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A new paradigm for point cloud data analysis has emerged recently, where point clouds 
are no longer treated as mere compact sets but rather as empirical measures. A notion 
of distance to such measures has been defined and shown to be stable with respect to 
perturbations of the measure. This distance can easily be computed pointwise in the case 
of a point cloud, but its sublevel-sets, which carry the geometric information about the 
measure, remain hard to compute or approximate. This makes it challenging to adapt many 
powerful techniques based on the Euclidean distance to a point cloud to the more general 
setting of the distance to a measure on a metric space.
We propose an efficient and reliable scheme to approximate the topological structure of 
the family of sublevel-sets of the distance to a measure. We obtain an algorithm for 
approximating the persistent homology of the distance to an empirical measure that works 
in arbitrary metric spaces. Precise quality and complexity guarantees are given with a 
discussion on the behavior of our approach in practice.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Given a sample of points P from a metric space X, the distance function dP maps each x ∈ X to the distance from x to the 
nearest point of P . The related fields of geometric inference and topological data analysis have provided a host of theorems 
about what information can be extracted from the distance function, with a particular focus on discovering and quantifying 
intrinsic properties of the shape underlying a data set [4,19]. The flagship tool in topological data analysis is persistent 
homology and the most common goal is to apply the persistence algorithm to distance functions, either in Euclidean space 
or in metric spaces [1,14,23]. From the very beginning, this line of research encountered two major challenges. First, distance 
functions are very sensitive to noise and outliers (Fig. 1 left). Second, the representations of the sublevel sets of a distance 
function become prohibitively large even for moderately sized data. These two challenges led to two distinct research 
directions. First, the distance to the data set was replaced with a distance to a measure induced by that data set [5]. The 
resulting theory is provably more robust to outliers, but the sublevel sets become even more complex to represent (Fig. 1
center). Towards more efficient representations, several advances in sparse filtrations have led to linear-size constructions [12,
20,21], but all of these methods exploit the specific structure of the distance function and do not obviously generalize. In 
this paper, we bring these two research directions together by showing how to combine the robustness of the distance to a 
measure, with the efficiency of sparse filtrations.
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Fig. 1. From left to right, two sublevel sets for dP , dμP ,m , and dP
μP ,m with m = 3

|P | . The first is too sensitive to noise and outliers. The second is smoother, 
but substantially more difficult to compute. The third is our approximation, which is robust to noise, efficient to compute, and compact to represent.

Contributions:

1. A Generalization of the Wasserstein stability and persistence stability of the distance to a measure for triangulable 
metric spaces.

2. A general method for approximating the sublevel sets of the distance to a measure by a union of balls. Our method 
uses O (n) balls for inputs of n samples. Known methods for representing the exact sublevel sets can require n�(d) balls. 
Existing approximations using a linear number of balls are only applicable in Euclidean space [15].

3. A linear size approximation to the weighted Rips filtration. For intrinsically low-dimensional metric spaces, we con-
struct a filtration of size O (n) that achieves a guaranteed quality approximation. Specifically, if the doubling dimension 
of the metric is d then the size complexity is 2O (dk)n if one considers simplices up to dimension k (see Definition 2.1
for the formal definition of doubling dimension). This is a significant improvement over the full weighted Rips filtration, 
which has size 2n in general or size nk+1 if one considers only simplices up to dimension k. It also has the advantage 
that the sparsification is independent of the weights. Thus, the (geo)metric preprocessing phase can be reused for any 
weighting of the points. If one attempted to use previous methods directly, this preprocessing phase would have to be 
repeated for each set of weights. This is especially useful if one is interested in several different weight functions such 
as when approximating the distance to a measure for several different values of the mass parameter.

4. An effective implementation with experimental results.

Overview of the paper Originally, the distance to a measure was introduced to capture information about both scale and 
density in a Euclidean point cloud. We extend the distance to a measure to any metric space X. We write B̄(x, r) to denote 
the closed ball with center x and radius r. The distance to a measure is then defined as follows.

Definition 1.1. Let μ be a probability measure on a metric space X and let m ∈ ]0, 1] be a mass parameter. We define the 
distance dμ,m to the measure μ as

dμ,m : x ∈X �→

√√√√√ 1

m

m∫
0

δμ,l(x)2dl,

where δμ,m is defined as

δμ,m : x ∈ X �→ inf{r > 0 | μ(B̄(x, r)) > m}.

The distance to a measure has interesting inference and stability results in the Euclidean setting [5]. That is, the sublevel 
sets of the function can be used to infer the topology of the support of the underlying distribution (inference), and also, the 
output for similar inputs will be similar (stability). In Section 3, we extend these stability results to any metric space. The 
results about the stability of persistence diagrams apply to any triangulable metric space, i.e. metric spaces homeomorphic 
to a locally finite simplicial complex (the persistence diagram may not exist for non-triangulable metric spaces).

We then give a new way to approximate the distance to a measure. Using a sampling of the support of a measure, we 
are able to compute accurately the sublevel sets of the distance to a measure in any metric space, using power distances. 
We show in Section 4.1 that these functions have adequate stability and approximation properties. Then, in Section 4.2, we 
give the practical implications for computing persistence diagram for finite samples.

The witnessed k-distance is another approach to approximating the distance to a measure proposed in [15]. This approach 
works only in Euclidean spaces as it relies on the existence of barycenters of points. The analysis links the quality of the 



72 M. Buchet et al. / Computational Geometry 58 (2016) 70–96
approximation to the underlying topological structure. In this paper, we look at bounds independent of intrinsic geometry. 
When restricted to the Euclidean setting in section 4.3, our method improves the approximation bounds from [15]. The new 
bounds match the quality of approximation achieved by our method of Section 4.1, which has the added advantage that it 
is valid in any metric space.

In Section 5, we introduce the weighted Rips complex. Given a parameter, the sublevel set of a power distance associated 
with this parameter is a union of balls. Generalizing the Vietoris–Rips complex, we define the weighted Rips complex as 
the clique complex whose 1-skeleton is the same as the one of the nerve of this union of balls. The induced filtration has 
important stability properties and can be used to approximate persistence diagrams.

Unfortunately, the weighted Rips filtration is too large to construct in full for large instances. This problem already exists 
with the usual Rips filtration. Sparsifying schemes have been recently proposed in [12,21]. Extending the approach used 
in [21], we construct a sparse approximation that has linear size in the number of points (Section 6). This can be used to 
approximate persistence diagrams even for high dimensional inputs if the data is intrinsically low dimensional. As we show 
in Section 6, there are very simple examples where the input metric is intrinsically low-dimensional and yet the weight 
function can cause the weighted distance function to be high-dimensional. Our approach has the advantage over previous 
methods in that the size complexity will only depend on the dimension of the input metric, rather than the dimension of 
points under the weighted distance.

The combination of these approaches makes it possible to use the distance to a measure to infer topology on real 
instances. In Section 7, we illustrate the theory with some examples and results from an implementation.

2. Background

In this paper, we consider a metric space X with distance dX(·, ·). In a slight abuse of notation, we also write dX to 
denote the distance between a point and a set defined as dX(x, P ) = infp∈P dX(x, p). The Hausdorff distance between two 
sets P and Q will be denoted dH (P , Q ). We write B(x, r) for the open ball of center x and radius r in dX , and we write 
B̄(x, r) for the corresponding closed ball.

Metric spaces and doubling dimension For metric spaces that are not embedded in Euclidean space, the doubling dimen-
sion gives a useful way to describe the intrinsic dimension of the metric space by bounding the size of certain covers of 
subsets. Formally it is defined as follows.

Definition 2.1. The doubling constant λX of a metric space X is the maximum over all balls B(x, r) with x ∈ X of the 
minimum number of balls of radius r/2 required to cover B(x, r). The doubling dimension is defined to be log2(λX).

Wasserstein distance
To compare measures, we use the Wasserstein distance, also called the earth-mover distance. Intuitively, it is the minimal 

cost to move all the mass from one measure to another. To state the formal definition we first introduce some notation.
Given a measure μ on a metric space X, we write B(X) to denote the set of all Borel subsets of X. Given A ∈ B(X), 

we define the mass of A as μ(A). Similarly μ(X) is called the total mass of μ. We write Supp(μ) for the support of the 
measure μ.

Definition 2.2. Let μ and ν be positive measures with the same total mass on a metric space X. A transport plan between 
μ and ν is a measure π on X ×X such that for all A, B ∈ B(X),

π(A ×X) = μ(A) and π(X× B) = ν(B).

We denote by �(μ, ν) the set of all transport plans between μ and ν . The pth order cost of the transport plan π is 
defined as

C p(π) =
⎛
⎝ ∫
X×X

dX(x, y)pdπ(x, y)

⎞
⎠

1
p

.

The Wasserstein distance between μ and ν is the minimum cost over all transport plans.

Definition 2.3. Let μ and ν be positive measures with the same total mass on a metric space X. The Wasserstein distance of 
order p between μ and ν is defined as

W p(μ,ν) = min
π∈�(μ,ν)

⎛
⎝ ∫
X×X

dX(x, y)pdπ(x, y)

⎞
⎠

1
p

.
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The Wasserstein distance is finite if both probability measures have finite p-moments, which is always the case for 
measures with compact support.

Persistence theory
A filtration F = {Fα}α∈R is a sequence of spaces such that Fα ⊆ Fβ whenever α ≤ β . Persistence theory studies the 

evolution of the homology of the sets Fα for α ranging from −∞ to +∞. More precisely, the filtration induces a family 
of vector spaces connected by linear maps at the homology level, called a persistence module. More generally, a persistence 
module is a pair V = ({Vα}, {vβ

α}) where each Vα is a vector space and vβ
α is a linear map Vα → Vβ such that vγ

β ◦ vβ
α = vγ

α

for all α ≤ β ≤ γ and vα
α is the identity. A persistence module is said to be q-tame if vβ

α has finite rank for every α < β . 
A filtration is said to be q-tame if its corresponding persistence module is q-tame. The algebraic structure of a q-tame 
persistence module U can be described and visualized by the persistence diagram Dgm(U), a multiset of points in the plane. 
If U comes from a filtration {Fα}, a point (α, β) in Dgm(U) indicates a nontrivial homology class that exists in the filtration 
between the parameter values α and β .

We overload notation and write Dgm({Fα}) to denote the persistence diagram of the persistence module defined by the 
filtration {Fα}. Moreover, for a real-valued function f , we write Dgm( f ) to denote Dgm({ f −1(]−∞, α])}), the persistence 
diagram of the sublevel sets filtration of f . For an introduction to persistent homology, the reader is directed to [6,13].

Bottleneck distance
We put a metric on the space of persistence diagrams as follows. First, a partial matching M between diagrams D

and E is a subset of D × E in which each element of D ∪ E appears in at most one pair. The bottleneck cost of M is 
max(d,e)∈M ‖d − e‖∞ . We say M is an ε-matching if the bottleneck cost is ε and every (α, β) in D or E with |β − α| ≥ 2ε
is matched. The bottleneck distance between D and E is defined as

dB(D, E) = inf{ε | there exists an ε-matching between D and E}.
It is often useful to look at persistence diagrams on a logarithmic scale, because the distance does no longer depend on 

the scale at which the object is seen. The log-bottleneck distance, denoted dlog
B is the bottleneck distance between diagrams 

after the change of coordinates (α, β) �→ (lnα, lnβ).

Filtration interleaving
One way to prove that two persistence diagrams are close is to prove that the filtrations inducing them are interleaved. 

Two filtrations {Uα}α∈R and {Vα}α∈R are said to be ε-interleaved if for any α,

Uα ⊆ Vα+ε ⊆ Uα+2ε .

The following classic result [2,6,10] about stability of persistence diagrams says that interleaved filtrations yield similar 
persistence diagrams.

Theorem 2.4. Let U and V be two q-tame and ε-interleaved filtrations. Then, the persistence diagrams of these filtrations are ε-close 
in bottleneck distance, i.e.,

dB(Dgm(U ),Dgm(V )) ≤ ε.

We work with the persistence theory on functions, which means studying the persistence of the sublevel sets filtration
defined as { f −1(]−∞, α])}α∈R for any real-valued function. To simplify notation, we write Dgm( f ) to denote the persistence 
diagram of the sublevel sets filtration of f .

Persistence module interleaving
The notion of interleaving can be extended to persistence modules as seen in [7]. Given two persistence modules U =

({Uα}, {uβ
α}) and V = ({Vα}, {vβ

α}) and a real ε > 0, an ε-homomorphism from U to V is a collection of linear maps � = {φα}
such that for all α < β , vβ+ε

α+ε ◦ φα = φβ ◦ uβ
α . Two ε-homomorphisms � from U to V and � from V to W can be composed 

to build a 2ε-homomorphism �� from U to W whose linear maps are obtained by composing the linear maps of � and � . 
Among ε-homomorphisms from U → U, one has a particular role. The ε-shift map 1ε

U
is the collection of maps uα+ε

α given 
in the persistence module U. We use it to define the interleaving of two persistence modules as follows.

Definition 2.5. Let U and V be two q-tame persistence modules. U and V are ε-interleaved if there exists ε-homomorphisms 
� :U →V and � : V →U such that �� = 12ε

V
and �� = 12ε

U
.

Note that the definition is equivalent to the commutativity of the following diagrams for any α < β , where � = {φα} and 
� = {ψα}.
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Vβ+εVα+ε

Uα Uβ

vβ+ε
α+ε

uβ
α

φα+ε
α φ

β+ε
β

VβVα

Uα+ε Uβ+ε

vβ
α

uβ+ε
α+ε

ψα+ε
α ψ

β+ε
β

Uα−ε Uα+ε

Vα

uα+ε
α−ε

φα
α−ε ψα+ε

α

Vα−ε Vα+ε

Uα

vα+ε
α−ε

ψα
α−ε φα+ε

α

The following theorem is an algebraic analog of Theorem 2.4. The proof can be found in [6].

Theorem 2.6. Let U and V be two q-tame and ε-interleaved persistence modules. Then,

dB(Dgm(U),Dgm(V)) ≤ ε.

Contiguous simplicial maps
Let X and Y be simplicial complexes. A simplicial map f : X → Y is a map between the corresponding vertex sets so that 

for every simplex σ ∈ X , f (σ ) =⋃
p∈σ f (p) is a simplex in Y . Two simplicial maps f and g are contiguous if σ ∈ X implies 

that f (σ ) ∪ g(σ ) ∈ Y . If two simplicial maps are contiguous, then they induce the same homomorphism at the homology 
level [18, Chapter 1].

A clique complex is a simplicial complex whose simplices are the cliques of a graph. Many of the simplicial complexes 
considered in this paper are clique complexes. We will use the following simple lemma to construct contiguous simplicial 
maps between clique complexes.

Lemma 2.7. Let X and Y be clique complexes and let f and g be two functions from the vertex set of X to the vertex set of Y . If for 
every edge (p, q) ∈ X, the tetrahedron { f (p), g(p), f (q), g(q)} is in Y , then f and g induce contiguous simplicial maps from X to Y .

Proof. Let σ be a simplex of X . Every pair in f (σ ) ∪ g(σ ) is of the form ( f (p), f (q)), ( f (p), g(q)), or (g(p), g(q)) for 
some vertices p and q in σ . Since (p, q) ∈ σ , the tetrahedron hypothesis of the lemma implies that all of these pairs are 
edges of Y . Thus, f (σ ) ∪ g(σ ) is a simplex in Y because Y is a clique complex. Moreover, f (σ ) ∈ Y and g(σ ) ∈ Y because 
simplices are closed under taking subsets. Therefore, f and g are indeed contiguous simplicial maps as desired. �
3. Persistence and stability of the distance to a measure in a metric space

In this section, we prove that, if we have two close probability measures, then the persistence diagrams of the sublevel 
sets filtration of their distance to measure functions are close. The result applies to triangulable metric spaces, i.e., those that 
are homeomorphic to a locally finite simplicial complex. The persistence diagrams considered in this paper are well defined 
in this class of spaces. In particular, every compact Riemannian manifold is triangulable.

If the persistence diagram is to be meaningful, one might expect that it is stable with respect to perturbations in the 
underlying measure. The following theorem shows that this is indeed the case. Two measures that are close in the quadratic 
Wasserstein distance, W2 yield persistence diagrams that are close in bottleneck distance, dB (see [22, Sec. 7.1]).

Theorem 3.1. Let μ and ν be two probability measures on a triangulable metric space X and let m be a mass parameter. Then 
Dgm(dμ,m) and Dgm(dν,m) are well-defined and

dB(Dgm(dμ,m),Dgm(dν,m)) ≤ 1√
m

W2(μ,ν).

To prove this theorem, we first show that the distance to measure functions are stable with respect to the Wasserstein 
distance. Then, we prove that their diagrams are well-defined and are close using Theorem 2.4. This result provides the 
same bound as the existing Euclidean space result. Technicalities exist for the well-definition of persistence diagrams which 
required the metric space to be triangulable.
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3.1. Wasserstein stability

A measure ν is a submeasure of a measure μ if for every B ∈ B(X), ν(B) ≤ μ(B). Let Subm(μ) be the set of all 
submeasures of μ, which have a total mass m.

The distance to a measure μ at point a x can be expressed as the Wasserstein distance between two measures, the Dirac 
mass δx on x and a submeasure of μ of mass m. Using this view, we generalize the stability result from [5] as follows.

Proposition 3.2. Let μ be a probability measure on a metric space X, and let m ∈ ]0, 1] be a mass parameter. Then,

dμ,m(x) = min
ν∈Subm(μ)

1√
m

W2(mδx, ν).

Given x ∈ X and m > 0, let Rμ,m(x) be the set of the submeasures of μ with total mass m whose support is contained 
in the closed ball B̄(x, δμ,m(x)) and whose restriction to the open ball B(x, δμ,m(x)) coincides with μ. The proof shows that 
Rμ,m(x) is exactly the set of minimizers of Proposition 3.2.

In order to prove this theorem we need to introduce a few definitions. The cumulative function Fν :R+ → R of a measure 
ν on R+ is the non-decreasing function defined by Fν (y) = ν([0, y)). Its generalized inverse F −1

ν : m �→ inf{t ∈ R | Fν(t) > m}
is left-continuous.

Proof. If ν is a measure of total mass m on X then there exists only one transport plan between ν and the Dirac mass mδx . 
It transports every point of X to x. Hence we get

W2(mδx, ν)2 =
∫
X

dX(h, x)2 dν(h).

Let dx : X → R denote the distance function to the point x and let νx be the pushforward of ν by the distance function 
to x. That is, for any subset I of R, νx(I) = ν(d−1

x (I)). Note that F −1
νx

(m) = δν,m(x). Using the change of variable formula and 
the definition of the cumulative function we get:

∫
X

dX(h, x)2dν(h) =
∫
R+

t2dνx(t) =
m∫

0

F −1
νx

(l)2dl.

Suppose further that ν is a submeasure of μ, then Fνx (t) ≤ Fμx (t) for all t > 0. So, F −1
νx

(l) ≥ F −1
μx

(l) for all l > 0, and 
thus,

W2(mδx, ν)2 ≥
m∫

0

F −1
μx

(l)2dl =
m∫

0

δμ,l(x)2dl = mdμ,m(x)2. (1)

This inequality implies that dμ,m(x) is smaller than 1√
m

W2(mδx, ν) for any ν ∈ Subm(μ).

Consider the case when the inequality in (1) is tight. Such a case happens when for almost every l ≤ m, F −1
νx

(l) = F −1
μx

(l). 
Since these functions are increasing and left-continuous, equality must hold for every such l. By the definition of the 
pushforward, this implies that ν(B̄(x, δμ,m(x))) = m, i.e., all the mass of ν is contained in the closed ball B̄(x, δμ,m(x)), and 
that ν(B(x, δx,μ(m))) = μ(B(x, δx,μ(m))). Because ν is a submeasure of μ this is true if and only if ν is in the set Rμ,m(x)
described before the proof. Thus Rμ,m(x) is exactly the set of submeasures ν ∈ Subm(μ) such that dμ,m(x) = 1√

m
W2(mδx, ν).

To conclude the proof we need only show that there exists at least one measure μx,m in the set Rμ,m(x). If 
μ(B̄(x, δμ,m(x))) = m, then μx,m = μ|B̄(x,δμ,m(x)) is an obvious choice. The only difficulty is when the boundary ∂ B(x, δμ,m(x))

of the ball has too much mass. In this case we uniformly rescale the mass contained in the bounding sphere such that the 
measure μx,m has total mass m. More precisely we let:

μx,m = μ|B(x,δμ,m(x)) + (m − μ(B(x, δμ,m(x))))
μ|∂ B(x,δμ,m(x))

μ(∂ B(x, δμ,m(x)))
.

We hence have 1√
m

W2(mδx, μx,m) = dμ,m(x). �
From this result, we have the following Wasserstein stability guarantee for the distance to a measure.

Theorem 3.3. Let μ and ν be two probability measures on a metric space X and let m ∈ ]0, 1] be a mass parameter. Then:

‖dμ,m − dν,m‖∞ ≤ 1√
m

W2(μ,ν).
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Proof. Using Proposition 3.2, we get that 
√

m dμ,m(x) = W2(mδx, μx,m), where μx,m ∈ Rμ,m(x). Let π be an optimal trans-
port plan between μ and ν , i.e., a transport plan between μ and ν such that∫

X×X

dX(x, y)2dπ(x, y) = W2(μ,ν)2.

Let us consider the submeasure μx,m of μ. Then there exists π̃ a submeasure of π that transports μx,m to a submeasure 
ν̃ of ν . We get that:

W2(μx,m, ν̃) ≤ W2(μ,ν).

Using Proposition 3.2 again, we get that for any x ∈ X, 
√

m dν,m(x) ≤ W2(mδx, ̃ν). Thus,
√

m dν,m(x) ≤ W2(mδx, ν̃) ≤ W2(mδx,μx,m) + W2(ν̃,μx,m)

≤ √
m dμ,m(x) + W2(μ,ν).

The roles of μ and ν can be reversed to conclude the proof. �
Another consequence of Proposition 3.2 is that dμ,m is 1-Lipschitz with respect to x.

Proposition 3.4. Let μ be a probability measure on a metric space X and let m ∈ ]0, 1] be a mass parameter. Then dμ,m is 1-Lipschitz.

Proof. Let x and y be two points of X. Using Proposition 3.2, there exists a submeasure μx,m of μ such that dμ,m(x) =
1√
m

W2(mδx, μx,m). The same proposition applied to y gives dμ,m(y) ≤ 1√
m

W2(mδy, μx,m). Knowing that W2(mδx, mδy) =√
m dX(x, y), we can conclude that dμ,m(y) ≤ dμ,m(x) + dX(x, y). The choice of x and y is arbitrary, so by symmetry, 

dμ,m(x) ≤ dμ,m(y) + dX(x, y). Therefore, dμ,m is 1-Lipschitz. �
3.2. Persistence

For persistence diagrams of sublevel sets filtrations of distance to measure functions to be well-defined, we need to 
prove that they are q-tame.

Proposition 3.5. Let X be a triangulable metric space, let μ be a probability measure on X, and let m ∈ ]0, 1] be a mass parameter. 
Then, the sublevel sets filtration of dμ,m is q-tame.

Proof. According to Proposition 3.4 dμ,m is 1-Lipschitz and thus continuous. Also, dμ,m is nonnegative by definition. More-
over, dμ,m is proper, i.e., the preimage of any compact set is compact. As the function is nonnegative and continuous, it 
suffices to show that any sublevel set d−1

μ,m([0, α]) is compact.

Suppose for contradiction that for a fixed α > 0, d−1
μ,m([0, α]) is not compact. Then there exists a sequence (xi)i>0 of 

points of d−1
μ,m([0, α]) such that dX(x0, xn) → ∞ when n → ∞. Hence we can extract a sub-sequence (xφ(i))i>0 such that for 

any i and j, B̄(xφ(i), 
√

2α) ∩ B̄(xφ( j), 
√

2α) = ∅. Let us remark that μ(B̄(xφ(i), 
√

2α)) ≥ m
2 . So,

dμ,m(xφ(i))
2 = 1

m

m∫
0

δμ,l(xφ(i))
2dl ≤ α2.

The function δμ,l(xφ(i)) is nonnegative and increasing with l and therefore m
2 δμ, m

2
(xφ(i))

2 ≤ mα2. Using the definition of 
δμ,m , this implies that μ(B̄(xφ(i), 

√
2α)) ≥ m

2 . Measures are countably additive, so

μ(X) ≥
∑
i>0

μ(B̄(xφ(i),
√

2α)) ≥
∑
i>0

m

2
= ∞.

However, μ is a probability measure and therefore μ(X) = 1. This contradiction implies that d−1
μ,m([0, α]) is compact.

As X is triangulable, there exists a homeomorphism h from X to a locally finite simplicial complex C . Then for any α > 0, 
we can restrict the simplicial complex C to a finite simplicial complex Cα that contains h(d−1

μ,m([0, α])) as d−1
μ,m([0, α]) is 

compact. The function dμ,m ◦ h−1|Cα is continuous on Cα . Thus its sublevel sets filtration is q-tame by Theorem 2.22 of [6].
The construction extends to any α and therefore the sublevel sets filtration of dμ,m ◦h−1 is q-tame. Furthermore, homol-

ogy is preserved by homeomorphisms and thus we can say that the sublevel sets filtration of dμ,m is q-tame. �
Theorem 3.1 is now obtained by combining Theorem 2.4 and Proposition 3.5.
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Proof of Theorem 3.1. Theorem 3.3 guarantees that:

‖dμ,m − dν,m‖∞ ≤ 1√
m

W2(μ,ν).

The sublevel sets filtrations are therefore interleaved since for all α ∈ R,

d−1
μ,m(] − ∞,α]) ⊆ d−1

ν,m(] − ∞,α + 1√
m

W2(μ,ν)]) ⊆ d−1
μ,m(] − ∞,α + 2√

m
W2(μ,ν)]).

Therefore, applying Theorem 2.4 gives

dB(Dgm(dμ,m), Dgm(dν,m)) ≤ 1√
m

W2(μ,ν). �
4. Approximating the distance to a measure

Computing the persistence diagram of the sublevel sets filtration of dμ,m requires knowing the sublevel sets. They are 
not generally easy to compute. We propose an approximation paradigm for dμ,m that replaces the sublevel sets by a union 
of balls. The approach works in any metric space and yields equivalent guarantees as the witnessed k-distance approach 
used in [15] for Euclidean spaces.

4.1. Power distances

Definition 4.1. Given a metric space X, a set P and a function w : P → R, we define the power distance f associated with 
(P , w) as

f (x) =
√

min
p∈P

dX(p, x)2 + w2
p, (2)

where w p is the value of w at the point p.

The function w can be defined on a superset of P . Moreover, the sublevel set f −1(]−∞, α]) is the union of the closed 
balls centered on the points p of P with radius rp(α) =

√
α2 − w2

p . By convention, we assume that the ball is empty when 
the radius is imaginary.

Stability
Power distances are stable under small perturbations of the points.
The following lemma states a result about inclusions between balls. It allows another stability result on power distances 

(Proposition 4.3) and will be useful for studying the stability of the weighted Rips filtration in Section 5.

Lemma 4.2. Let p, q ∈X be such points such that dX(p, q) ≤ ε , and let w :X →R be a t-Lipschitz function. For all α ≥ w p,

rp(α) + ε ≤ rq(α +
√

1 + t2 ε).

Proof. First, observe that rp(α) can be bounded as follows.

rp(α)2 = α2 − w2
p ≤ α2 − w2

p + (tα −
√

1 + t2 w p)2

= (
√

1 + t2 α − t w p)2.

Next, we relate rp and rq as follows.

(rp(α) + ε)2 = α2 − w2
p + 2ε

√
α2 − w2

p + ε2

≤ α2 − w2
p + 2ε(

√
1 + t2 α − t w p) + ε2

= (α +
√

1 + t2 ε)2 − (w p + tε)2

≤ (α +
√

1 + t2 ε)2 − w2
q

= rq(α +
√

1 + t2 ε)2.

The requirement that α ≥ w p allows us to take the square root of both sides of the inequality since both will be nonnega-
tive. �
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As a consequence, we obtain the following.

Proposition 4.3. Let X be a metric space and let w : X → R be a function. Let P and Q be two compact subsets of X. Let f P and f Q

be the power distances associated with (P , w) and (Q , w). If w is t-Lipschitz, then

‖ f P − f Q ‖∞ ≤
√

1 + t2 dH (P , Q ).

Proof. Let x be any point of X. There exists p ∈ P such that x ∈ B̄(p, rp( f P (x))). There also exists q ∈ Q such that 
dX(p, q) ≤ dH (P , Q ). By Lemma 4.2 and the triangle inequality, x ∈ B̄(q, rq( f P (x) + √

1 + t2 dH (P , Q ))). Thus, f Q (x) ≤
f P (x) + √

1 + t2 dH (P , Q ). P and Q are interchangeable therefore ‖ f Q − f P ‖∞ ≤ √
1 + t2 dH (P , Q ). �

Remark that this bound is tight. If we replace t by 0, we have ‖ f Q − f P ‖∞ = dH (P , Q ).

Approximation
To approximate the distance to a probability measure μ, we introduce the following function.

Definition 4.4. Let μ be a probability measure on a metric space X and let m ∈ ]0, 1] be a mass parameter. Given a subset 
P of X, we define dP

μ,m as the power distance associated with (P , dμ,m).

dP
μ,m(x) =

√
min
p∈P

dX(p, x)2 + dμ,m(p)2

That is, the weight of each point is its distance to the empirical measure. If P is close to Supp(μ), we obtain an approxi-
mation of dμ,m .

Theorem 4.5. Let μ be a probability measure on a metric space X and let m ∈ ]0, 1] be a mass parameter. Let P be a subset of X. If 
dH (P , Supp(μ)) ≤ ε , then

1√
2

dμ,m ≤ dP
μ,m ≤ √

5 (dμ,m + ε).

A multiplicative approximation implies a multiplicative interleaving of the sublevel sets filtrations that becomes an ad-
ditive interleaving on a logarithmic scale. Theorem 2.4 thus guarantees that the persistence diagrams are close in the 
bottleneck distance on a logarithmic scale.

Proof. Let x be a point of X. Using the previous notations we get

dμ,m(x)2 = 1

m

∫
X

dX(y, x)2μx,m(y)dy.

Let us now fix a point p ∈ Supp(μ). Since μp,m is a submeasure of μ of total mass m,

dμ,m(x)2 = 1

m

∫
X

dX(y, x)2μx,m(y)dy

≤ 1

m

∫
X

dX(y, x)2μp,m(y)dy

≤ 1

m

∫
X

((dX(y, p) + dX(p, x))2)μp,m(y)dy

≤ dX(p, x)2 2

m

∫
X

μp,m(y)dy + 2

m

∫
X

dX(y, p)2μp,m(y)dy

= 2(dX(p, x)2 + dμ,m(p)2).

The third inequality follows from the triangle inequality and the relation (a + b)2 ≤ 2(a2 + b2).
As the above inequality holds for any point p in P we can conclude that

dμ,m(x) ≤ √
2 dP

μ,m(x).
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To show the other inequality, let p be a point of P . Then by definition we get:

dP
μ,m(x)2 ≤ dX(x, p)2 + dμ,m(p)2

≤ dX(x, p)2 + 1

m

∫
X

dX(p, y)2μx,m(y)dy

≤ dX(x, p)2 + 1

m

∫
X

(dX(p, x) + dX(x, y))2μx,m(y)dy

≤ 3 dX(x, p)2 + 2 dμ,m(x)2.

By the definition of the distance to a measure, dX(x, Supp(μ)) ≤ dμ,m(x). Consequently, there exists a point p ∈ P such that 
dX(x, p) ≤ dμ,m(x) + ε . Hence,

dP
μ,m(x)2 ≤ 5(dμ,m(x) + ε)2. �

4.2. Measures with finite support

We now assume that data is given as a finite set of points P in a metric space X. We define the following measure to 
study the point set P .

Definition 4.6. Given a finite point set P in a metric space X, the empirical measure μP on P is defined as a normalized 
sum of Dirac measures:

μP = 1

|P |
∑
p∈P

δp .

Let x be a point of X. We introduce the parameter k = m|P |. To simplify the exposition we will assume that k is an 
integer. See Remark 1 for the generalization.

We reorder the points of P such that P = (p1(x), · · · , p|P |(x)) and

dX(x, p1(x)) ≤ · · · ≤ dX(x, p|P |(x)). (3)

If two points are at the same distance of x, we order them arbitrarily. We define the set

N N P
k (x) = {p1(x), · · · , pk(x)}

and call it the set of kth nearest neighbors of x. The set �P
k consists of all k-tuples of points of P .

Lemma 4.7. Let P be a finite point set in a metric space X then for any x ∈X:

dμP ,m(x) =
√√√√min

S∈�P
k

1

k

∑
p∈S

dX(p, x)2 =
√√√√1

k

∑
p∈N N P

k (x)

dX(p, x)2.

Proof. Since μP has finite support, all its submeasures also have finite support.

Subm(μP ) =
⎧⎨
⎩
∑
p∈P

λpδp | ∀p ∈ P , 0 ≤ λp ≤ 1

|P | and
∑
p∈P

λp = m

⎫⎬
⎭

Let ν =∑
p∈P λpδp be an element of Subm(μP ).

W2(mδx, ν)2 =
∑
p∈P

λpdX(x, p)2

Combined with the relation (3), we get

Sx =
∑

p∈N N P
k (x)

δp ∈ argminν∈Subm(μP ) W2(mδx, ν).

As Sx ∈ �P , we are done. �
k
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The distance to the empirical measure, dμP ,m , is thus defined as a lower envelope of quadratic functions. It is generally 
costly if not impossible to compute its sublevel sets.

However, we can directly use the approximation presented in Section 4.1. Using P in Definition 4.4 and Theorem 4.5, we 
get the following.

Corollary 4.8. Let P be a finite point set of a metric space X and m ∈ ]0, 1] be a mass parameter. Then,

1√
2

dμP ,m ≤ dP
μP ,m ≤ √

5 dμP ,m.

The multiplicative approximation gives a closeness result between persistence diagrams on a logarithmic scale.

Corollary 4.9. Let P be a finite point set of a triangulable metric space X and m ∈ ]0, 1] be a mass parameter. Then,

dlog
B (Dgm(dμP ,m),Dgm(dP

μP ,m)) ≤ ln(
√

5).

Proof. Corollary 4.8 implies that

ln(dμP ,m) − ln(
√

2) ≤ ln(dP
μP ,m) ≤ ln(

√
5) + ln(dμP ,m).

The sublevel sets of ln(dμP ,m) and ln(dP
μP ,m) are thus ln(

√
5)-interleaved and Theorem 2.4 applies. �

Moreover, these bounds cannot be improved.

Proposition 4.10. The bounds of Corollary 4.8 are tight.

Proof. We are looking for a worst case scenario where inequalities become equalities for at least one point. We consider 
the space Rd with the L1-norm, denoted | · |. For any fixed dimension d, we build the set of 2d points whose coordinates 
have the form (0, · · · , 0, ±1, 0, · · · , 0). These points are marked by triangles in the following drawing in dimension 2.

We fix k = 2d and we study dμP ,m and dP
μP ,m at points q(−3, 0 · · · , 0) and o. First we compute the value of dμP ,m(pi) for 

any i:

dμP ,m(pi)
2 = 1

2d

2d∑
j=1

|p j − pi|2 = 4
2d − 1

2d
= 4 − 2

d

Now we compute the value of dμP ,m at q and o:

dμP ,m(o)2 = 1

2d

2d∑
i=1

|pi − o|2 = 1

dμP ,m(q)2 = 1

2d

2d∑
i=1

|pi − q|2 = 1

2d
(|p1 − q|2 + (2d − 1)16) = 16 − 6

d

All the points pi have the same value for dμP ,m . It is easy to compute dP
μP ,m at q and o

dP
μP ,m(o)2 = dμP ,m(p1)

2 + |p1 − o|2 = 5 − 2

d

dP
μP ,m(q)2 = dμP ,m(p1)

2 + |p1 − q|2 = 8 − 2
d
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When d increases, the ratio 
dP
μP ,m(o)

dμP ,m(o)
tends to 

√
5, while 

dP
μP ,m(q)

dμP ,m(q)
tends to 1√

2
. Thus, the bounds of Corollary 4.8 are reached 

at the limit for the same data set, although at two different points. �
Remark 1. If k is not an integer, it suffices to do the same construction with a careful weighting of the point p�k� . The 
results stay exactly the same after replacing k by �k�.

4.3. Euclidean case

We consider the standard Euclidean space Rd with the L2-norm. Considering the finite point set P and its empirical 
measure in R, we are able to express the distance to the empirical measure dμP ,m as a power distance. This restricted 
settings allows us to improve the bounds of Corollary 4.8 as follows.

Theorem 4.11. Let P be a finite point set in Rd and let m ∈ ]0, 1] be a mass parameter. Then the following relation is tight.

1√
2

dμP ,m ≤ dP
μP ,m ≤ √

3 dμP ,m.

Moreover, it implies a relation between persistence diagrams:

dlog
B (Dgm(dμP ,m),Dgm(dP

μP ,m)) ≤ ln(
√

3).

We first present a way to express the distance to a measure as a power distance to the set of all barycenters of k-tuples 
of P . Then we prove Theorem 4.11 before comparing it with the previous approximation, called the witnessed k-distance 
proposed in [15]. We improve the bounds on the witnessed k-distance and show that the quality of the approximation is 
the same for both functions.

4.3.1. Power distance expression of dμP ,m

For a fixed integer k, the barycenter associated with a point x is the barycenter of its k-nearest neighbors. It is also the 
center of the cell of the kth-order Voronoi diagram that contains x.

Definition 4.12. For a point set P in Rd and an integer k ≤ |P |, the barycenter associated with x is

bar(x) = 1

k

∑
p∈N N P

k (x)

p.

Any subset of k elements from P is uniquely associated with a barycenter. We identify the two objects and define a cell 
energy that describes how clustered the points are.

Definition 4.13. Let P be a point set of Rd and let k ≤ |P |. Given S ∈ �P
k , we fix q = 1

k

∑
p∈S p and define the cell energy as

EC (q) = 1

k

∑
p∈S

‖p − q‖2.

Notice that the set S is not necessarily the set N N P
k (q) and that EC (q) ≥ dμP ,m(q)2. We can now write dμP ,m in the 

following form.

Lemma 4.14. Let P be a finite point set of Rd let m ∈ ]0, 1] be a mass parameter. For any x ∈R
d,

dμP ,m(x) =
√

min
y∈Rd

EC (bar(y)) + ‖bar(y) − x‖2 =
√

EC (bar(x)) + ‖bar(x) − x‖2.

Proof. Fix S ∈ �P
k and write q = 1

k

∑
p∈S p. We adapt Lemma 4.7 to the Euclidean setting to get

1

k

∑
p∈S

‖p − x‖2 = EC (q) + ‖q − x‖2.

This requires the inner product as follows.
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A = 1

k

∑
p∈S

‖p − x‖2 = 1

k

∑
p∈S

(
‖p − q‖2 + ‖q − x‖2 + 2〈p − q|q − x〉

)

= EC (q) + ‖q − x‖2 + 2〈q − q|q − x〉.
Lemma 4.7 guarantees that

dμP ,m(x) =
√√√√min

S∈�P
k

1

k

∑
p∈S

‖p − x‖2 =
√√√√1

k

∑
p∈N N P

k (x)

‖p − x‖2,

and thus,

dμP ,m(x) =
√

min
S∈�P

k

EC (q) + ‖q − x‖ =
√

EC (bar(x)) + ‖x − bar(x)‖2. �

In Euclidean space, it is possible to compute the sublevel sets of dμP ,m exactly. The function is a power distance and its 
sublevel sets are unions of balls. However, the complexity problem pointed out in section 4.2 is still valid. The number of 
balls required to describe a sublevel set is �(k� d+1

2 �n� d+1
2 �) [9].

4.3.2. Proof of Theorem 4.11

Proof. The first inequality is exactly the same as the one from Theorem 4.5. For the second inequality, let x be a point in 
R

d , and let p be a point of P . Thus,

dP
μP ,m(x)2 ≤ dμP ,m(p)2 + ‖p − x‖2.

Using Lemma 4.14, we get,

dP
μP ,m(x)2 ≤ EC (bar(x)) + ‖p − bar(x)‖2 + ‖p − x‖2,

and with the inner product, this becomes

dP
μP ,m(x)2 ≤ EC (bar(x)) + ‖x − bar(x)‖2 + 2‖p − x‖2 + 2 < x − bar(x)|p − x >

= dμP ,m(x)2 + 2‖p − x‖2 + 2 < x − bar(x)|p − x > .

Note that

2 < bar(x) − x|x − p >= ‖bar(x) − p‖2 − ‖bar(x) − x‖2 − ‖x − p‖2.

Then we can write the following relation.

dP
μP ,m(x)2 ≤ dμP ,m(x)2 + ‖p − x‖2 + ‖bar(x) − p‖2 − ‖x − bar(x)‖2.

This relation holds for any point of P . In particular it holds for any of the k nearest neighbors of x. If we take the average 
over the k nearest neighbors of x and eliminate the negative term −‖x − bar(x)‖2, we obtain

dP
μP ,m(x)2 ≤ dμP ,m(x)2 + 1

k

∑
p∈N N P

k (x)

‖p − x‖2 + 1

k

∑
p∈N N P

k (x)

‖bar(x) − p‖2.

Using the definitions of the cell energy and of the distance to the measure, we can write:

dP
μP ,m(x)2 ≤ dμP ,m(x)2 + dμP ,m(x)2 + EC (bar(x))

where EC (bar(x)) ≤ dμP ,m(x)2. We conclude that

dP
μP ,m(x) ≤ √

3 dμP ,m(x).

The relation between persistence diagrams is exactly as in the proof of Corollary 4.9.

Tightness
The tight example is the point set P of two points a and b on the real line with coordinates 1 and −1.
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Fix the mass parameter m equal to 1 so that k = 2. It follows that

dμP ,m(a) = dμP ,m(b) =
√

1

2
‖b − a‖2 = √

2,

and

dμP ,m(o) =
√

1

2
‖o − b‖2 + ‖o − a‖2 = 1.

We now compute the last interesting value:

dP
μP ,m(o)2 = dμP ,m(a)2 + ‖a − o‖2 = 3.

We can thus conclude that dP
μP ,m(o) = √

3 dμP ,m(o). �
4.3.3. Comparison with witnessed k-distance

Another way of approximating dμP ,m was proposed in [15]. Taking advantage of the power distance expression of dμP ,m , 
it reduced the set of barycenters to consider. Selecting only the barycenter which are associated with the k nearest neighbors 
of a point of P gives a set of size at most |P |.

Definition 4.15. Let P be a finite point set of Rd and let m ∈ ]0, 1] be a mass parameter. The witnessed k-distance is defined 
as

dW
μP ,m(x) =

√
min
p∈P

EC (bar(p)) + ‖bar(p) − x‖2.

A bound on the quality of the approximation was given in Lemma 3.3 of [15]. We improve this bound and prove it to 
be at least as good as our approximation. We are not able to prove the tightness of this bound. However, we can give a 
lower bound on the precision. Using dP

μP ,m will not improve the results compared to the witnessed k-distance but will not 
downgrade the quality either. Moreover it can be used in a more general setting as we do not need the existence of the 
barycenters.

Theorem 4.16. Let P be a finite point set of Rd and let m ∈ ]0, 1] be a mass parameter. Then,

dμP ,m ≤ dW
μP ,m ≤ √

6 dμP ,m.

The previous version of this theorem used a 3 instead of the 
√

6.

Proof. The first inequality is obtained by noticing that dW
μP ,m is a minimum over a smaller set than dμP ,m . We thus get 

dμP ,m ≤ dW
μP ,m .

Let x be a point in Rd . Thus for any p ∈ P ,

dW
μ,m(x)2 ≤ EC (bar(p)) + ‖bar(p) − x‖2

≤ EC (bar(p)) + ‖bar(p) − p‖2 + ‖p − x‖2 + 2〈bar(p) − p|p − x〉
≤ dμ,m(p)2 + 2‖p − x‖2 + ‖bar(p) − p‖2

≤ 2(dμ,m(p)2 + ‖p − x‖2).

Thus, dW
μ,m(x) ≤ √

2dP
μ,m(x) and using Theorem 4.11 we can conclude that:

dW
μ,m(x) ≤ √

2 dP
μ,m(x) ≤ √

6 dμ,m(x). �
Tightness The tightness of the lower bound is obvious as it suffices to take k = 1 to get an equality between dμP ,m and 

dW
μP ,m .

However, we do not know if the upper bound is tight. The bound 
√

6 can not be improved more than to 1 + √
2, whose 

value is greater than 
√

5.82.
Let us introduce the following example in Rd . We fix k = 2d and 0 < ε <

√
2. The point cloud P consists of 4d2 points 

located at the coordinates (0, · · · , 0, α, 0, · · · , 0) with multiplicity 1 when α = 1 or α = −1 and multiplicity 2d − 1 when 
α = 1 + √

2 − ε or α = ε − 1 − √
2.
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The following figure is its representation in dimension 2 where the triangles have multiplicity 1 and the circles have 
multiplicity 3.

The points are placed such that the k nearest neighbors of any triangle are itself and the k − 1 points located at the nearest 
circle. These k nearest neighbors are also the ones from the circles.

Let us now take a look to the value of the functions at the origin o. Each of the k nearest neighbors of o are at distance 
exactly 1 from o. This allows us to conclude that:

dμP ,m(o) = 1.

The construction induced that the structure is perfectly symmetric and the set of barycenters W we consider in the 
witnessed k-distance contains exactly 2d points. These points are located at the coordinates (0, · · · , 0, α, 0, · · · , 0) where 
α = 1 + 2d−1

2d (
√

2 − ε) or the opposite.
Let b be a member of W . Thus we can compute its cell energy:

EC (b) = 1

2d

[(
2d − 1

2d
(
√

2 − ε)

)2

+ (2d − 1)

(
1

2d
(
√

2 − ε)

)2
]

= 2d − 1

(2d)3

[
(2d − 1)(

√
2 − ε)2 + (

√
2 − ε)2

]

= 2d − 1

(2d)2
(
√

2 − ε)2.

All of the points of W are located at the same distance to o. Thus, the witnessed k-distance at the point o is

dW
μP ,m(o)2 = EC (b) +

(
1 + 2d − 1

2d
(
√

2 − ε)

)2

= 2d − 1

(2d)2
(
√

2 − ε)2 + 1 + 2d − 1

d
(
√

2 − ε) + (2d − 1)2

(2d)2
(
√

2 − ε)2

= 1

2d
+ 2d − 1

2d

(
1 + 2(

√
2 − ε) + (

√
2 − ε)2

)
= 1

2d
+ 2d − 1

2d
(1 + √

2 − ε)2.

Since we can take ε as small as we want and make the dimension grow, this relation assures us that we cannot find a 
better constant than 1 + √

2 in Theorem 4.16.

5. The weighted Rips filtration

Given a weighted set (P , w) and the associated power distance f (as in (2)), one can introduce a generalization of the 
Rips filtration that is adapted to the weighted setting as has been done in [15]. This construction allows us to approximate 
the persistence diagram of dμ,m in some cases. Moreover, we show that it is stable with respect to perturbation of the 
underlying sample (Theorem 5.6) and that it gives a guaranteed approximation to the persistence diagram of the distance 
to an empirical measure (Theorem 5.7). Furthermore, it has an interest of its own as it is stable for close weighted sets and 
can therefore be used as a shape signature.
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Let us consider the sublevel set f −1(]−∞, α]). It is the union of the balls centered on the points p of P with radius 
rp(α) =

√
α2 − w2

p . By convention, we consider that the ball is empty when the radius is imaginary. We can define the 
nerve of this union:

Definition 5.1. Let (P , w) be a weighted set in a metric space X, then the weighted Čech complex Cα(P , w) for parameter α
is defined as the union of simplices σ such that 

⋂
p∈σ B(p, rp(α)) �= 0.

However, the Čech complex can be difficult to compute due the problem of testing if a collection of metric balls has a 
common intersection. Instead, we define a weighted version of the Rips complex, which only requires distance computations.

Definition 5.2. For a weighted set (P , w) in a metric space X, the weighted Rips complex Rα(P , w) for a parameter α is 
the maximal simplicial complex whose 1-skeleton has an edge for each pair (p, q) such that dX(p, q) < rp(α) + rq(α). The 
weighted Rips filtration is the sequence {Rα(P , w)} for all α ≥ 0.

Remark that if all weights are equal to 0, we are in the classical case of balls with equal radii. We use the weighted 
Rips filtration to approximate the weighted Čech filtration thanks to the following interleaving. For simplicity, the notation 
(P , w) indicating the point set P with weights w is omitted in the notation.

Proposition 5.3. If (P , w) is a weighted set on a metric space X, then for all α ∈ R:

Cα ⊆ Rα ⊆ C2α.

Proof. Let α be a real number. The first inclusion is obtained by the definition of the weighted Rips complex that gives 
Cα ⊆ Rα .

For the other inclusion, let σ be a simplex of Rα . We fix p0 to be the point of σ with the greatest weight. This implies 
especially that for any p ∈ P , rp(α) ≥ rp0(α).

Since σ ∈ Rα , we get that, for all p and q in P , we have dX(p, q) ≤ rp(α) + rq(α) with both radius real. To prove that 
σ ∈ C2α we need to prove that:⋂

p∈σ

B(p, rp(2α)) �= 0.

It will suffice to prove that p0 belongs to this intersection. For each p ∈ σ :

dX(p, p0) ≤ rp(α) + rp0(α) ≤ 2 rp(α) =
√

(2α)2 − 4w2
p ≤ rp(2α). �

Stability
The persistence diagram of a weighted Rips filtration {Rα(P , w)} is stable under small perturbations of the set P . It can 

thus be used in applications like signatures in the spirit of [3].
Speaking of the persistence diagram of a weighted Rips filtration requires that the filtration is q-tame. This is always the 

case when the set P is compact as shown in the following proposition.

Proposition 5.4. Let P be a subset of a metric space X and let w : X → R be a function. If P is compact, then {Rα(P , w)}α∈R is 
q-tame.

This will be deduced from the following technical lemma.

Lemma 5.5. Let P , Q be two subsets of a metric space X and let w : X → R be a t-Lipschitz function. Then H∗({Rα(P , w)}) and 
H∗({Rα(Q , w)}) are ε-interleaved for ε = (1 + t)dH (P , Q ).

Proof. We need to show that the there exists ε-homomorphisms πP ∗ and πQ ∗ such that πP ∗πQ ∗ = 12ε
H∗(Rα(P ,w)) and 

πQ ∗πP ∗ = 12ε
H∗(Rα(Q ,w)) .

To do so, we need three steps. First, we build simplicial maps Rα(P , w) → Rα+ε(Q , w) and Rα(Q , w) → Rα+ε(P , w)

for every α. Then, we show that these simplicial maps induce ε-homomorphisms. Finally, we show that the simplicial maps 
are contiguous and thus the two persistence modules are ε-interleaved.

The simplicial maps iβα : Rα(P , w) → Rβ(P , w) and jβα : Rα(Q , w) → Rα(Q , w) for α < β are induced by the canonical 
inclusion. We consider two maps πP : Q → P and πQ : P → Q such that dX(p, πQ (p)) ≤ dH (P , Q ) and dX(q, πP (q)) ≤
dH (P , Q ) for any p ∈ P and q ∈ Q . By definition of the Hausdorff distances, such maps always exist. Let us show that these 
maps induce simplicial maps.
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Let us consider the function πP and let us fix α > 0. Let (q′, q′′) be an edge of Rα(Q , w). It means that B(q′, rq′(α)) ∩
B(q′′, rq′′(α)) �= ∅. Lemma 4.2 implies that B(q, rq(α)) ⊂ B(πP (q), rπP (q)(α + (1 + t)dH (P , Q ))) for any q ∈ Q . Thus, 
(πP (q′), π(q′′)) is an edge of Rα+ε(P , w) because:

B(πP (q′), rq′(α + ε)) ∩ B(πP (q′′), rq′′(α + ε)) ⊃ B(q′, rq′(α)) ∩ B(q′′, rq′′(α)) �= ∅.

As Rα(P , w) is a clique complex for any α, this is sufficient to prove that πP induce a family of simplicial maps {πP
α+ε
α }. 

The roles of P and Q are symmetric. Therefore, the result holds for πQ as well.

Furthermore πP induces an ε-homomorphism πP ∗ at the homology level. For any α < β , iβ+ε
α+ε ◦ πP

α+ε
α =πP

β+ε
β ◦ jβα

because the maps iβ+ε
α+ε and jεα are induced by the canonical inclusion while the two others simplicial maps are in-

duced by the same map πP : Q → P . Hence the two compositions are the same map and thus guarantees that πP ∗ is 
an ε-homomorphism. Again, this results can be applied to πQ to get an ε-homomorphism πQ ∗ .

To prove that πP ∗πQ ∗ = 12ε
H∗(Rα(P ,w)) , we prove that πP

α+ε
α ◦ πQ

α
α−ε and iα+ε

α−ε are contiguous for any α.
Let us fix α and let (p, p′) be an edge of Rα−ε(P , w). By definition, B(p, rp(α − ε)) ∩ B(p′, rp′(α − ε)) �= ∅. Moreover, 

using Lemma 4.2 we get:

B(p, rp(α − ε)) ⊂ B(πQ (p), rπQ (p)(α)) ⊂ B(πP ◦ πQ (p), rπP ◦πQ (p)(α + ε)).

The same holds for p′ and thus:

B(p, rp(α + ε)) ∩ B(πP ◦ πQ (p), rπP ◦πQ (p)(α + ε)) ∩ B(p′, rp′(α + ε)) ∩ B(πP ◦ πQ (p′), rπP ◦πQ (p′)(α + ε)) �= ∅.

Thus the tetrahedron {iα+ε
α−ε(p), iα+ε

α−ε(p′), πP
α+ε
α ◦πQ

α
α−ε(p), πP

α+ε
α ◦πQ

α
α−ε(p′)} is in Cα+ε(P , w) ⊂ Rα+ε(P , w). Lemma 2.7

guarantees that πP
α+ε
α ◦ πQ

α
α−ε and iα+ε

α−ε are contiguous.
From before, {πP

α+ε
α ◦ πQ

α
α−ε} induces the 2ε-homomorphism πP ∗πQ ∗ . By definition, {iα+ε

α−ε} induces 12ε
H∗(Rα(P ,w)) . By 

contiguity of the simplicial maps, we have equality of the 2ε-homomorphisms and therefore πP ∗πQ ∗ = 12ε
H∗(Rα(P ,w)) .

By symmetry of the roles of P and Q , {Rα(P , w)} and {Rα(Q , w)} are ε-interleaved. �
Proof of Proposition 5.4. We will show that, for any ε > 0, one can build a finite persistence module which is ε-interleaved 
with the persistence module of {Rα(P , w)}. A finite persistence module is a fortiori locally finite and Theorem 4.19 of [6]
induces the q-tameness of {Rα(P , w)}.

Let us fix ε > 0. P is compact. As a consequence, there exists a finite point set Q of P such that dH (P , Q ) ≤ ε
1+t . 

The persistence module of {Rα(Q , w)} is finite and therefore locally finite. Moreover, using Lemma 5.5, {Rα(Q , w)} and 
{Rα(P , w)} are ε-interleaved. Hence Theorem 4.19 of [6] induces the q-tameness of {Rα(P , w)}. �

Notice that the simplicial maps πP and πQ are not necessarily uniquely defined. However, if πP and π ′
P are two maps 

verifying the construction property, then the induced simplicial maps are contiguous and therefore the induced homomor-
phisms are identical.

The persistence diagrams of weighted Rips filtrations are related by the following:

Theorem 5.6. Let P and Q be two compact subsets of a metric space X. Let w :X →R be a t-Lipschitz function. Then,

dB(Dgm({Rα(P , w)}),Dgm({Rα(Q , w)})) ≤ (1 + t)dH (P , Q ).

Proof. P and Q are two compact sets and thus the diagrams are well-defined thanks to Proposition 5.4 that guarantees the 
q-tameness of the filtrations. Lemma 5.5 implies that H∗({Rα(P , w)}) and H∗({Rα(Q , w)}) are (1 + t)dH (P , Q )-interleaved. 
The relation between the persistence diagrams is then obtained by applying Theorem 2.6. �
Remark 2. When P and Q are two compact metric spaces, Theorem 5.6 can be extended using the notion of correspondence 
as in [7]. Notice that the correspondence has to induce bounded distortion on the weights as well as on the distances.

Approximation
To use the weighted Rips filtration to approximate the persistence diagram of the distance to a measure, we need to 

restrict the class of spaces considered. If the intersection of any finite number of balls in X is either contractible or empty, 
X is said to have the good cover property. Then the Čech complex has the same homology as the union of balls, of which 
it is the nerve, by the Nerve Theorem [16]. We can also compute the persistence diagram thanks to the Persistent Nerve 
Lemma [8]. We obtain an approximation of Dgm(dμP ,m) using the weighted Rips filtration.

Theorem 5.7. Let X be a triangulable metric space with the good cover property and let P be a finite point set of X, then on a 
logarithmic scale:

dlog
B (Dgm(dμP ,m),Dgm({Rα(P ,dμP ,m)})) ≤ ln(2

√
5).
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Proof. Given that X is triangulable, we know that the sublevel sets filtration of dμP ,m is q-tame by Proposition 3.5. The 
persistence diagram Dgm(dμP ,m) is thus well-defined. Recall that dμP ,m is a 1-Lipschitz function (see Proposition 3.4). P is 
a compact subset of X and therefore Dgm(Rα(P , dμP ,m)) is well-defined according to Proposition 5.4.

We approximate dμP ,m with dP
μP ,m . The result of Theorem 4.5 gives us a 

√
5 multiplicative interleaving. For any α ∈R,

dμP ,m(] − ∞,α]) ⊂ dP
μP ,m(] − ∞,

√
2α]) ⊂ dμP ,m(] − ∞,

√
10 dP

μP ,m]).
So, Theorem 2.4 implies

dlog
B (Dgm(dμP ,m),Dgm(dP

μP ,m)) ≤ ln(
√

5).

By the Persistent Nerve Lemma, the sublevel sets filtration of dP
μP ,m (a union of balls of increasing radii) has the same 

persistent homology as its nerve filtration. Thus, we can use weighted Rips filtration to approximate the persistence diagram:

dlog
B (Dgm(dP

μP ,m),Dgm({Rα(P ,dμP ,m)}) ≤ ln(2).

The triangle inequality for the bottleneck distance gives the desired inequality. �
6. The sparse weighted Rips filtration

The weighted Rips filtration presented in the previous section has the desired approximation guarantees, but like the 
Rips filtration for unweighted points, it usually grows too large to be computed in full. In [21], it was shown how to 
construct a filtration {Sα} called the sparse Rips filtration that gives a provably good approximation to the Rips filtration and 
has size linear in the number of points for metrics with constant doubling dimension (see Section 6.1 for the construction). 
Specifically, for a user-defined parameter ε, the log-bottleneck distance between the persistence diagrams of the Sparse Rips 
filtration and the Rips filtration is at most ε. The goal of this section is to extend that result to weighted Rips filtrations.

The sparse Rips filtration cannot be used directly here, since the power distance does not induce a metric. Indeed, even 
the case of setting all weights to some large constant yields a persistence diagram that is far from the persistence diagram 
of the Rips filtration of any metric space. This follows because individual points in a Rips filtration appear at time zero, but 
this is not the case in the weighted Rips filtration.

Even if one were to construct a metric whose Rips filtration exactly matched that of the weighted Rips filtration, there 
are simple examples where that metric would necessarily have very high doubling dimension, making previous methods 
unsuitable. For example, consider a set of points in the unit interval [0, 1], with a constant weight function that assigns a 
weight of 1 to every point. Although the points lie in a 1-dimensional space, the weighted distance function has doubling 
dimension log n because all of the points are within a weighted distance of 2, whereas every pair has weighted distance 
at least 1. So the doubling constant would be n and the doubling dimension would be log n despite that the input was 
1-dimensional. Thus, any construction that depends on low doubling dimension will blowup when confronted with such 
weighted examples.

For the rest of this section, we fix a weighted point set P in a metric space X, where the weight function w : X → R is 
t-Lipschitz, for some constant t . To simplify notation, we let Rα denote the weighted Rips complex Rα(P , w).

The sparse weighted Rips filtration, {Tα}, is defined as

Tα = Sα ∩ Rα.

The (unweighted) sparse Rips filtration {Sα} captures the underlying metric space and the weighted Rips filtration {Rα}
captures the structure of the sublevel sets of the power distance function. Computing {Tα} can be done efficiently by first 
computing {Sα} and then reordering the simplices according to the birth time in {Rα}. This is equivalent to filtering the 
complex S∞ . Note that the sparsification depends only on the metric, and not on the weights. Thus, the same sparse Rips 
complex can be used as the underlying complex for different weight functions. We also simplify the construction of {Sα} by 
using a furthest point sampling instead of the more complex structure of net tree.

The technical challenge is to relate the persistence diagram of this new filtration to the persistence diagram of the 
weighted Rips filtration as in the following theorem.

Theorem 6.1. Let (P , w), be a finite, weighted subset of a metric space X with t-Lipschitz weights. Let ε < 1 be a fixed constant used 
in the construction of the sparse weighted Rips filtration {Tα}. Then,

dlog
B (Dgm({Tα}),Dgm({Rα})) ≤ ln

(
1 + √

1 + t2 ε

1 − ε

)
.

Since these filtrations are not interleaved, the only hope is to find an interleaving of the persistence modules, which 
requires finding suitable homomorphisms between the homology groups of the different filtrations. After detailing the 
construction of the sparse Rips filtration with the furthest point sampling, the rest of this section proves Theorem 6.1.
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6.1. Sparse Rips complexes

Let (p1, . . . , pn) be a greedy permutation of the points P in a finite metric space X. That is, pi =
argmaxp∈P\Pi−1

dX(p, Pi−1), where Pi−1 = {p1, . . . , pi−1} is the (i − 1)st prefix. We define the insertion radius λpi of point 
pi to be

λpi = dX(pi, Pi−1).

To avoid excessive superscripts, we write λi in place of λpi when we know the index of pi . We adopt the convention 
that λ1 = ∞ and λn+1 = 0. The greedy permutation has the nice property that each prefix Pi is a λi -net in the sense that

1. dX(p, Pi) ≤ λi for all p ∈ P .
2. dX(p, q) ≥ λi for all p, q ∈ Pi .

We extend these nets to an arbitrary parameter γ as

Nγ = {p ∈ P | λp > γ }.
Nγ = {p ∈ P | λp ≥ γ }.

Note that for all p ∈ P , dX(p, Nγ ) ≤ γ and dX(p, Nγ ) < γ .
One way to get a sparse Rips-like filtration is to take a union of Rips complexes on the nets Nγ . However, this can 

add significant noise to the persistence diagram compared to the Rips filtrations. This noise can be diminished by a careful 
perturbation of the distance. For a point p, the perturbation varies with the scale and is defined as follows:

sp(α) =

⎧⎪⎨
⎪⎩

0 if α ≤ λp
ε

α − λp
ε if λp

ε < α <
λp

ε(1−ε)

εα if λp
ε(1−ε)

≤ α

Note that sp is 1-Lipschitz. The resulting perturbed distance is defined as

fα(p,q) = dX(p,q) + sp(α) + sq(α).

Definition 6.2. Given the nets Nγ and the distance function fα , we define the sparse Rips complex at scale α as

Q α = {σ ⊂ Nε(1−ε)α | ∀p,q ∈ σ , fα(p,q) ≤ 2α}.

On its own, the sequence of complexes {Q α} does not form a filtration. However, we can build a natural filtration by 
defining

Definition 6.3. The sparse Rips filtration is defined as:

Sβ =
⋃
α≤β

Q α.

6.2. Projection onto nets

To relate sparse Rips complexes with Rips complexes, we build a collection of projections of the points onto the nets.

πα(p) =
{

p if p ∈ Nε(1−ε)α

argmin dX(p,q) otherwise
q∈Nεα
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For any scale α, the projection πα maps the points of P to the net Nε(1−ε)α . Note that πα is a retraction onto Nε(1−ε)α .
The following are the four main lemmas we will use with respect to the perturbed distance functions and projections. 

The projections will be used extensively to induce maps between simplicial complexes.
First, we prove that edges do not disappear as the filtration grows.

Lemma 6.4. If fα(p, q) ≤ 2α ≤ 2β then fβ(p, q) ≤ 2β .

Proof. The proof follows from the definitions fα and fβ , the Lipschitz property of the perturbations sp and sq , and the 
hypothesis as follows.

fβ(p,q) = dX(p,q) + sp(β) + sq(β)

≤ dX(p,q) + sp(α) + (β − α) + sq(α) + (β − α)

= fα(p,q) + 2(β − α)

≤ 2α + 2(β − α)

= 2β. �
Next, we show that the distance between a point and its projection is at most the change in the perturbed distance.

Lemma 6.5. For all q ∈ P , dX(q, πα(q)) ≤ sq(α) − sπα(q)(α), and in particular, dX(q, πα(q)) ≤ εα.

Proof. Both statements are trivial if q ∈ Nε(1−ε)α , because that would imply that πα(q) = q. So, we may assume that πα(q)

is the nearest point to q in Nεα It follows that

dX(q,πα(q)) ≤ εα.

Moreover, λq ≤ ε(1 − ε)α, and thus sq(α) = εα. Also, since πα(q) ∈ Nεα , it must be that λπα(q) > εα and so sπα(q) = 0. 
Combining these statements, we get

dX(q,πα) ≤ εα = sq(α) − sπα(q)(α). �
Now, we prove that replacing a point with its projection does not increase the perturbed distance.

Lemma 6.6. For all p, q ∈ P and all α ≥ 0, fα(p, πα(q)) ≤ fα(p, q). �
Proof. The statement follows from the definition of fα , the triangle inequality, and Lemma 6.5 as follows.

fα(p,πα(q)) = dX(p,πα(q)) + sp(α) + sπα(q)(α)

≤ dX(p,q) + dX(q,πα(q)) + sp(α) + sπα(q)(α)

≤ dX(p,q) + sp(α) + sq(α)

= fα(p,q). �
6.3. Sometimes the projections induce contiguous simplicial maps

In this section, we look at the maps between simplicial complexes that are induced by the projection functions πα . We 
are most interested in the case when a pair of projections πα and πβ induce contiguous simplicial maps between sparse 
Rips complexes (Lemma 6.9) or weighted Rips complexes (Lemma 6.10). First, we need a couple lemmas that describe the 
effect of different projections on the endpoints of an edge in sparse or weighted Rips complexes.

Lemma 6.7. Let α, β , γ , and i be such that λi+1
ε(1−ε)

≤ α ≤ β ≤ γ ≤ λi
ε(1−ε)

. If an edge (p, q) is in Q ρ for some ρ ≤ γ then the edge 
(πα(p), πβ(q)) ∈ Q γ .

Proof. First, it is easy to check that the conditions on α, β , γ , and i imply that πα(p) and πβ(q) are in Nε(1−ε)γ , which is 
the vertex set of Q γ . So, it will suffice to prove that fγ (πα(p), πβ(q)) ≤ 2γ . Next we consider three cases depending on the 
value of ρ in relation to α and β .
Case 1: If α, β ≤ ρ then πα(p) = p and πβ(q) = q. So, using Lemma 6.4 and the assumption ρ ≤ γ , we see that 
fγ (πα(p), πβ(q)) = fγ (p, q) ≤ 2γ .
Case 2: If α ≤ ρ < β then πα(p) = p and Lemma 6.4 implies that fβ(p, q) ≤ 2β .
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fγ (πα(p),πβ(q)) = fγ (p,πβ(q))

≤ fβ(p,πβ(q)) + 2(γ − β)

≤ fβ(p,q) + 2(γ − β)

≤ 2γ .

Case 3: If ρ < α, β then Lemma 6.4 implies that fα(p, q) ≤ 2α.

fγ (πα(p),πβ(q)) ≤ fβ(πα(p),πβ(q)) + 2(γ − β)

≤ fβ(πα(p),q) + 2(γ − β)

≤ fα(πα(p),q) + 2(γ − β) + 2(β − α)

≤ fα(p,q) + 2(γ − β) + 2(β − α)

≤ 2γ . �

Lemma 6.8. Let (p, q) be an edge of Rδ with α, β ≤ δ
1+ε , then (πα(p), πβ(q)) ∈ Rκδ , where κ = 1+

√
1+t2 ε

1−ε .

Proof. First, note that the projection functions satisfy the following inequalities.

dX(p,πα(p)) ≤ εα ≤ εδ

1 − ε

dX(q,πβ(q)) ≤ εβ ≤ εδ

1 − ε

So, by applying the triangle inequality, the definition of an edge in Rδ , and Lemma 4.2, we get the following.

dX(πα(p),πβ(q)) ≤ dX(p,q) + 2εδ

1 − ε

≤
(

rp(δ) + εδ

1 − ε

)
+
(

rq(δ) + εδ

1 − ε

)

≤
(

rp

(
δ

1 − ε

)
+ εδ

1 − ε

)
+
(

rq

(
δ

1 − ε

)
+ εδ

1 − ε

)

≤ rπα(p)(κδ) + rπβ(q)(κδ).

This is precisely the necessary condition to guarantee that (πα(p), πα(q)) ∈ Rκδ as desired. �
The following two lemmas follow easily from repeated application of the preceding lemmas.

Lemma 6.9. Two projections πα and πβ induce contiguous simplicial maps from Q ρ → Q β whenever ρ ≤ β and there exists i so that 
λi+1

ε(1−ε)
≤ α ≤ β ≤ λi

ε(1−ε)
.

Proof. Let us fix ρ ≤ β and take (p, q) an edge from Q ρ . Given that Q ρ and Q β are cliques complexes, we can get the 
result from Lemma 2.7 if we show that the tetrahedron {πα(p), πα(q), πβ(p), πβ(q)} is in Q β . We only need to prove that 
all edges of the tetrahedron belongs to Q β .

We apply Lemma 6.7, while replacing γ by β and β by α. Thus we obtain (πα(p), πα(q)) ∈ Q β . Let us repeat this 
operation with α = β = γ thus we get (πβ(p), πβ(q)) ∈ Q β . The last two edges are given by replacing γ by β and choosing 
correctly the role of p and q. �

Lemma 6.10. Two projections πα and πβ induce contiguous simplicial maps from Rδ → Rκδ , where κ = 1+
√

1+t2 ε
1−ε whenever α, β ≤

δ
1−ε .

Proof. The previous proof can be applied to get the result, while replacing Lemma 6.7 by Lemma 6.8. �
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6.4. Sparse filtrations and power distance functions

We define a sparse filtration that gives a good approximation to the weighted Rips filtration {Rα } in terms of persistent 
homology. It is simply the intersection of the weighted Rips complex and the union of sparse Rips complexes at different 
scales.

Tα = Rα ∩ Sα.

Our main goal is to show that the filtration {Tα} has a persistence diagram that is similar to that of {Rα}. To do this we 
will demonstrate a multiplicative interleaving between these filtrations, where the interleaving constant is

κ = 1 + √
1 + t2 ε

1 − ε
.

Specifically, we show that for all α ≥ 0, the following diagram commutes at the homology level.

Rα
π α

1−ε

Rκα

Tα Tκα

We first need to check that the projection π α
1−ε

indeed induces a simplicial map from Rδ to Tκδ .

Lemma 6.11. For all α > 0, the projection π α
1−ε

induces a simplicial map from Rα → Tκα , where κ = 1+
√

1+t2 ε
1−ε .

Proof. We show that for each edge (p, q) ∈ Rα , there is a corresponding edge (π α
1−ε

(p), π α
1−ε

(q)) ∈ Rκα ∩ Q α
1−ε

. Since the 
latter complex is a clique complex, this will imply that for all σ ∈ Rα , we have π α

1−ε
(σ ) ∈ Rκα ∩ Q α

1−ε
⊆ Tκα as desired. 

First, (π α
1−ε

(p), π α
1−ε

(q)) ∈ Rκα as a direct consequence of Lemma 6.10.

Next, we need to show that (π α
1−ε

(p), π α
1−ε

(q)) ∈ Q α
1−ε

. It suffices to show that f α
1−ε

(π α
1−ε

(p), π α
1−ε

(q)) ≤ 2α
1−ε .

f α
1−ε

(π α
1−ε

(p),π α
1−ε

(q)) ≤ f α
1−ε

(p,q)

= dX(p,q) + sp(
α

1 − ε
) + sq(

α

1 − ε
)

≤ dX(p,q) + 2εα

1 − ε

≤ 2α + 2εα

1 − ε

= 2α

1 − ε
�

Now, we give conditions for when two projections induce contiguous simplicial maps between the sparse weighted Rips 
complexes Tδ and Tκδ .

Lemma 6.12. Two projections πα and πβ induce contiguous simplicial maps from Tδ → Tκδ , where κ = 1+
√

1+t2 ε
1−ε whenever α, β ≤

δ
1−ε and there exists i so that λi+1

ε(1−ε)
≤ α ≤ β ≤ λi

ε(1−ε)
.

Proof. We simply observe that for any σ ∈ Tδ , σ ∈ Q ρ for some ρ ≤ δ. If ρ ≤ β then Lemma 6.9 implies πα(σ ) ∪ πβ(σ ) ∈
Q β . Otherwise πα(σ ) ∪ πβ(σ ) = σ ∈ Q ρ . So in either case, we have πα(σ ) ∪ πβ(σ ) ∈ Sδγ . Now, by Lemma 6.10, we have 
that πα(σ ) ∪ πβ(σ ) ∈ Rκδ . So, we have that πα(σ ) ∪ πβ(σ ) ∈ Rκδ ∩ Sκδ = Tκδ as desired. �

We can now give the proof of the interleaving which will imply the desired approximation of the persistent homology.

Lemma 6.13. For all α > 0, the following diagram commutes the homology level.

Rα
π α

1−ε

Rκα

Tα Tκα
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Fig. 2. Skeleton of a cube with outliers.

Fig. 3. Persistence diagram of a cube skeleton without noise.

Proof. By Lemma 6.10, the projection π α
1−ε

and the inclusion π0 are contiguous and thus produce identical homomorphisms 
at the homology level. For the lower triangle it will suffice to show that the homomorphism induced by π α

1−ε
commutes 

with the one induced by the inclusion π0. Let φi = π λi
1−ε

for i = 1, . . . , n + 1. Now, Lemma 6.12 implies that φi and φi+1 are 
contiguous. So, choosing k such that λk ≤ εα < λk−1, we can apply Lemma 6.12 repeatedly to conclude that

π0� = φn+1� = φn� = · · · = φk� = π α
1−ε �. �

7. Numerical illustration

In this section, we illustrate our results from three different perspectives: the quality of the approximation, the stability 
of the diagrams with respect to noise, and the size of the filtration after sparsification.

We used the ANN library [17] for the k-nearest neighbors search and code from Zomorodian following [23] for the 
persistence. The topology of the union of balls is acquired through the α-shapes implementation from the CGAL library [11].

Datasets For the first two parts, we consider the set of points in R3 obtained by sampling regularly the skeleton of the 
unit cube with 116 points. Then we add four noise points in the center of four of its faces such that two opposite faces are 
empty (Fig. 2).

We would like to compute the persistence diagram of the skeleton of the cube. We write this diagram Dgm(Skel). It 
contains five homology classes in dimension 1 and one in dimension 2, and it has the barcode representation given in 
Fig. 3.

For sparsification, we use a slightly bigger dataset composed of 10000 points regularly distributed on a curve rolled 
around a torus. The point set is shown on Fig. 4.

Approximation We work from now on with a mass parameter m such that k = mn = 5. The persistence diagram of dμP ,m

is given in Fig. 5:
The diagrams obtained with our various approximations have very similar looks. We only show the one obtained with 

the sparse Rips filtration with a parameter ε = 0.5 in Fig. 6.
To compare diagrams, we use the bottleneck distances between the diagrams. Fig. 7 shows the distance matrix between 

the various diagrams, while Fig. 8 shows some bottleneck distances between persistence diagrams of different dimensions. 
Note that Dgm(dP ) corresponds to the diagram obtained by using the distance function to the point cloud.

The largest difference is between Dgm(Skel) and Dgm(dμP ,m). This is partly due to an effect of shifting while using the 
distance to a measure. After this initial shift, the distances are small compared to the theoretical bounds. Notice that the 
different steps of the approximation do not have the same effect on all dimensions.

All diagrams obtained by the different approximations are closer to Dgm(Skel) than the persistence diagram of the 
distance to the point cloud, Dgm(dP ) given in Fig. 9. For inference purposes, one crucial parameter is the signal-to-noise 
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Fig. 4. Spiral on a torus.

Fig. 5. Dgm(dμP ,m) for the cube skeleton with outliers with k = 5.

Fig. 6. Dgm({Tα}) for the cube skeleton with outliers with k = 5 and ε = .5.

Dgm(Skel) Dgm(dμP ,m) Dgm(dP
μP ,m) Dgm(Rα) Dgm(Tα) Dgm(dP )

Dgm(Skel) 0 .1528 .1473 .1473 .1817 .25
Dgm(dμP ,m) .1528 0 .09872 .0865 .1183 .2543
Dgm(dP

μP ,m) .1473 .09872 0 .0459 .1084 .2642
Dgm(Rα) .1473 .0865 .0459 0 .1128 .2598
Dgm(Tα) .1817 .1183 .1084 .1128 0 .2484
Dgm(dP ) .25 .2543 .2642 .2598 .2484 0

Fig. 7. Matrix of distances for the bottleneck distance.

Dgm(A) Dgm(B) dim 0 dim 1 dim 2

Dgm(Skel) Dgm(dμP ,m) .05202 .1528 .1495
Dgm(dμP ,m) Dgm(dP

μP ,m) .09872 .0195 .0972
Dgm(dP

μP ,m) Dgm(Rα(P ,dμP ,m)) .0007 .0044 .0459
Dgm(Rα(P ,dμP ,m)) Dgm(Tα(P ,dμP ,m)) .0872 .1128 .0026

Dgm(Skel) Dgm(dP
μP ,m) .0405 .1473 .0982

Dgm(Skel) Dgm(Tα(P ,dμP ,m)) .1026 .1817 .098
Dgm(Skel) Dgm(dP ) .25 .2071 .1481

Fig. 8. Bottleneck distances between diagrams.

ratio. We define it as the ratio between the smallest lifespan of topological feature we aim to infer and the longest lifespan 
of noise features. A ratio of 1 corresponds to a signal that is not differentiable from the noise and ∞ corresponds to a 
noiseless diagram. In our example, only the dimensions 1 and 2 are relevant as the dimension 0 diagram corresponding to 
connected components has only one relevant feature and its lifespan is infinite. Results are listed in Fig. 10.

Signal-to-noise ratios are clearly better than the one of Dgm(dP ). Some of the approximation steps improve the ratio. 
This is due to two phenomena.
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Fig. 9. Dgm(dP ) for the cube skeleton with outliers.

Diagram dim 1 dim 2

Dgm(Skel) ∞ ∞
Dgm(dμP ,m) 247 2.74
Dgm(dP

μP ,m) 69.8 43
Dgm(Rα(P ,dμP ,m)) ∞ ∞
Dgm(Tα(P ,dμP ,m)) 132 ∞

Dgm(dP ) 5.66 1

Fig. 10. Signal to noise ratios.

Standard deviation .05 .1 .5

dB in dimension 1 .1469 .2261 .2722
dB in dimension 2 .047 .0914 .1046

Fig. 11. dB between Dgm({Tα}) with and without Gaussian noise.

Standard deviation 0 .05 .1 .5

Ratio in dimension 1 132 8.27 3.17 1.04
Ratio in dimension 2 ∞ ∞ 100.2 ∞

Fig. 12. Signal to noise ratio of Dgm({Tα}) depending on noise intensity.

Fig. 13. Persistence diagram of {Tα} with k = 5, ε = 0.5 and a Gaussian noise with standard deviation 0.1.

When one goes from dμP ,m to dP
μP ,m , the filtration eliminates the cells of the kth order Voronoi diagram that are far 

from the point cloud. These cells induce local minima that produce noise features in the diagrams. Removing them cleans 
parts of the diagram. The same phenomenon happens with the witnessed k-distance previously mentioned.

Using the Rips filtration instead of the Čech also reduces some noise. It eliminates artifacts from simplices that are 
introduced and almost immediately killed in the Čech complex due to balls that intersect pairwise but have no common 
intersection.

Stability
The weighted Rips filtration is stable with respect to noise. We illustrate this by studying the effect of an isotropic noise 

on our skeleton of a cube. We consider three different standard deviations for our noise. Fig. 11 shows the bottleneck 
distances between the persistence diagram of the sparse weighted Rips structure with the Gaussian noise and the one 
without Gaussian noise.

Unsurprisingly, the bottleneck distance is increasing with the standard deviation of the noise. The signal-to-noise ratio 
shown in Fig. 12 is more interesting.

Inferring correctly the homology of the cube skeleton is possible with standard deviation 0.05 and 0.1. Fig. 13 shows 
the persistence diagram obtained with a standard deviation of 0.1. The ∞ in the 0.5 case in dimension 2 is not relevant 
as there is no noise but the feature is too small compared to the rest of the diagram as shown in Fig. 14. Note that 0.5
corresponds to half of the side of the cube, and thus, it is logical to be unable to retrieve any useful information.

Some structure appears even with standard deviation as large as 0.5. The three bigger features in dimension 1 are 
relevant. However, we miss two elements and it is difficult to decide where to draw the frontier between relevant and 
irrelevant features.
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Fig. 14. Persistence diagram of {Tα} with k = 5, ε = .5 and a Gaussian noise with standard deviation .5.

Fig. 15. Size of the filtration depending on ε for the spiral with a Gaussian noise of standard deviation .05.

Sparsification efficiency
We introduced sparsification in Section 6.4 to reduce the size of the Rips filtration. The method introduced a new 

parameter ε , and the size of the filtration depends heavily on ε . The evolution of the size of the filtration depending on the 
parameter ε is given in Fig. 15.

The minimum size is reached around ε = .86. This minimum depends on the structure of the dataset. For example, 
considering a set of points uniformly sampled in a square, we obtain filtrations with monotonously decreasing size. While 
theoretical results depend on the doubling dimension of the ambient space, experimental results strongly suggests that it 
depends on the intrinsic doubling dimension, which can vary depending on the scale.

The filtration size is nearly constant after a rapid decrease. In this example, the size is of order 107 simplices for an 
input of 105 vertices. Computing persistent homology is tractable for any value in this range. Structure in the data helps 
reduce the complexity of the sparse filtration.

8. Conclusion

In this paper, we generalize several aspects of the existing theory on the persistent homology of distances to measures 
from Euclidean space to general metric spaces. Then, we showed how to efficiently approximate the sublevel sets of these 
distance functions with a linear number of metric balls. We gave a detailed analysis of the tightness of this approximation.

We then showed how to give a sparse filtration that gives a guaranteed close approximation to the persistent homology 
of the distance to the measure. This last construction was given in the more general context of power distances. Thus, 
we have given a way to efficiently compute the persistent homology of the sublevel set filtration of any power distance 
function built on points in metric space of low doubling dimension. Since power distances can be used to approximate 
many different kinds of functions, we expect that this technique will find many more uses in the future.

A different perspective on our approach is that we use the sparse Rips filtration analogously to how one might use a 
grid in Euclidean space. It provides a structure over which one can go on to study many different functions.

Lastly, we showed that this approach can be made practical, by providing some experimental results and analysis.
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