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Abstract

Algorithms for persistent homology and zigzag persistemhblogy are well-studied for persistence
modules where homomorphisms are induced by inclusion miapthis paper, we propose a practical
algorithm for computing persistence undgy coefficients for a sequence of general simplicial maps and
show how these maps arise naturally in some applicatiorspoldgical data analysis.

First, we observe that it is not hard to simulate simplicialp® by inclusion maps but not necessarily
in a monotone direction. This, combined with the known atans for zigzag persistence, provides an
algorithm for computing the persistence induced by sinmdlimaps.

Our main result is that the above simple minded approach eamjproved for a sequence of simpli-
cial maps given in a monotone direction. A simplicial map bardecomposed into a set of elementary
inclusions and vertex collapses—two atomic operationisdéia be supported efficiently with the notion
of simplex annotations for computing persistent homol@dggonsistent annotation through these atomic
operations implies the maintenance of a consistent cormydiasis, hence a homology basis by dual-
ity. While the idea of maintaining a cohomology basis throagfinclusion is not new, maintaining them
through a vertex collapse is new, which constitutes an itapbatomic operation for simulating simpli-
cial maps. Annotations support the vertex collapse in adib the usual inclusion quite naturally.

Finally, we exhibit an application of this new tool in whiclevapproximate the persistence diagram
of afiltration of Rips complexes where vertex collapses aeguito tame the blow-up in size.

1 Introduction

Several applications in topological data analysis encounter the followitgemn: when a simplicial com-
plex K, is modified to another compleks, how do the topological features change. If the modification
pertains only to inclusions, that igs; C K5, one can quantify the changes by thersistent homology
group. This idea of topological persistence originally introduced in [19, 20]deen explored extensively
both algebraically and algorithmically in the past decade, see e.g. [3, 5,11,/48, 24, 26]. When the
modification is more general than the inclusions, modeled by considering thé&{map K- to be a sim-
plicial map instead of an inclusion map, the status is not the same. In this paperesent an efficient
algorithm for computing topological persistence for simplicial maps and shaappbcation to a problem
in topological data analysis.

Traditional persistent homology is defined fom@mnotonesequence of homomorphisms, where all the
mapsK,; — K;.1 are along the same direction. In [8], Carlsson and de Silva introducezighag persis-
tencedefined for a zigzagging sequence of homomorphisms containing mapsflibéhform K; — K14
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andK; «— K;.1. They also presented a generic prototype algorithm for computing zigzagsfence in-
duced by general homomorphisms. It requires an explicit representétiom homomorphisms between the
homology groups of two consecutive complexes in a sequence. In partifuhe input is given in terms

of maps between input spaces such as a continuousfmald; — K;.1, a representation of the induced
homomorphismf, : H.(K;) — H.(K,1) between the homology groups needs to be computed. Often
this step is costly and, in general, leadgxtm*) algorithm where each input complex h@$n) simplices.

In contrast, when the mapis an inclusion, the persistence algorithm computes the persistent homology in
O(n?) time wheren is the total number of simplices inserted.

Using classical algebraic topological concepts such as mapping cylindersiot hard to simulate a
simplicial mapf : K; — K;,, by zigzag inclusions through an intermediate compi&sbuilt from K;.
However, the complef(, if constructed nively, may have a huge size. As detailed in section 2.3, one
can improve upon this fige construction which converts the input zigzag filtration connected by siiaplic
maps to another zigzag filtration connected only by inclusion maps. One canatkes advantage of the
efficient algorithms to compute the persistence diagram for an inclusioéddzigzag filtration [9, 24].

Our main result detailed in Sections 3 and 4 is that when the input filtration isctethby a monotone
(i.e, non-zigzag) sequence of simplicial maps, we can improve furthertigecabove construction by taking
advantage of annotations introduced recently in [4]. One of the main &yemof this approach is that it
avoids the detour throught, and thus requires far fewer operations to move fiso K;1; see Figure 2.
Furthermore, the main auxiliary structure this new direct approach avaikseisdad binary bits (elements of
Z-) attached to simplices which together can be viewed as a single binary mati$xis Tincontrast to the
simple-minded coning approach which uses the zigzag persistence algf@jtthat requires multiple such
matrices.

One key aspect of our annotation based approach is that it lets us simulaengilieial maps by a
sequence oinclusionsandvertex collapses monotone directiomvithoutzigzag. An annotation is linked
with a cohomology basis which by duality corresponds to a homology basigs, Bmnotations over in-
clusions and vertex collapses allow us to maintain a consistent homology kdisesily under simplicial
maps and infer the persistent homology. Our handling of inclusions caeeeas an alternative formulation
of the algorithm for computing persistent conomology proposed in [16jvever, the handling of vertex
collapses (which are neither inclusions nor deletions) in the context sispamnce is new, and has not been
addressed previously.

Finally, in Section 6, we show an application where the need for computisisperce under simplicial
maps arises naturally. Our algorithm from Section 4 can be used for thisatmm directly. It is known
that the persistence diagram [12] of Vietoris-Rips (Rips in short) filtratwogides avenues for topological
analysis of data [1, 14, 21]. However, the inclusive nature of Rips tmmp makes its size too huge to be
taken advantage of in practice. One can consider sparsified ver§iRims@omplexes [25] or graph induced
complexes [13] by subsampling input points which can be achieved byxvestpses. Our algorithm
supports vertex collapses and thus naturally yields to maps arising outtossbsampling.

Throughout the paper, simplicial homology and cohomology groups éireedewith coefficients irZ,.

2 Preliminaries and simplicial maps

Definition 2.1 Given a finite set/, a simplicial complexs’ = K (V) is defined as a collection of subsets
{oc C V} sothate € K implies that any subset’ C o isin K. The vertex se¥V (K) of K is V. The
elements of{ are called its simplices. An element K is ap-simplex if its cardinality i3+ 1. A simplex
o' is a face ofr ando is a coface ob’ if o/ C 0.

Definition 2.2 Let X be a subset of a simplicial complék The seft X := {¢’ € K| 30 € X ando C o'}



is called the star ofX. The closure of{, denotedX, is the simplicial complex formed by simplicesin
and all of their faces. The link of isLk X := St X \ St X.

The star ofX consists of the simplices i that are cofaces of simplices K. The link of X consists
of the faces of the simplices in its star which contain no verteX of

2.1 (Co)homology groups

We briefly introduce the notion of homology and cohomology groups heiehwhe use extensively; see
e.g. Hatcher [23] for details. Both groups are defined utfdecoefficients. Ap-chainc, in a simplicial
complexK is a formal sum op-simplices, that is¢, = Xa;o;, o; € {0,1} ando; € K. The chains under
Zy-additions form an abelian group called thehain group ofK” and is denoted’,(K'). The boundary of
ap-simplexo, denoted, o, is defined to be the formal sum of its boundépy— 1)-simplices. We obtain
the boundary homomorphisty, : C, — C,_1 given byd,(Xa;0;) = Xa;(0,0;). The kernel 00, is the
cyclegroupZ, C C,. The image ob, is the boundary groug,—; C C,—1. It can be easily verified that
Op © Op—1 = 0 which makes the quotient groufl,(K) = Z,(K)/B,(K), known as theth homology
group, well defined.

Cohomology groups are defined by cochains, cocycles, and coanesthat are, in a sense, functional
duals to the chains, cycles, and boundaries respectivelycéchain is a homomorphise : C,(K) — Zs
and thus can be completely specified by its value on @esimplex. Thep-cochain groupC?(K) is the
group of all cochains undéf,-additions. The coboundary operatyr: C? — CP*! sendgp-cochains to
(p + 1)-cochains by evaluating,c” on each chai,;1 € Cp1 asc?(9p+1dp+1). The kernel o, is the
cocycle groupZ?(K) and its image is the coboundary groB™!(K). Sinces, o 6,1 = 0, we have the
quotient groupZ?(K')/ BP(K') well defined which is called the cohnomology grot (K).

2.2 Simplicial maps
Definition 2.3 Amapf : K — K’ is simplicial if for every simplexs = {vg,v1,...,v¢} In K, f(o) =
{f(vo), f(v1), ..., f(vr)} is asimplexink’. The restrictionfy of f to V(K) is a vertex map.

A simplicial map f : K; — K, induces a homomorphisi, (k) EL H,(K>) for the homology
groups in the forward direction while a homomorphigffi( K ) r HP(K,) for the cohomology groups in
the backward direction. The latter sends a cohomology ¢lags H? (K-) to the cohomology clagg’] in
HP(K;) whered (¢,) = ¢(f(cp)) for eache, € Cp(K7).

Definition 2.4 A simplicial mapf : K — K’ is calledelementanyf it is of one of the following two types:

e fisinjective, andK’ has at most one more simplex than In this case,f is called anelementary
inclusion

e f is not injective but is surjective, and the vertex m@pis injective everywhere except on a pair
{u,v} C V(K). Inthis case is called anelementary collapseAn elementary collapse maps a pair
of vertices into a single vertex, and is injective on every other vertex.

We observe that any simplicial map is a composition of elementary simplicial mapapendix A).

Proposition 2.5 If f : K — K’ is a simplicial map, then there are elementary simplicial m#ps

KLk By MK, = K sothatf = f, 0 fa_i0---o fi.



In view of Proposition 2.5, it is sufficient to show how one can design thsigience algorithm for an
elementary simplicial map. At this point, we make a change in the definition 2.4 of eleamesimplicial
maps that eases further discussions. Weheto be identity (which is an injective map) everywhere except
possibly on a pair of verticeu,v} C V(K) for which fyy maps to a single vertex, sayin K’. This
change can be implemented by renaming the vertices’ithat are mapped onto injectively. Since the
standard persistence algorithm handles inclusions, we focus mainly dhritatne elementary collapses.

2.3 Simulation with coning

First, we propose a simulation of simplicial maps with a coning strategy that oglyres additions of
simplices. We focus on elementary collapses. LetK — K’ be an elementary collapse. Assume that

w Xz xz

v

u

K

Figure 1: Elementary collapge, v) — u: the coneu x St v adds edge$u, w}, {u,v}, {u, z}, triangles
{u,w,z}, {u,v,x},{u,v,w}, and the tetrahedrofu, v, w, z}.

the induced vertex map collapses vertieces € K tou € K’, and is identity on other vertices. For a
subcomplexX C K, define the cone * X to be the compleXo U {u} |o € X}. Consider the augmented
complex

K::Ku(u*m).

In other words, for every simplefu, . . ., uq} € St v of K, we add the simpleXuo, ..., ug} U {u} to K
if it is not already in. See Figure 1. Notice th&t is a subcomplex of< in this example which we observe
is true in general.

Claim2.6 K' C K.

Proof: For a simplexr € K’ that does not containm, f is identity on its unique pre-image; thatisc K C

K. Now consider al-simplexs = {u,u1,...,uq} € K'. Sincef is surjective, there exists at least one

pre-image ofr in K of the formo’ = {ug, u1, ..., uq}, whereuy is eitheru or v. If itis uyp = u, we have

f(¢’) =o' = o andthusy € K C K. So, assume thaiy = v. This means that the simpléx, ..., ug}

is in Lk v (and thus irSt v), implying thate = {u, u1, ..., u4} € K. o
Now consider the canonical inclusions: K — K andi : K’ < K. These

inclusions constitute the diagram on the righthand side which does notsaeitesom- . F

mute. Nevertheless, it commutes at the homology level which is precisely s&@ated b \lz,

low. i

K



Ho (K1) —> Hi(K3) — Hi(K3) — Hi(K3) <—— Hi(K3) —— -+ — H.(Kn)
H*(Kl>ﬂ> H.(K) —— H,(K;) — H,(K3) L H,(K3) B — H.(Kp)

=

Proposition 2.7 f, : H.(K) — H.(K') is equal to(i’,) ! o i, wherei, is an isomorphism and..(K) -
H.(K) < H. (K.

Proof: We use the notion of contiguous maps which induces equal maps at the hgrieslely Two maps
f1: K1 — Ko, fo: K1 — Ko are contiguous if for every simplex € K, fi(o) U fa(o) is a simplex in
K5. We observe that the simplicial mags> f and: are contiguous and induces an isomorphism at the
homology level, thatisi, : H.(K) — H*(K) is an isomorphism.

Sincei is contiguous ta’ o f (Proposition A.1 in appendix), we have= (i’ o f), = i, o f.. Sincei/,
is an isomorphism (Proposition A.2 in appendi,)~! exists and is an isomorphism. It then follows that

f*_(*) Ol* u

Proposition 2.7 allows us to simulate the persistence of a sequence of simplipghitiaonly inclusion-
induced homomorphisms. Consider the following sequence of simplicial coegtexnected with a zigzag
sequence of simplicial maps (the arrows could be oriented differently ierggn

LKLk E. K,

which generates the module at the homology level by induced homomorpfiisms

FoH(K) Y HO(K) 2 Bk B B
When the mapg; are all inclusions, it is known that the zigzag persistence induced by thebeacaomputed
in matrix multiplication time by a recent algorithm of [24]. This algorithm does ntmok to simplicial maps
as per se though we know that a persistence module induced by simpliciahorajis a decomposition [26]
and hence a persistence diagram | [12]. With our observation that siepjicial map can be simulated
with inclusion maps, we can take advantage of the algorithm of [24] for ctinpaigzag persistence for
simplicial maps. In view of Proposition 2.7, consider the following sequeaneected only with inclusions:

K1<—>[€1<—>K2<—>KA'3<—>K3<—>---<—>K

At the homology level we havél, (K;)~H, (K41) induced by the inclusios; «— K;,; and also
H,(K;)~H,(K;,,) induced by the inclusio; — K;,1. Thus, we have the following persistence mod-
ule:

M:H(K) & H(K)

~

~ H(K3) & H(Ks) ™ - & HU(K,)
Theorem 2.8 The persistence diagram @f can be derived from the that of the moduli¢.

Proof: Consider the diagram between vector spaces as shown above. All gtsms are induced by
inclusions, hence every square being supported only by isomorphismawes. The other squares sup-
ported byf;, also commute because of Proposition 2.7. Hence every square in thiswiegmamutes, and
the claim follows [8, 18]. |



3 Annotations

When we are given aon-zigzagsequence of simplicial mags; i K> ELA Ksz--- Ei K,, we can improve
upon the coning approach by reducing simplex insertions as illustrated irefR2gConsider the mafy; :

K; — K;wheref;; = fj_10---0 fi;10 f;. To compute the persistent homology, the persistence algorithm
essentially maintains a consistent basis by computing the iniade3;) of a basisB; of H,(K;). As one
moves through a map in the filtration, the homology basis elements get creatiejidiboan be interpreted to

be destroyed (death). The notion of this birth and death of the homologgy dlements can be formulated
precisely with algebra [26] and can be summarized with persistence diadt@insHere, instead of a
consistent homology basis, we maintain a consistent conomology basis, tha@t’iss a conomology basis

of H*(K;) maintained by the algorithm, we compute the preimﬁlg‘el(Bi) where H*(K;) il H*(Kj)
is the homomorphism induced in the cohomology groupsfby By duality, this implicitly maintains a
consistent homology basis and thus captures all information about pets$istaology as well [16].

Our main tool to maintain a consistent cohomology basis is the notion of annotitiwhith are binary
vectors assigned to simplices. We maintain the annotations as we go forwaudtitthe given sequence,
and thus maintain a cohomology basis in the reverse direction whose birtleatidadincide with the death
and birth respectively of a consistent homology basis.

Definition 3.1 Given a simplicial compleX’, Let K (p) denote the set gf-simplices inK. An annotation
for K (p) is an assignment : K (p) — Z$ of a binary vectorn, = a(c) of same lengtly for eachp-simplex
o € K. Entries ofa,, are called its elements. We also have an induced annotation fop-@hyinc, given
byacp = 2o‘Ecpaa-

Definition 3.2 An annotatiora : K (p) — Z3 is valid if conditions 1 and 2 are satisfied:
1. g =rank H,(K), and

2. twop-cyclesz; and z; havea,, = a, iff their homology classes are identical, ile;] = [22].

Proposition 3.3 Statements 1 and 2 are equivalent:
1. An annotatiora : K (p) — Z3 is valid

2. The cochaing¢; }i—1,... 4 given byg;(c) = a,[i] for all o € K(p) are cocycles whose cohomology
classeq[¢;]},i =1,..., g constitute a basis aff?(K).

Proof: 1 — 2: The cochaing; are cocycles since for arfy + 1)-simplexr € K (p+ 1) one hagor] = [0]
and hence,¢;(1) = ¢;(01) = ¢;(0) = 0, where}, is the co-boundary operator fprdimensional co-
chains. Let[z ], [22],--- ,[2,4] be a basis off,(K). Let V' be the vector space generated By, i =
1,---,g. Define a bilinear formy : V' x H,(K) — Zo by a([¢i], [2;]) = ¢i(2;). The matrix[¢;(z;)]i; has
full rank due to the condition 2 in the definition of annotation. This means thewvspaced” and H,(K)
have the same rank and hence are isomorphic. It followsithat{? (K).

2 — 1: For this direction, consider a basdis], [22], - -, [z4] Of H,(K). By universal coefficient
theorem we have an isomorphist? (K)~Hom(H,(K), Z2) which sends a cocycle clags;] to the ho-
momorphism(z;] — ¢;(z;). This means that the matrix;(z;)];; has full rank and hence the vectors
[01(25), ..., dq(25)] and[p1(z), - - ., ¢¢(21)] are identical if and only ifz;] = [z;]. The claim can be ex-
tended to any homology class since it can be expressed as a linear conmbarfidtio basis elements. m



In light of the above result, an annotation is simply one way to represeiftaraaogy basis. However,
by representing the corresponding basis as an explicit vector assogitiieeach simplex, it localizes the
basis to each simplex. As a result, we can update the cohomology basis localyaihging the annota-
tions locally (see Proposition 4.4). This point of view also helps to reveale can process elementary
collapses, which are neither inclusions nor deletions, by transferrimgtations (see Proposition 4.5).

K K

N e

K/

Figure 2: Annotation vs. coning: The pdit, v) is collapsed ta: in K to produceK’ (middle column).
The2-simplices are the shaded triangles alone. Annotation requires inserting (ttyptfee single triangle
as shown on the left whereas coning requires inserting many more simgisé®wan by shaded triangles
on the right. Specifically, the coning approach requires inserting all sinsglcthe cone: St v formed
by u and all simplices in the closure of the starof

4 Algorithm

Consider the persistence modul¢ induced by elementary simplicial mags: K; — K; .

M: H(K) D BU(K) B B - HLU(K)
Instead of tracking a consistent homology basis for the maditjeve track a cohnomology basis in the dual
module M* where the homomorphisms are in reverse direction:

M 1K) L (1) B i () - & (K

As we move from left to right in the above sequence, the annotations implicitlytairaia cohomology
basis whose elements are atsoe stampedo signify when a basis element is born or dies. We should
keep in mind that théirth anddeathof a cohomology basis element coincides with deathandbirth of

a homology basis element because the two modules run in opposite directions.

4.1 Elementary inclusion

The handling of elementary inclusions using annotations can be viewedadtearative formulation of the
algorithm proposed in [16]; see also [17]. We describe it in terms of thetation here because it is also
used in an elementary collapse, a new atomic operation that we need tosadbyasider an elementary in-
clusionK; — K; 1. Assume thaf(; has a valid annotation. We describe how we obtain a valid annotation

7



00 10 00 10 00 10

(a) Case(i) (b) Case(ii)

Figure 3: Case(i) of inclusion: the boundatyv = u + v of the edgewv has annotation + 1 = 0. After

its addition, every edge gains an element in its annotation whiglidsall except the edgev. Case (ii) of
inclusion: the boundary of the top triangle has annotafiibnit is added to the annotation e which is

the only edge having the second elemen€onsequently the second element is zeroed out for every edge,
and is deleted.

for K;+1 from that of K; after inserting the-simplexo = K, \ K;. We compute the annotatia,, for
the boundary)s in K; and take actions as follows. A formal justification is provided in Section 5.

Case (i): Ifag, is a zero vector, the clag8o] is trivial in H,_(K;). This meanss creates a-cycle in
K; 1 and by duality gp-cocycle is killed while going left from¥;,; to K;. In this case we augment the
annotations for alp-simplices by one element with a time staimp 1, that is, an annotatiojb;, by, - - - , by}
for ap-simplexr is updated tdby, ba, - - - , by, by+1] With the last element time stamped 1 whereb, 1 = 0
for T # o andb, 1 = 1 for 7 = 0. The elemenb; of a, is set to zero foil < i < g. Other annotations for
other simplices remain unchanged. See Figure 3(a).

Case (ii): Ifap, is not a zero vector, the class of the— 1)-cycledo is nontrivial in H,_ (K;). Therefore,

o kills the class of this cycle and a corresponding dual class of cocyclesisib the reverse direction.
We simulate it by forcingg, to be zero which affects other annotations as well.il.ef, - - - ,ip = u be
the set of indices in non-decreasing order so that;,,-- - ,b;, = b, are all of the nonzero elements in
age = [b1,b2,- -+ , by, ,bg]. The cocyclep = ¢;, + ¢i, +- - -+ (¢, = ¢u) should become a coboundary
after the addition oé, which renders

Gu = Giy + Giy + o+ Dy,

We make the latest cocyclg, to be dependent on others. In other words, the cocycle gtasghich is
born at the time + 1 is chosen to be killed at time wher was introduced. This pairing matches that
of the standard persistence algorithm where the youngest basis elerabmiys paired first. We add the
vectoray, to all annotations ofp — 1)-simplices whose:th element is nonzero. This zeroes out tlk
element of all annotations @p — 1)-simplices. We simply delete this element from all such annotations.
See Figure 3(b).

Notice that determining if we have case (i) or (ii) can be done easity(iny) time by checking the
annotation oo. Indeed, this is achieved because the annotation already localizes floenodegy basis
to each individual simplex.

4.2 Elementary collapse

The case for handling collapse is more interesting. It has three distinst ¢ieplementary inclusions to
satisfy the so called link condition, (ii) local annotation transfer to preparehé collapse, and (iii) collapse
of the simplices with updated annotations. We explain each of these steps now.



The elementary inclusions that may precede the final collapse are motiwatedebult that connects

collapses with the change in (co)homology. Consider an elementary coﬂapgie K, .1 where the ver-
tex pair (u,v) collapses ta:. The following link condition, introduced in [15] and later used to preserve
homotopy[1], becomes relevant.

Definition 4.1 A vertex pair(u, v) in a simplicial complexs; satisfies théink conditionif the edge{u, v} €
K;,andLkuNLkv = Lk {u,v}. An elementary collapsg : K; — K, satisfies the link condition if the

vertex pair on whichy; is not injective satisfies the link condition.
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Figure 4: Annotation updates for elementary collapse: inclusion of a tridaglatisfy the link condition
(upper row), annotation transfer and actual collapse (lower rowptation11 of the vanishing edgev is

added to all edges (cofaces) adjoining

Proposition 4.2 [1] If an elementary collapsef; : K; — K;y1 satisfies the link condition, then the
underlying space$K;| and |K;1| remain homotopy equivalent and hence the induced homomorphisms
fi. s Ho(K;) — Ho(Kiy1) and f : H*(K;) < H*(K;4+1) are isomorphisms.

If an elementary collapse satisfies the link condition, we can perform the col-

K;

— = K41

N

fi lapse knowing that the (co)homology does not change. Otherwise, ove #rat the
(co)homology is affected by the collapse and it should be reflected inpulates for
annotations. The diagram at the left provides a precise means to cartyeathange
in (co)homology. LetS be the set of simplices in non-decreasing order of dimensions,

whose absence frofi; makes(u, v) violate the link condition. For each such simplex
o € S, we modify the annotations of every simplex which we would have doarewkre to be inserted.
Thereafter, we carry out the rest of the elementary collapse. In@sserplicitly, we obtain an intermediate
complexk; = K; U S where the diagram on the left commutes. Hetds induced by the same vertex map
that induces;, and; is an inclusion. This means that the persistencg &f identical to that off/ o j which
justifies our action of elementary inclusions followed by the actual collapses.

We remark that this is the only place where we may insert implicitly a simpiexhe current approach.
The number of such is usually much smaller than the number of simplices in the eor&t v that we
would need to insert for the algorithm using coning.

Next, we transfer annotations ig;. This step locally changes the annotations for simplices containing
the vertices, and/orv. The following definition facilitates the description.



Definition 4.3 For an elementary collaps¢; : K; — K;.1, a simplexc € K; is called vanishingif
the cardinality off;(c) is one less than that af. Two simplicesr and ¢’ are calledmirror pairs if one
containsu and the othew, and share rest of the vertices. In Figure 4(lower row), the vaniskingplices

are {{u,v}, {u,v,w}} and the mirror pairs are{{u}, {v}}, {{u, w}, {v,w}}.

In an elementary collapse that sendsv) to «, all vanishing simplices need to be deleted, and all
simplices containing need to be pulled to the vertex(which are their mirror partners). We update the
annotations in such a way that the annotations of all vanishing simplices bemymeand those of each
pair of mirror simplices become the same. Once this is achieved, the collapse isnenpdel by simply
deleting the vanishing simplices and replacingith « in all simplices containing without changing their
annotations. The following proposition provides the justification behind teeifsp update operators that
we perform.

Proposition 4.4 Let K be a simplicial complex anal: K (p) — Z be a valid annotation. Let € K (p) be
anyp-simplex and- any of its(p — 1)-faces. Adding, to the annotation of all cofaces ofof codimension
produces a valid annotation fdk (p). Furthermore, the cohomology basis corresponding to the annotations
remains unchanged by this modification.

Proof: Let {[¢1],...,[¢4]} be a cohomology basis ¢f?(K') corresponding ta : K (p) — Zj as stated in
Proposition 3.B. Lef" be the set of cofaces afof codimensionl and

1N Qbi(al) if OJGK(p)\T
¢i(0') = { ¢i(0") + ¢i(o) fo’eT

By construction,¢; is the cochain that corresponds to the new annotation obtained by agldiogthat
of the simplices inT’. We prove thai; is a cocycle in the clasg;]. Therefore {[¢}],...,[¢;]} is a
cohomology basis of/?(K). The new annotation is valid by Proposition 3.3 and the cohomology bases
remain unchanged.
If $i(c) = 0, we havep, = ¢; and thug¢;] = [¢,] trivially. So, assume that;(c) = 1. In this case
¢, = 1+ ¢; onT and equal®; everywhere else. Consider tfye— 1)-cochaing defined bygp(7) = 1 and
¢(7') = 0 for everyr’ € K,_; \ 7. Then the coboundary is ap-cochain that id for every simplex irl’
and0 on otherp-simplices. We can write, = ¢; + d¢. It follows that[¢]] = [¢4]. |

Consider an elementary collapge: K; — K;;1 that sendgu,v) to . We update the annotations
in K; as follows. First, note that the vanishing simplices are exactly those simpliotsiiag the edge
{u,v}. For everyp-simplex containindu, v}, i.e., a vanishing simplex, exactly two among(its- 1)-faces
are mirror simplices, and all other remainijg— 1)-faces are vanishing simplices. Letbe a vanishing
p-simplex andr be its(p — 1)-face that is a mirror simplex containing We adda,, to the annotations of
all cofaces ofr of codimensionl includingo. We call this anannotation transfefor o. By Propaosition
4.4, the new annotation generated by this process corresponds to tldnoidalogy basis fok;. This new
annotation has, as zero since, + a, = 0. See the the lower row of Figure 4.

We perform the above operation for each vanishing simplex. It turnthatiby using the relations of
vanishing simplices and mirror simplices, each mirror simplex eventually accuireentical annotation
to that of its partner. Specifically, we have the following observation.

Proposition 4.5 After all possible annotation transfers involved in a collapse, (i) each vargssimplex
has a zero annotation; and (ii) each mirror simplexas the same annotation as its mirror partner simplex

T
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Proof: Our algorithm performs an annotation transfer for every vanishing simgtexthermore, the an-
notation transfer for a vanishing simplexdoes not affect the annotation of any other vanishing simplex.
Hence, the annotation of each vanishing simptég updated exactly once after which it becomes zero and
remains so throughout the rest of the annotation transfers for othishiagn simplices. This proves claim
().

For claim (ii), consider a pair ofp — 1)-dimensional mirror simplices = {u,us,...,u,} andr’ =
{v,ug,...,u,}. Since(u, v) satisfies the link condition, it is necessary thatgkgmplexa = {u, v, ua, ..., up}
must exist ink;. Thus, we have thats, = 0. On the other hand, other tharand’, any (p — 1)-face of
« is a vanishing simplex, and by Claim (i), in the end, has zero annotationefbiner after all annotation
transfersag, = a, + a,» = 0, implying thata, = a,. [ |

Subsequent to the annotation transfer, the annotatidki; dfts for actual collapse since each pair of
mirror simplices which are collapsed to a single simplex get the identical annotatihe vanishing
simplex acquires the zero annotation. Furthermore, Proposition 4.4 tellstusel@homology basis does
not change by annotation transfer which aligns with the fact fffat H*(K;) « H*(K,.1) is indeed an
isomorphism. Accordingly, no time stamp changes after the annotation transféne actual collapse. The

next section presents formal statements justifying the algorithm for annotgidates.

5 Justification

In this section we justify the algorithm for annotation updates. Genericallynesg : K — K’ is an
elementary map inducing a homomorphigfi (K) L HP(K') in M* whereK = K; andK' = K; 1

for somei € {1,...,n}. Let{¢;} be the cochains corresponding to the annotations computeffor
given a valid annotatio¢;} for K. First, we show that the computed annotations remain valid (proof in
Appendix B), thatis{¢/ } indeed forms a cohomology basis ¥ (K”). Then, we show in Propositions 5.2
and[5.3 how the cohomology basg’]} and {[¢;]} for K’ and K respectively correspond under the
homomorphisnmy*. The time stamps used by the algorithm concur with this correspondence.

Proposition 5.1 Let{[¢;]} be the cohomology basis féf” (K') given by a valid annotation fak” and{¢; }
be the cochains corresponding to the annotation computed&fdsy the update algorithm. Thef[¢}]} is
a cohomology basis fal/? (K”).

First, we focus on whelf is an elementary inclusion. If is an elementary inclusion, it is known that in
the persistence modulg, is either injective in which case a new class is born, or surjective in whish &a
class is killed. In the dual module with cohomology,switches the role, that ig;* is surjective whery, is
injective and vice versa.

Proposition 5.2 Leto := K’ \ K be ap-simplex inserted for inclusiofi : K — K'.

i. fiisinjective (f* is surjective): Lef¢1], ..., [¢,] be a basis of{?(K) given by a valid annotation.
Letg),..., ¢;+1 be the cochains that correspond to the annotation computed fdry the update
algorithm. Then,[¢;] = f*([¢}]) fori = 1,...,g and f*([¢,,,]) = 0. Cohomology bases for
dimensions other thapremain unchanged.

ii. f.issurjective (* is injective): Let{[¢1], ..., [¢4]} be a basis for7?~! given by a valid annotation.
Letg),...,#,_, be the cochains that correspond to the annotation computedfdsy the update
algorithm which deletes theth element. Then, fot < i < w, [¢;] = f*([¢}]) and fori > w,
[#i+1] = f*([¢;]). Cohomology bases for dimensions other than 1 remain unchanged.
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Proof: We provide the proof for (i) here and defer the proof of (ii) to the apipenRecall thatr =
K'\ K is ap-simplex inserted for inclusion. We observe that wifeis an inclusion, we havé, (z) = z
for any cyclez in K wheref, denotes the chain map induced fy

Consider the case for (i). In this cagecreates a new-cycle and no othek-cycle fork # p. The
annotations fok-simplices fork # p are not changed. Therefore, a basis (K for k # p remains so
in H*(K'). So, we can focus only on the case- p. The algorithm updates the annotationgefimplices
in K by appending & € Zs for everyone except the simplexwhich gets al € Z,. The definition of the
homomorphisnH?(K) L HP(K') provides that, for every € {1,..., g}, there is a cocycle defined by
the homomorphism — ¢}(fx(z)) wheref*([¢!]) = [¢]. If [z1],. .., [z4] is a basis of the homology group
H,(K), the clasg¢] is uniquely determined by the vect@r(z1), ..., ¢(z,)]. We have

[¢(Zl)a cee Cb(zg)] = [ng(f#(zl); tee ¢;(f#(zg))]
= [qb;(zl)avgbg(zg)]
= [¢i(21),. .., ¢i(2g)]-

The last equality follows from the fact thaf(z;) = ¢;(z;) because théth element in the annotation for
p-simplices remains the same for< i < g. Since¢ and¢; evaluate the basig], ..., [z,] the same, we
have[¢] = [¢;], thatis, f*([¢}]) = [¢:] as we are required to prove. Following the same argument we see
that[e) 1 (fx(21), -, &1 (fo(2))] = [0,...,0] since the cycles; fori = 1,...,g do not include the
simplexo and thus have the elemehin the (g + 1)-th position of the annotation for every simplex in them.

Clearly, f*([¢}11]) = 0.
Similar to the case above, one can prove for case (ii) (see AppendixB) tha

[0(z1), 5 D(29)] = [Pi(21), - -, Pil2g)]

giving f*([¢}]) = [¢] = [¢s] fori = {1,...,u—1}. The case fof € {u+1,..., g} canbe proved similarly.
The only caveat is that theth element is zeroed out in annotation, so there is a left shift of the elements
lying to the right of theuth element in the annotation which accounts for the assefti¢i.]) = [¢i+1]. ®

Next, we consider the case wh¢n= f; is an elementary collapse. Recall that we implement such a
collapse as a composition of elementary inclusipaad a vertex collapsg wheref = f’oj. This induces
the following sequencé/*(K) & H*(K) T H*(K'). Since we have already argued about inclusions, we
only need to show that the annotation updates reflect thefifiap

Proposition 5.3 Let[¢1], .. ., [¢,] be a basis of/?(K) given by a valid annotation. Lef;, ..., ¢; be the
cochains that correspond to the annotation computeddoby the update algorithm. Thefs;| = f*([¢}])
fori=1,...,9.

Proof: First, recall thatf, and hencef’* is an isomorphism due to Proposition 4.2 as the vertex (pair)
satisfies the link condition irk. Let [z],...,[z,] be a basis inf,(K). As before, letp be a cocycle
defined by the homomorphism — ¢}(f}(z)) where f*([¢;]) = [¢]. We have[p(z1),...,d(z)] =
(97 (fy(21)), - - -, #;(fi(29))]. Recall that we first carry out an annotation transfekino match the anno-
tations for the mirror simplices and to zero out the annotations for the vanishipgices. This update does
not change the cohomology classes thanks to Proposition 4.4. So, veediot¢hie update due to the vertex
collapse. Every pair of mirror simplices carries their annotation into the celthpsnplex, and vanishing
simplices lose their zero annotations as they disappear. In effect, We;ﬁﬁgfv;gzj)) = ¢i(%;), giving us

that[¢(z1),...,¢(29)] = [0i(21), ..., di(24)]. Therefore f*([¢)]) = [¢] = [¢s] fori=1,...,g. [
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6 Application to topological data analysis

In topological data analysis, several applications and approacheRipse&omplex filtration [1, 14, 25].
The computation of the persistence diagram or its approximation for a Rip$idittrappears to be a key
step in these applications. However, the size of this filtration becomes a boktleeeause of the inclusive
nature of Rips complexes. A natural way to handle this problem is to sueelgssubsample the input
data and build a filtration on top of them. We show how one can apply our résartisprevious sections
to approximate the persistence diagrams of a Rips filtration from such aesfiéiration. Given a set of
pointsV ¢ R? (Similar to [25], results in this section can be extended to any metric space witHirigp
dimensiord.), let’R" (V') denote the Rips complex on the point §etvith parameter. That is, ak-simplex
o = {ug,...,ur} C VisinR"(V)if and only if |u; — u;|| < r for anyi,j € [0,k]. We present an
algorithm to approximate the persistence diagram for the following Rips filtrafibe parametera > 0
and0 < e < 1 are assumed to be preselected.

Ra(V) AR R(lJrs)a(V) RPN R(1+€)mo¢(v). (1)

The number ofk-simplices in a Rips complex with vertices can b®(n*+1). This makes computing
the persistent homology of the above filtration costly. In [25], Sheehggsed to approximate the persis-
tence diagram of the above filtration by another Rips filtration where eachisi@mhpomplex involved has
size only linear im. This approach allows vertices to be collapsed (deleted) with a weightiegmectvhen
the parameter for the Rips complex becomes large, which helps to keep the size of the simptimalex
at each stage small.

In this section, we provide an alternative approach to approximate thistpare diagram of the fil-
tration given in((1). We achieve sparsification by subsampling as in [26]plr persistence algorithm for
simplicial maps allows us to handle the sequence of complexes induced by sherialy / collapsing of
vertices directly instead of an additional weighting scheme. We considerpgarsiBcation schemes, one
produces a sequence of sparsified Rips complexes, and the othecgs@isequence of graph induced com-
plexes (GICs) which have been shown to be even sparser in pracdjcedidymptotically, both sequences
have sizes linear in number of vertices.

6.1 Persistence diagram approximation by sparsified Rips eoplex

Given a set of point¥’, we say thal’’ C V is ad-netof V if (i) for any pointv € V, there exists a point
v € V such that|v — «'|| < 4; and (ii) no two points i’ are withing distance. Aj-netV’ can be easily
constructed by a standard greedy approach by taking furthest porats/iééy or by more sophisticated and
efficient methods as in [10, 22]).

Now setl} := V. We first construct a sequence of point sétsk = 0,1, ..., m, such thatV},; is a
0‘782(1 +¢)*~1-net of V4. Consider the following vertex maps : Vi — Vi1, fork € [0, m — 1], where for
anyv € Vi, m(v) is the vertex in/, 11 thatis closest to. Definery, : Vo — Vi1 asmi(v) = mpo- - - mo(v).

Each vertex mapr;, induces a well-defined simplicial map, : R*(1+9)" (13,) — R0+ (v, 4).
Indeed, sincd’, ., is alae?(1 + )k ~!-net of V, for each edge = {u, v} from R*(1+9)" (1), we have

lw =l + flu =7 ()] + flo = 7(v)]|
a(l+e)" +ae’(1+e)?
a(l + )kt

[l (uw) — i ()]

VARRVANVAN

Hencer,(u)m(v) is an edge iR+ (v, ;). Since in a Rips complex, higher dimensional sim-
plices are determined by the edges, every simplex. .., ug} in Ra(1+5)k(vk) has a well-defined image
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{me(uo), . .., mr(ug)} in ROATO™ (V. 1). Hence, eachy, is well-defined providing the filtration:

Ra(‘/o) ﬂ) Ra(l—l—e) (‘/'1) L. h’m_*} Ra(1+€)m (Vm) (2)

In other words, as the parameter= a(1 + ) increases, we can simply consider the Rips complex
built upon the sparsified data poirits. Note that the sequence above is not connected by inclusion maps
and thus classical persistent algorithms cannot be applied directly; whikdgarithm from Section 4 can
be used here in a straightforward manner.

Our main observation is that the persistence diagram of the sequence bisinnpaps in|(2) approxi-
mates that of the inclusion maps|in (1). In particular, we show that the perststeodules induced by these
two sequences interleave in the sense described in [6].

First, we need maps to connect these two sequences. For this, weeotisrthe vertex mapy, :

Vo — Viy also induces a simplicial malp, : R+ (V) — R0+ (V. .1). To establish that this
simplicial map is well-defined, it can be shown that if there is an ddge} in Ro(+e) (Vb), then there is
an edgesy, (u)7y(v) in RO (V).

Claim 6.1 Each triangle in the following diagram commutes at the homology level.

fR’oz(H-E)’C (‘/0) ( ZkA . Ra(1+5)k+l (‘/O)

jkj\ k jk+1j

h
Ra(lJrs)k(Vk) k Ra(l+€)k+1 (Vk+1)

Here, the maps,s andj,s are canonical inclusions. The simplicial maﬁa@ and h; are induced by the
vertex mapsy : Vo — Vi1 andmy : Vi — Viyq, respectively, as described before.

Proof: First, we consider the bottom triangle. Note that the vertex fpajestricted on the set of verticés
is the same as the vertex map. (That is, for a vertex. € Vj, C Vj, hi(u) = Bk(u).) Thushy, = hy, o ji.
Hence the bottom triangle commutes both at the simplicial complex level and atrtf@dygy level.

Consider the top triangle. We claim that the myap; o hy, is contiguous to the inclusioit. Since two
contiguous maps induce the same homomorphisms at the homology level, the tgle ftammutes at the
homology level.

This claim can be verified by the definition of contiguous maps. Given a simplexR(1+9)" (1),
we wish to show that vertices fromU hy (o) span a simplex irRe(1+)* " (V). SinceR*(+)" (1)
is a Rips complex, we only need to show that for any two verticesndv from o U ﬁk(o—), the edgeuw
has length less tham(1 + £)*! (and thus iR+ (V). If u andv are both froms or both from
hy, (o), then obviously|u — v|| < a(1+¢)**+1. Otherwise, assume without loss of generality that o and
u € hy(0) whereu = 7, (@) for somei € o. It then follows that,

lu =l < flu—al + [l —of

2 k
e i k k+1
< 1 1 1 .
S 2019 gzo( +e) +a(l+e)’ <a(l+e)
Therefore, the vertices of U Ek(o) span a simplex iR (1<) (Vo). |

The above claim implies that the persistence modules induced by sequéheesl ((2) are weakly
log(1 + ¢)-interleaved at the log-scale. By Theorem 4.3 of [6], we thus conclutietie following:
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Proposition 6.2 The persistence diagram of the sequence (2) providds& 1 + ¢)-approximation of the
persistence diagram of the sequence (1) at the log-scale.

Finally, sinceV}, ; is aj-net of Vj, for § = O‘752(1 +¢)k=1, we can show by a standard packing argument
that eachRa(Hf)k(Vk) is of size linear inn. See Proposition C.1 in appendix. Note that the persistence
diagram of the simplicial maps in|(2) can be computed by our algorithm in Secti®utting everything
together, we have the following result.

Theorem 6.3 Given a set of, pointsV in a metric space with doubling-dimensidrand0 < ¢ < 1, we
canlog(1+¢)-approximate the persistence diagram of the Rips complex filtration (1dbwtlthe filtration
(2). Thep-skeleton of each simplicial complex involved in (2) has 6ig )0 @)n).

6.2 Persistence diagram approximation by graph induced coplex

We now present an alternative way to construct a sequence of cormpitexgradually sparsified or sub-
sampled points. Thgraph induced complefGIC) proposed in [13] works on a subsample as the sparsified
Rips complex does. However, it contains much fewer simplices in practi¢&3]nit was shown how GIC
can be used to estimate the homology of compact sets by investigating the peesidta single simplicial
map. Here we show how one can build a sequence of GICs to approximaieriience diagram of a Rips
filtration. Similar to the case of a sequence of sparsified Rips complexes, sirnplaga occur naturally to
connect these GICs in the sequence.

Definition 6.4 Let G(V') be a graph with the vertex sé&t and letv : V' — V' be a vertex map where
v(V) = V' C V is a subset of vertices. The graph induced comgleX, V', v) := G(G(V),V',v) is
defined as the simplicial complex wheré-gimplexo = {v},v,..., v} } isinG(V, V', v) if and only if
there exists dk + 1)-clique{vi,va,...,vx+1} € V so thatv(v;) = v foreachi € {1,2,...,k +1}. To
see that it is indeed a simplicial complex, observe that a subset of a dficalso a clique. LetG(V') be
called the base-graph fay(V, V', v).

Intuitively, the vertex map maps a cluster of vertices frobi to a single vertex’ € V', and these vertices
constitute the “Voronoi cell” of the site’. The GICG(V,V’,v) is somewhat the combinatorial dual of
such a Voronoi diagram. In our case the base gi@ph) is the 1-skeleton of the Rips compleR™ (1)

and the vertex map is the mapr, : Vo — Vi1 as defined in the last section. Dendt&Vp, Vi) =
G(Vo, Vi, mx—1) constructed using the 1-skeleton?f (1)) as the base-graph. It is easy to show that by the
definition of 7, and construction oV}.s, the vertex mapy, : Vi, — Vj..1 induces a well-defined simplicial
map fi, : G20 (Vo Vi) — G0+ (Vg Vier1), giving rise to the following sequence:

G (Vo, V) L g9 (1, 1) 225 go+% (v 1) - -

fmfl

o 3)
fm -1 ga(l—&-e) (V()a Vm)-

We prove that the persistence diagram of the above filtration induced by sahpips/.’s has the same
approximation factor to the persistence of diagram of the filtration (1) asfhhe filtration (2). Thus, we
have:

Theorem 6.5 Given a set of: pointsV in a metric space with doubling-dimensidrand0 < ¢ < 1, we
can %—approximate the persistence diagram of the Rips complex filtration (1)abythhe filtration

(3). Thep-skeleton of each simplicial complex involvedin (3) has 6lgeh )0 ()n).
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Proof: In sequence (3)Vj.1 is ady1-net of Vj, for 6 = O‘752(1 +e) 1 (k=0,1,...,m—1)asin
the sequence of (2). Now considef : Vy — Viy1. Itis immediate thatpsi(p)| < Q(O‘Ii) Zf:o(l +
g)! < %(1 + ¢e)* for eachp € Vp. In other words V.1 is a5 (1 + ¢)*-sample ofl;. Recall the GIC
G149 (Vp, Vi) is constructed based on theskeleton ofR*(1+9)" (V;) (used as the base-graph). It is
easy to show thaty,(p) induces a simplicial mag, : R+ (V) — g*(+9)" (Vy, Viy1). To prove
that the persistence diagram of the sequence (1) is approximated by thatsequence (3), it is sufficient
to show that the sequence (1) interleaves with the sequence (3). Theifigilolaim reveals the desired
interleaving property. Its proof is similar to that of the Claim|6.1.

Claim 6.6 Each triangle in the following diagram commutes at the homology level.

Ra(1+a)"‘(%) C—>i’i Ro(l+e)+1 (Vo)

jkj k J'k+1j

ga(l—i—e)k_l (V(), Vk) Fi ga(l—i—s)k (V()y Vk+1)

Here, the maps;s andj,s are canonical inclusions. The simplicial mﬁpis induced by the vertex map
7k : Vo — Vis1, and the simplicial mag, = fx o ji.

Note that for every edgev in ga<1+6>’“(vo, Vis1), there is an edgeb in R(1 + ¢)*(Vp) such that
i (a) = u andy(b) = v. SinceViyq is a% (1 + ¢)*-sample ofl, one has that

juv| < |ua| + o] + ab] < ag(1 + )" + a(1+e)F = a(l + )",

Therefore, the 1-skeleton of the graph induced comp]éS&*E)k(Vo,VkH) is a subcomplex of thé-
skeleton ofR*(1+9)" (V.. ;). Consequentlyg®(1+)* (4, Vj,11) is a subcomplex oR*(1+)" (., )
which is the maximal simplicial complex containing itsskeleton. This observation implies that the se-
guence[(3) has smaller size compared to the sequence (2). Furtheaitiooeigh the asymptotic space
complexity of each GIC is the same as that of the sparsified Rips complexcincprahe size of GICs can
be far smaller; see [13]. However, the construction of each GIC is nxpensive, as one needs to compute
eachg®(1+9)" (Vj, Vi41) from the Rips complesR®(+)" (14) built on the original vertex set;, instead

of the vertex set from the previous compl@%(l*E)’“_1 (Vb, Vk). Hence there is a trade-off of space versus
time for the approaches given in Section 6.1.

7 Conclusions

In this paper, we studied algorithms to compute the persistence diagram ohatfme) filtration connected
by simplicial maps efficiently. As discussed in [17], the algorithm based ordhemology view in [16]
has a good practical performance for the case of computing inclusiacaddhon-zigzag persistence. Our
annotation-based algorithm extends such a view of maintaining an appeogteomology basis to the case
of vertex collapses. This allows us to compute the persistence diagrarfilfiateon connected by simplicial
maps directly and efficiently. Clearly, the coning approach in Section 2.3vadsks with coefficients
in any finite field. It is not so obvious for the collapse based algorithm irti@eéd. Contrary to our
earlier conclusion in the conference version of this paper, we havedfout that this algorithm works
with coefficients in any finite field as well. The case for inclusions has ajrbaen described in [2]. It
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remains to consider the annotation transfers. Zgbe the finite field we are working with. Orientations
of the simplices need to be considered now. Suppose that we are trangsfiee annotation of a vanishing
(oriented) simplex to another (oriented) simpleX whose boundaries share the mirror simpteaf one
lower dimension. First, we ad(h — a,[i]) mod p to a,[i] for eachith element which renders, to

be 0. If ¢/ ando induce opposite orientations an seta’ [i] := (a’[i] + a,[i]) mod p, otherwise set
alli] :== (p— (as[i] + aL[i]))/ mod p. After these annotation updates, two mirror simplices that are to be
identified have equal annotations when they are considered with oriest#tatrinduce the same orientation
on their common boundary simplex.

We believe that, as the scope of topological data analysis continues teehrdadher applications
based on simplicial maps will arise. Currently, an efficient implementation of éngigtence algorithm
taking advantage of the compressed representation of annotationsemaseperted in [2]. We have also
developed an efficient implementation of the persistence algorithms for simplicgs imahe same vein.
The software name8impPers is available from authors’ web-pages.
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A Missing proof from Section 2

Proof of Proposition|2.5. Consider the surjective simplicial mgp: K — f(K) defined ag’ (o) = f(0)

foranyo € K. Writing V' = V(K) andV’ = V(K'), we havef{, = fy. The simplicial mapf : K — K’

is a composition o f/, wherei : f(K) — K’ is the canonical inclusiorf(K) C K’. Obviously, the
inclusion: can be easily decomposed into a sequence of elementary inclusions. Véhowvthatf’ can
be decomposed into a sequence of elementary collapses.
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Let A := {v € V' | |fyv !(v)| > 1}. Hencefy maps injectively ontd’’ \ A. Order vertices inA
arbitrarily as{vy,...,v;}, k = |A], and let4; denotefv‘l(vi). We now definef; and K; in increasing
order ofi. For the base case, &) = K. For any: > 0, consider the vertex mafy, which is the injective
map onV (K;_1) \ A;, but maps4; to v;. We setf; to be the simplicial map induced by this vertex map
fa,, and seti; := f;(K;_1). By constructionf; is a surjective simplicial map.

It is easy to see that the vertex mg@p, o --- o fa, equalsfy. Hence, the induced simplicial map
fro--ofi: K — Kiequalsf’ : K — f(K). Furthermore, eacly can be decomposed into a sequence
of elementary collapses, each induced by a vertex map that maps only tieesd&romA; to v;.

Proposition A.1 The simplicial map$ o f and: are contiguous.

Proof: By definition of contiguous maps, we need to show that for any simplexik’, i(c) Ui o f(o) is a
simplex inK . Note thati(c) = o.

First assume that the simplexis not inSt v. Sincef is an elementary collapse, we hafler) = ¢ and
i’ o f(0) = . Henceji(o) U (i’ o f)(0) equalss which is also a simplex ik .

Now assume that € Stv, ando = {uo,...,uq} U {v}. Sincef(v) = u, f(o) = {ug,...,uq} U{u},
and so i’ o f)(¢). Hence the union of(c) and(i' o f)(o) is B := {uo,...,uq} U {u,u}, which is the
simplexo U {u}. On the other hand, by construction§t the simplexs U {u} is necessarily ifs. Hence
i(o) U (i' o f)(0) is a simplex ink in this case too. Hence the mapandi’ o f are contiguous. |

~

Proposition A.2 i : H,(K') — H,.(K) is an isomorphism.

Proof: Consider the projection map: & — K’ induced by the vertex map

(o) = {u ifp=v

p  otherwise.

Letid ;. denote the identity map ofi. We show that: (i)r is an elementary collapse, and (ii) the composition
i’ o m andidy are contiguous. It is easy to see that i’ is idx,. Then,i’ is a (simplicial) homotopy
equivalence and henggis an isomorphism.

Specifically, consider an arbitrary simplexc K. Let X = St {u, v} be the star ofu,v} in K. If
o ¢ X, then by the construction dt, ¢ € K’. In other wordsy () = o indeed exists ik” in this case.
Furthermorej’ o w(c) = o and thus(i’ o 7)(0) Uid (o) = o € K.

Now consider the case € X, and assume that = {uo, ..., uq} U A with A C {u,v}. To show that
7 is well defined, we need to show thato) = {u, ..., uq, u}, is indeed a simplex ifk” .

() If uw ¢ A, then by the construction dt, o has a pre-image i under the inclusion : K — K.
Henceo must also be a simplex i, and under the map, it is mapped to the simplefu, . .., ug, u} in
K'. As suchr(o) exists inK” in this case. (ii) Ifu € A, then the simplex” = {ug,...,uq} U (A\ {u})
must exist in the closed st8t i {u, v} of {u,v} in K. HenceK contains a simplex” U {z} with z being
eitheru or v. Under the mayf, the image ot” U {z} in K" is {uy, ..., uq,u}, hencer(c) is well-defined
in K’ in this case too.

Furthermore, in both (i) and (ii) abové o )(0) = 7(o), andw (o) is a face of the simplex. Hence
(i'om)(o) Uidg (o) = 0 € K. Putting everything together, we have tifat = and the identity may
are contiguous. u

B Missing Details from Section 5

Proof of Proposition/5.1 Leta’ denote the annotation of a cyclén K;.
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Case (i) of elementary inclusion: Fbr£ p, anyk-cycle in K;, 1 was ak-cycle in K; and the annotations
for k-simplices are not altered fér # p. So, a valid annotation dk; for & # p remains so after inclusion
of a p-simplexo. Now consider twg-cyclesz andz’ in K;41. We need to show that™ = a’/ if and
only if [z] = [#/].

Let [z] = [#/]. If z does not include, neither does’ and hence both exist ii;. In this case

aiz—H - [ai,O] - [ai,,O} - a,ijl

since allp-simplices other thaa gets the same zero element appended to their annotations while going from
K; to K, 1. Now consider the case wheréncludess. Then,z’ also includew. There is @+ 1-chain, say

D, sothatoD = z + 2. Itfollows thatoD = (z + o) + (2' + o). Thep-chainsc = z + o andd’ = 2’ + o

do not includer since it gets canceled undég-additions. Thep-cyclec + ¢ = 9D is identity in H,(K;)

being a boundary. Therefore, its annotation is zer&jrgiving thata, = a. in K; and hence ink;, . It
follows thatz = ¢ + o andz’ = ¢ + o have identical annotations i, ;.

Now suppose that] # [2/]. If none ofz andz’ includeo, they exist ink; and by the same logic as
above inherit the same annotations frémwhich cannot be identical becau&g’s annotation is valid. If
exactly one ot andz’ includeso, the annotation of one if’; . ; will have the last elementand that of the
other will have0. Thus, they will not be identical. Consider the remaining case wherezbald 2" include
o. Consider the cycle + 2z’ which cannot include because of.,-additions. Then, the cycle+ 2’ exists in
K; and cannot be in the claf§ because otherwide + z'] will remain identity in H,, (k1) contradicting
[z] # [2/]in K;41. Sincez + 2'] # [0] in Hy(K;), one has! # a’,. It follows that

attl =&l 1] # [a4,1] = a?fl.
Case (ii) of elementary inclusion: The only annotations altered are for diorensandp — 1. In dimension
p the only change is the addition efalong with its zero annotation. In this cagecannot participate in
any p-cycle in K, because otherwis@s should have zero annotation ;. Therefore, annotation for
dimensionp remains valid ink; ;. So, we focus on dimensign— 1.

Let z andz’ be two(p — 1)-cycles with[z] = [2/] in K;,,. Observe that both and:’ are alsq(p — 1)-
cycles inKj;. Recall thatay, has been added to dlb — 1)-simplices withuth element equal td. Hence,
the uth element of anyp — 1)-cycle is exactly equal to the parity of the number(pf- 1)-simplices in it
with uth element equal to. If [2] = [2/] in K;, we havea’ = a,. In particular, theuth element o’ and
a!, are the same implying thap, has been added with the same paritgt@nda’, .

Thereforeait! = a’f'!. Consider the other case wher # [2'] in K;. Then, there must bejachain
Din K; suchtha®(D + o) = 2z + 2/ in K; 1. We getdD = z + 2/ + do and hence + 2’ + 9o = 0in
K;. So, the annotation of the cyclet 2’ + 9o is zero inK;. Sinceuth element o} is 1, it must be true
thata’ anda!, differ in the uth element which means

s ,
alt' +alit =al +al +ah, =0.

Now suppose thdt] # [2'] in K;41. Clearly,[z] # [2/] even inK; implying a’ # a’,. If uth elements
of a’ anda’, are the same, we will have
i+1

i+1
a, 2

:ai+aga#ai’+aéa =a
proving the required. So, assume thit elements of’ anda’, are different. Without loss of generality,
assume thatth element of’, is 1 and that of, is 0. We claim that?, + a},, # a’,. Suppose not. Then, by
definition of annotationjz + do| = [2'] in K;. Since[do] = [0] in K; 1, we have]z + do] = [2] = [¢]in
K;41 reaching a contradiction thét] # [2] in K;1. Therefore, we have’™ # a’/! because

i+l _ i i i it
a,  =a, tayg, Fay =a, .
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Case for elementary collapse: We already know fhat this case is a composition of an inclusionK; <
K;and a collapsg¢! : K; — K,.1. Since we have argued already that our updates under inclusions
maintain valid annotations, we only show that the collapse ugidaiso does so.

Recall thatf/ is implemented with an annotation transfer followed by the actual collapses beta
p-simplex where our algorithm adds its annotation to all oflieimplices containing a simplexthat is a
(p — 1)-face ofo adjoiningu. Adding a,, to all cofaces ofr of codimensionl creates a new annotation
which is still valid for K; by Proposition 4.4. At the end of all annotation transfers fosale have a valid
annotation forK; with the same cohomology basis such that all vanishing simplices have zextathom,
and each pair of mirror simplices have the same annotation.

Observe that, under the collapke LIt K1, the set of vanishing simplices are exactly those simplices
o for which f/(o) has a lower dimension than A pair of mirror simplicesr andr’ are those that satisfy
that f/(7) = f!(7’) (i.e, the simplex”’ containingv coincides with its mirror partner containingu). Hence
after the collapse, if/(o) is ap-simplex for anyp-simplexc € K;, we havea, = af(o) by construction.
We can now finish the argument that this induced annotatioifqy is valid.

Let z andz’ be any twop-cycles inK;,. Letw andw’ be twop-cycles ink; so thatf/(w) = z and
fi(w") = 2. Then,[w] = [w'] if and only if [z] = [2/] sincef] : H,(K;) — Hy(IK;1) is an isomor-
phism (Proposition 412). With the modified annotationffwe haveal, = a’ , if and only if [w] = [w/].
Therefore[z] = [2/] in K4 if and only ifal, = a’,. The only simplices where andw differ are either
vanishing simplices or mirror simplices. In the first case, the annotation isaref@ the second case the
annotations are the same. $fj,= ai*!. Similarly,a! , = a’}'. Thereforea, = a, if and only if [z] = [2/]

in K; 1. This proves that the annotation féf; , | is valid.

Proof of Case (i) of Proposition 5.2. In this case, dp — 1)-cycle is killed as we add, so in the reverse
direction a cocycle is created. As before, assume[that. . ., [z,] be a homology basis faff,_; (K). By
assumption, theth element in the annotation has been zeroed out¢lbe the cocycle given by and¢/
wherei € {1,...,u — 1}. Then, as before we get

[¢(Zl)a R ¢(Zg)] = [ng(f#(zl), R ¢;(f#(zg))]
= [@;(21), s ,gf);(zg)]

Consider any entry;(z;) in the last vector. 1f;(z;) hasuth element, then we must have)(z;) = ¢;(z;).
This is because, in that casg,has even number of simplices whose annotations hvelementl. Then,
according to the update algorithm the annotatign is added to the simplices ity only even number of
times in total maintaining;(z;) = ¢(z;).

If ¢i(z;) hasuth element, we consider the cycle;+0o and observe that; +0do] = [z;] in H,_1(K).
Then,¢.(z;) = ¢}(z; +00) since¢, is derived from a valid annotation fdt’. The cyclez; has odd number
of simplices whose annotations havif elementl as¢;(z;) hasuth elementl. So,as, has been added odd
number of times ta., and hence even number of timesat, 5. This implies thaw;(z; + do) = ¢i(2;)
which leads top(z;) = ¢i(z;). This immediately givesp(z1),...,¢(z9)] = [#;(21),- .., P;(z4)] Which
we are required to prove.

C The Size of R*1+9)" (V)

We argue that we can construct evéfy in such way that eac®(1+9)" () is of size linear inn. We
computeVy,; such that it is @-net of Vj, for § = O‘762(1 +¢)*=1 by the following standard greedy approach:
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Let D(-,-) denote the metric on the set of input poiftgand thuslV}s). Starting withV;,; = 0, pick an
arbitrary vertex fromVj, and add it toV;.. . In theith round, there are alreadypoints inV;.;. We
identify the pointu from V;, whose minimum distance to points ¥y is the largest. We stop when either
D(u, Viy1) < 6 or Vi1 = Vi. By construction, when this process terminates, any poiiiis within §
distance to some point ivi, . 1, and no two points ifVy; are withing distance. A nive implementation of
the above procedure tak€sn?) time. One can also compute thaetV}.,; more efficiently inO(nlogn)
time (see, e.g, [22]). However, we remark that this step does not formttlareck in the time complexity
as computing persistence diagrams takes time cubic in the number of simplices.

Proposition C.1 Suppose the set of input poirifsare from a metric space with doubling dimensiarfFor
V;s constructed as described above, the numbersimplices inR*(1+9)" ™ (Vi1 ) is O(()0() . n) for
0<e<1.

Proof: For simplicity, set- := a(1+¢)"*1; note tha¥ = 51=—r. We first prove that there arg((1)°(®)

2

number of edges for each vertex¥p.,. Specifically, 020(r11J§i6&er anode € V. : it will be connected to
all other vertices i/ that are within distance to u. SinceV}; is aé-net of V;, every node inj 1
has a ball centered at it with radidg2 that is empty of other points iin;;1. Since the points are from a
metric space with doubling dimensiah we can pack onIy?((g/"—Q)d) = O((ﬂ#)d) = O((%)%) (for

0 < e < 1) number of balls of radius/2 in a ball of radius. This means that there are ordy((1)?)
number of edges containing where the big? notation hides terms exponentialdn It then follows that
the number ofp-simplices containing: is O((1)?%). Since there arél,.1| < n number of vertices in

Vi+1, the total number of-simplices is bounded b ((2)°(@%)n) as claimed. o
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