]
- \(\mathcal{V}_\omega(L) \) is an affine diagram, its dual complex \(\mathcal{D}_\omega(L) \) is a triangulation.
Sliver Removal

- Each landmark $u \in L$ is assigned a weight $0 \leq \omega(u) < \frac{1}{2} d(u, L \setminus \{u\})$.
- The Voronoi diagram of L is replaced by its weighted version, $\mathcal{V}_\omega(L)$:
 \[p \in \text{cell}(u) \text{ iff } \forall v \in L, \ d(p, u)^2 - \omega(u)^2 \leq d(p, v)^2 - \omega(v)^2 \]
- $\mathcal{V}_\omega(L)$ is an affine diagram, its dual complex $\mathcal{D}_\omega(L)$ is a triangulation.

Thm [Cheng, Dey, Ramos 05] If L is an ε-sparse ε-sample of M, with $\varepsilon \ll rch(M)$, then $\exists \omega_0$ that removes slivers from the vicinity of $\mathcal{D}_{\omega_0}^M(L)$.

$\Rightarrow \mathcal{D}_{\omega_0}^M(L) \simeq M$

- ω_0 removes slivers, thereby improving the normals
- Closed Ball Property
Sliver Removal

- Each landmark \(u \in L \) is assigned a weight \(0 \leq \omega(u) < \frac{1}{2} d(u, L \setminus \{u\}) \).
- The Voronoi diagram of \(L \) is replaced by its weighted version, \(\mathcal{V}_\omega(L) \):
 \[
p \in \text{cell}(u) \text{ iff } \forall v \in L, \ d(p, u)^2 - \omega(u)^2 \leq d(p, v)^2 - \omega(v)^2
 \]
- \(\mathcal{V}_\omega(L) \) is an affine diagram, its dual complex \(\mathcal{D}_\omega(L) \) is a triangulation.

Thm [Cheng, Dey, Ramos 05] If \(L \) is an \(\varepsilon \)-sparse \(\varepsilon \)-sample of \(M \), with \(\varepsilon \ll \text{rch}(M) \), then \(\exists \omega_0 \) that removes slivers from the vicinity of \(\mathcal{D}^M_{\omega_0}(L) \).

\[
\Rightarrow \mathcal{D}^{M}_{\omega_0}(L) \simeq M
\]

- \(\omega_0 \) removes slivers, thereby improving the normals
- Closed Ball Property
Each landmark $u \in L$ is assigned a weight $0 \leq \omega(u) < \frac{1}{2} d(u, L \setminus \{u\})$.

The Voronoi diagram of L is replaced by its weighted version, $\mathcal{V}_\omega(L)$:

$$p \in \text{cell}(u) \iff \forall v \in L, d(p, u)^2 - \omega(u)^2 \leq d(p, v)^2 - \omega(v)^2$$

$\mathcal{V}_\omega(L)$ is an affine diagram, its dual complex $\mathcal{D}_\omega(L)$ is a triangulation.

Thm [Cheng, Dey, Ramos 05] If L is an ε-sparse ε-sample of M, with $\varepsilon \ll \text{rch}(M)$, then $\exists \omega_0$ that removes slivers from the vicinity of $\mathcal{D}_\omega^M(L)$.

$$\implies \mathcal{D}_\omega^M(L) \simeq M$$

- ω_0 removes slivers, thereby improving the normals
- Closed Ball Property

Thm [Boissonnat, Guibas, O. 07] [Boissonnat, Dyer, Ghosh, O. 17]

- Under the same conditions on L, one has $\mathcal{C}_\omega^W(L) \subseteq \mathcal{D}_\omega^M(L)$ for all $W \subseteq M$.

- If W is a δ-sample of M, with $\delta \ll \varepsilon$, then $\mathcal{C}_\omega^W(L) = \mathcal{D}_\omega^M(L)$.
Application to reconstruction in arbitrary dimensions

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set \(W \subset \mathbb{R}^d \).

\(\rightarrow \) greedy: furthest-point resampling of \(L \)

maintain \(C^W_\omega (L) \) for some carefully-chosen weight function \(\omega \).

Init: \(L := \{p\} \), for some arbitrary \(p \in W \);
Application to reconstruction in arbitrary dimensions

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

→ greedy: furthest-point resampling of L

maintain $C^W_\omega(L)$ for some carefully-chosen weight function ω.

Init: $L := \{p\}$, for some arbitrary $p \in W$;

WHILE $L \subsetneq W$

insert $p = \arg\max_{w \in W} d(w, L)$ in L;
Application to reconstruction in arbitrary dimensions

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

→ greedy: furthest-point resampling of L

maintain $C^W_\omega(L)$ for some carefully-chosen weight function ω.

Init: $L := \{p\}$, for some arbitrary $p \in W$;

while $L \subsetneq W$

insert $p = \arg\max_{w \in W} d(w, L)$ in L;
Application to reconstruction in arbitrary dimensions

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

→ greedy: furthest-point resampling of L

maintain $C^W_\omega(L)$ for some carefully-chosen weight function ω.

Init: $L := \{p\}$, for some arbitrary $p \in W$;

while $L \subsetneq W$

insert $p = \arg \max_{w \in W} d(w, L)$ in L;

assign weight to p;
Application to reconstruction in arbitrary dimensions

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

→ greedy: furthest-point resampling of L

\[
\text{maintain } C_w(L) \text{ for some carefully-chosen weight function } \omega.
\]

Init: $L := \{p\}$, for some arbitrary $p \in W$;

\textbf{while} $L \subsetneq W$

insert $p = \arg\max_{w \in W} d(w, L)$ in L;

\textbf{assign weight} to p;

update $C_w(L)$;

\textbf{end while}
Application to reconstruction in arbitrary dimensions

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

→ greedy: furthest-point resampling of L

 maintain $C^W_\omega (L)$ for some carefully-chosen weight function ω.

Init: $L := \{p\}$, for some arbitrary $p \in W$;

WHILE $L \subsetneq W$

 insert $p = \arg\max_{w \in W} d(w, L)$ in L;

 assign weight to p;

 update $C^W_\omega (L)$;

END WHILE
Application to reconstruction in arbitrary dimensions

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

→ greedy: furthest-point resampling of L

\[\text{maintain } C^W_\omega (L) \text{ for some carefully-chosen weight function } \omega. \]

Init: $L := \{p\}$, for some arbitrary $p \in W$;

\begin{algorithmic}
\WHILE{$L \subsetneq W$}
 \STATE insert $p = \arg\max_{w \in W} d(w, L)$ in L;
 \STATE assign weight to p;
 \STATE update $C^W_\omega (L)$;
\ENDWHILE
\end{algorithmic}
Application to reconstruction in arbitrary dimensions

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set \(W \subset \mathbb{R}^d \).

→ greedy: furthest-point resampling of \(L \)

 maintain \(C^W_\omega (L) \) for some carefully-chosen weight function \(\omega \).

Init: \(L := \{p\} \), for some arbitrary \(p \in W \);

\[\text{while } L \subsetneq W \]

 insert \(p = \arg\max_{w \in W} d(w, L) \) in \(L \);

 assign weight to \(p \);

 update \(C^W_\omega (L) \);

END_WHILE
Application to reconstruction in arbitrary dimensions

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set \(W \subset \mathbb{R}^d \).

\[\rightarrow \text{greedy}: \text{furthest-point resampling of } L \]

\[\text{maintain } C^W_\omega(L) \text{ for some carefully-chosen weight function } \omega. \]

Init: \(L := \{p\} \), for some arbitrary \(p \in W \);

\begin{algorithmic}
 \While{$L \subsetneq W$}
 \State insert \(p = \arg\max_{w \in W} d(w, L) \) in \(L \);
 \State assign weight to \(p \);
 \State update \(C^W_\omega(L) \);
 \EndWhile
\end{algorithmic}

Output: sequence of simplicial complexes \(C^W_\omega(L) \) built throughout.
Weight Assignment

[Boissonnat, Dyer, Ghosh, O. 17]

Candidate simplices: (requires to know the intrinsic dimension k)

$$N(p) = \{66^k\text{-NN of } p \text{ in } L\}$$

$\sigma \in 2^N(p)$ is a candidate simplex if it is a sliver (flat + small radius)
Weight Assignment
[Boissonnat, Dyer, Ghosh, O. 17]

Candidate simplices: (requires to know the intrinsic dimension k)

$$N(p) = \{66^k\text{-NN of } p \text{ in } L\}$$

$\sigma \in 2^N(p)$ is a candidate simplex if it is a sliver (flat + small radius)

every candidate simplex σ has a forbidden interval I_σ of weights for p

(those for which $\sigma \in D_\omega(P)$)
Weight Assignment

[Boissonnat, Dyer, Ghosh, O. 17]

Candidate simplices: (requires to know the intrinsic dimension k)

$$N(p) = \{66^k\text{-NN of } p \text{ in } L\}$$

$\sigma \in 2N(p)$ is a **candidate simplex** if it is a *sliver* (flat + small radius)

every candidate simplex σ has a **forbidden interval** I_σ of weights for p

take $\omega(p) \in [0, \bar{\omega}] \setminus \bigcup_{\sigma:\text{candidate}} I_\sigma$ (those for which $\sigma \in D_\omega(P)$)
Candidate simplices: (requires to know the intrinsic dimension k)

\[N(p) = \{66^k\text{-NN of } p \text{ in } L\} \]

\(\sigma \in 2^{N(p)} \) is a **candidate simplex** if it is a **sliver** (flat + small radius)

every candidate simplex \(\sigma \) has a **forbidden interval** \(I_\sigma \) of weights for \(p \)

take \(\omega(p) \in [0, \bar{\omega}] \setminus \bigcup_{\sigma:\text{candidate}} I_\sigma \) (those for which \(\sigma \in \mathcal{D}_\omega(P) \))

Claims:

\[[0, \bar{\omega}] \setminus \bigcup_{\sigma:\text{candidate}} I_\sigma \neq \emptyset \]

for every \(\sigma, I_\sigma \) depends only on weights of \(L \) and on radius & flatness of \(\sigma \)

(no need to maintain \(\mathcal{D}(L) \))
Application to reconstruction in arbitrary dimensions

[Guibas, O. 07] [Boissonnat, Guibas, O. 07] [Boissonnat, Dyer, Ghosh, O. 17]

Input: a finite point set $W \subset \mathbb{R}^d$.

Thm If W is a δ-sample of M, with $\delta \ll \text{rch}(M)$, then, at some stage of the process, the weight assignment removes all slivers from the vicinity of $D_M^\omega (L)$, therefore $C^W (L) = D_M^\omega (L) \simeq M$.

Init: $L := \{p\}$, for some arbitrary $p \in W$;

while $L \subsetneq W$

- insert $p = \arg\max_{w \in W} d(w, L)$ in L;
- assign weight to p;
- update $C^W (L)$;

end while

Output: sequence of simplicial complexes $C^W (L)$ built throughout.
Application to reconstruction in arbitrary dimensions

[Guibas, O. 07] [Boissonnat, Guibas, O. 07] [Boissonnat, Dyer, Ghosh, O. 17]

Input: a finite point set $W \subset \mathbb{R}^d$.

Running time: $dn(2^{O(k)}n + 2^{O(k^2)} + O(kn)) + O(k^3n)$

Space usage: $n(d + 2^{O(k^2)}) + O(kn^2)$

$\begin{align*}
\text{Init: } & L := \{p\}, \text{ for some arbitrary } p \in W; \\
\text{while } & L \subsetneq W \\
\text{insert } & p = \arg\max_{w \in W} d(w, L) \text{ in } L; \\
\text{assign weight } & \text{ to } p; \\
\text{update } & C^W_\omega (L); \\
\text{END WHILE} \\
\text{Output: sequence of simplicial complexes } & C^W_\omega (L) \text{ built throughout.}
\end{align*}$
Some results
Example of application: Sensor Networks

[Gao, Guibas, O., Wang '07]

Input: a set of nodes W sampling some unknown planar domain M.

→ each node has:
 - no location capabilities,
 - limited computation power,
 - limited memory,
 - limited battery power,
 - communication radius r.

Q What is the topology of X?

How many nodes are needed to recover it?
Example of application: Sensor Networks

[Gao, Guibas, O., Wang ’07]

Input: a set of nodes W sampling some unknown planar domain M.

→ the witness complex disregards the embedding (only approximate geodesic distances are used)