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Abstract

In topological data analysis, a point cloud data P extracted from a metric space is often analyzed by
computing the persistence diagram or barcodes of a sequence of Rips complexes built on P indexed by a
scale parameter. Unfortunately, even for input of moderate size, the size of the Rips complex may become
prohibitively large as the scale parameter increases. Starting with the Sparse Rips filtration introduced by
Sheehy, some existing methods aim to reduce the size of the complex so as to improve the time efficiency
as well. However, as we demonstrate, existing approaches still fall short of scaling well, especially for
high dimensional data. In this paper, we investigate the advantages and limitations of existing approaches.
Based on insights gained from the experiments, we propose an efficient new algorithm, called SimBa, for
approximating the persistent homology of Rips filtrations with quality guarantees. Our new algorithm
leverages a batch collapse strategy as well as a new sparse Rips-like filtration. We experiment on a variety
of low and high dimensional data sets. We show that our strategy presents a significant size reduction,
and our algorithm for approximating Rips filtration persistence is order of magnitude faster than existing
methods in practice.

1 Introduction

In recent years, topological ideas and methods have emerged as a new paradigm for analyzing complex data
[9, 25]. An important line of work in this direction is the theory and applications of persistent homology. It
provides a powerful and flexible framework to inspect data for characterizing and summarizing important
features that persist across different scales. Since its introduction [26, 27, 35], there have been many
fundamental developments [8, 10, 11, 13, 15, 18, 19, 20, 39] both to generalize the framework and to provide
theoretical understanding for various aspects of it (such as its stability). These developments help to provide
foundation and justification of the practical usage of persistent homology; see e.g, [14, 16, 23, 37, 34].

A determining factor in applying persistent homology to a broad range of data analysis problems is
the availability of efficient and scalable software. Given the rapidly increasing size of modern data, the
”efficiency” necessarily concerns both time and space complexities. The original algorithm to compute
persistent homology takes O(n3) time and O(n2) space for a filtration involving n number of total simplices
[26]. Various practical improvements have been suggested [17, 21]. An early software widely used for
computing persistence is Morozov’s Dionysus [24]. Later, Bauer et al. developed the PHAT toolbox [4],
based on several efficient matrix reduction strategies (mostly focusing on time efficiency) as described in
[3]. A more recently developed library called GUDHI [38] considers the improvement both in time and
space efficiencies. In particular, it uses an efficient data structure, called the simplex tree [6], to encode input
simplicial complexes, and uses the compressed annotation matrix [5] to implement the persistent cohomology
algorithm. Dionysus, PHAT, and GUDHI offer efficient software for computing persistence induced by
∗Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA. Emails: tamaldey,

shiday, yusu@cse.ohio-state.edu

1

ar
X

iv
:1

60
9.

07
51

7v
1 

 [
cs

.C
G

] 
 2

3 
Se

p 
20

16



inclusions. For our algorithm, we need persistence induced by more general simplicial maps for which we
use Simpers [1] developed on the basis of the algorithm in [22].

The above results and software cater to general persistence computations. In practice, often the persistence
needs to be computed for a particular filtration called the Vietoris-Rips or Rips filtration in short. Given a
set of points P embedded in Rd (or in more general metric spaces), the Rips complex Rα(P ) with radius
or scale α is the clique complex induced by the set of edges {(p, p′) | d(p, p′) ≤ α, p, p′ ∈ P}. One is
interested in the persistent homology induced by the sequence of Rips complexesRα1 ⊆ Rα2 ⊆ · · · ⊆ Rαm
for a growing sequence of radii α1 ≤ α2 ≤ . . . ≤ αm. Intuitively, the Rips complex at a specific scale α
approximates the union of radius-α balls around sample points in P . Thus, it captures the structure formed
by input points P at different scales.

Unfortunately, even for a modest size of n (in the range of thousands), the size of Rips complex (as well
as the slightly more economical Čech complex) becomes prohibitively large as the radius α increases. In [36],
Sheehy proposed an elegant solution for this problem by introducing a sparse Rips filtration to approximate
the persistent homology of the Rips filtration for a set of points P . An alternative approach of collapsing input
points in batches with increasing radius α was proposed in [22], which leveraged the persistence algorithm
proposed in the same paper for filtrations arising out of simplicial maps.

New work. Given the importance of the Rips filtration in practice, our goal is to investigate the practical
performance of the existing proposed methods, understand their advantages and limitations, and develop an
efficient implementation for approximating the persistent homology of Rips filtrations. To this end, we make
the following contributions.

1. We investigate the advantages and limitations of three existing methods, two based on Sparse Rips [36,
12], and another on Batch-collapse [22]. Specifically, experiments show that while the sparse Rips
algorithm by Sheehy [36] has a theoretical guarantee on the size of the filtration and gives good
approximation of the persistence diagrams for the Rips filtration in practice, it generates simplicial
complexes of large size even for input of moderate size. This problem becomes more severe as the
dimension of the input data increases. The algorithm fails to finish for several high dimensional data
sets of rather moderate size. See Table 1 for some examples. The batch-collapse approach is much
more space efficient (which leads to time efficiency as well). Nevertheless, we find that its size still
becomes prohibitive for high dimensional data.

2. Based on the insights gained from experimenting with the existing approaches, we propose a new
algorithm called SimBa that approximates a Rips filtration persistence via simplicial batch-collapses.
Our algorithm is a modification of the previous batch-collapse of Rips filtration proposed in [22]. While
theoretically, the modification may not seem major, empirically, it reduces the size of the filtration
significantly and thus leads to a much more efficient approximation of the Rips filtration persistence.
Furthermore, we show that this modification maintains a similar approximation guarantee as the
batch-collapse of Rips filtration proposed in [22]. We describe the details of an efficient and practical
implementation of SimBa, the software for which has been made publicly available from [1].

Two concepts, homology groups of a simplicial complex, and simplicial maps between two complexes
are used throughout this paper. We refer the reader to any standard text such as [33] for details. We denote
the p-dimensional homology group of a simplicial complex K under Z2 coefficients by Hp(K).

2 Rips filtration and its approximation

Given a set of points P ⊂ Rd, let 〈p0, . . . , ps〉 denote the s-dimensional simplex spanned by vertices
p0, . . . , ps ∈ P . The Rips complex at scalar α is defined as Rα(P ) = {〈p0, . . . , ps〉 | ‖pi − pj‖ ≤ α, for
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any i, j ∈ [0, s]}. Now consider the following Rips filtration:

{Rα(P )}α>0 := Rα1(P ) ↪→ Rα2(P ) · · · ↪→ Rαn(P ) · · · (1)

The inclusion maps between consecutive complexes above induce homomorphisms between respective
homology groups, giving rise to a so called persistence module for dimension p:

Hp(Rα1(P ))→ Hp(Rα2(P ))→ . . .→ Hp(Rαn(P )) · · · (2)

If a homology class is created atRαi(P ) (i.e, does not have pre-image under homomorphism Hp(Rαi−1)→
Hp(Rαi)) and dies entering Rαj (P ) (i.e, its image vanishes under homomorphism Hp(Rαj−1(P )) →
Hp(Rαj (P )), then αi is its birth time, αj is its death time, and the difference αj−αi is called the persistence
of the class. In each dimension, the persistence barcodes capture the persistence of such homology classes by
using a horizontal bar with left and right end points at αi and αj respectively. These persistence barcodes of
the above Rips filtration are often the target summary of P and/or of the space P samples, which one wishes
to compute in topological data analysis.

The main bottleneck for computing the barcodes of a Rips filtration stems from its size blowup. As the
parameter α grows, the Rips complexRα(P ) can become huge very quickly. To address this blowup in size,
Sheehy [36] suggested a novel approach of sparsifying the point set P as one proceeds with increasing α in a
way that does not alter the barcodes too much. The idea is to replace the original Rips filtration {Rα(P )}α>0

on P with a sequence of smaller complexes {Sα}α>0 and show that the two sequences interleave at the
homology level. Then, appealing to the results of interleaving persistence modules [13], one can show that
the barcodes of {Sα}α>0 approximate those of {Rα(P )}α>0 reasonably. The complexes Sα are constructed
as the union of Rips-like complexes built on a sequence of subsets of P rather than the entire set P .

The union allows the complexes in {Sα}α>0 to be connected with inclusions and hence permits using
efficient algorithms and software designed for inclusion induced persistence. However, the size of Sα may
still be large due to the union operation. An alternative is to avoid the union operation but allow deletion or
collapse of vertices (and simplices) at larger scale α [12, 36] resulting into a sequence of Rips-like complexes
connected with simplicial maps instead of inclusions. This approach, which we refer to as Sparse Rips
with collapse, however achieves only moderate improvements in size reduction. We find that much more
aggressive size reduction can be achieved by considering the collapse in a batched fashion that gives rise to
the approach of Batch-collapsed Rips [22].

Finally, building on the batch-collapse idea, we propose a new approach, called SimBa that significantly
reduces the size of Rips-like complexes and their computations. This is achieved primarily by replacing
inter-point distances with set distances while computing the complexes. We prove that this approach still
provably approximates the barcodes of the original Rips filtration in sequence (1).

In what follows, we provide more details about each existing method along with its performance in
practice, which explains the motivation behind the new tool SimBa.

2.1 Sparse Rips filtration (inclusions)

Let P be a set of points in a metric space (M, d). A greedy permutation {p1, .., pn} of P is defined recursively
as follows: Let p1 ∈ P be any point and define pi recursively as pi = argmaxp∈P\Pi−1

d(p, Pi−1), where
Pi−1 = {p1, ..., pi−1}. This gives rise to a nested sequence of subsets P1 ⊂ P2 ⊂ · · ·Pn = P . Furthermore,
each subset Pi is locally dense and uniform (net) in the following sense. Define the insertion radius λpi of a
point pi as λpi = d(pi, Pi−1). Each Pi is a λpi-net of P , meaning that d(p, Pi) ≤ λpi for every p ∈ P and
d(p, q) ≥ λpi for every distinct pairs p, q ∈ Pi. These nets can be extended to a single-parameter family of
nets as {Nγ} where Nγ = {p ∈ P |λp > γ} is a γ-net of P .
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Using the idea of Sheehy [36], Buchet et al. [7] define a Rips-like filtration using the above specific nets
and assigning weights to points whose geometric interpretation is explained in [12]. Each point p ∈ P is
associated with a weight wp(α) at scale α as

wp(α) =


0 if α ≤ λp

ε

α− λp
ε if λpε < α ≤ λp

ε(1−ε)
εα if λp

ε(1−ε) ≤ α

where 0 < ε < 1 is an input constant that controls the sparsity of the filtration. Then, the perturbed distance
between pairs of points is defined as

d̂α(p, q) = d(p, q) + wp(α) + wq(α).

Using the perturbed distance d̂α, the Sparse Rips complex at scale α is defined as

Qα = {σ ⊂ Nε(1−ε)α | ∀p, q ∈ σ, d̂α(p, q) ≤ 2α}.

The sequence of {Qα}α>0 does not form a nested sequence of spaces because the vertex set of each Qα
comes from the net Nε(1−ε)α and may decrease as α increases. However, one can take Sα =

⋃
α′≤αQα

′
and

build a natural filtration {Sα ↪→ Sα′}α<α′ connected by inclusions. It is shown that the persistence barcodes
of the filtration {Sα}α>0 approximate those of the Rips filtration {Rα}α>0 [36].

We use the code from [7] to compute this sparse Rips filtration {Sα}α>0. We then use GUDHI [38] to
compute its persistent barcodes as GUDHI has the state-of-the-art performance for handling large complexes
due to a compression technique [5] for inclusion-based filtrations.

As a common test case to illustrate the performance of various existing methods, we use a 3-dimensional
point set sampled from a surface model called MotherChild; see Figure 1a. We choose this model because
the ground truth is available and also because existing methods have trouble (to different degrees) handling
high-dimensional data. The size of the point set is 23075. For indicating memory consumption, we refer to
cumulative size which is the total number of simplices arising in the filtration, and also to maximum size
which is the maximum over all complexes arising in the filtration. For Sparse Rips filtrations two sizes
coincide at the last complex due to inclusions. Figure 1d shows the cumulative size with different Sparse
Rips parameter ε. It is minimum when ε is between 0.8 and 0.9. So, we choose ε = 0.8 to achieve the best
performance while observing that the approximation quality does not suffer much as predicted by the theory.

The original persistence barcodes are shown in Figure 1b. Since it becomes hard to see the main (long)
bars in presence of all spurious ones creating excessive overlaps, we remove all short bars whose ratio
between death and birth time is smaller than a threshold for 1-dimensional homology group H1. The bars for
H0 and H2 are not denoised. Unless specified otherwise, all barcodes are denoised in the same way. The
denoised barcodes are shown in Figure 1c, one for H0, four short and four long for H1 (MotherChild has
genus 4), and one for H2. The cumulative size of the Sparse Rips complexes in the filtration is 43.5 million
and the total time cost is about 350 seconds.

2.2 Sparse Rips with collapse

The persistence barcodes for the inclusion-based filtration {Sα}α>0 are the same as the barcodes of the
filtration {Qα}α>0 connected by simplicial maps Qα → Qα′ for α < α′. Specifically, these simplicial maps
originate from vertex collapses defined by the following projection map:

µα(p) =

p if p ∈ Nε(1−ε)α

argmin
q∈Nεα

d(p, q) otherwise
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(a) MotherChild model (b) S.R. + GUDHI (original) (c) S.R. + GUDHI (denoised)
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(d) cumulative size (e) S.R. + Simpers (original) (f) S.R. + Simpers (denoised)

Figure 1: MotherChild surface model and its persistence barcodes computed by Sparse Rips (S.R.) based
approaches. Since the surface has genus 4, its barcodes contain long bars: 1 for H0, 8 for H1, and 1 for H2.
The minimum cumulative size for complexes, which is about 43 million, is achieved around ε = 0.8

For any scale α, the projection µα maps the points of P to the net Nε(1−ε)α ⊇ Nεα. One can view it as p
being deleted at time (scale) αp =

λp
ε(1−ε) . We can construct the sequence of Sparse Rips complexes {Qα}α>0

connected with simplicial maps induced by insertions and vertex collapses as α increases: Specifically, we
delete the vertex p and all its incident simplices by collapsing it to its projection µαp(p) where αp =

λp
ε(1−ε) ,

when entering complex Qαp . See [12] for more details.
In this approach we need to compute the persistence induced with simplicial maps. For this, we use the

only available software Simpers [1] based on the algorithm presented in [22]. Our experimental results on
the MotherChild model of Figure 1a with ε = 0.8 are given in Figure 1e and 1f. The barcodes are exactly
the same as those in Figure 1b and 1c. The cumulative size of the entire sequence is the same, 43.5 million,
because the final complex in Sα is the union of all complexes in {Qα}α>0. However, the maximum size in
the sequence is 24.9 million due to vertex collapses in contrast to the maximum size for {Sα}α>0 which
equals the cumulative size. The time cost for this approach is 463.7 seconds which is larger than that for
Sparse Rips with GUDHI. So compared to Sparse Rips with GUDHI, this approach has smaller maximum
size due to collapse but costs more time for computing persistence since Simpers computes persistence over
collapses which are slower operations than inclusions.

While the size of these Sparse Rips complexes is linear in the number of input points, the hidden constant
factor depends exponentially on the doubling dimension of the metric space where points are sampled from.
Empirically, we note that the size is still large, and becomes much worse as the dimension of data increases.
For example, for the Gesture Phase data in Table 1 which has only 1747 points in R18, the cumulative size
of the Sparse Rips filtration is 45.6 million, which approaches the limit GUDHI or Simpers can handle.
For other larger data sets such as Primary Circle or Survivin, the complex reaches a size beyond this limit.
Moreover, one has to pre-compute a greedy permutation of the input point set before constructing the Sparse
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Rips filtration. This computation is usually costly requiring furthest point computations for which software as
efficient as ANN (for nearest neighbors) is not available. This motivates us to consider the batched approach
considered next.

2.3 Batch-collapsed Rips

For handling large and high dimensional data, we need a more aggressive sparsification than the Sparse
Rips filtration. We consider the Batch-collapsed Rips filtration, which has been proposed previously in [22]
(section 6.1).

Given a set of points P , first set V0 := P and compute the shortest pairwise distance α. We next construct
a sequence of vertex sets Vk, k ∈ [0,m] such that Vk+1 is an αck+1-net of Vk where c > 1 is a parameter that
controls the rate of the scale increase. Consider the vertex map πk : Vk → Vk+1, for k ∈ [0,m− 1], such
that for any v ∈ Vk, πk(v) is v’s nearest neighbor in Vk+1. It can be shown that each vertex map πk induces a
well-defined simplicial map sk : Rαc

k 3c−1
c−1 (Vk)→ Rαc

k+1 3c−1
c−1 (Vk+1). The Batch-collapsed Rips filtration

is:

R0(V0)
s0−→ Rαc

3c−1
c−1 (V1) · · ·

sm−1−−−→ Rαc
m 3c−1

c−1 (Vm). (3)

Using the line of proof in [22], one can show that the persistence of this sequence is a 3 log( 2
c−1 + 3)-

approximation of the persistence diagram of Rips filtration given below.

R0(V0) ↪→ Rαc(V0) · · · ↪→ Rαc
m
(V0). (4)

The blowup in scale by the factor of 3c−1
c−1 results from the proof, which in practice causes some problems. We

elaborate this further. To satisfy the approximation guarantee, one has to show that the persistence modules
arising from Batch-collapsed Rips in sequence (3) and the standard Rips in sequence (4) interleave. In
particular, this requires that we have well-defined simplicial maps from complexes in sequence (3) to those in
sequence (4) and vice versa. The multiplicative factor 3c−1

c−1 is needed to ensure that there is a well-defined

simplicial map Rαck(V0) → Rαc
k 3c−1
c−1 (Vk), as Rαc

k 3c−1
c−1 (Vk) has to be sufficiently connected to include

all the images of the simplices in the domain Rips complex Rαck(V0). The side effect of this is that the
Batch-collapsed Rips complex has to be built at a much larger scale than the Rips complex, and it ends up
with many unnecessary connections and thus more simplices in practice. This also causes a trade-off: Larger
c reduces the over-connection but results in a worse approximation factor leading to a worse approximation
quality. It is not clear how to set an increase rate that achieves both good approximation quality and efficiency
for a specific data set.

We experimented Batch-collapsed Rips with Simpers on the same MotherChild model. Figure 2a, 2b
and 2c show the persistence barcodes for different values of c. Observe that smaller values of c give better
approximation. The barcode for c = 1.3 is the most similar among the three to that of Sparse Rips filtration
in Figure 1b which is supposed to be more accurate theoretically. On the other hand, when c grows more than
1.8, it starts to lose some main bars in H1 and noisy bars get longer in H2. On the other hand, Figure 3 shows
that, as c increases, both complex size and time cost decrease drastically. When c = 2.0, it only involves less
than 216K simplices and takes time 9.4 seconds while, although c = 1.3 gives more accurate barcode, its
size (22.5 million) and time (325s) approach those of the Sparse Rips. This demonstrates the dilemma that
Batch-collapsed Rips faces in practice. We address this issue in our new approach SimBa. In particular, when
c ≤ 2, SimBa performs better than Batch-collapsed Rips for both size and time as shown in Figure 3 while
capturing all main bars correctly as shown in Figure 2.
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3 SimBa

To tame the over-connection in Batch-collapsed Rips, we replace the sequence in (3) with the sequence below
where the parameter does not incur the extra factor 3c−1

c−1 :

B0(V0)→ Bαc(V1)→ · · · Bαc
m
(Vm) (5)

The complexes Bαck(Vk) are built on the same vertex sequence {Vk} as in Batch-collapsed Rips, but
the distances among the vertices of Vk are replaced with a set distance which allows us to avoid the
over-connection. For two sets of points (clusters) A,B ⊂ P , we define their set distance as d(A,B) =
mina∈A,b∈B d(a, b). The sets that we consider are the pre-images of the vertices in Vk under the composition
of projections πi’s, namely, for a vertex v ∈ Vk, we consider the set

Bk
v = {p ∈ V0 | π̂k(p) = v} where π̂k : V0 → Vk is defined as π̂k = πk−1 ◦ · · · ◦ π0.

The complex Bαck(Vk) is simply the clique complex induced by edges {(u, v) ∈ Vk | d(Bk
u, B

k
v ) ≤ αck}.

Observe that d(u, v) ≥ d(Bk
u, B

k
v ) which ensures that the normal connection between u and v for a Rips

filtration at the respective scale is not missed by considering the set distance while still avoiding the over-
connection.

It turns out that each vertex map (nearest neighbor projection) πk : Vk → Vk+1 induces a simplicial map
hk : Bαck(Vk) → Bαc

k+1
(Vk+1). Instead of recomputing the simplicial complex each time, we generate

elementary insertion and collapse operations incrementally for each hk in three steps: (i) collapse each
v ∈ Vk \ Vk+1 to its image πk(v) in Vk+1 along with all incident simplices, (ii) insert new edges between two
vertices in Vk+1 if the distance between the two sets they represent are smaller than or equal to the current
scale, and (iii) insert all new clique simplices containing new edges generated by (i) and (ii). Each hk is
processed in one batch, starting from a simplicial complex on vertices in Vk and resulting in a simplicial
complex on vertices in Vk+1. The collapse and insertions of new simplices are exactly what Simpers need for
computing the persistence.

3.1 Implementation Details

The advantage of SimBa (and Batch-collapsed Rips) over Sparse Rips filtrations is mainly due to the batched
approach, which requires us to compute δ-nets of a point set for some δ repeatedly. Its advantage over the
Batch-collapsed Rips is credited to the use of set distances. These computations require k-nearest neighbor
search and fixed radius search for which efficient library like ANN [32] exists. We take advantage of this
available software.

To compute a δ-net of a given point set (to obtain Vk+1 from Vk), we randomly pick an untouched point,
say p, use fixed-radius search to find all points in the ball of radius δ around p, map them to it, and mark them
processed. We do this repeatedly until there is no untouched point left. We observe that this sub-sampling
procedure can be carried out faster at early stage when δ is small because those points whose nearest neighbor
distances are larger than the current δ can be taken directly into the net–they are all mapped to themselves and
no other points are mapped to them. So, we maintain a list L of the points ordered by their nearest neighbor
distances in increasing order and process them sequentially for δ-net computations. To compute the net points
Vk+1 from Vk, we carry out the full sub-sampling process only on the points in Vk that are already known
to have nearest neighbor distances below δ and the new ones that qualify from L for increased δ. After δ
becomes more than the largest nearest neighbor distance, we convert to the usual net computation.

Next, we describe an efficient implementation of the set distance computation, which being a basic
operation in SimBa, speeds it up significantly. A straightforward implementation requires quadratic time,
but we can make it more efficient in practice with the help of the ANN library. We use a hybrid strategy
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as follows. The sets Bk
u for vertices u ∈ Vk are maintained by a union-find data structure. As vertices are

collapsed while going from Vk to Vk+1, the sets of the collapsed vertices are merged to that of the target
vertex. At early stages, when the number of sets (i.e, the size of Vk) is large and the diameter of each set is
potentially small, we avoid computing set distances for all pairs. For each processing set Bk

u, we only need to
find all the sets Bk

v whose distances to Bk
u are smaller than the current scale α′ = αck. If so, we add an edge

between u and v. To find all these nearby sets, we can do a fixed-radius search in V0 = P around each point
in Bk

u within α′ distance. For each point v returned by the search, we find v in the union-find data structure
to identify its image π̂k(v) ∈ Vk. If the representing set of v is different from that of u, we add the edge
π̂k(u)π̂k(v).

Later when α′ becomes large, it may not be efficient to continue this fixed-radius search, as the number
of candidate points from P may be too large (can be n in the worst case). So we fall back on pairwise set
distance computation. In particular, when the cardinality of Vk becomes lower than a threshold, say 1/10
of the number of input points, we compute a pairwise set distance matrix (of size |Vk| × |Vk|) among the
surviving sets once and then keep updating the matrix with batch collapse thereafter. In particular, note that
given sets A,B, and C, the set distance d(A ∪B,C) = min{d(A,C), d(B,C)}.

3.2 SimBa on MotherChild model

We compare SimBa with other approaches on the same MotherChild model. Figure 2d, 2e and 2f show the
persistence barcodes computed by SimBa with different values of c. We see that SimBa captures all the main
0, 1, 2-dimensional bars for all values of c in the range from 1.3 to 2.0 as opposed to Batch-collapsed Rips
which fails to capture the main H1 bars for c > 1.8. It tolerates larger range of c and thus is more robust than
Batch-collapsed Rips. As expected, larger values of c produce less bars since there are less batches. So, in
practice, we should choose smaller c, say less than 1.5. More importantly, as Figure 3 shows, the size and
time for SimBa are also stable against different values of c, all less than 100K simplices and 10 seconds
respectively for c ≤ 2. These are less than those for Batch-collapsed Rips and significantly less than those
for Sparse Rips: In particular, when c = 1.3, the maximum size for SimBa is 100K, similar to when c = 2.
However, for Batch-collapsed Rips, the maximum size is closer to that of SimBa when c = 2, and is 22.5 and
1.4 million when c = 1.3 and c = 1.5 respectively. This size difference becomes even more prominent for
high dimensional data, as Table 1 shows. Although the approximation quality of SimBa is slightly worse
than that of Sparse Rips based approaches, it does capture all the main bars, and more importantly, costs
significantly less time. This advantage allows SimBa to process much larger high dimensional data sets which
no previous approaches can handle, as we illustrate in section 5.

4 Approximation guarantee of SimBa

Recall that the simplicial complex Bα(Vk) appearing in SimBa’s filtration is defined as:

Bα(Vk) = {σ ⊂ Vk | ∀u, v ∈ σ, d(Bk
u, B

k
v ) ≤ α}.

We prove that the persistence barcodes of SimBa’s filtration in sequence (5) approximates those of the Rips
filtration in (4) by showing that the persistence modules induced by these two sequences interleave.

First, observe that each vertex map πk induces a well-defined simplicial map hk : Bαck(Vk) →
Bαck+1

(Vk+1). Indeed, for any edge {u, v} in Bαck(Vk), suppose u′ = πk(u), v
′ = πk(v), then Bk

u ⊂ Bk+1
u′

and Bk
v ⊂ Bk+1

v′ . So we have d(Bk+1
u′ , Bk+1

v′ ) ≤ d(Bk
u, B

k
v ) ≤ αck < αck+1. Therefore {u′, v′} must be an

edge in Bαck+1
(Vk+1) as well. Since each complex in SimBa’s filtration is a clique complex determined by

edges, every simplex in Bαck(Vk) has a well-defined image in Bαck+1
(Vk+1). Thus, each hk is well-defined.
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(a) B.R. (c = 1.3) (b) B.R. (c = 1.5) (c) B.R. (c = 2.0)

(d) SimBa (c = 1.3) (e) SimBa (c = 1.5) (f) SimBa (c = 2.0)

Figure 2: Persistence barcodes computed by Batch-collapsed Rips plus Simpes (B.R.) and SimBa on the
same MotherChild model. B.R. captures main bars for H1 correctly for smaller values of c as shown in
Figure (a) and (b) and loses some for c = 2.0 as shown in Figure (c), while SimBa works for c = 2.0.

Recall that the map π̂k : V0 → Vk+1 is defined as π̂k(v) = πk ◦ · · · ◦π0(v), which tracks the image of any
point in V0 = P during the batch collapse process. Observe that the vertex map π̂k also induces a simplicial
map ĥk : Rαck(V0)→ Bαc

k+1
(Vk+1): specifically, for any edge (u, v) ∈ Rαck(V0) with d(u, v) ≤ αck, it

is easy to see that d(Bk
π̂k(u)

, Bk
π̂k(v)

) ≤ d(u, v) ≤ αck < αck+1, implying that (π̂k(u), π̂k(v)) is an edge in

Bαck+1
(Vk+1). The key observation is the following lemma.

Lemma 4.1. Each triangle in the diagram below commutes at homology level, where ik and jk are induced
by inclusions, hk,t := hk+t−1 ◦ · · · ◦ hk, c > 1, t ≥ logc(

2
c−1 + 3) and t ∈ Z.

Rαck(V0) �
� ik //

ĥk��

Rαck+t(V0)
ĥk+t��

Bαck(Vk)
' �

jk
55

hk,t // Bαck+t(Vk+t)

Proof. First, we prove that there is indeed an inclusion map jk : Bαck(Vk) ↪→ Rαc
k+t

(V0). In particular,
we show for each edge (u, v) in Bαck(Vk), it’s also an edge in Rαck+t(V0). Suppose the set distance
d(Bk

u, B
k
v ) is achieved by the closest pair (u0, v0) between the two sets where u0 ∈ Bk

u, v0 ∈ Bk
v . Then

d(Bk
u, B

k
v ) = d(u0, v0) ≤ αck. Since Vi+1 is an αci+1-net of Vi for each i ∈ [0, k − 1], it follows that

d(u, u0) ≤ αck
∑k−1

i=0
1
ci
< αck c

c−1 . Similar bound holds for d(v, v0). Thus:

d(u, v) ≤ d(u, u0) + d(v, v0) + d(u0, v0) ≤ αck(
2c

c− 1
+ 1) = αck(

2

c− 1
+ 3) ≤ αck+t.

Hence u, v is an edge inRαck+t(V0).
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Figure 3: Complex size and time cost comparison between Batch-collapsed Rips and SimBa. SimBa beats
Batch-collapsed Rips for both size and time when c ≤ 2. For c > 2, the barcodes of both batch-based
approaches become too coarse to be useful in practice.

Next, observe that the vertex map π̂k+t restricted on the set of vertices Vk is exactly the same as the vertex
map πk,t := πk+t−1 ◦ · · · ◦ πk (this vertex map induces the simplicial map hk,t in the diagram). Namely, for
a vertex u ∈ Vk ⊆ V0, hk,t(u) = ĥk+t(u). Thus hk,t = ĥk+t ◦ jk. Hence the bottom triangle commutes both
at the complex and the homology level.

We now consider the top triangle. Specifically, we prove that the map jk ◦ ĥk is contiguous to the inclusion
map ik. Since two contiguous maps induce the same homomorphisms at the homology level, the top triangle
commutes at the homology level.

Indeed, given a simplex σ ∈ Rαck(V0), we need to show that vertices from ik(σ) ∪ jk ◦ ĥk(σ) span
a simplex in Rαck+t(V0). Since both are Rips complexes and ik and jk are inclusion maps, we only need
to prove that for any two vertices u and v from σ ∪ ĥk(σ), d(u, v) ≤ αck+t (namely, (u,v) is an edge in
Rαck+t(V0)). If u and v are both from σ or both from ĥk(σ), then d(u, v) ≤ αck+t trivially. Otherwise,
assume without loss of generality that v ∈ σ and u ∈ ĥk(σ), where u = π̂k(u

′) for some u′ ∈ σ. Since Vi+1

is an is an αci+1-net of Vi for each i ∈ [0, k − 1], it follows that d(u, u′) ≤ αck
∑k−1

i=0
1
ci
< αck c

c−1 . One
then has

d(u, v) ≤ d(u, u′) + d(u′, v) ≤ αck c

c− 1
+ αck = αck

2c− 1

c− 1
< αck(

2

c− 1
+ 3) ≤ αck+t.

Thus ik is contiguous to jk ◦ ĥk and the lemma follows.

The above result implies that the persistence modules induced by sequences (5) and (4) are weakly
log ct-interleaved at the log-scale. Since t ≥ logc(

2
c−1 + 3), we have ct ≥ 2

c−1 + 3. By Theorem 4.3 of [13],
we conclude with the following:

Theorem 4.2. The persistence diagram of the sequence (5) provides a 3 log( 2
c−1 + 3)-approximation of the

persistence diagram of the sequence (4) at the log-scale for c > 1.
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(a) Klein Bottle in R4 (b) Primary Circle in R25 (c) Primary Circle in R49

Figure 4: Original persistence barcodes computed by SimBa on data sets with ground truth

5 Experiments

In this section, we report some experimental results of SimBa on large high dimensional data sets from other
fields such as image processing, machine learning, and computational biology. For most of the data sets,
previous approaches are not efficient enough to finish processing. They either ran out of memory (‘∞’ in
size) or ran more than one day (‘∞’ in time). Table 1 at the end of this section provides the cumulative
size and time cost for all four approaches mentioned in this paper. All approaches are implemented in C++.
Note that we only compute persistences up to dimension 2 (which means we build simplicial complexes
up to dimension 3). For Sparse Rips with GUDHI and Sparse Rips with Simpers, we choose parameter
ε = 0.8 which gives the best performance while not sacrificing much of the approximation quality. For
Batch-collapsed Rips with Simpers, we choose c = 1.5 which appears to reach a good trade-off between
efficiency and quality. For SimBa, we choose c = 1.1 which in practice appears to have best quality –
note that the choice of c does not seem to change the empirical efficiency much as Figure 3 illustrates. All
experiments were run on a 64-bit Windows machine with a 3.50GHz Intel processor and 16GB RAM.

Data with ground truth We first test with two data sets whose ground truth persistences are known. They
help demonstrate that SimBa works properly and efficiently in practice. All persistence barcodes shown in
Figure 4 are original and not cleaned up.

We first consider a uniform sample of 22500 points from a Klein bottle in R4, and use SimBa to compute
its barcode which is shown in Figure 4a. There are two main bars for H1 and one for H2 as expected.

Next, we consider the primary circle of natural image data in [2], which has 15000 points. Each point is a
5×5 or 7×7 image patch, thus considered as a point in R25 or R49. From Figures 4b and 4c, we can see the
primary circle bar for H1 for data both in R25 and R49. All short bars for H2 persist for only one batch step
and thus can be regarded as noise.

Data without ground truth Next, we provide some experiments on the data sets whose ground truth
persistences are not known. We used SimBa to compute their persistences and found some relatively long
bars which are likely to be features and may worth further investigation by domain experts. The persistence
barcodes shown in Figure 5 and 6d are denoised for H1. The rest of Figure 6 are original.

We first take the Gesture Phase Segmentation data set [31] from UCI machine learning repository [29].
This data set was used in [30]. It comprises of features extracted from 7 videos with people gesticulating.
Each video is represented by a raw file that contains the positions of hands, wrists, head, and spine of the
user in each frame. We took the raw file from video A1 of 1747 frames. Since there are six sensors each
with x, y, z coordinates, we have in total 1747 points in R18. There are five gesture phases in the videos: rest,
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(a) Gesture Phase data in R18 (b) Survivin data in R3 (c) Survivin data in R150

Figure 5: Denoised persistence barcodes computed by SimBa on data sets without ground truth

(a) S.R.+GUDHI (b) B.R.+Simpers (c) SimBa (d) SimBa (denoised)

Figure 6: Persistence barcodes computed by different approaches on Gesture Phase Segmentation data in R18

preparation, stroke, hold, and retraction. Indeed, there are five long bars for H0 in 5a (although they overlap
and do not stand out in the picture), which seems to match the five clusters of different phases. We see some
long bars for H1, which could be created due to periodic patterns in these gesture movements.

Another data set is the Survivin protein data from [28]. There are totally 252996 protein conformations
and each conformation is considered as a point in R150. We used PCA to reduce the data dimension to 3. We
ran SimBa on both data sets and show the barcodes in Figure 5c and 5b. We can see that there are some long
bars for H1.

Performance results We provide the performance results for all data sets mentioned in Table 1, which
includes cumulative size and time cost of each approach. The time is obtained by adding the time to construct
the complexes and the time to compute persistence. S.R.+GUDHI, S.R.+Simpers, B.R.+Simpers and
SimBa stand for Sparse Rips plus GUDHI, Sparse Rips plus Simpers, Batch-collapsed Rips plus Simpers,
and SimBa respectively. Mother, KlBt, PrCi25, PrCi49, GePh, Sur3 and Sur150 stand for MotherChild
model, Klein Bottle, Primary Circle in R25, Primary Circle in R25, Gesture Phase Segmentation data, Survivin
protein data in R3 and in R150 respectively. Each data set has size n, ambient dimension D, and intrinsic
dimension d. The symbol∞ means that the program either ran out of memory or did not finish after a day.
From the table, we can see that SimBa out-performed the other three approaches significantly. Notice that for
those larger cases of SimBa, the nearest neighbor search operations (ANN) usually take most of time and
become the bottleneck. This is why Sur150 costs much more time than PrCi49 while its cumulative size is
smaller. It would be an interesting future work to make nearest neighbor search more efficient so that SimBa
performs better even for such cases.

Acknowledgment. This work has been supported by NSF grants CCF-1318595 and CCF-1526513.
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S.R.+GUDHI S.R.+Simpers B.R.+Simpers SimBa
Data n D d size time(s) size time(s) size time(s) size time(s)
Mother 23075 3 2 43.5 · 106 350 43.5 · 106 463.7 2.3 · 106 42.3 104701 8.8
KlBt 22500 4 2 20.9 · 106 205.3 20.9 · 106 303.5 440049 8 78064 6.6
PrCi25 15000 25 ? ∞ − ∞ − − ∞ 4.8 · 106 216
PrCi49 15000 49 ? ∞ − ∞ − − ∞ 10.2 · 106 585
GePh 1747 18 ? 45.6 · 106 282.5 45.6 · 106 432.8 1.4 · 106 29 7145 0.83
Sur3 252996 3 ? ∞ − ∞ − 15.7 · 106 1056.4 915110 1079.6
Sur150 252996 150 ? ∞ − ∞ − − ∞ 3.1 · 106 5089.7

Table 1: cumulative size and time cost

References

[1] Simpers Software, 2015. Project URL: http://web.cse.ohio-state.edu/˜tamaldey/
SimPers/Simpers.html.

[2] H. Adams and G. Carlsson. On the nonlinear statistics of range image patches. SIAM J. Img. Sci.,
2(1):110–117, 2009.

[3] U. Bauer, M. Kerber, and J. Reininghaus. Topological Methods in Data Analysis and Visualization III:
Theory, Algorithms, and Applications, chapter Clear and Compress: Computing Persistent Homology in
Chunks, pages 103–117. Springer International Publishing, Cham, 2014.

[4] U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. Mathematical Software – ICMS 2014: 4th
International Congress, Seoul, South Korea, August 5-9, 2014. Proceedings, chapter PHAT – Persistent
Homology Algorithms Toolbox, pages 137–143. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.
Project URL: https://bitbucket.org/phat-code/phat.

[5] J.-D. Boissonnat, T. K. Dey, and C. Maria. Algorithms – ESA 2013: 21st Annual European Symposium,
Sophia Antipolis, France, September 2-4, 2013. Proceedings, chapter The Compressed Annotation
Matrix: An Efficient Data Structure for Computing Persistent Cohomology, pages 695–706. Berlin,
Heidelberg, 2013.

[6] J.-D. Boissonnat and C. Maria. Algorithms – ESA 2012: 20th Annual European Symposium, Ljubljana,
Slovenia, September 10-12, 2012. Proceedings, chapter The Simplex Tree: An Efficient Data Structure
for General Simplicial Complexes, pages 731–742. 2012.

[7] M. Buchet, F. Chazal, S. Y. Oudot, and D. R. Sheehy. Efficient and robust persistent homology for
measures. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 168–180, 2015.

[8] D. Burghelea and T. K. Dey. Topological persistence for circle-valued maps. Discrete Comput. Geom.,
50:69–98, 2013.

[9] G. Carlsson. Topology and data. Bull. Amer. Math. Soc., 46:255–308, 2009.

[10] G. Carlsson and V. de Silva. Zigzag persistence. Foundations of computational mathematics, 10(4):367–
405, 2010.

[11] G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete & Computational
Geometry, 42(1):71–93, 2009.

13

http://web.cse.ohio-state.edu/~tamaldey/SimPers/Simpers.html
http://web.cse.ohio-state.edu/~tamaldey/SimPers/Simpers.html
https://bitbucket.org/phat-code/phat


[12] N. J. Cavanna, M. Jahanseir, and D. R. Sheehy. A geometric perspective on sparse filtrations. In
Canadian Conf. Comput. Geom. (CCCG), 2015.

[13] F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Y. Oudot. Proximity of persistence modules
and their diagrams. In Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry,
SCG ’09, pages 237–246, 2009.

[14] F. Chazal, D. Cohen-Steiner, L. Guibas, F. Mémoli, and S. Y. Oudot. Gromov-Hausdorff stable
signatures for shapes using persistence. In Proc. of SGP, 2009.

[15] F. Chazal, V. de Silva, M. Glisse, and S. Oudot. The structure and stability of persistence modules.
CoRR, abs/1207.3674, 2012.

[16] F. Chazal, L. J. Guibas, S. Y. Oudot, and P. Skraba. Persistence-based clustering in Riemannian
manifolds. In Proc. 27th Annu. ACM Sympos. Comput. Geom., pages 97–106, 2011.

[17] C. Chen and M. Kerber. An output-sensitive algorithm for persistent homology. Comput. Geom. Theory
Appl., 46(4):435–447, May 2013.

[18] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete &
Computational Geometry, 37(1):103–120, 2007.

[19] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Extending persistence using Poincaré and Lefschetz
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