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Abstract—A simple and computationally efficient scheme for
tree-structured vector quantization is presented. Unlike previas
methods, its quantization error depends only on the intrinsic
dimension of the data distribution, rather than the apparent
dimension of the space in which the data happen to lie.

Index Terms—\ector quantization, source coding, random
projection, manifolds, computational complexity.

I. INTRODUCTION

We study algorithms for vector quantization codebook de-
sign, which we define as follows. Tleputto the algorithm is
a set ofn vectorsS = {z1,...,2,},z; € RP. The output of
the algorithm is a set of vectorsR = {p1, ..., ux }, pi € RP,
where k£ is much smaller tham. The setR is called the Fig. 1. Spatial partitioning oR? induced by an RP tree with three levels.
codebook We say FhatR is a gOOd codebook fol if for ZL\: g:ﬁs are data points; each circle represents the meare ofetfiors in
most x € S there is arepresentativer € R such that the
Euclidean distance betweenandr is small. We define the
average quantization erroof R with respect taS as: interest in algorithms thdearn this manifold from data, with
2 the intention that future data can then be transformed hito t
Q(R,S)=E | min [|X — Mj|2} == min ||z; — i;||*> low-dimensional space, in which the usual nonparametrid (a
1sisk nio tsisk other) methods will work well [19], [17], [2].
where || - | denotes Euclidean norm and the expectation isIn this paper, we are interested in techniques that auto-
over X drawn uniformly at random fron$.! The goal of the Matically adapt to intrinsic low dimensional structure hwit
algorithm is to construct a codebodk with a small average out having to explicitly learn this structure. We describe
quantization error. Thé-optimal set of centerss defined to an algorithm for designing a tree-structured vector quanti
be the codebook of sizek for which Q(R, S) is minimized; Whose quantization error ig~'/(%) (times the quantization
the task of finding such a codebook is sometimes called tA&Or induced by a single codeword); that is to say, its error
k-meansproblem. rate depends only on the low intrinsic dimension rather than
It is known that for general sets IR” of diameter one, the the high apparent dimension. The algorithm is based on a
average quantization error is roughty 2/? for large k[8]. hierarchical decomposition @tP: first the entire space is split
This is discouraging whem is high. For instance, ib = 100, into two pieces, then each of these pieces is further split in
and A is the average quantization error for codewords, then two, and so on, until a desired average quantization error is
to guarantee a quantization error4f2 one needs a codebookreached. Each codeword is the average of the examples that
of size ky ~ 20/2k;: that is, 2°° times as many codewordsbelong to a single cell.
just to halve the error. In other words, vector quantizafion ~ Tree-structured vector quantizers abound; the power of our
susceptible to the sanwirse of dimensionalityhat has been approach comes from the particular splitting method. Tadeiv
the bane of other nonparametric statistical methods. a region S into two, we pick a random direction from the
A recent positive development in statistics and machiriirface of the unit sphere iR”, and splitS at the median
learning has been the realization that quite often, databat Of its projection onto this direction (Figure 1)We call the
are represented as collection of vectorsRiRt for some large resulting spatial partition eandom projection tre@r RP tree
value of D, actually have lowintrinsic dimension, in the sense At first glance, it might seem that a better way to split a
of lying close to a manifold of dimensiah< D. We will give region is to find the 2-optimal set of centers for it. However,
several examples of this below. There has thus been inogeadis We explain below, this is an NP-hard optimization problem
and is therefore unlikely to be computationally tractable.
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1The results presented in this paper generalize to the caseewshis : : : . ;
infinite and the expectation is taken with respect to a priibatmeasure use an approximation algorithm for 2-means: an algorithm

over S. However, as our focus is on algorithms whose input is a firgte s
we assume, throughout the paper, that theSsét finite. °There is also a second type of split that we occasionally use.
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that is guaranteed to return a solution whose cost is at m

(1 + €) times the optimal cost, for some> 0. However, for E g g ;
our purposes, we would need~ 1/d, and the best known

algorithm at this time [11] would require a prohibitive rung

time of 0(2¢°" Dn).

For our random projection trees, we show that if the da
have intrinsic dimensiond (in a sense we make precise
below), then each split pares off aboutl &l fraction of the %
guantization error. Thus, aftésg k levels of splitting, there are

k cells and the multiplicative change in quantization ersoofi

the form (1 — 1/d)'°¢* = k=1/9(d) There is no dependence

on the extrinsic dimensionality.
Fig. 2. Hilbert’s space filling curve. Large neighborhooaisd 2-dimensional,

II. DETAILED OVERVIEW smaller neighborhoods look-dimensional, and even smaller neighborhoods
) ) ) would in practice consist mostly of measurement noise and wihrefore
A. Low-dimensional manifolds again be2-dimensional.

The increasing ubiquity of massive, high-dimensional data

sets has focused the attention of the statistics and machine . .
and compact data structure that automatically exploitddive

learning communities on the curse of dimensionality. Adarg__ . ~~ & . . .
: : o , ntrinsic dimensionality of data on a local level withoutvitay
part of this effort is based on exploiting the observatioat th - .
to explicitly learn the global manifold structure.

many high-dimensional data sets have latvinsic dimension
This is a loosely defined notion, which is typically used L . .

to mean that the data lie near a smooth low-dimensior Defining intrinsic dimensionality

manifold. Low-dimensional manifolds are our inspiration and source

For instance, suppose that you wish to create realisti€ intuition, but when it comes to precisely defining intits
animations by collecting human motion data and then fittilgjmension for data analysis, the differential geometry-con
models to it. A common method for collecting motion dataept of manifold is not entirely suitable. First of all, any
is to have a person wear a skin-tight suit with high contragdaita set lies on a one-dimensional manifold, as evidenced
reference points printed on it. Video cameras are used ¢k trdby the construction of space-filling curves. Therefore, som
the 3D trajectories of the reference points as the personbigund on curvature is implicitly needed. Second, and more
walking or running. In order to ensure good coverage, a glpidmportant, it is unreasonable to expect data to diactly
suit has aboutN = 100 reference points. The position andon a low-dimensional manifold. At a certain small resolu-
posture of the body at a particular point of time is represgnttion, measurement error and noise make any data set full-
by a (3V)-dimensional vector. However, despite this seemirdjmensional. The most we can hope is that the data distoituti
high dimensionality, the number of degrees of freedom is concentratechear a low-dimensional manifold of bounded
small, corresponding to the dozen-or-so joint angles in tlegirvature. Figure 2 illustrates how dimension can vary s&ro
body. The positions of the reference points are more or lge different neighborhoods of a set, depending on the sizes
deterministic functions of these joint angles. of these neighborhoods and also on their locations.

Interestingly, in this example the intrinsic dimension be- We address these various concerns with a statistically-
comes even smaller if waoublethe dimension of the embed-motivated notion of dimension: we sy C S hascovariance
ding space by including for each sensor its relative vejocitlimension(d, ) if a (1 —¢) fraction of its variance is concen-
vector. In this space of dimensighV the measured points trated in ad-dimensional subspace. To make this precise, let
will lie very close to theonedimensional manifold describing o? > o3 > --- > o2, denote the eigenvalues of the covariance
the combinations of locations and speeds that the limbs gwtrix of 7' (that is, the covariance matrix of the uniform
through during walking or running. distribution over the points iff"); these are the variances in

To take another example, a speech signal is commordgch of the eigenvector directions.
represented by a high-dimensional time series: the signal i Definition 1: Set7 C R” hascovariance dimensiofd, ¢)
broken into overlapping windows, and a variety of filters arié the largestd eigenvalues of its covariance matrix satisfy
applied within each window. Even richer representations ca
be obtained by using more filters, or by concatenating vector
corresponding to consecutive windows. Through all this, ttPut differently, this means th&t is well-approximated by an
intrinsic dimensionality remains small, because the sgystaffine subspace of dimensiaf) in the sense that its average
can be described by a few physical parameters describing siggiared distance from this subspace is at mosines the
configuration of the speaker’s vocal apparatus. overall variance off".

In machine learning and statistics, almost all the work on It is often too much to hope that the entire datasetould
exploiting intrinsic low dimensionality consists of alg@ams have low covariance dimension. The case of interest is when
for learning the structure of these manifolds; or more préhis property holddocally, for neighborhoods of.
cisely, for learning embeddings of these manifolds into-low Figure 3 depicts a se§ C R? that lies close to a one
dimensional Euclidean space. Our contribution is a simpt#émensional manifold. We can imagine thétwas generated

ot tog = (1= (of+---+0p).



sphere and the cell is split at its median, by a hyperplane
orthogonal to this direction. Although this generally werk
well in terms of decreasing vector quantization error, éreme
certain situations in which it is inadequate. The protatgpi
such situation is as follows: the data in the cell lie almost
entirely in a dense spherical cluster around the mean, but th
is also a concentric shell of points much farther away. This
outer shell has the effect of making the quantization eaihyf
large, and any median split along a hyperplane creates two
hemispherical cells with the same balance of inner and outer
points, and thus roughly the same quantization error; so the
split is not very helpful. To see how such a data configuration
might arise in practice, consider a data set consisting afjgn
patches. The vast majority of patches are empty, forming the
dense cluster near the mean; the rest are much farther away.
The failure case for the hyperplane split is easy to charac-
terize: it happens only if the average interpoint distanain

Fig. 3. A data set that lies close to a one-dimensional manifoitee  ha cgl| js much smaller than the diameter of the cell. In this
neighborhoods are shown, indicated by disks.indicate the radii of the

disks, C; indicate the curvature of the set in the neighborhasdndicates ever_1t_, we use a diffe_rent type of Split., in which the cell is
the standard deviation of the noise added to the manifold. partitioned into two pieces based on distance from the mean.

procedure CHOOSERULE(S)
by selecting points on the manifold according to some distriif A2(S) < c-A%(S)
bution and then adding spherical Gaussian noise with stenda then choose a random unit directian
deviationo. Consider the restriction o to a neighborhood Rule(z) := z-v < medianes(z - v)
defined by a ballB; of radius r; (three such disks are Rule(x) :=
shown). The radii of the first two neighborhoods () are else {Hx —mearns)| < mediancs(||z — mears)||)
significantly larger than the noise level and significantly return (Rule)
smaller than the local curvature radii of the manifald, (C5).
As a resultS N B; and S N B, have covariance dimension!n the code.c is a constantA(sS) is the diameter of5' (the
(1,¢€) for e ~ (o/r;)% + (r;/C;)2. On the other hand; ~ o distance between the two furthest points in the set),/ap(s)
and therefore the covariance dimensionsoh B is two. In is the averagediameter, that is, the average distance between

Appendix 11l, we formally prove a statement of this form fofP0ints of S:

arbitrary d-dimensional manifolds of bounded curvature. ) 1 5
The local covariance dimension captures the essence of AL(S) = |S|? Z lz =yl
intrinsic dimension without being overly sensitive to reois z,y€S

the dataset. On the other hand, the notion lacks some of the
intuitions that we associate with manifolds. In particuliwe D. Main result
fact that a set' has covariance dimensiad, ¢) doesnotimply — pacal that an RP tree has two different types of split; let's
_that subsets of have low dl_men_S|_(m. C_ovanance dlmensmr&a” them splitsby distanceand splitsby projection
is a natural way to characterize finite point sets, but notalgo Theorem 2:There are constants< ¢,

) . : ) ¢, c3 < 1 with the
way to characterize differentiable manifolds. 200

following property. Suppose an RP tree is built using data se
C. Rand L S c RP. Consider any cel” such thatS N C has covariance

- Random projection trees o ~dimension(d, ¢), wheree < ¢;. Pickz € SN C at random,

Our new data structure, the random projection tree, is budlhd letC” be the cell containing it at the next level down.
by recursive binary splits. The core tree-building alduoritis If C'is spli . 2 / 2

: _ . plit by distanceE [A%(S N C")] < 2A%(SNC).
D

called MAKETREE, which takes as input a data sgtC R”, . If C is split by projection, thenE [AZ(S N C’)] <

and repeatedly calls a splitting subroutinel@SERULE. (1 - (e3/d)) A% (SN C)

4 .
procedure MAKETREE(S) In both cases, the expectation is over the randomization in
if |S| < MinSize then retum (Leaf) splitting C' and the choice of € SN C.

Rule < CHOOSERULE(S) To translate Theorem 2 into a statement about vector
LeftTree — MAKETREE({z € S : Rule(x) = truej) quantization error, we combine the two notions of diameter
RightTree — MAKETREE({x € S : Rule(x) = false}) into a single quantity:®(S) = AZ(S) + (1/cd)A2(S).
return ([Rule, LeftTree, RightTree]) Then Theorem 2 immediately implies that (under the given
conditions) there is a constant = min{(1 — ¢2)/2, c3/2}

. , .. such that for either split,
The RP tree has two types of split. Typically, a direction

is chosen uniformly at random from surface of the unit E[®(SNCH] <(1—cq/d)®(S).



Suppose we now built a trééto [ = log k levels, and that the to 2" (or worse): this means each additional city causes the

(d, €) upper bound on covariance dimension holds throughoutinning time to be doubled. Even small graphs are therefore

For a pointX chosen at random frorfi, let C'(X) denote the hard to solve.

leaf cell (of the2! = k possibilities) into which it falls. Aswe  This lack of an efficient algorithm is not limited to just

will see later (Corollary 6), the quantization error withiims a few pathological optimization problems, but recurs agros

cell is precisely; A% (C(X)). Thus, the entire spectrum of computational tasks. Moreover, & ha
been shown that the fates of these diverse problems (called

Er [k-quantization errgr NP-completeproblems) are linked: eitheall of them admit

= EETEX [Ai‘(SﬂC(X))] efficient algorithms, or none of them do. The mathematical
% community strongly believes the latter to be the case, aiho

< 5IETIEX [@(SNC(X))] it is has not been proved. Resolving this question is one of
1 N the seven “grand challenges” of the new millenium identified

< 3 (1 — E) - D(S) by the Clay Institute.
1 In Appendix I, we show the following.

< 35 ke (A% (S) + (1/cd)A%(S)) Theorem 3:k-MEANS CLUSTERING is an NP-hard opti-

) ) mization problem, even ik is restricted to 2.
WhereET_denotes expectation over the randomness in the tr‘?ﬁus we cannot expect to be able to find-@ptimal set of
construction. centers; the best we can hope is to find some set of centers
that achieves roughly the optimal quantization error.
E. The hardness of finding optimal centers

Given a data set, the optimization problem of finding-a £ Related work
optimal set of centers is called tikiemeans problem. Here is
the formal definition.

k-MEANS CLUSTERING

Quantization: The literature on vector quantization is sub-
stantial; see the wonderful survey of Gray and Neuhoff [9]
for a comprehensive overview. In the most basic setup, there

. H D. ;
Input: Set of po_lr_1t5x1, @ € R ’ ”.“ege”“- is some distribution? over R” from which random vectors
Output: A partition of the points into clusters d and ob d d th Li ick a fini
C C. along with a centey; for each cluster are generated and observed, an the goal is to pick a finite
Lo =k J : codebookC' ¢ RP and an encoding function : R — C

SO as to minimize

such thatz ~ a(z) for typical vectorsz. The quantization
k

) error is usually measured by squared IdB§X — a(X)|?.
DD el An obvious choice is to let:(z) be the nearest neighbor of
j=1ieC; in C. However, the number of codewords is often so enormous

The typical method of approaching this task is to applihat this nearest neighbor computation cannot be perfoimed

Lloyd’s algorithm [13], [12], and usually this algorithmitself real time. A more efficient scheme is to have the codewords

calledk-means. The distinction between the two is particularigrranged in a tree [4].

important to make because Lloyd's algorithm is a heuristatt ~ The asymptotic behavior of quantization error, assuming

often returns a suboptimal solution to themeans problem. optimal quantizers and under various conditions Bnhas

Indeed, its solution is often very far from optimal. been studied in great detail. A nice overview is presented in

What's worse, this suboptimality is not just a problem withthe recent monograph of Graf and Luschgy [8]. The rates

Lloyd’s algorithm, but an inherent difficulty in the optingiz obtained fork-optimal quantizers are generally of the form

tion task.k-MEANS CLUSTERINGis an NP-hard optimization k~2/”. There is also work on the special case of data that

problem, which means that it is very unlikely that there exislie exactly on a manifold, and whose distribution is within

an efficient algorithm for it. To explain this a bit more clgar some constant factor of uniform; in such cases, rates of the

we delve briefly into the theory of computational complexityform k~2/¢ are obtained, wherd is the dimension of the
The running time of an algorithm is typically measured amanifold. Our setting is considerably more general thas: thi

a function of its input/output size. In the case loimeans, we do not assume optimal quantization (which is NP-hard), we

for instance, it would be given as a function of k£, and have a broad notion of intrinsic dimension that allows p®int

D. An efficient algorithm is one whose running time scalet® merely be close to a manifold rather than on it, and we

polynomially with the problem size. For instance, there armake no other assumptions about the distributitn

algorithms for sorting: numbers which take time proportional Compressed sensingfhe field of compressed sensing has

to nlogn; these qualify as efficient becauséog n is bounded grown out of the surprising realization that high-dimensio

above by a polynomial im. sparse data can be accurately reconstructed from just a few
For some optimization problems, the best algorithms wandom projections [3], [5]. The central premise of this re-
know take timeexponentialin problem size. The famoussearch area is that the original data thus never even needs to
traveling salesman problem (given distances betweeities, be collected: all one ever sees are the random projections.
plan a circular route through them so that each city is \dsite RP trees are similar in spirit and entirely compatible with
once and the overall tour length is minimized) is one of thesthis viewpoint. Theorem 2 holds even if the random projetio
There are various algorithms for it that take time proporiio are forced to be the same across each entire level of the tree.



For a tree of depttk, this means only: random projections Lemma 5:Let X,Y be independent and identically dis-
are ever needed, and these can be computed beforehand t(theted random variables iR", and letz € R™ be any fixed
split-by-distance can be reworked to operate in the pregectvector.

space rather than the high-dimensional space). The data a(g) E X — ZHQ} —F [||X — IEX||2] + ||z — EX|.

not accessed in any other way. (b) E||X — YH?] =9E [||X - IEXHQ].
This can be used to show that the averaged squared diameter,
I1l. AN RPTREE ADAPTS TO INTRINSIC DIMENSION A% (9), is twice the average squared distance of point§'in

An RP tree has two varieties of split. If a céll has much from their mean.
larger diameter than average-diameter (average intersin ~ Corollary 6: The average squared diameter of a Setan
tance), then it is split according to the distances of pdira1 ~ also be written as:

the mean. Otherwise, a random projection is used. 2

2 .~ o 2
The first type of split is particularly easy to analyze. A4(8) = S| ze;; lz — mear(S)||".
A. Splitting by distance from the mean At each successive level of the tree, the current cell is

This option is invoked when the points in the current ceI?IOIit Into two, either by a random projection or according to

call thems, satisfy A2(S) > ¢A% (S); recall thatA(s) is the distance from the mean. Suppose the points in the current cel

diameter ofS while A% (S) is the average interpoint distancef"‘res' and that they are split into set§ andS;. It is obvious

Lemma 4: Suppose tha\2(S) > ¢A2(S). Let S denote that the expected diameter is nonincreasing:
the points inS whose distance to me@$l) is less than or |S1] |S2]
equal to the median distance, and &t be the remaining A(S) = EA(Sl) + WA(SQ)'
points. Then the expected squared diameter after the split jrhis is also true of the expected average diameter. In faet, w

S S 1 2 can precisely characterize how much it decreases on account
A gate < (3+2) 8% il

|S] |S] 2 ¢
Lemma 7:Suppose set is partitioned (in any manner) into
The proof of this lemma is deferred to the Appendix, as af& and Sz. Then

all other proofs in this paper. S S
a3(5) - { Blag s + Belaysn |
B. Splitting by projection: proof outline o 2[8] - |S:] Imear(s;) — mear(Sy)|?
Suppose the current cell contains a set of poits R” B |S]? ! 2

for which A2(S) < cAZ%(S). We will show that a split by

projection has a constant probability of reducing the ayeraThis completes part | of the proof outline.
squared diametek? (S) by (A% (S)/d). Our proof has three

parts: D. Properties of random projections

|. Supposés is splitinto.S; andSs, with meansg.; andys. Our quantization scheme depends heavily upon certain
Then the reduction in average diameter can be expressggularity properties of random projections. We now review
in a remarkably simple form, as a multiple [gi, —2[|*.  these properties, which are critical for parts Il and Il afro

Il. Next, we give a lower bound on the distance betwegfyoof.
the projected means, (i1 — fi2)?. We show that the  The most obvious way to pick a random projection from
distribution of the projected points is subgaussian WitR? to R is to choose a projection direction uniformly at
varianceO(A% (S)/D). This well-behavedness impliesrandom from the surface of the unit sphe®~1, and to send
that (i1 — fi2)* = Q(A%(S)/D). T U T,

. We finish by showing that, approximately;:; —p2[> > Another common option is to select the projection
(D/d)(jiy — fi2)*. This is becaus@, — u lies close to vector from a multivariate Gaussian distributiom, ~
the subspace spanned by the tbeigenvectors of the N (0, (1/D)Ip). This gives almost the same distribution as
covariance matrix ob; and with high probabilityevery pefore, and is slightly easier to work with in terms of the
vector in this subspace shrinks Wy (\/d/D) when algorithm and analysis. We will therefore use this type of

projected on a random line. projection, bearing in mind that all proofs carry over to the
We now tackle these three parts of the proof in order. other variety as well, with slight changes in constants.
The key property of a random projection fraRP to R is
C. Quantifying the reduction in average diameter that it approximately preserves the lengths of vectors,uttod

. . a scaling factor ofy/ D. This is summarized in the lemma
The average squared diamet®?, (S) has certain reformu- g vD

lations that make it convenient to work with. These projesrti Len.wma 8:Fix any z € RP. Pick a random vectot/ ~
are consequences of the following two observations, thiedfirs N(0,(1/D)Ip). Then for anya, 5 > 0:

which the reader may recognize as a standard “bias-vafiance' ’ ' - ’ '

decomposition of statistics. (@ P [\U ) <a- %} < \/ga



(b) P {|U x| > - '%} < %6‘52/2 Next, we examine the overall distribution of the projected

Lemma 8 applies to any individual vector. Thus it als§OINts: WhenS C R” has diameten, its projection into the
applies, in expectation, to a vector chosen at random frdii€ can have diameter uptd, but as we saw in Lemma 9,
a setS ¢ R”. Applying Markov's inequality, we can then MOSt of it will lie within a central interval of siz&(A/v/D).
conclude that whers is projected onto a random direction What can be said about points that fall outside this interval?
mostof the projected points will be close together, isentral ~ We can apply Lemma 9 to larger intervals of the form
interval of size O(A(S)/vD). [~kA/v/D,kA/v/D], with failure probability §/2%. Taking

Lemma 9:Suppose S < RP lies within some ball & union bound over all such intervals with integkalwe get
B(zo,A). Pick any0 < d,¢ < 1 such thatse < 1/¢2. e f°”°W'”9-_ oo
Let v be any measure of. Then with probability> 1 — & Lemma 14:SupposeS C B(0,A) C R”. Pick anyd > 0
over the choice of random projectids onto R, all but ane @nd choosel' ~ N (0, (1/D)Ip). Then with probability at

fraction of U-S (measured according 19 lies within distance !€ast1 — 4 over the choice ofU/, the projections - U =
ml. A ofy {z-U : z € S} satisfies the following property for all positive
2In S ﬁ (0] - XQ.

. . o integersk.

As a corollary (taking’ to be the uniform distribution over he fracti ¢ . id he i |
S ande = 1/2), the median of the projected points must also The fraction o pomtsk OUtS; e the interva
> e . —kA | kA ) s at most- - ek /2,
lie within this central interval. VD' VD 5

Corollary 10: Under the hypotheses of Lemma 9, for any
0 < § < 2/€?, the following holds with probability at least

. o F. Distance between the projected means
1 — 6 over the choice of projection:

We are dealing with the case wheX?(S) < c¢- A%(S),
A that is, the diameter of sef is at most a constant factor
VD times the average interpoint distanceSliis projected onto a
random direction, the projected points will have varianceud
Finally, we examine what happens when the Sets a A%(S)/D, by Lemma 13; and by Lemma 14, it isn't too far
d-dimensional subspace @&”. Lemma 8 tells us that the from the truth to think of these points as having roughly a
projection of anyspecificvector z € S is unlikely to have Gaussian distribution. Thus, if the projected points aré sp
length too much greater thdp||/v/D, with high probability. into two groups at the mean, we would expect the means
A slightly weaker bound can be shown to hold for all §f of these two groups to be separated by a distance of about
simultaneously; the proof technique has appeared beforedm(S)/v/D. Indeed, this is the case. The same holds if we

ImediafU - S) — U - zy| < 21n§.

several contexts, including [15], [1]. split at the median, which isn’t all that different from theeam
Lemma 11:There exists a constan; with the following for close-to-Gaussian distributions.
property. Fix any > 0 and anyd-dimensional subspadd C Lemma 15:There is a constant, for which the following
RP. Pick a random projectio/ ~ N(0,(1/D)Ip). Then holds. Pick any0 < ¢ < 1/16¢c. Pick U ~ N(0,(1/D)Ip)
with probability at leastl — § over the choice otJ, and splitS into two pieces:
sup |z - U? < Hl'd—l—lnl/(S. Si={xeS:z-U<s} and Sy={reS:z-U>s},
vet ||z|? D

where s is either meaS - U) or mediangS - U). Write p =

|S1]/1S], and letg; and i denote the means o, - U and

Sy - U, respectively. Then with probability at leakt10 — 6,
_ 1 A% (S) 1

Projection fromR” into R! shrinks the average squared (K2 —/1)” = Kz Wi—p) D clogjd)

diameter of a data set by roughly. To see this, we start with

the fact that when a data set with covariantds projected

onto a vectorU, the projected data have varian€&" AU.

We now show that for randorty, such quadratic forms are G. Distance between the high-dimensional means

E. Properties of the projected data

concentrated about their expected values. Split S into two pieces as in the setting of Lemma 15, and
Lemma 12:SupposeA is ann x n positive semidefinite let ;; and u» denote the means &f; and S, respectively.
matrix, andU ~ N (0, (1/n)1,). Then for anya, 5 > 0: We already have a lower bound on the distance between the
(@) PlUTAU < o -E[UT AUJ| < e~ ((1/2)=2)/2 gnd projected meansgys — f1; we will now show that|| o — 1|
(b) P[UTAU > 3-E[UT AU < e~ (F=2)/4, is larger than this by a factor of abouyD/d. The main

Lemma 13:Pick U ~ N(0,(1/D)Ip). Then for anyS ¢ technical difficulty here is the dependence betweenthend

R, with probability at leastl /10, the projection ofS onto the projectionl. Incidentally, this is the only part of the entire
U has average squared diameter argument that exploits intrinsic dimensionality.

) Lemma 16:There exists a constant; with the following

AL(S - U) > AL(S) property. Suppose se§ C R is such that the topd
~ 4D eigenvalues of cd\f) account for more that — e of its trace.

Pick a random vectot/ ~ N(0,(1/D)Ip), and splitS into



two pieces,S; and Ss, in any fashion (which may depend A practical alternative to an expensive eigenvalue compu-

uponU). Letp = |S1|/|S|. Let u; andus be the means of;
and.S,, and leti; andjs be the means of, - U and S, - U.

Then, for anys > 0, with probability at least — ¢ over the
choice ofU,

I<63D
d+1n1/s

~ ~\2 4 6A,24(S)
<(M2 ) p(l—p) 6D )

We can now finish off the proof of Theorem 2.

Theorem 17:Fix any e < O(1/c). Suppose sef C RP
has the property that the tapeigenvalues of cqw) account
for more thanl — e of its trace. Pick a random vectér ~
N(0,(1/D)Ip) and splitS into two parts,

2= * =

Si={zxeS:z-U<s} and Sy={zxeS:z-U > s},

wheres is either mea(S - U) or mediarfS - U). Then with
probability (1), the expected average diameter shrinks by
Q(A%(S)/cd).

Proof: By Lemma 7, the reduction in expected averagéz]
diameter is

2o [191] 12 A <
A%(S) A%(s0) + 122l Az s,
5] 5] .
21511 - ]S
W |mear(s,) — meariy)|.
[5]

or 2p(1 — p)||u1 — pel|? in the language of Lemmas 15 and

16. The rest follows from those two lemmas. m [6
IV. USING RPTREES [71
RP trees are easily adapted to the settingt@famingdata: (g

situations where data points arrive one at a time, and must
be processed quickly and then discarded from memory. I
such a model, an RP tree can be built gradually, startinﬂ)]
with a single cell and splitting cells when there is enoug

tation is to compute an approximate principal eigenvector b
stochastic gradient descent or some other such increnwmtal
timization method. [21] suggests initializing a vectgre R”
randomly, and then performing an update

v
Ve = (1 =)o + ’YtXtXtTm
¢

when a new data poinX; is seen. We have found experimen-
tally that for step sizey; = 1/t, vectorv; converges rapidly
to a good split direction.
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V. APPENDIX|: PROOFS OF MAIN THEOREM

A. Proof of Lemma 4

Let random variableX be distributed uniformly ovelsS.
Then

P[IX ~EX|* > media|X ~EX|?)] >

N |

by definition of median, s& [||X — EX||?] > mediar{|| X —
EX|?)/2. It follows from Corollary 6 that

mediar(|| X — EX|%) < 2E [|| X — EX|?] = A%(S).

Set S; has squared diametex?(S;) < (2mediar{|| X —

D. Proof of Lemma 8

SinceU has a Gaussian distribution, and any linear combi-
nation of independent Gaussians is a Gaussian, it folloass th
the projectionU - z is also Gaussian. Its mean and variance
are easily seen to be zero dd|?/D, respectively. Therefore,

writing
D
Z = £ (U-x)
[l
we have thatZ ~ N(0,1). The bounds stated in the lemma
now follow from properties of the standard normal. In partic
lar, N'(0, 1) is roughly flat in the rangé-1, 1] and then drops
off rapidly; the two cases in the lemma statement correspond
to these two regimes.
The highest density achieved by the standard normal is

EX|))? < 4A%(S). Meanwhile, S, has squared diameter atl//27. Thus the probability mass it assigns to the interval

most A?(S). Therefore,

‘Sl| 2 |S2‘ 2 1 2 Lo

and the lemma follows by using?(S) > cA%(S).

B. Proofs of Lemma 5 and Corollary 6

[—a,a] is at most2a//27; this takes care of (a). For (b),
we use a standard tail bound for the nornf&(|Z| > ) <
(2/ﬁ)e—52/2; see, for instance, page 7 of [7].

E. Proof of Lemma 9

Setc = 4/2In1/(de) > 2.

Fix any pointz, and randomly choose a projectiéh Let
z = U -x (and likewise, letS = U - S). What is the chance
that z lands far fromz,? Define the bad event to b&, =

Part (a) of Lemma 5 is immediate when both sides a8 |7 — 7| > ¢A/v/D). By Lemma 8(b), we have
expanded. For (b), we use part (a) to assert that for any fier B ’

y, we haveE [| X —y|?] = E[|X —EX|?] + [y — EX|>.
We then take expectation ov&r = y.

Corollary 6 follows by observing that\?(S) is simply
E [||X —Y|?], whenX,Y are i.i.d. draws from the uniform
distribution overs.

C. Proof of Lemma 7

Let u, p1, po denote the means of, S;, and S,. Using
Corollary 6 and Lemma 5(a), we have

|Sl| 2 |S2‘ 2
_ P2 5y - 12208
|S‘ A(Sl) |S| A<S2)

2 S 2
- manun?'@-'&men?
S S1

S. 2
—'|;' o Sl =l

A%(S)

N % {Z (lz = pll* = llz = pa 1)
+ > (llz = pll® = flo - M2||2)}

2|5 | 2, 2|59 2
= 1 — pll* + |12 — pll =
S| S|

Writing ¢ as a weighted average pf anduo then completes
the proof.

[z =zl ] _ 2 -2 < de.

VD ~ ¢

Since this holds for any € S, it also holds in expectation over
x drawn fromv. We are interested in bounding the probability
(over the choice ofU) that more than are fraction of v
falls far fromz,. Using Markov’s inequality and then Fubini’s
theorem, we have

]EU[FL] S PU |:|%—§0 ZC'

Py [Eu[F:] > €] < Ev[Eu[Fa]] _ Eu[EulFe]] <5

as claimed.

F. Proof of Lemma 11

It is enough to show that the inequality holds for= H N
(surface of the unit sphere R”). Let N be any(1/2)-cover
of this set (that issup, . g inf,en [[z—2]] < 1/2); itis possible
to achieve|N| < 109 [14]. Apply Lemma 8, along with a
union bound, to conclude that with probability at least §
over the choice of projectioty,

sup |z - U]* < Q.M.
zeN D
Now, defineC' by
D
— ) . 2 - _—
C= s ('ﬂf U +1n1/5) -

We’'ll complete the proof by showing’ < 8. To this end,
pick thez* € S for which the supremum is realized (nose



is compact), and choosg € N whose distance ta:* is at where coyS) is the covariance of data sét This quadratic
most1/2. Then, term has expectation (over choice @)

" Ul =y U+ " —y)- Ul ERUTcoqS)U] = 2 E[UUj]cov(S),;
< /In|N|+1nl/é (1\@+ﬂ> i
Y ? = 3z:cov(S)-- = A‘Q“(S).
From the definition of:*, it follows thatv'C' < v/2 + v/C//2 RS b D
and thusC' < 8.
Lemma 12(a) then bounds the probability that it is much
G. Proof of Lemma 12 smaller than its expected value.

This follows by examining the moment-generating func-
tion of UTAU. Since the distribution ofU/ is spherically
symmetric, we can work in the eigenbasis 4fand assume !- Proof of Lemma 15

without loss of generality thatl = diag(as, ..., an), Where | ot the random variabl& denote a uniform-random draw
ai,...,a, are the eigenvalues. Moreover, for convenience YEm the projected pointss - U. Without loss of generality

take ) a; = 1. o _ mear(S) = 0, so thatEX = 0 and thuspi; + (1 — p)fiz = 0.
Let Uy,...,U, denote the individual coordinates &f We Rearranging, we ggt; = —(1—p) (s — i) andiis = p(fio —

can rewrite them a#,; = Z;/\/n, whereZy, ..., Z, are i.i.d. ).

standard normal random variables. Thus We already know from Lemma 13 (and Corollary 6) that

UT AU — ZaiUiQ _ 1 ZaiZZ?. with probability at leastl/10, the variance of the projected
p n= points is significant: vaX) > A% (S)/8D. We'll show this

This tells us immediately that[U” AU] = 1/n. implies a similar lower bound ofy:; — ﬁ1)_2-
We use Chernoff's bounding method for both parts. For (a), YSiNg 1(-) to denoted — 1 indicator variables,
for anyt > 0, ~

var(X)
P[UTAU < o -E[UT AU]

ZaiZf <«
i

i {eitZiaiZ?} t —ta; Z?
T oete T BQH]E [6 " 1} E[Qﬂ)?fs\] = 2i(p(s — 1) + (1 —p)(fiz — 5))
emII( : )UQ | = 4t-p(l—p)- (i — i) + 2ts(2p — 1).
1+ 2ta;

i The last term vanishes since the split is either at the mean of
and the rest follows by using= 1/2 along with the inequality € Projected points, in which case= 0, or at the median,

1/(1+2) < e/ for 0 < = < 1. Similarly for (b), for 1N Which casep =1/2.

< B(X-s7 i
< BRAX — s + (X — 5|~ 1) 1(|X — 5] > 1)

- P - P [e_tzi @iz 6_“"}

for anyt¢ > 0. This is a convenient formulation since the linear
term gives usis — fiq:

IN

0<t<1/2 Next, we’ll choose
P[UTAU > - E[UT AU]] A(S) 1
t = toﬁ . log g
= P ZaiZiZ >p = I[”[etzi‘“zl2 >ew}
i for some suitable constart, so that the quadratic term in
E [etziaizf} ) var(X) can be bounded using Lemma 14 and (if the split
< ———— = e 8 HE [et‘“zi] point is the median) Corollary 10: with probability at least
(&
i 194,
1 1/2
— B . . 2
() BUIX — o0 1T —sl2 0] < 5205

and it is adequate to choose- 1/4 and invoke the inequality

1/(1—2) < e for 0 <z < 1/2 (this is a simple integration). Putting the pieces together

have
H. Proof of Lemma 13 AQA(S) ~ o AQ(S)
< < (1 —n). _ .
By Corollary 6, sp S vanX) < dt-p(l-p) (A2 —p)+0 —5

A%(S-U) = i} :((x—mear(S))-U)Q = 20" cov(S)U. The result now follows immediately by algebraic manipula-
A S ; i ; 2 2
N s tion, using the relatiom\*(S) < cA%(5).
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J. Proof of Lemma 16 Now consider any other split direction (unit vectar)and

Assume without loss of generality that has zero mean. the corresponding half-spage : 2-v > 0}. The reduction in
Let H denote the subspace spanned by thedtefgenvectors duantization error it induces i, for u = E[X | X-v > 0].
of the covariance matrix of, and letH* be its orthogonal We'll Show [|u[| < |ppcal|-
subspace. Write any point € RP asxzy + =, where each ~ Our proof technique is to show thdf|| can be written in
component is seen as a vectoffif? that lies in the respective the formE[X - v | X - v > 0] for some unit directionu,

subspace. and to argue that this is maximized whenr= u. Thereupon,
Pick the random vectof/; with probability > 1 — ¢ it |lp|| = E[X -u | X -u > 0], which is maximized for = u;.
satisfies the following two properties. In what follows, definep = E[Z | Z > 0] where Z is
Property 1: For some constant > 0, for everyz € RP a standard normal. It is easy to computebut we will not
d+1Inl/s d+1nl/s need its numerical value; what matters is that the redudtion
jeg-UP < o) & ——=—— < ||=’C||2"€/'T. quantization error for different split directions turnstda be

D
This holds (with probabilityl — 6/2) by Lemma 11.
Property 2: LettingX denote a uniform-random draw frof

a multiple of p.
Lemma 19:Pick any unit direction:. For X ~ N (0, %),

we have
9 EX u|X -u>0 = pvVuTSu.
Ex[(X1-U)’] < 5 EvEx[(Xy - U)?]
_ 2 ExEy[(X. - U)Y Proof: X -« has distributionN (0, «” $u), which in turn
I is equal in distribution to a standard normal timés”>u. m
2 eN? (S . i i — v >
= S Ey[IXLY < al ). Lemma 20:For any directiorw, let y =E[X | X -v > 0].
oD oD Then ||uf| < [lppcd-
The first step is Markov's inequality, and holds with prolbabi Proof: By symmetry, jipca lies in the direction of the
ity 1—4/2. The last inequality comes from the local covariancprincipal eigenvector:;. Thus,
condition.
So assume the two properties hold. Writipg — p; as lpeal = tpca- w1
(por — pim) + (p21 — pa1), = E[X-u | X -u >0]
~ )2 — _ . U T _ . U 2
(fi2 — fi1) ((2m — pam) Z(Mu piL)-U) ; N W
< 2((per — pam) - U)* +2((p2y — par) - U)*.
The first term can be bounded by Property 1: Now, supposeu lies in some (unit) direction.. Then
d+1Inl/s
((MQH—M1H)'U)2 < ||M2—M1H2'/€I‘T/' el = p-u
For the second term, I&y denote expectation ove¥ chosen = EX u[X -v=0
uniformly at random fromS. Then < EX-u|X-u>0]

((p2r —par) - U)? pVuTSu < py/Ar

< 2(par - U +2(pas - U)?

The second-last inequality follows from Lemma 21 and the
Q(EX[XLU‘XGSQ])2+2(EX[XLU‘Xesl])2 y Y

last is a consequence af being the largest eigenvalue.m

2 2
< 2Ex[(X0-U)7 [ X €8] +2Ex (X0 -U)" [ X €51] | emma 21:Suppose random vectdr € R is drawn from
< 2 Ex[(XL-0)Y+ 2 Ex[(XL-U)F a symmetri_c density (that .is}{_has. the sameDdistribution as
I-p p , —Y). Consider any two unit directions,v € R”. Then
2 2 eA%5(S)
= ——Ex[(X, -U)?] < LA
p(1—p) x| - U) - p(l—=p) 6D EY -u|Y-v>0] < EY- -u|Y -u>0.

by Property 2. The lemma follows by putting the various
pieces together.
Proof: Let P denote the distribution of". Consider the

K. Proof of Theorem 18 regions

Let X € R? be a random data vector; by assumption, it is
drawn from a multivariate Gaussia¥(0,%). Letuy,...,up A = {y:y-u>0,y-v>0}
denote the eigenvectors &f, with corresponding eigenvalues AT = {y:y-u>0,y-v<0}
A1 > --- > Ap. The principal eigenvector ig; (without loss A= = {y:y-u<0y-v>0}

of generality), and by Lemma 7 the reduction in quantization

error from splitting along this direction i 2, where . .
piting 9 tpcal Since AT = —A~ (upto sets of measure zero), it follows by

ppca=E[X | X -uy > 0]. symmetry thatP(A+) = P(A™). Likewise by symmetry, we
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have thatP(AU A*) = P(AU A™) = 1/2. Thus Input: A Boolean formulag(zy, ..., z,) in 3CNF,
such that (i) every clause contains exactly three
EY -u|Y-uz0-EY ul[Y v20] literals, and (i) each pair of variables, z; appears

_ EY -u|Y € AIP(A) +E[Y -u | Y € AT]P(AT) together in at most two clauses, once as either
1/2 {z;,z;} or {z;,7;}, and once as eith€iz;,z;} or
EY -u|YeAP(A)+EY u|YeA|PA) {2, 7;}.
1/2 Output:t r ue if there exists an assignment in which
= 2(E[Y -u|Y e AT —E[Y -u|Y € A7]) P(4™) each clause contains exactly one or two satisfied

literals; f al se otherwise.

Finally, we get to a generalization of MEANS.
where the last inequality follows by observing that the first .\ craLiZED 2-MEANS

term in the parenthesis is nonnegative while the second is Input: An 7 x n matrix of interpoint distance®; ;
: ij

hegative. Output: A partition of the points into two clusters
C, andCy, so as to minimize

>

VI. APPENDIXII: THE HARDNESS OFk-MEANS

CLUSTERING 22: 1 Z D..
k-MEANS CLUSTERING j=1 2G5 i,i'€Cy o
Input: Set of pointszy, ..., z, € RY; integerk. '
Output: A partition of the points into clusters We reduce MESAT* to GENERALIZED 2-MEANS. For any

input ¢ to NAESAT*, we show how to efficiently produce a
distance matrixD(¢) and a threshold(¢) such thatp satisfies
X NAESAT* if and only if D(¢) admits a generalized 2-means
Z Z llz: — |2 clustering of cosk ¢(¢).

‘ Thus GENERALIZED 2-MEANS CLUSTERING is hard. To
get back to 2mEANS (and thus establish Theorem 22), we
(Here | - || is Euclidean distance.) It can be checked that igrove that the distance matri(¢) can in fact be realized
any optimal solutiony; is the mean of the points i@;. Thus by squared Euclidean distances. This existential factss al
the {41;} can be removed entirely from the formulation of thonstructive, because in such cases, the embedding can be

Ci,...,Cy, along with a centep; for each cluster,
SO as to minimize

Jj=1 iGCj

problem. From Lemma 5(b), obtained in cubic time by classical multidimensional sugli
1 [10].
Z s — 511> = 2/C;] Z i — i ||
ieC; I iirec;
. . A. Hardness oNAESAT*
Therefore, thek-means cost function can equivalently be _ )
rewritten as Suppos.e we are given an mpaﬂ(;v_l, s, apy) tO 3S_AT. If .
k some variable appears just once in the formula, it (and its
Z 1 Z s — 2|12 containing clause) can be trivially removed, so we assume
= 2|y N ! ! there are no such variables. We construct an intermediate
] o o formula¢’ that is satisfiable if and only i is, and additionally
We consider the specific case wheris fixed to 2. a5 exactly three occurrences of each variable: one in a&lau
~ Theorem 22:2-means clustering is an NP-hard optimizapt sjze three, and two in clauses of size two. Thisis then
tion problem. used to produce an inpygt’ to NAESAT*.

This was recently asserted in [6], but the proof was flawed.
One of the authors privately communicated an alternative
argument to us [20], but since this is as yet unpublished, we
give our own proof here.

We establish hardness by a sequence of reductions. Our
starting point is a standard restriction of &Sthat is well
known to be NP-complete.

1) Constructingy’.

Suppose variable; appearsk > 2 times in ¢. Create

k variablesz;y,...,z; for use in¢’: use the same
clauses, but replace each occurrencerpfby one of
the z;;. To enforce agreement between the different
copiesz;;, add k additional clause$z;1 V xi2), (Tiz V

xi3)s .-, (Tik, xi1). These correspond to the implica-
3SAT ) tions w1 = 2,20 = 23, ..., = 1.
Input: A Boolean formula in 3CNF, where each By design,¢ is satisfiable if and only ify’ is satisfiable.
clause has exactly three literals and each variable 2) Constructings”.
appears at least twice. o _ Now we construct an input” for NAESAT*. Supposes’
Output: true if formula is satisfiablef al se if hasm clauses with three literals amd’ clauses with two
not. literals. Create&2m + m’ + 1 new variabless, ..., sm,
By a standard reduction from 3%, we show that a special and fi, ..., fram andf.
case OfNOT-ALL -EQUAL 3SAT is also hard. For completeness, If the jth three-literal clause g’ is (aV 3V ~), replace
the details are laid out in the next section. it with two clauses inp”: (aV BV s;) and(s; VyV f;).

NAESAT* If the jth two-literal clause iy’ is (« Vv 3), replace it
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with (aV BV fm4;) in ¢”. Finally, addm +m' clauses in C; and at least one literal if;, since it is a not-all-equal
that enforce agreement among the(f,V f2V f), (f,V  assignment. Hence it contributes exactly en@air toC; and
BV, (?m-‘rm’ vV i Vo). one ~ pair to Cs. The figure below shows an example with a
All clauses in¢” have exactly three literals. Moreoverclause(x V7V z) and assignment = true,y = 2 = f al se.
the only pairs of variables that occur together (in clauses)
more than once argf;, f} pairs. Each such pair occurs
twice, as{f;, f} and{f,, f}.
Lemma 23:¢' is satisfiable if and only if” is not-all-equal
satisfiable. @
Proof: First suppose thap’ is satisfiable. Use the same
settings of the variables fai”. Setf = f1 = = fiom =
f al se. For thejth three-literal clauséa VvV 5V v) of ¢/, if
a = = fal se then sets; to t rue, otherwise sets; to
f al se. The resulting assignment satisfies exactly one or two
literals of each clause in”. @
Conversely, supposg” is not-all-equal satisfiable. Without
loss of generality, the satisfying assignment hasset to
fal se (otherwise flip all assignments). The clauses of the
form (f, vV fir1 V f) then enforce agreement among all the
fi variables. We can assume they arefal se (otherwise,
once again, flip all assignments; this would make rue,  Thus the clustering cost is
but it wouldn’t matter, since we will henceforth considelyon 1 1 1//n
the clauses that don’t contaify. This means the two-literal 5, Z Dii + on Z Diy = 2 . <(2> + m5>
clauses of¢’ must be satisfied. Finally, consider any three- ¥ el
literal clausg(aV 3V y) of ¢'. This was replaced biyV 3V s;) - n—1+ 257’”
and(s; VyV f;) in ¢". Sincef; is f al se, it follows that one n
of the literalsa, 3,y must be satisfied. Thug is satisfied.m u
Lemma 25:Let C, Cy be any 2-clustering oD(¢). If Cy

contains both a variable and its negation, then the costisf th
clustering is at least — 1+ A/(2n) > c(¢).

Given an instance(x1, . . ., z,,) of NAESAT*, we construct Proof: SupposeC; hasn’ points while C, has2n — n/
a 2n x 2n distance matrixD = D(¢) where the (implicit) points. Since all distances are at leasand since”; contains
2n points correspond to literals. Entries of this matrix will pair of points at distance+ A, the total clustering cost is

C 1 C?

B. Hardness ofSENERALIZED 2-MEANS

be indexed asD, s, for o, € {x1,...,2,,%1,...,Tn}- at least
Another bit of notation: we writex ~ 3 to mean that either 1 n 1 9 — !
a and 3 occur together in a clause arand 5 occur together " <<2> + A) + " < 9 )
in a clause. For instance, the clauseVv 7 Vv z) allows one A A
to assertt ~ y but notz ~ y. The input restrictions on = n—-14+— >n—-1+ .
NAESAT* ensure that every relationship ~ 3 is generated o " 2n
by a unique clause; it is not possible to have two differetinceA > 4dm, this is always more than(¢). u
clauses that both contain eithét, 3} or {@, 3}. Lemma 26:1f D(¢) admits a 2-clustering of cost ¢(¢),
Define then ¢ is a satisfiable instance of A SAT*.
0 if a=p0 Proof: Let C1, C5 be a 2-clustering of cost ¢(¢). By the
Do) Lt A ifa=p previous lemma, neith&r; nor C; contain both a variable and
=Y 146 ifan~p its negation. Thu$C, | = |C2| = n. The cost of the clustering
1 otherwise can be written as

1 — 20n, wherem is the number of clauses of. One valid 3 otherwise
setting isé = 1/(5m + 2n) and A = 55m. ) . i )
Lemma 24:If ¢ is a satisfiable instance ofA¢SAT*, then Since the cost i< c(¢),_ it follows thatall clauses are spllt
D(¢) admits a generalized 2-means clustering of e¢g) = _betweerCl and_Og, that is, every clause has at least one literal
n — 1+ 20m/n, wherem is the number of clauses of in Cy and one literal iCs. Therefore, the assignment that sets

Proof: The obvious clustering is to make one clustef!l Of C1totrue andall ofC; tof al se is a valid NAESAT*
(say Cy) consist of the positive literals in the satisfying not@SSignment fo. .
all-equal assignment and the other clust€s)(the negative -
literals. Each cluster has points, and the distance betweer- Embeddability ofD(¢)
any two distinct pointsy, 8 within a cluster is eithen or, We now show thatD(¢) can be embedded intg, in the
if o ~ 3, 14 4. Each clause ofs has at least one literal sense that there exist points, € R?" such thatD, 3 =

clause:

Here0 < § < A < 1 are constants such thadm < A < 2 ((n> 45 Z { 1 if clause split betweeit;, C; })
n 2
S
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|zo — 25| for all o, 3. We rely upon the following classical In the same way, the notion of average diameter extends
result [18]. naturally to distributions:

Theorem 27 (Schoenberglet H denote the matrixl — A2 R X _ vy
(1/N)117. An N x N symmetric matrixD can be embedded alr) =Exy| I
into 72 if and only if —H DH is positive semidefinite.
The following corollary is immediate.

Corollary 28: An N x N symmetric matrixD can be  SupposelM is ad-dimensional Riemannian submanifold of
embedded intd3 if and only if " Du < 0 for all u € RY RP. We would like to show that sufficiently small neighbor-

A. Curvature and covariance dimension

with -1 = 0. hoods M N B(x,r) (where B(x,r) is the Euclidean ball of
Proof: Since the range of the map— Hu is precisely radiusr centered atr) have covariance dimensid@, ¢) for
{ue RN :u-1=0}, we have very smalle.

The relation ofe to » depends crucially on how curved the
manifold M is locally. A convenient notion of curvature was
< vTHDHv <0 for all v € RY recently introduced in [16]:

s uTDu<o0forall ue RN withu-1=0. Definition 31: The condition numbenf M is defined to be
1/7, wherer is the largest number such that: the open normal
®  pundle aboutV of radiusr is imbedded ifR” for all r < 7.
With this notion in hand, we can state our main result.

Proof: If ¢ is a formula with variables:, ..., z,, then — peorem 32:Let M be ad-dimensional Riemannian sub-
D = D(¢) is a2n x 2n matrix whose firstx rows/columns - anitold of R with finite condition numbe /7, and lety

correspond tary, ..., x, and remaining rows/columns correq any probability measure ai.
spond tozy, ..., Z,. The entry for literalg«, 3) is

—HDH is positive semidefinite

Lemma 29:D(¢) can be embedded intg.

Pick anyr > 0 and any pointp € M. Then the restriction
Dog=1-1(a=0)+A-1(a=0F)+0-1(a~ 3), of v to the neighborhoodV = M n B(p,r) has covariance
dimension(d, 2(r/7)?).
Proof: Let v|y be a shorthand for the restriction ofto
N. Clearly, there exists some, € N such that

Ex x iy 1X = X'P] 2 Exu)y[IX — 2ol)-

where1(-) denotes the indicator function.
Now, pick anyu € R?" with « -1 = 0. Let u* denote the
first n coordinates of, andu ™~ the lastn coordinates.

uTDu -
_ ZD o Let 7" denote the tangent plane t/ at z,; this is ad-
" aftta™s dimensional affine subspace. Consider the projection fAom
) onto this plane,f : N — T. Lemmas 5.3 and 5.4 of [16]
= > uaug— > ul+AY usum+ (implicitly) assert that ifr < 7/2, then (i) f is 1 — 1 and (ii)
a,p @ @ foranyz € N,
72 et 9) o= F@ < © - Jlo = 2.
2 If X is drawn fromv restricted toN, its expected squared
< D ua | —lul®+ 24wt uT)+ 6 fuallugl  distance fromT is quite small:
@ a3 .
2 Exy [distUX, T)?] = Exy[IX = F(X)°]
< _flul? 12 —12 r?
< =l + AR+ luTl) + 6 (Za: |ua|) < 5 ExallX - 2ol
2
< —(1 = Al + 26]jul*n < D Ex oy [1X = X))
where the last step uses the Cauchy-Schwarz inequalitye Sin ;2
20n < 1 — A, this quantity is always< 0. n = A% (v|w).
VII. APPENDIXIII: COVARIANCE DIMENSION OF A Thus v|y is well-approximated by ai-dimensional affine
SMOOTH MANIEOLD subspace. The bound on its covariance dimension then ®llow
from Lemma 33. [ |

Here we S.hOW 'Fhat that a distribution concentrated N&QXhat if the distribution of interest does not lie exactly on
a smoothd-dimensional manifold of bounded curvature has

. . . . . low-dimensional manifol | it? One w
neighborhoods of covariance dimensioh The first step & low-dimensional manifold\/, but close to it? One way

—_ . . . .to formalize this situation i imagine th here is an
towards establishing this result is to generalize our mnt|c§0 ormalize this situation s to imagine that there is a

of covariance dimension slightly, from finite point sets tct)mderlying distribution on M, but that we only get to
) TR gnty, P observe noisy vectorX + Z, whereX ~ v andE[Z | X] =
arbitrary distributions:

2 < 2 H i _
Definition 30: Probability measure over R” hascovari- O.’EHIZH | X] < o”. In such situations, Theore_m 32 con
. . . . 9 9 5 tinues to hold, although the covariance dimension becomes
ance dimensiorid, ¢) if the eigenvalueg; > 05 > --- > 07, 9 2 /A2 ) .
of its covariance matrix satisfy (d,2((r/7)*+ (0% /A% (v|Nn)))); the proof is exactly as before,
except that the expected squared distance of each joinZ
o+t 0d > (1—¢€) (i 4+ +0h). from the tangent plan& increases by (at most)?.



B. Covariance dimension and approximating subspaces

Earlier, we asserted that a set has low covariance dimen-
sion if it is well approximated by a low-dimensional affine
subspace. We now formalize this intuition.

Lemma 33:A probability measure over R” has covari-
ance dimensiorid, ¢) if and only if there exists an affing-
dimensional subspacE c R” such that

Ex~,[(distance fromX to T)?] < —A%(v).

[N e}

Proof: Assume without loss of generality thathas mean
zero and covariance diég;, ..., 0%), wheres? > - > o%,.
The d-dimensional subspace chosen by principal component
analysis (PCA) would then be that spanned by the first
coordinate axes; call thig™*. Then

v has covariance dimensidd, ¢)
(o440 >1—e)(oi+ - +0%)
(041 + -+ +0b) < e(of + -+ 0p)
Exn[Xgp + -+ XP] < Exn[[| X]°]

Exw [dist( X, T%)?) < SA%(v)

¢t ¢ 0%

Ex ., [dist( X, T)%] < %Ai(u) for some affine
subspacd’ of dimensiond.

The last implication follows from the well-known fact that
Ex~,[dist(X, T)?] is minimized by the PCA subspace. m
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