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The efficiency of extracting topological information from point data depends largely on 
the complex that is built on top of the data points. From a computational viewpoint, 
the favored complexes for this purpose have so far been Vietoris–Rips and witness 
complexes. While the Vietoris–Rips complex is simple to compute and is a good vehicle for 
extracting topology of sampled spaces, its size becomes prohibitively large for reasonable 
computations. The witness complex on the other hand enjoys a smaller size because of 
a subsampling, but fails to capture the topology in high dimensions unless imposed with 
extra structure. We investigate a complex called the graph induced complex that, to some 
extent, enjoys the advantages of both. It works on a subsample but still retains the power 
of capturing the topology as the Vietoris–Rips complex. It only needs a graph connecting 
the original sample points from which it builds a complex on the subsample thus taming 
the size considerably. We show that, using the graph induced complex one can (i) infer the 
one dimensional homology of a manifold from a lean subsample, (ii) reconstruct a surface 
in three dimensions from a sparse subsample without computing Delaunay triangulations, 
(iii) infer the persistent homology groups of compact sets from a sufficiently dense sample. 
We provide experimental evidences in support of our theory.

Published by Elsevier B.V.

1. Introduction

Acquiring knowledge about a sampled space from a set of points has become a key problem in many areas of science 
and engineering. The sampled space could be a hidden manifold sitting in some high dimensions, or could be a compact 
subset of some Euclidean space. Topological information such as the rank of the homology groups, or their persistent be-
havior can divulge important features of the hidden space. Therefore, a considerable effort has ensued to extract topological 
information from point data in recent years [7,9,16,19]. With the advent of advanced technologies, the data is often gener-
ated in abundance. Mixed with the burden of high dimensionality, large data sets pose a challenge to the resource required 
to process them. As a result, some recent investigations have focused on how to use a lighter data structure or sparsify the 
input, which aids a faster computation, but still guarantees that the output inference is correct.

Point data by themselves do not have interesting topology. So, a foremost step in inferring topology from data is to 
impose a structure such as a simplicial complex onto it. The Delaunay, Čech, Vietoris–Rips, and witness complexes are 
some of the most commonly proposed complexes for this purpose. Among these, Vietoris–Rips (Rips in short) and witness 
complexes [9] have been favored because they can be constructed with simple computations. Rips complexes are easy to 
construct as they can be built from a graph by recognizing the cliques in it. However, the presence of simplices correspond-
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Fig. 1. A graph induced complex shown with bold vertices, edges, and a shaded triangle on the left. Input graph within the shaded triangle is shown on 
the right.

ing to all cliques makes its size quite large. Even in three dimensions with a few thousand points, the size of the Rips 
complex can be an obstacle, if not a stopper, for further processing. Witness complexes, on the other hand, have too few 
simplices to capture the topology of the sampled space in dimensions three or more [4]. To tackle this issue, Boissonnat et 
al. [4] suggested modifications to the original definition of witness complex [12]. This enlarges the witness complexes but 
makes it more complicated and costly to compute.

We investigate a new complex, a version of which was originally introduced in [18] for the application of sensor network 
routing. We set up a more general definition and call it the graph induced complex. We provide new theoretical understand-
ing of the graph induced complex in terms of topology inference. In particular, we show that, when equipped with an 
appropriate metric, this complex can help deciphering the topology from data. It retains the simplicity of the Rips complex 
as well as the sparsity of the witness complex. Its construction resembles the sparsified Rips complex proposed in [24] and 
also the combinatorial Delaunay triangulation proposed in [6], but it does not build a Rips complex on the subsample and 
thus is sparser than the Rips complex with the same set of vertices. This fact makes a real difference in practice as our pre-
liminary experiments show. The idea of graph induced complex also bears similarity to the geodesic Delaunay triangulation 
which was proposed to recover the topology of a bounded planar region (with holes) from point samples [23]. Our work 
investigates its theoretical properties and generalizes it to settings beyond the planar case.

Given a graph G on a set of points P equipped with a metric, one can build a graph induced complex on a subsample 
Q ⊆ P as follows. A simplex is in the complex if and only if its vertex set V ⊆ Q has the property that a set of points in 
P , each being closest to exactly one vertex in V , forms a clique in G . Fig. 1 shows a graph induced complex for a set of 
data points in the plane. Subsampled points are the darker vertices. Input points are grouped according to the proximity to 
the subsampled vertices (indicated with a Voronoi partition). The shaded triangle enlarged on the right-hand side is in the 
graph induced complex since there is a 3-clique in the input graph whose 3 vertices have 3 different closest point in the 
subsample. Observe that, in this example, the graph induced complex has the same homology as the sampled space.

Fig. 2 shows experimental results on two data sets, 40,000 sample points from a Klein bottle in R4 and 15,000 sample 
points from the primary circle of natural image data considered in R25 [1]. The graphs connecting any two points within 
α = 0.05 unit distance for Klein bottle and α = 0.6 unit distance for the primary circle were taken as input for the graph 
induced complexes. The 2-skeleton of the Rips complexes for these α parameters have 608,200 and 1,329,672,867 simplices 
respectively. These sizes are too large to carry out fast computations.

For comparison, we constructed the graph induced complex, sparsified Rips complex, and the witness complex on the 
same subsample determined by a parameter δ. The parameter δ is also used in the graph induced complex (see definitions 
later) and the witness complex. The edges in the Rips complex built on the same subsample were of lengths at most α + 2δ

(justified by Proposition 2.8). We varied δ and observed the rank of the one dimensional homology group (β1). The plots 
show that the graph induced complex captured β1 correctly for a significantly wider range of δ (left plots) while its size 
remained comparable to that of the witness complex (right plots). In some cases, the graph induced complex could capture 
the correct β1 with remarkably small number of simplices. For example, it had β1 = 2 for Klein bottle when there were 
278 simplices for δ = 0.7 and 154 simplices for δ = 1.0. In both cases β1 for Rips and witness complexes did not match 
with that of the sampled spaces while the Rips complex had a much larger size (loge scale plot) and the witness complex 
had comparable size. This illustrates why the graph induced complex can be a better choice than the Rips and witness 
complexes.

We establish three different results. First, we show that the one-dimensional homology group of surfaces in three 
dimensions can be determined by graph induced complexes. Even the surface itself can be reconstructed with some 
post-processing from a sparse subsample of a sample that could be excessively dense. Second, we show that, for higher-
dimensional manifolds, one-dimensional homology can still be determined from graph induced complexes with a simple 
modification of the metric. Finally, we extend our results to other homology groups where we show that the persistent ho-
mology groups of a pair of graph induced complexes can determine the homology groups of compact spaces. Experimental 
results support our theory.
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Fig. 2. Comparison results for Klein bottle in R4 (top row) and primary circle in R25 (bottom row). The estimated β1 for three complexes are shown on the 
left, and their sizes are shown on log scale on the right.

2. Graph induced complex and preliminaries

First we define the graph induced complex in a more abstract setting which does not require a metric.

Definition 2.1. Let G(V ) be a graph with the vertex set V and let ν : V → V ′ be a vertex map where ν(V ) = V ′ ⊆ V . The 
graph induced complex G(G(V ), V ′, ν) is defined as the simplicial complex where a k-simplex σ = {v ′

1, v
′
2, . . . , v

′
k+1} is in 

G(V , V ′, ν) if and only if there exists a (k + 1)-clique {v1, v2, . . . , vk+1} ⊆ V so that ν(vi) = v ′
i for each i ∈ {1, 2, . . . , k + 1}. 

To see that it is indeed a simplicial complex, observe that a subset of a clique is also a clique.

Now we specialize the graph induced complex to the case where the vertices of the input graph come from a metric 
space.

Definition 2.2. A metric space (X, d) is a pair where X is a set and d : X × X → R+ is a distance function satisfying 
d(x, y) ≥ 0, d(x, y) = 0 iff x = y, d(x, y) = d(y, x), and d(x, y) ≤ d(x, z) + d(z, y).

Definition 2.3. Let (P , d) be a metric space where P is a finite point set and let Q ⊂ P be a subset. Let νd : P → Q denote 
the nearest point map where νd(p) is a point in argminq∈Q d(p, q). Given a graph G(P ) with vertex set P , we define its 
graph induced complex as G(G(P ), Q , d) := G(G(P ), Q , νd).

Among the many possible choices for d, we will focus on two cases where d = dE , the Euclidean distance, and d = dG , the 
graph distance induced by the graph G(P ) assuming its edges have non-negative weights. For any two vertices p1, p2 ∈ P , 
the distance dG (p1, p2) is the length of the shortest path between p1 and p2 in G(P ). We will describe the choices of the 
distance functions when necessary.

In our case, the point set P will be a discrete subset of a compact smooth manifold M ⊂ R
n without boundary, or of a 

compact set X ⊂ R
n . The graph G(P ) will be the graph Gα(P ) = (P , Eα) where (p1, p2) ∈ Eα if and only if ‖p1 − p2‖ ≤ α. 

The graph induced complex induced by Gα(P ) on a subset Q ⊆ P under a distance function d will be the focus of our 
study. To emphasize the dependence on the parameter α, we write it as Gα(P , Q , d) := G(Gα(P ), Q , d). Notice that Gα(P )
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is induced by Euclidean metric whereas d is used to define the nearest point map in constructing Gα(P , Q , d). As mentioned 
earlier, the graph induced complex bears a similarity to the complex considered in [18,23]. One may also draw a parallel 
between the graph induced complexes and the well-known witness complexes [12] where P acts as a witness set W and 
Q acts as a landmark set L ⊆ W . However, the analogy does not extend any further since the construction of the witness 
complex and its variants [4] differs from that of the graph induced complex. For example, the original witness complex 
defined in [12] includes a k-simplex with vertex set in L only if its vertices belong to the k-nearest neighbors of a point in 
W . In contrast the graph induced complex includes a k-simplex only if its vertices have nearest neighbors in W that form a 
k-clique in a graph built on the vertices belonging to W . Similar to the witness complex, the graph induced complex builds 
upon a subsampling, but, unlike the witness complex, it enjoys some topological properties without any extra modifications 
such as weighting [4].

2.1. Sampling, homology, and sandwiching

As indicated before, the input point set P is a sample of a smooth manifold M or a compact set X embedded in 
Euclidean space. We will also subsample P according to a distance function d. Therefore, we define sampling in a more 
general context.

Definition 2.4. A finite set P ⊆ X is an ε-sample of a metric space (X, d), if for each point x ∈ X there is a point p ∈ P so 
that d(x, p) ≤ ε. Additionally, P is called δ-sparse if d(p1, p2) ≥ δ for any pair of points in P .

The point set P does not have interesting topology by itself. We build simplicial complexes using P as the vertex set to 
infer the topology of the sampled space X . Specifically, our goal is to infer the homology groups of a manifold or a compact 
set from which P is sampled by computing the homology groups of a simplicial complex built with P as vertices. Let Hr(·)
denote the r-dimensional homology group. It refers to the singular homology when the domain is a manifold or a compact 
set, and to the simplicial homology when it is a simplicial complex. Also, all homology groups are assumed to be defined 
over the finite field Z2.

Our main tool for topological inference rests on the relationship between the graph induced complexes and the Rips 
complexes that are known to capture information about the homology groups of spaces [3,21].

Definition 2.5. Given a point set P ⊆ R
n and a parameter α, the Rips complex Rα(P ) = Rα(P , dE) is a simplicial complex 

where a simplex σ belongs to Rα(P ) if and only if all vertices of σ , drawn from P , are within α Euclidean distance of each 
other.

Notice that we define Rips complexes with Euclidean distances instead of general metrics which will be assumed throughout 
this paper. It is known that such Rips complexes capture the topology of a manifold M if the parameters are chosen right [3,
21]. We utilize this fact to infer H1(M) by exploiting a sandwiching property of graph induced complexes by Rips complexes. 
To prove this fact, we recall the concept of contiguous maps from algebraic topology. Our main interest in this concept is 
the fact that two contiguous maps between two simplicial complexes induce the same homomorphism at the homology 
level.

Definition 2.6. (See [22].) Let K1 and K2 be two simplicial complexes connected by two simplicial maps a : K1 → K2 and 
b : K1 → K2. We say a and b are contiguous, if and only if for any simplex σ ∈ K1, the simplices a(σ ) and b(σ ) are faces 
of a common simplex in K2.

Fact 2.7. (See [22].) If a : K1 → K2 and b : K1 → K2 are contiguous, then the induced homomorphisms a∗ : Hr(K1) → Hr(K2) and 
b∗ : Hr(K1) → Hr(K2) are equal.

In our case two simplicial complexes will be K1 = Rα(P ) and K2 = Rβ(P ) for some β > α. The map a is an inclusion 
Rα(P ) ↪→Rβ(P ). For the map b, we consider a simplicial map h : Rα(P ) → Gα(P , Q , d) which composed with an inclusion 
Gα(P , Q , d) ↪→Rβ(P ) provides b. We elaborate on this construction.

The vertex sets of Rα(P ) and Gα(P , Q , d) are P and Q respectively with a vertex map νd : P → Q where p ∈ P maps to 
one of its closest point(s) νd(p) ∈ Q . Observe that Gα(P ) is the 1-skeleton of Rα(P ). Therefore, the edges of a (k +1)-clique 
in Gα(P ) constitute the 1-skeleton of a k-simplex in Rα(P ) and vice versa. The vertex map νd extends to a simplicial map 
h : Rα(P ) → Gα(P , Q , d) where a k-simplex {p1, p2, · · · , pk+1} in Rα(P ) is mapped to a simplex (of dimension at most k) 
with the vertex set {νd(pi)}. To see that h is well defined, observe that any subset of the (k + 1)-clique {p1, p2, · · · , pk+1} is 
also a clique in Gα(P ) and hence {νd(pi)} is a simplex in Gα(P , Q , d). The following result is used later.

Proposition 2.8. Let (P , d) be a metric space where P ⊂ R
n is a finite set and for every pair p1, p2 ∈ P , d(p1, p2) is at least the 

Euclidean distance ‖p1 − p2‖. Let Q be a δ-sample of (P , d). We have the sequence
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Rα(P )
h−→ Gα(P , Q ,d)

j
↪→ Rα+2δ(P )

where j is an inclusion and j ◦ h is contiguous to the inclusion i :Rα(P ) ↪→Rα+2δ(P ). Hence, j∗ ◦ h∗ = i∗ .

Proof. The map h is well-defined as we detailed before. We observe that Gα(P , Q , d) ⊆ Rα+2δ(P ) because, by triangle 
inequality, any edge (q1, q2) of a simplex σ ∈ Gα(P , Q , d) satisfies d(q1, q2) ≤ α + 2δ. Since d(q1, q2) ≥ ‖q1 − q2‖ by as-
sumption, the edge (q1, q2) and hence the simplex σ are in Rα+2δ(P ). It follows that the inclusion map j is well-defined.

To prove the contiguity, consider a simplex σ in Rα(P ). We need to show that the vertices of σ and h(σ ) span a simplex 
in Rα+2δ(P ). Clearly, all vertices of σ are within α distance of each other. By definition of h, all vertices of h(σ ) are within 
distance α + 2δ. Let u be a vertex of σ and h(v) be a vertex of h(σ ) where v is a vertex of σ . Then the Euclidean distance 
‖u − h(v)‖ is at most ‖u − v‖ +‖v − h(v)‖ ≤ α + δ. Therefore, all vertices of σ and h(σ ) are within α + 2δ distance. Hence, 
the simplex σ and h(σ ) are faces of a common simplex in Rα+2δ(Q ) proving the claim of contiguity. �
Computing graph induced complexes One may wonder how to efficiently construct the graph induced complexes in practice. 
Our experiments show that the following procedure runs quite efficiently in practice. It takes advantage of computing 
nearest neighbors within a range and, more importantly, computing cliques only in a sparsified graph.

Let the ball B(q, δ) in metric d be called the δ-cover for the point q. A graph induced complex Gα(P , Q , d) where Q
is a δ-sparse δ-sample can be built easily by identifying δ-covers with a rather standard iterative algorithm similar to the 
greedy (farthest point) iterative algorithm of [20]. Let Q i = {q1, . . . , qi} be the point set sampled so far from P . We maintain 
the invariants (i) Q i is δ-sparse and (ii) every point p ∈ P that are in the union of δ-covers 

⋃
q∈Q i

B(q, δ) have their closest 
point ν(p) = argminq∈Q i

d(p, q) in Q i identified. To augment Q i to Q i+1 = Q i ∪ {qi+1}, we choose a point qi+1 ∈ P that 
is outside the δ-covers 

⋃
q∈Q i

B(q, δ). Certainly, qi+1 is at least δ units away from all points in Q i thus satisfying the first 
invariant. For the second invariant, we check every point p in the δ-cover of qi+1 and update ν(p) to be qi+1 if its distance 
to qi+1 is smaller than the distance d(p, ν(p)). At the end, we obtain a sample Q ⊆ P whose δ-covers cover the entire point 
set P and thus is a δ-sample of (P , d) which is also δ-sparse.

Next, we construct the simplices of Gα(P , Q , d). This requires identifying cliques in Gα(P ) that have vertices with 
different closest points in Q . We delete every edge pp′ from Gα(P ) where ν(p) = ν(p′). Then, we determine every clique 
{p1, . . . pk} in the remaining sparsified graph and include the simplex {ν(p1), . . . , ν(pk)} in Gα(P , Q , d). The main saving 
here is that many cliques of the original graph are removed before it is processed for clique computation. We use the 
recently proposed simplex tree which computes cliques efficiently both time and space-wise [5].

3. Surface point data

In this section, we infer the geometry and topology of a surface through the graph induced complex. Let M be a smooth, 
compact, connected surface embedded in R3 that has no boundary. We assume that M has positive reach ρ = ρ(M) which 
is the minimum distance of M to its medial axis. Let P be an ε-sample of the metric space (M, dE ) where dE is the 
Euclidean distance. Consider the graph induced complex Gα(P , Q , dE). In this section, the subset Q ⊂ P is assumed to be a 
δ-sparse δ-sample of (P , dE ).

Our result in this section is that under certain conditions on α, ε and δ, Gα(P , Q , dE) captures the homology of M
and contains the restricted Delaunay triangulation Del|M Q as defined below. The sparsity of Q turns out to be a crucial 
condition in the argument.

Definition 3.1. Let Del Q denote the Delaunay triangulation of a point set Q ⊂ R
3. The restricted Delaunay triangulation of 

Q with respect to a manifold M ⊂ R
3, denoted Del|M Q , is defined to be the subcomplex of Del Q formed by all Delaunay 

simplices whose Voronoi duals intersect M .

3.1. Topological inference from Gα(P , Q , dE)

Consider the sequence Rα(P ) h−→ Gα(P , Q , d) 
j

↪→ Rα+2δ(P ) in Proposition 2.8. When P , an ε-sample of (M, dE ), is 
sufficiently dense, it is known that i∗ : H1(Rα(P )) → H1(Rβ(P )) is an isomorphism for appropriate α and β . The homo-
morphism h∗ is injective if i∗ is an isomorphism since i∗ = j∗ ◦ h∗ . If we can show that h∗ is also surjective, then h∗ is 
an isomorphism. We now show that h∗ is indeed surjective for H1-homology and hence information about H1(M) can be 
obtained by computing H1(Gα(P , Q , dE)). First, we observe the following. Let Pq ⊆ P be the points who have q ∈ Q as the 
closest point. Notice that by the definition of h, h(Pq) = {q}. To prove that h∗ is surjective, it is sufficient to prove that the 
preimage of each 1-cycle in Gα(P , Q , dE) contains a 1-cycle of Rα(P ). This, in turn, is true if the 1-skeleton of Rα(Pq) is 
connected.

Proposition 3.2. If the 1-skeleton of Rα(Pq) is connected for all q ∈ Q , then h∗ is surjective.
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Fig. 3. In a long thin Voronoi cell, Bq may be disconnected and may not contain Mq .

Proof. We show that the chain map h# induced by the simplicial map h is surjective. It follows that the homomorphism h∗
induced at the homology level is also surjective. Let c = q0q1 + q1q2 + · · · + qkq0 be any 1-cycle in Gα(P , Q , dE). The edges 
qi−1qi and qiqi+1 have edges, say pi−1 p′

i and pi p′
i+1 respectively, in their preimage under h in Rα(P ). Consider a path γi

between pi and p′
i in Rα(Pqi ) where h(pi) = h(p′

i) = qi . Such a path exists because Rα(Pq) is connected for all q ∈ Q . We 
have a 1-cycle

c′ = p0 p′
1 + γ1 + p1 p′

2 + γ2 + p2 p′
3 + · · · + γk + pk p′

0 + γ0

in Rα(P ) so that h#(c′) = c. This shows that h∗ is surjective in the first homology group. �
The 1-skeleton of Rα(Pq) is connected if the union of balls Bq = ⋃

Pq
B(p, α2 ) is connected because an edge p1 p2 is 

in Rα(Pq) if the respective balls B(p1, α2 ) and B(p2, α2 ) intersect. Let Vq be the Voronoi cell of q in the Voronoi diagram 
Vor Q . Let Mq = Vq ∩ M be the restricted Voronoi region. It turns out (we will prove it later in Proposition 3.4) that if Mq

is contained in Bq and Mq is connected, then Bq is connected. It may seem a priori that Bq would contain Mq if P is a 
dense sample. Unfortunately, that is not true as Fig. 3 illustrates. To avoid such a case, we require that the Voronoi cells 
do not subtend very small angles between their facets which is ensured by the δ-sparsity of Q . Proposition 3.3 below uses 
δ-sparsity in a subtle way to prepare for the proof that Bq contains Mq . This result will also be used later to show that the 
graph induced complex Gα(P , Q , dE) in fact contains the restricted Delaunay triangulation Del|M Q .

For a simplex σ ∈ Del|M Q , we call a ball B(c, r) a surface Delaunay ball of σ if c ∈ M and its boundary contains the 
vertices of σ .

Proposition 3.3. Let P be an ε-sample of (M, dE), and Q a δ-sparse δ-sample of (P , dE). Let σ ∈ Del|M Q be a restricted Delaunay 
triangle or edge with a vertex q ∈ Q . Let c be the center of a surface Delaunay ball of σ . If 8ε ≤ δ ≤ 2

27 ρ(M), then there is a point 
p ∈ P so that p ∈ B(c, 4ε) and q is the closest point to p among all points in Q .

Proof. See Appendix A for the proof. �
Now, we are ready to prove that Mq is contained in the union of balls 

⋃
Pq

B(p, α2 ).

Proposition 3.4. If α ≥ 12ε and 8ε ≤ δ ≤ 2
27 ρ(M), then Mq ⊂ ⋃

{p∈Pq} B(p, α2 ) which implies that Rα(Pq) is path connected if Mq

is path connected.

Proof. Since P is an ε-sample of M , ∀x ∈ M , there exists a point p ∈ B(x, ε) where p ∈ P . Let P ′
q = P ∩ (

⋃
x∈Mq

B(x, ε)). 
Then, we have Mq ⊂ ⋃

p∈P ′
q

B(p, ε) for if x ∈ Mq , there exists p ∈ P ′
q with p ∈ B(x, ε) requiring x ∈ B(p, ε). On the other 

hand, recall that Pq = Mq ∩ P . Hence if p ∈ P ′
q \ Pq , then B(p, ε) contains some boundary point x ∈ ∂Mq . The point x belongs 

to a Voronoi facet in the Voronoi diagram of Q and hence B(x, ‖q −x‖) is a surface Delaunay ball. By Proposition 3.3, we can 
find a point u ∈ Pq such that ‖u −x‖ ≤ 4ε. Thus, B(p, ε) ⊂ B(u, (4 +2)ε). Taking α ≥ 12ε, we get that Mq ⊂ ⋃

p∈P ′
q

B(p, ε) ⊂⋃
p∈Pq

B(p, α2 ).

Since every ball in {B(p, ε)|p ∈ Pq} intersects Mq , we have that Bq = ⋃
{p∈Pq} B(p, α2 ) is path connected if Mq is path 

connected. On the other hand Rα(Pq) is path connected if Bq is path connected proving the claim. �
We can now present the main result of this subsection.

Theorem 3.5. Let P be an ε-sample of a smooth compact surface M embedded in R3 , and Q ⊆ P a δ-sparse δ-sample of (P , dE). 
For 12ε ≤ α ≤ 2

27 ρ and 8ε ≤ δ ≤ 2
27 ρ , the map h∗ : H1(Rα(P )) → H1(Gα(P , Q , dE)) is an isomorphism where h : Rα(P ) →

Gα(P , Q , dE) is the simplicial map induced by the nearest point map νdE : P → Q .
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Proof. Since δ ≤ 0.18ρ , we can assume each restricted Voronoi cell Mq to be path connected [13]. This together with the 
lower bound on α imply that Rα(Pq) is connected for each q ∈ Q thanks to Proposition 3.4. Consequently, Proposition 3.2
establishes that h∗ is surjective.

From Proposition 4.1 of [16] and its proof, we obtain the following: for any 4ε ≤ r ≤ 2r ≤ r′ ≤
√

3
5 ρ ,

H1(Rr(P )) ∼= H1(Rr′
(P )) ∼= H1(M) (1)

where the first isomorphism is induced by the canonical inclusion i : Rr(P ) ↪→ Rr′
(P ). Our assumption on the ranges 

of α and δ implies the required conditions that 4ε ≤ α ≤ 1
3

√
3
5 ρ and 4ε ≤ δ ≤ 1

3

√
3
5 ρ . We claim that i∗ : H1(Rα(P )) →

H1(Rα+2δ(P )) induced by the inclusion i : Rα(P ) →Rα+2δ(P ) is an isomorphism.
First, note that this claim follows easily from (1) if α ≤ δ by setting r = α and r′ = α + 2δ. Now assume that δ ≤ α. 

Consider the following sequence:

Rδ(P )
i1
↪→ Rα(P )

i
↪→ Rα+2δ(P )

i2
↪→ R3α(P ).

By Eq. (1), we have that the composition of inclusions i ◦ i1 :Rδ(P ) →Rα+2δ(P ) induces an isomorphism at the homology 
level. Hence i∗ is necessarily surjective. On the other hand, the composition of inclusions i2 ◦ i :Rα(P ) →R3α(P ) induces an 
isomorphism at the homology level. Hence i∗ is necessarily injective. Putting these two together, we have that i∗ is indeed 
an isomorphism. Therefore h∗ is injective by Proposition 2.8. It then follows that h∗ is an isomorphism as claimed. �

Notice that the lower bound on δ in Theorem 3.5 is not restricted by α. This means that one can have a dense input 
graph for a large α whose connectivity does not restrict the size of the subsample.

In the next subsection, we show two examples of surface data where the graph induced complex has the correct 
H1-homology with a considerably fewer simplices than the ν-witness complex, a modified witness complex suggested in [4]
for capturing the topology correctly.

3.2. Reconstruction of M using Gα(P , Q , dE)

In this subsection, we observe that the graph induced complexes can also be used for surface reconstruction. It is known 
that if P is dense and T is a simplicial complex with vertex set P which satisfies the following conditions, a simplicial 
manifold can be extracted from T that is homeomorphic to M [2,13]. The conditions are: (i) T is embedded in R3, (ii) all 
triangles in T have small circumradii compared to reach and (iii) T contains the restricted Delaunay triangulation. We show 
that Gα(P , Q , dE) contains the restricted Delaunay triangulation. We then prune Gα(P , Q , dE) so that conditions (i) and (ii) 
are satisfied, but none of the restricted Delaunay triangles are deleted in the process which then ensures condition (iii).

Theorem 3.6. For 8ε ≤ δ ≤ 2
27 ρ and α ≥ 8ε, we have that Del|M Q ⊆ Gα(P , Q , dE) where P is an ε-sample of (M, dE) and Q ⊆ P

is a δ-sparse δ-sample of (P , dE).

Proof. We will show that if 8ε ≤ δ ≤ 2
27 ρ and α ≥ 8ε, then any triangle σ ∈ Del|M Q is in Gα(P , Q , dE). The theorem 

follows from this.
Let σ = {q1, q2, q3}, and c the center of a surface Delaunay ball of σ . By Proposition 3.3, there exists a point pi ∈ P in 

B(c, 4ε) so that qi is the closest point in Q to pi for i = 1, 2, 3. It turns out that the interior of bounded cones used in the 
proof of Proposition 3.3 for q1, q2 and q3 are disjoint. Hence each point pi found in B(c, 4ε) corresponding to qi is distinct 
from the other two. Therefore, if α ≥ 8ε, the vertices p1, p2 and p3 form a clique in Gα(P ) and hence the triangle σ is in 
Gα(P , Q , dE). �

The complex Gα(P , Q , dE) may have intersecting triangles. We prune Gα(P , Q , dE) to eliminate all such pairwise inter-
sections while leaving the restricted Delaunay triangles in the complex. This ensures that the resulting complex embeds in 
R

3 and still contains the restricted Delaunay triangulation. Our simple observation is that if two intersecting triangles t1 and 
t2 do not intersect in a common face, one can decide locally which of the two can possibly be in a Delaunay triangulation.

Observation 3.7. If V is the vertex set of two intersecting triangles t1 and t2 whose intersection is not a common face of both, then at 
least one of t1 and t2 is not in Del V . The triangle which is not in Del V cannot be in Del P where V ⊆ P .

One can check locally the Delaunay condition for t1 and t2 and decide to throw away at least one triangle which is not in 
Del V . This takes only constant time since V contains at most 6 vertices. Notice that no restricted Delaunay triangle can 
be thrown away by this process. After repeatedly pruning away one of the pairwise intersecting triangles, we arrive at a 
complex that embeds in R3 and contains the restricted Delaunay triangulation Del|M Q . Next, we prune all triangles that 
have circumradius more than 2δ. Again, since the surface Delaunay ball of each restricted Delaunay triangle has circumradius 
at most δ + ε ≤ 2δ, one is ensured that no restricted Delaunay triangle is eliminated. Assuming δ to be sufficiently small, 
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Fig. 4. Reconstructed surfaces for Fertility and Botijo models.

a sharp edge pruning and a walk on the outside of the resulting complex as described in [2,13] provides the reconstructed 
surface. The output surface has one nice property that the triangles have bounded aspect ratios since their circumradii are 
at most 2δ and their edge lengths are at least δ (Q is δ-sparse).

Theorem 3.8. Let M ⊂ R
3 be a smooth, compact, and connected surface. If 8ε ≤ δ ≤ 2

27 ρ , α ≥ 8ε, P is an ε-sample of (M, dE), and 
Q ⊆ P is a δ-sparse δ-sample of (P , dE), then a triangulation T ⊆ Gα(P , Q , dE) of M can be computed where each triangle in T has 
a bounded aspect ratio.

We observe in experiments that surfaces can be reconstructed from a very sparse subsample with this strategy. Fig. 4
presents two examples for surface reconstruction. The original sample P has 1,575,055 points for the Fertility model and 
1,049,892 points for Botijo model. The input graphs for the graph induced complex are constructed by connecting two 
points within distance of α = 0.45 for Fertility and α = 1.0 for Botijo. The 2-skeleton of the Rips complex built on the 
input graph has 45,788,607 simplices for Fertility and 91,264,091 simplices for Botijo. The subsample Q consists of 3007
points for Fertility with δ = 3.68, and 4659 points for Botijo with δ = 4.0. The graph induced complex Gα(P , Q , dE) built 
on the subsample has: 3007 vertices, 9178 edges, 6304 triangles, 139 tetrahedra and no other higher dimensional simplices 
for Fertility; 4659 vertices, 14,709 edges, 10,755 triangles, 718 tetrahedra, 5 4-dimensional simplices, and no other higher 
dimensional simplices for Botijo. The reconstructed surfaces from Gα(P , Q , dE) are shown in Fig. 4. For Fertility, it has 
3007 vertices, 9039 edges and 6026 triangles; for Botijo, it has 4659 vertices, 14,001 edges and 9334 triangles. Evidently, 
the graph induced complex has only a few more simplices compared to the reconstructed surface.

For a comparison, we also constructed the ν-witness complex suggested in [4] which also contains the restricted De-
launay triangulation Del|M Q with ν = (1, 6, 6, 4). The ν-witness complex for Fertility has 3007 vertices, 35,687 edges, 
119,237 triangles and 19,874 tetrahedra; the ν-witness complex for Botijo has 4659 vertices, 54,648 edges, 180,936 trian-
gles and 29,654 tetrahedra. The graph induced complex has much smaller size, but still captures β1 (β1 = 8 for the Fertility, 
and β1 = 10 for the Botijo).

4. Point data for more general domains

In this section, we consider domains beyond surfaces in R3.

4.1. Manifolds

Let M be a k-manifold embedded in Rn and let P be a discrete sample of (M, dE ). We observe that the overall setup in 
Section 3.1 for inferring H1-homology from the graph induced complex generalizes easily to higher dimensions. The inclu-
sion map Rα(P ) ↪→ Rα+2δ(P ) still induces an isomorphism at the homology level if α and δ are chosen appropriately. In 
that case, the map h∗ : H1(Rα(P )) → H1(Gα(P , Q , d)) remains injective by the same argument as before. The main trouble 
arises when we try to prove that it is also surjective. Observe that, to prove the surjectivity of h∗ , we used the fact that the 
restricted Voronoi cell Mq = Vq ∩ M in Vor Q is connected (Proposition 3.4). Unfortunately, this is not necessarily true in 
high dimensions given the counterexamples in [4,10]. To overcome this impediment we change the distance function replac-
ing the Euclidean distance with the graph distance while building Gα(P , Q , d). Specifically, we still consider Gα(P ) to be 
the graph connecting points in P with Euclidean distance α or less, but take Q to be a δ-sparse δ-sample of (P , dG ) where 
the graph distance dG = dGα(P ) is defined with the Euclidean lengths as the edge weights. Then, we consider Gα(P , Q , dG).



T.K. Dey et al. / Computational Geometry 48 (2015) 575–588 583
Fig. 5. (a) γuv makes a cycle with π(u, a), π(v, b) and ab, (b) γuv as a sum of unicolored chains and bicolored edges, (c) converting γuv (shown dotted) to 
γ̂uv , (d) a diamond of γ̂uv .

As before, let Pq ⊆ P be the set of points nearest to a point q ∈ Q with respect to dG . Observe that any point in P that 
is on the shortest path between q and a point p ∈ Pq also belongs to Pq . This immediately allows us to claim that the 
1-skeleton of Rα(Pq) is connected, which was needed to claim that h∗ is surjective.

Proposition 4.1. Rα(Pq) is connected, and thus h∗ is surjective.

Theorem 4.2. Let P be an ε-sample of an embedded smooth and compact manifold M with reach ρ , and Q a δ-sample of (P , dG). 
For 4ε ≤ α, δ ≤ 1

3

√
3
5 ρ , the map h∗ : H1(Rα(P )) → H1(Gα(P , Q , dG)) is an isomorphism where h :Rα(P ) → Gα(P , Q , dG) is the 

simplicial map induced by the nearest point map νdG : P → Q .

4.2. A leaner subsampling for H1

In this subsection we show that the subsample Q can be made leaner. The main insight is that we can define a feature 
size larger than the reach which permits us to subsample more sparsely with respect to this larger feature size. Gao et 
al. [23] considered a similar feature size for the same reason of requiring sparser sampling for a two dimensional shape. Here 
we show that such a sparser sample is also adequate for determining H1 of manifolds in high dimensions. Our experimental 
results in Fig. 2 suggest that one can obtain information about H1 from a very sparse sample in practice.

Let K be a simplicial complex with non-negative weights on its edges. We define homological loop feature size as

hlfs(K) =
{

1
2 inf{|c| : c is non-null-homologous 1-cycle in K}
∞ if no such c exists.

This feature size is very similar to the systolic feature size sfs(X, d) of a compact metric space (X, d) [23] which is the length 
of the shortest non-contractible loop in X . Our definition of hlfs when applied to a metric space (X, d) becomes larger than 
or equal to sfs(X, d). Notice that every loop of K with length less than 2hlfs(K) is null-homologous in K.

Let Q ⊆ P be a δ-sample of (P , dG ) as before but with δ ≤ 1
2 hlfs(Rα(P )) − 1

2 α. Let h : Rα(P ) → Gα(P , Q , dG) be the 
simplicial map as defined earlier. We aim to show that the induced homomorphism h∗ on the first homology is injective. 
Since we use graph distances, Proposition 4.1 remains valid and hence h∗ remains to be surjective. However, we cannot 
claim i∗ : H1(Rα(P )) → H1(Rα+2δ(P )) is an isomorphism because δ could be larger than required. Thus, we cannot use i∗
to infer that h∗ is injective as before. Nevertheless, we can prove the following result using a different approach.

Theorem 4.3. If Q is a δ-sample of (P , dG) for δ < 1
2 hlfs(Rα(P )) − 1

2 α, then h∗ : H1(Rα(P )) → H1(Gα(P , Q , dG)) is an isomor-
phism.

Proof. We only need to show that h∗ is injective, as its surjectivity follows from Proposition 4.1. To show the injectivity, it 
suffices to show that h∗ has a trivial kernel. Let σ be any triangle in Gα(P , Q , dG). If under the chain map h#, every cycle 
in the preimage of the boundary cycle ∂σ is null homologous, then every null homologous cycle in Gα(P , Q , dG) has only 
null homologous cycles in its preimage. This is true due to the fact that a bounded cycle is a sum of boundaries of triangles 
and the chain map h# is surjective (see the proof of Proposition 3.2). Below, we show that under the chain map h#, every 
cycle in the preimage of the boundary cycle of any triangle indeed is null homologous. It would then follow that the kernel 
of h∗ is trivial.

Let γ be any cycle in the preimage of ∂σ . We have γ ∈ ∑
uv∈∂σ h−1

# (uv) where uv be any edge of σ . Let γuv be any 
maximal subpath of γ so that h#(γuv) = uv (Fig. 5(a)). For each such γuv , we construct a cycle 
uv so that 
uv is null 
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homologous and γ is homologous to 
∑


uv . Therefore, showing γ is null homologous reduces to showing that every 
uv is 
null-homologous.

We construct 
uv as follows. By the construction of Gα(P , Q , dG), there is a triangle abc ∈ Rα(P ) such that h(abc) = σ
with h(a) = u, h(b) = v . Consider the shortest paths π(u, a) and π(v, b) in Gα(P ) from u to a and from v to b respectively. 
Observe that all vertices in π(u, a) and π(v, b) are mapped to u and v respectively by h since we are using the graph-
induced distance dG to construct Gα(P , Q , dG). Take 
uv to be the chain π(u, a) +ab +π(v, b) +γuv ; refer to Fig. 5(a). With 
this choice, we have γ = ∑


uv + ∂(abc) and hence γ is homologous to 
∑


uv as promised. To prove 
uv null-homologous, 
we construct a homologous path γ̂uv to γuv which gives a homologous cycle 
̂uv to 
uv . We then prove that 
̂uv is null-
homologous.

Call an edge e = (x, y) in Rα(P ) bicolored if its two end-points are mapped to two distinct vertices by h; otherwise, e is 
unicolored. A 1-chain from Rα(P ) is unicolored if it has only unicolored edges. For simplicity, we assume that vertices from 
γuv are all contained in h−1(u) ∪ h−1(v) because γuv is always homologous to a path containing vertices mapped only to 
u or v . In this case, γuv can be decomposed into a set of bicolored edges {y0x1, y1x2, . . . , yk−1xk} together with a set of 
unicolored chains {γ0, γ1, . . . , γk} such that ∂γi = xi + yi . In particular, γuv can be written as

γuv = γ0 + y0x1 + γ1 + y1x2 + · · · + yk−1xk + γk. (2)

See Fig. 5(b) for an illustration.

Claim 4.4. Let γi be a unicolored chain with two boundary points xi, yi so that for any simplex τ ∈ γi , h(τ ) = u. Then, γi is homologous 
to the chain γ̂i = π(xi, u) + π(u, yi).

Given the chain γuv with subchains γi as in Eq. (2), we convert it to a homologous chain

γ̂uv = γ̂0 + y0x1 + γ̂1 + · · · + yk−1xk + γ̂k.

Replace γuv with γ̂uv in 
uv to obtain a homologous cycle 
̂uv ; refer to Fig. 5. Observe that 
̂uv is the sum of cycles 
(diamonds) that have two unicolored chains and two bicolored edges as shown in Fig. 5(d). Such a cycle c has length at 
most 4δ + 2α. This is because each unicolored chain in c has at most two shortest paths of the form π(u, xi) and π(u, yi)

(or π(v, xi) and π(v, yi)) that have lengths 2δ or less (Q is a δ-sample of (P , dG )), and the two bicolored edges have 
lengths at most 2α in Gα(P ). The cycle c is null homologous because its length is

|c| ≤ 4δ + 2α < 2hlfs(Rα(P )), given that δ <
1

2
hlfs(Rα(P )) − 1

2
α.

It follows that 
̂uv is null homologous.
We only need to show Claim 4.4 to finish the proof. Let xi = p0, p1, · · · , pm = yi be the sequence of vertices on the 

unicolored chain (path) γi . Consider the shortest paths π(pi, u) for each pi on this path. The length of the cycle zi =
π(u, pi) + pi pi+1 + π(u, pi+1) is at most 2δ + α for each i ∈ [0, m − 1]. Therefore, it is null homologous by our assumption. 
We have γi + γ̂i = ∑m−1

i−0 zi = 0. Therefore, γi and γ̂i are homologous. �
Notice that, we can use Theorem 4.3 to compute H1(M) for a manifold M from a much leaner subsample than predicted 

by Theorem 3.5. It is known that, for an ε-sample P of M , the shortest non-trivial 1-cycle in Rα(P ) has a length which is 
at least a constant times the length of the shortest non-trivial 1-cycle of H1(M); see Theorem 3.11 in [15] for details. This 
means that a δ-sample of P where δ is at most some constant fraction of the shortest non-trivial 1-cycle of M is sufficient 
to build the graph induced complex from Rα(P ) to infer H1(M).

4.3. Point data for compact sets

So far we have focused on H1-homology. In this section we extend the domain to compact subspaces of Euclidean spaces 
and consider homology groups of all dimensions. This generality comes at the expense of additional computations. Unlike 
previous approaches that allow us to infer the H1-homology of the sampled manifold by computing directly the same for 
the graph induced complexes, now we need to compute the persistent homology [17] induced by simplicial maps. The 
well-known algorithms for computing persistent homology [17] work for maps induced by inclusions. In a contemporary 
paper [14], we present an algorithm that can compute the persistent homology induced by simplicial maps.

Let X ⊂ R
n be a compact set and Xλ be its offset with λ > 0. Since it is difficult to compute Hk(X) from a sample [9], 

we aim for computing the homology groups Hk(Xλ) for the offset Xλ . Let wfs(X) denote the weak feature size which is 
defined as the smallest positive critical value of the distance function to X [8]. We prove that the persistent homology 
of the graph induced complex defined with either Euclidean or graph distance d provides the correct homology of Xλ

where 0 < λ < wfs(X). Specifically, the image of h∗ : Hk(Gα(P , Q , d)) → Hk(Gα′
(P , Q ′, d)) induced by a simplicial map 

h : Gα(P , Q , d) → Gα′
(P , Q ′, d) becomes isomorphic to Hk(Xλ) for appropriate α and α′ . It is worth noting that the lower 

bound on α for which we prove this result depends only on the density ε of the input P and not on the density of the 
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subsampled set Q . This is in contrast with a similar result for witness complexes presented in [9]. We recall the following 
result from [9].

Proposition 4.5. If the sequence of homomorphisms A → B → C → D → E → F between finite dimensional vector spaces satisfies 
that rank(A → F ) = rank(C → D), then rank(B → E) = rank(C → D).

Let Q and Q ′ be subsamples of P where Q is a δ-sparse δ-sample and Q ′ is a δ′-sparse δ′-sample for δ′ > δ. Consider 
the interleaving sequence between the graph induced and Rips complexes,

Rα(P )
i1

h1

Rα+2δ(P )
i2 R4(α+2δ)(P )

i3

h2

R4(α+2δ)+2δ′
(P )

Gα(P , Q ,d)
h

j1

G4(α+2δ)(P , Q ′,d)

j2

(3)

where i1, i2, i3, j1 and j2 are inclusions and h = h2 ◦ i2 ◦ j1. By Proposition 2.8, h1 and h2 are simplicial maps. Therefore, h
is also a simplicial map as composition of simplicial maps. In particular, h is the simplicial map induced by the vertex map 
that maps each point q ∈ Q to its closest point q′ ∈ Q ′ in Q ′ . We prove that im h∗ ∼= Hk(Xλ) where h∗ : Hk(Gα(P , Q , d)) →
Hk(G4(α+2δ)(P , Q ′, d)) and ε, α and δ fall in appropriate ranges.

Theorem 4.6. Let X ⊂ R
n be a compact space. Let 0 < ε < 1

9 wfs(X) and P be an ε-sample of (X, dE). Let Q be a δ-sparse δ-sample 
of (P , d) and Q ′ be a δ′-sparse δ′-sample of (P , d), where d is either Euclidean or graph distance and δ′ > δ.

If 2ε ≤ α ≤ 1
4 (wfs(X) − ε) and (α + 2δ) + 1

2 δ′ ≤ 1
4 (wfs(X) − ε), then im h∗ ∼= Hk(Xλ) (0 < λ < wfs(X)) where h∗ :

Hk(Gα(P , Q , d)) → Hk(G4(α+2δ)(P , Q ′, d)) is induced by h in diagram (3).

Proof. The diagram (3) is not commutative in general. However, it is commutative at the homology level. Proposition 2.8
makes the two triangles at the left and right commutative. The middle square commutes by definition of h. Now consider 
the sequence,

Hk(Rα(P ))
h1∗ Hk(Gα(P , Q ,d))

j1∗ Hk(Rα+2δ(P ))

i2∗ Hk(R4(α+2δ)(P ))
h2∗ Hk(G4(α+2δ)(P , Q ′,d))

j2∗ Hk(R4(α+2δ)+2δ′
(P ))

(4)

Consider the sequence of inclusions at the upper level of the diagram (3). Since α ≥ 2ε and (α + 2δ) + 1
2 δ′ ≤ 1

4 (wfs(X) − ε), 
we have that

im (i3 ◦ i2 ◦ i1)∗ ∼= Hk(Xλ) and im (i2)∗ ∼= Hk(Xλ)

by Theorem 3.6 of [9]. Considering the diagram (3) and the sequence in (4) we have

Hk(Xλ) ∼= im (i3∗ ◦ i2∗ ◦ i1∗) ∼= im(( j2∗ ◦ h2∗) ◦ i2∗ ◦ ( j1∗ ◦ h1∗)) ∼= im i2∗ (5)

Letting h = h2 ◦ i2 ◦ j1, the rightmost isomorphism in (5) allows us to claim that im h∗ ∼= Hk(Xλ) by applying Proposition 4.5
to the sequence (4). �
5. Conclusions

In this work, we investigated the graph induced complex that can be built upon a given point cloud data and a suitable 
graph connecting them. This complex, to some extent, has the advantages of both Rips and witness complexes. We have 
identified several of its topological properties that can evidently be useful in extracting information from point data even in 
high dimensions.

In Section 4.3, we showed how to infer the homology groups of a compact set using the persistent homology of a pair of 
graph induced complexes constructed with two values of δ. One can consider a filtration of Gα(P , Q , d) with Q sparsified 
for increasing values of α and δ. Then, one can obtain a persistence diagram [11] out of this “full filtration” using our 
recently proposed algorithm for computing the topological persistence for filtrations connected with simplicial maps [14]. 
The algorithm will collapse vertices progressing through the filtration and hence will keep the size of the complex in 
question contained. Relating this persistence diagram to that of a filtration obtained by a Rips filtration is an interesting 
question. We have addressed this question in a subsequent work [14].

Finding other applications where the graph induced complex becomes useful also remains open for further investigations.
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Appendix A. Proof of Proposition 3.3

First, we present an elementary geometric result that we need to use in the proof. Let C(o, �v, α) ∈ R
3 denote the cone 

with apex o, axis in the direction of �v and aperture 2α.

Claim A.1. Given a ball B with radius r and center c, let q be an arbitrary point on the boundary of B. Consider the two nested cones 
C1 = C(c, −→cq, α) and C2 = C(c, −→cq, 2α) with the same axis. Let p be any point from the intersection of the ball and the inner cone; that 
is, p ∈ B ∩ C1 . Let x be an arbitrary point from the boundary of B outside the outer cone; that is, x /∈ C2 , and x ∈ ∂ B. Then we have that 
‖p − q‖ < ‖p − x‖.

Proof. Denote αq := � pcq and αx := � pcx. Because x is outside of the outer-cone with aperture 4α, and p is inside of the 
inner cone of aperture 2α, we have that we have αq < α < αx . Now consider the triangle �pcq. By the Cosine Law, we have 
that

‖p − q‖2 = ‖p − c‖2 + ‖c − q‖2 − 2‖p − c‖ · ‖c − q‖ cos(αd) = ‖p − c‖2 + r2 − 2r‖p − c‖ cos(αq).

Similarly, consider the �pox, and we have

‖p − x‖2 = ‖p − c‖2 + ‖c − x‖2 − 2‖p − c‖ · ‖c − x‖ cos(αp) = ‖p − c‖2 + r2 − 2r‖p − c‖ cos(αx).

Since 0 ≤ αq < αx ≤ π , we have ‖p − q‖ < ‖p − x‖. �
Now consider the surface Delaunay ball Bc = B(c, r) that passing through the vertices of the simplex σ and containing 

no other points from Q . Recall that q is an arbitrary vertex of σ . Since all other vertices of σ are at least δ-Euclidean 
distance away from q, we then have that the intersection of Bc with the cone C(c, −→cq, 2 arcsin δ

2r ) contains no point from Q

other than q. By applying Claim A.1 with α = arcsin δ
2r , we then obtain that

Corollary A.2. If there exists a point p ∈ P such that p ∈ Bc ∩ C(c, −→cq, arcsin δ
2r ) ∩ M, then q must be the closest point to p among all 

points in Q .

In what follows, we will show that a point p ∈ P satisfying the conditions in Corollary A.2 as well as that p ∈ B(c, 4ε)

indeed exists when 8ε ≤ δ ≤ 2
27 ρ(M). This will then prove the proposition. Specifically, we will first identify a sample point 

p ∈ P , and then we will show that p satisfies the requirements of the proposition.

Identifying a point p ∈ P . Let Bo = B(m, ρ) and Bo′ = B(m′, ρ) be two balls tangent to M at c; assume without loss of 
generality that Bo is inside of M and Bo′ is outside. Locally around c, the surface M is sandwiched between Bo and Bo′ . Now 
consider the plane P = span{o, o′, q}; note that c also lies in P . Denote Bc,P = Bc ∩P , Bo,P = Bo ∩P and Bo′,P = Bo′ ∩P . 
Let x be the intersection point of Bc,P and Bo,P that is on the same side of the line passing through oo′ as the point q. 
Similarly, let y be the intersection point of Bc,P with Bo′,P on the same side of the line oo′ as q. Obviously, q lines on the 
arc 

�
xy that avoids Bo,P and Bo′,P . See the right figure for an illustration where the shaded region is Bc,P . Set θ := � xcy; 

easy to see that θ = � xoc = � yo′c. Hence we have that sin θ
2 = ‖c−x‖

2ρ = r
2ρ .
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Now consider the segment cq and the point w ∈ cq such that the length of cw is a value 
 which we will set later. As w
is contained in the cone with apex c and aperture θ in the plane P , the ball B(w, 
 sin θ) will intersect both segment cx and 
cy, thus intersecting both Bo and Bo′ . Since Bo is inside the surface M and Bo′ outside, it follows that B(w, 
 sin θ) ∩ M �= ∅. 
Pick any point p′ ∈ B(w, 
 sin θ) ∩ M . By the ε-sampling condition of P , there must exist a sample point p ∈ P such that 
‖p − p′‖ ≤ ε. In other words, there is a sample point p ∈ P such that p ∈ B(w, 
 sin θ + ε).

The requirements on p We now need to show that the parameter 
 can be chosen such that the point p satisfies all the 
requirements from the proposition. In particular, we need the following:

C-1 p ∈ B(c, 4ε); and
C-2 q is the closest point to p among all points in Q .

Now set τ = arcsin 
 sin θ+ε



. Obviously, the ball B(w, 
 sin θ + ε) (and thus the point p) is contained inside the cone 
C(c, −→cq, τ ). Observe that by Corollary A.2, condition (C-2) is satisfied if (C-2.a) B(w, 
 sin θ + ε) ∈ B(c, r) (implying that 
p ∈ M), and (C-2.b) τ ≤ arcsin δ

2r (implying that p is contained in the inner cone C(c, −→cq, arcsin δ
2r )).

The existence of a valid 
 What remains is to find a value for 
 so that (C-1), (C-2.a), and (C-2.b) are all satisfied si-
multaneously. Note that since ‖w − c‖ = 
, we have that ‖p − c‖ ≤ 
 + 
 sin θ + ε. Hence condition (C-1) is satisfied if 

 + 
 sin θ + ε ≤ 4ε. Since sin θ ≤ 2 sin θ

2 = r
ρ , (C-1) holds as long as the following inequality holds.


 ≤ 3ε

1 + r
ρ

. (A.1)

Since δ ≥ 8ε, if (C-1) holds, then we have that ‖p − c‖ ≤ 4ε ≤ δ
2 ≤ r, which implies (C-2.a). Now consider condition 

(C-2.b), which holds if 
 sin θ+ε



≤ δ
2r . Since δ/2 ≤ r ≤ δ + ε and 8ε ≤ δ < 2ρ/27, we have that

r

ρ
≤ δ + ε

ρ
≤ δ + δ/8

ρ
<

1

4
≤ δ

4δ
≤ δ

2r
.

That is, δ
2r − sin θ ≥ δ

2r − r
ρ > 0 (recall that sin θ ≤ 2 sin θ = r/ρ). Hence condition (C-2.b) holds if


 ≥ ε
δ
2r − r

ρ

(
≥ ε

δ
2r − sin θ

)
. (A.2)

Putting (A.1) and (A.2) together, we have that as long as the value 
 satisfies the following inequality

ε
δ
2r − r

ρ

≤ 
 ≤ 3ε

1 + r
ρ

, (A.3)

conditions (C-1) and (C-2) are satisfied, and there exists a point p ∈ P as stated in the proposition. Given that 8ε ≤ δ <

2ρ/27, we can show that valid 
 exists. For example, for 
 = 36ε
13 , inequality in Eq. (A.3) holds as

ε
δ
2r − r

ρ

≤ ε
δ

2(δ+ε)
− δ+ε

ρ

≤ ε

4δ
9δ

− 9
8 δ

ρ

<
ε

4
9 − 9

8 · 2ρ
27

ρ

= 36ε

13
= 


and

3ε

1 + r
ρ

≥ 3ε

1 + δ+ε
ρ

≥ 3ε

1 + 9
8 δ

ρ

>
3ε

1 + 9
8 · 2ρ

27
ρ

= 36ε

12
= 
.

References

[1] H. Adams, G. Carlsson, On the nonlinear statistics of range image patches, SIAM J. Imaging Sci. 2 (2009) 110–117.
[2] N. Amenta, S. Choi, T.K. Dey, N. Leekha, A simple algorithm for homeomorphic surface reconstruction, Int. J. Comput. Geom. Appl. (2002) 125–141.
[3] D. Attali, A. Lieutier, D. Salinas, Vietoris–Rips complexes also provide topologically correct reconstructions of sampled shapes, in: Proceedings of the 

27th Annual ACM Symposium on Computational geometry, SoCG ’11, ACM, New York, NY, USA, 2011, pp. 491–500.
[4] J.D. Boissonnat, L.J. Guibas, S.Y. Oudot, Manifold reconstruction in arbitrary dimensions using witness complexes, Discrete Comput. Geom. (2009) 37–70.
[5] J.-D. Boissonnat, C. Maria, The simplex tree: an efficient data structure for general simplicial complexes, in: ESA, 2012, pp. 731–742.
[6] G. Carlsson, V. de Silva, Topological approximation by small simplicial complexes, Preprint, 2003.
[7] F. Chazal, L.J. Guibas, S.Y. Oudot, P. Skraba, Scalar field analysis over point cloud data, Discrete Comput. Geom. 46 (4) (2011) 743–775.
[8] F. Chazal, A. Lieutier, The “lambda-medial axis”, Graph. Models 67 (4) (2005) 304–331.
[9] F. Chazal, S. Oudot, Towards persistence-based reconstruction in Euclidean spaces, in: Proc. 24th ACM Sympos. on Comput. Geom., 2008, pp. 232–241.

[10] S.-W. Cheng, T.K. Dey, E.A. Ramos, Manifold reconstruction from point samples, in: SODA ’05: Proc. 16th Ann. ACM–SIAM Sympos. Discrete Algorithms, 
2005, pp. 1018–1027.

http://refhub.elsevier.com/S0925-7721(15)00029-2/bib41433039s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib4143444C3032s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib414C533131s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib414C533131s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib42474F3039s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib424D3132s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib43474F533039s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib434C3035s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib434F3038s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib4344523035s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib4344523035s1


588 T.K. Dey et al. / Computational Geometry 48 (2015) 575–588
[11] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams, Discrete Comput. Geom. 37 (1) (2007) 103–120.
[12] V. de Silva, G. Carlsson, Topological estimation using witness complexes, in: Proc. Sympos. Point-Based Graphics, 2004, pp. 157–166.
[13] T.K. Dey, Curve and Surface Reconstruction: Algorithms with Mathematical Analysis, Cambridge Monographs on Applied and Computational Mathe-

matics, Cambridge University Press, New York, NY, USA, 2006.
[14] T.K. Dey, F. Fan, Y. Wang, Computing topological persistence for simplicial maps, in: Proc. 30th Annu. ACM Sympos. Comput. Geom., 2014.
[15] T.K. Dey, J. Sun, Y. Wang, Approximating cycles in a shortest basis of the first homology group from point data, Inverse Probl. 27 (12) (2011) 124004.
[16] T.K. Dey, Y. Wang, Reeb graphs: approximation and persistence, Discrete Comput. Geom. 49 (1) (2013) 46–73.
[17] H. Edelsbrunner, J. Harer, Computational Topology: An Introduction, Amer. Math. Soc., Providence, Rhode Island, 2009.
[18] Q. Fang, J. Gao, L.J. Guibas, V. de Silva, L. Zhang, Glider: gradient landmark-based distributed routing for sensor networks, in: INFOCOM, 2005, 

pp. 339–350.
[19] R. Ghrist, Barcodes: the persistent topology of data, Bull. Am. Math. Soc. 45 (2008) 61–75.
[20] T. Gonzalez, Clustering to minimize the maximum inter-cluster distance, Theor. Comput. Sci. 38 (1985) 293–306.
[21] J.-C. Hausmann, On the Vietoris–Rips complexes and a cohomology theory for metric spaces, in: Proc. Conf. Prospects in Topology, 1994, pp. 175–188.
[22] J.R. Munkres, Elements of Algebraic Topology, Addison–Wesley Publishing Company, Menlo Park, 1984.
[23] S. Oudot, L.J. Guibas, J. Gao, Y. Wang, Geodesic Delaunay triangulations in bounded planar domains, ACM Trans. Algorithms 6 (4) (2010).
[24] D. Sheehy, Linear-size approximations to the Vietoris–Rips filtration, Discrete Comput. Geom. 49 (4) (2013) 778–796.

http://refhub.elsevier.com/S0925-7721(15)00029-2/bib4345483037s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib53433034s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib446579s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib446579s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib4446573134s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib4453573131s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib44573133s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib45483039s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib46616E67s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib46616E67s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib476872697374s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib476F6E3835s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib486175733935s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib4D756E6B726573s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib47474F573130s1
http://refhub.elsevier.com/S0925-7721(15)00029-2/bib536865656879s1

	Graph induced complex on point data
	1 Introduction
	2 Graph induced complex and preliminaries
	2.1 Sampling, homology, and sandwiching

	3 Surface point data
	3.1 Topological inference from Gα(P,Q,dE)
	3.2 Reconstruction of M using Gα(P,Q,dE)

	4 Point data for more general domains
	4.1 Manifolds
	4.2 A leaner subsampling for H1
	4.3 Point data for compact sets

	5 Conclusions
	Acknowledgements
	Appendix A Proof of Proposition 3.3
	References


