Discrete Systolic Inequalities and Decompositions of Triangulated Surfaces

Éric Colin de Verdière ${ }^{1,2}$
Alfredo Hubard ${ }^{1,3} \quad$ Arnaud de Mesmay ${ }^{1}$

${ }^{1}$ DIENS, équipe Talgo
École normale supérieure, Paris

$$
{ }^{2} \text { CNRS }
$$

${ }^{3}$ Institut Gaspard Monge, Université Paris-Est Marne-Ia-Vallée

A primer on surfaces

We deal with connected, compact and orientable surfaces of genus g without boundary.

Discrete metric

Triangulation G.
Length of a curve $|\gamma|_{G}$:
Number of edges.

Riemannian metric

Scalar product m on the tangent space.
Riemannian length $|\gamma|_{m}$.

Systoles and surface decompositions

We study the length of topologically interesting curves and graphs, for discrete and continuous metrics.

2.Pants decompositions

3.Cut-graphs

Motivations

Why should we care ?

- Topological graph theory: If the shortest non-contractible cycle is long, the surface is planar-like.
\Rightarrow Uniqueness of embeddings, colourability, spanning trees.
- Riemannian geometry: René Thom: "Mais c'est fondamental !". Links with isoperimetry, topological dimension theory, number theory.
- Algorithms for surface-embedded graphs: Cookie-cutter algorithm for surface-embedded graphs: Decompose the surface, solve the planar case, recover the solution.
- More practical sides: texture mapping, parameterization, meshing ...

Part 1:
 Cutting along curves

Curves with prescribed topological properties

What is the length of the red curve?

Curves with prescribed topological properties

Discrete setting

Continuous setting

What is the length of the red curve?

Intuition

It should have length $O(\sqrt{A})$ or $O(\sqrt{n})$, but what is the dependency on g ?

Discrete Setting: Topological graph theory

The edgewidth of a triangulated surface is the length of the shortest noncontractible cycle.

Theorem (Hutchinson '88)

The edgewidth of a triangulated surface with n triangles of genus g is $O(\sqrt{n / g} \log g)$.

- Hutchinson conjectured that the right bound is $\Theta(\sqrt{n / g})$.
- Disproved by Przytycka and Przytycki '90-97 who achieved $\Omega(\sqrt{n / g} \sqrt{\log g})$, and conjectured $\Theta(\sqrt{n / g} \log g)$.
- How about non-separating, or separating but non-contractible cycles?

Continuous Setting: Systolic Geometry

The systole of a Riemannian surface is the length of the shortest noncontractible cycle.

Theorem (Gromov '83, Katz and Sabourau '04)

The systole of a Riemannian surface of genus g and area A is $O(\sqrt{A / g} \log g)$.

Continuous Setting: Systolic Geometry

The systole of a Riemannian surface is the length of the shortest noncontractible cycle.

Theorem (Gromov '83, Katz and Sabourau '04)

The systole of a Riemannian surface of genus g and area A is $O(\sqrt{A / g} \log g)$.

- Known variants for non-separating cycles and separating non-contractible cycles [Sabourau '08].

Continuous Setting: Systolic Geometry

The systole of a Riemannian surface is the length of the shortest noncontractible cycle.

Theorem (Gromov '83, Katz and Sabourau '04)

The systole of a Riemannian surface of genus g and area A is $O(\sqrt{A / g} \log g)$.

- Known variants for non-separating cycles and separating non-contractible cycles [Sabourau '08].
- Buser and Sarnak '94 introduced arithmetic surfaces achieving the lower bound $\Omega(\sqrt{A / g} \log g)$.

Continuous Setting: Systolic Geometry

The systole of a Riemannian surface is the length of the shortest noncontractible cycle.

Theorem (Gromov '83, Katz and Sabourau '04)

The systole of a Riemannian surface of genus g and area A is $O(\sqrt{A / g} \log g)$.

- Known variants for non-separating cycles and separating non-contractible cycles [Sabourau '08].
- Buser and Sarnak '94 introduced arithmetic surfaces achieving the lower bound $\Omega(\sqrt{A / g} \log g)$.
- Larry Guth: "Arithmetic hyperbolic surfaces are remarkably hard to picture."

A two way street: From discrete to continuous.

Theorem (Colin de Verdière, Hubard, de Mesmay '14)

Let (S, G) be a triangulated surface of genus g, with n triangles. There exists a Riemannian metric m on S with area n such that for every closed curve γ in (S, m) there exists a homotopic closed curve γ^{\prime} on (S, G) with

$$
\left|\gamma^{\prime}\right|_{G} \leq(1+\delta) \sqrt[4]{3}|\gamma|_{m} \quad \text { for some arbitrarily small } \delta .
$$

Proof.

- Glue Euclidean triangles of area 1 (and thus side length $2 / \sqrt[4]{3}$) on the triangles.
- Smooth the metric.

- In the worst case the lengths double.

Corollaries

Corollary

Let (S, G) be a triangulated surface with genus g and n triangles.
(1) Some non-contractible cycle has length $O(\sqrt{n / g} \log g)$.
(2) Some non-separating cycle has length $O(\sqrt{n / g} \log g)$.
(3) Some separating and non-contractible cycle has length $O(\sqrt{n / g} \log g)$.

- (1) shows that Gromov \Rightarrow Hutchinson and improves the best known constant.
- (2) and (3) are new.

A two way street: From continuous to discrete

> Theorem (Colin de Verdière, Hubard, de Mesmay '14)
> Let (S, m) be a Riemannian surface of genus g and area A. There exists a triangulated graph G embedded on S with n triangles, such that every closed curve γ in (S, G) satisfies
> $|\gamma|_{m} \leq(1+\delta) \sqrt{\frac{32}{\pi}} \sqrt{A / n}|\gamma|_{G} \quad$ for some arbitrarily small δ.

Proof.

A two way street: From continuous to discrete

Theorem (Colin de Verdière, Hubard, de Mesmay '14)

Let (S, m) be a Riemannian surface of genus g and area A. There exists a triangulated graph G embedded on S with n triangles, such that every closed curve γ in (S, G) satisfies
$|\gamma|_{m} \leq(1+\delta) \sqrt{\frac{32}{\pi}} \sqrt{A / n}|\gamma|_{G} \quad$ for some arbitrarily small δ.

Proof.

Take a maximal set of balls of radius ε and perturb them a little.

A two way street: From continuous to discrete

Theorem (Colin de Verdière, Hubard, de Mesmay '14)

Let (S, m) be a Riemannian surface of genus g and area A. There exists a triangulated graph G embedded on S with n triangles, such that every closed curve γ in (S, G) satisfies
$|\gamma|_{m} \leq(1+\delta) \sqrt{\frac{32}{\pi}} \sqrt{A / n}|\gamma|_{G} \quad$ for some arbitrarily small δ.

Proof.

Take a maximal set of balls of radius ε and perturb them a little.

By [Dyer, Zhang and Möller '08], the Delaunay graph of the centers is a triangulation for ε small enough.

A two way street: From continuous to discrete

Theorem (Colin de Verdière, Hubard, de Mesmay '14)

Let (S, m) be a Riemannian surface of genus g and area A. There exists a triangulated graph G embedded on S with n triangles, such that every closed curve γ in (S, G) satisfies
$|\gamma|_{m} \leq(1+\delta) \sqrt{\frac{32}{\pi}} \sqrt{A / n}|\gamma|_{G} \quad$ for some arbitrarily small δ.

Proof.

Take a maximal set of balls of radius ε and perturb them a little. \Rightarrow Triangulation T

A two way street: From continuous to discrete

Theorem (Colin de Verdière, Hubard, de Mesmay '14)

Let (S, m) be a Riemannian surface of genus g and area A. There exists a triangulated graph G embedded on S with n triangles, such that every closed curve γ in (S, G) satisfies
$|\gamma|_{m} \leq(1+\delta) \sqrt{\frac{32}{\pi}} \sqrt{A / n}|\gamma|_{G} \quad$ for some arbitrarily small δ.

Proof.

Take a maximal set of balls of radius ε and perturb them a little. \Rightarrow Triangulation T

$$
\left|\gamma_{m}\right| \leq 4 \varepsilon\left|\gamma_{G}\right| .
$$

A two way street: From continuous to discrete

Theorem (Colin de Verdière, Hubard, de Mesmay '14)

Let (S, m) be a Riemannian surface of genus g and area A. There exists a triangulated graph G embedded on S with n triangles, such that every closed curve γ in (S, G) satisfies
$|\gamma|_{m} \leq(1+\delta) \sqrt{\frac{32}{\pi}} \sqrt{A / n}|\gamma|_{G} \quad$ for some arbitrarily small δ.

Proof.

Take a maximal set of balls of radius ε and perturb them a little. \Rightarrow Triangulation T

$$
\left|\gamma_{m}\right| \leq 4 \varepsilon\left|\gamma_{G}\right|
$$

Each ball has radius $\pi \varepsilon^{2}+o\left(\varepsilon^{2}\right)$, thus $\varepsilon=O(\sqrt{A / n})$.

Corollaries

- This shows that Hutchinson \Rightarrow Gromov.
- Proof of the conjecture of Przytycka and Przytycki:

Corollary

There exist arbitrarily large g and n such that the following holds: There exists a triangulated combinatorial surface of genus g, with n triangles, of edgewidth at least $\frac{1-\delta}{6} \sqrt{n / g} \log g$ for arbitrarily small δ.

Part 2:
 Pants decompositions

Pants decompositions

- A pants decomposition of a triangulated or Riemannian surface S is a family of cycles Γ such that cutting S along Γ gives pairs of pants, e.g., spheres with three holes.

- A pants decomposition has $3 g-3$ curves.
- Complexity of computing a shortest pants decomposition on a triangulated surface: in NP, not known to be NP-hard.

Let us just use Hutchinson's bound

An algorithm to compute pants decompositions:
(1) Pick a shortest non-contractible cycle.
(2) Cut along it.
(3) Glue a disk on the new boundaries.
(4) Repeat $3 g-3$ times.

Let us just use Hutchinson's bound

An algorithm to compute pants decompositions:
(1) Pick a shortest non-contractible cycle.
(2) Cut along it.
(3) Glue a disk on the new boundaries.
(4) Repeat $3 g-3$ times.

Let us just use Hutchinson's bound

An algorithm to compute pants decompositions:
(1) Pick a shortest non-contractible cycle.
(2) Cut along it.
(3) Glue a disk on the new boundaries.
(4) Repeat $3 g-3$ times.

An algorithm to compute pants decompositions:
(1) Pick a shortest non-contractible cycle.
(2) Cut along it.
(3) Glue a disk on the new boundaries.
(4) Repeat $3 g-3$ times.

We obtain a pants decomposition of length

$$
(3 g-3) O(\sqrt{n / g} \log g)=O(\sqrt{n g} \log g)
$$

Let us just use Hutchinson's bound

An algorithm to compute pants decompositions:
(1) Pick a shortest non-contractible cycle.
(2) Cut along it.
(3) Glue a disk on the new boundaries. This increases the area!
(4) Repeat $3 g-3$ times.

We obtain a pants decomposition of length

$$
(3 g-3) O(\sqrt{n / g} \log g)=O(\sqrt{n g} \log g) . \text { Wrong! }
$$

Doing the calculations correctly gives a subexponential bound.

A correct algorithm

Denote by PantsDec the shortest pants decomposition of a triangulated surface.

- Best previous bound: $\ell($ PantsDec $)=O(g n)$. [Colin de Verdière and Lazarus '07]
- New result: $\ell($ PantsDec $)=O\left(g^{3 / 2} \sqrt{n}\right)$. [Colin de Verdière, Hubard and de Mesmay '14]
- Moreover, the proof is algorithmic.

We "combinatorialize" a continuous construction of Buser.

How to compute a short pants decomposition

First idea

How to compute a short pants decomposition

First idea

How to compute a short pants decomposition

First idea

How to compute a short pants decomposition

First idea

If the torus is fat, this is too long.

How to compute a short pants decomposition

First idea
Second idea

How to compute a short pants decomposition

First idea
Second idea

If the torus is thin, this is too long.

How to compute a short pants decomposition

First idea
Second idea
Both at the same time

How to compute a short pants decomposition

First idea
Second idea
Both at the same time

We take a trade-off between both approaches: As soon as the length of the curves with the first idea exceeds some bound, we switch to the second one.

Pathologies

- Several curves may run along the same edge:

Pathologies

- Several curves may run along the same edge:

Random surfaces: Sample uniformly at random among the triangulated surfaces with n triangles.

Pathologies

- Several curves may run along the same edge:

Random surfaces: Sample uniformly at random among the triangulated surfaces with n triangles.
These run-alongs happen a lot for random triangulated surfaces:

Theorem (Guth, Parlier and Young '11)

If (S, G) is a random triangulated surface with n triangles, and thus $O(n)$ edges, the length of the shortest pants decomposition of (S, G) is $\Omega\left(n^{7 / 6-\delta}\right)$ w.h.p. for arbitrarily small δ

Part 3:

Cut-graphs with fixed combinatorial map

Cut-graphs with fixed combinatorial map

- What is the length of the shortest cut-graph with a fixed shape (combinatorial map) ?
- Useful to compute a homeomorphism between two surfaces.

Cut-graphs with fixed combinatorial map

- What is the length of the shortest cut-graph with a fixed shape (combinatorial map) ?
- Useful to compute a homeomorphism between two surfaces.

Cut-graphs with fixed combinatorial map

- What is the length of the shortest cut-graph with a fixed shape (combinatorial map) ?
- Useful to compute a homeomorphism between two surfaces.

Cut-graphs with fixed combinatorial map

- What is the length of the shortest cut-graph with a fixed shape (combinatorial map) ?
- Useful to compute a homeomorphism between two surfaces.

Cut-graphs with fixed combinatorial map

- What is the length of the shortest cut-graph with a fixed shape (combinatorial map) ?
- Useful to compute a homeomorphism between two surfaces.
- Example: Canonical systems of loops [Lazarus et al '01] have $\Theta(g n)$ length.

Cut-graphs with fixed combinatorial map

- What is the length of the shortest cut-graph with a fixed shape (combinatorial map) ?
- Useful to compute a homeomorphism between two surfaces.
- Example: Canonical systems of loops [Lazarus et al '01] have $\Theta(g n)$ length.

- Can one find a better map ?

Long cut-graphs on random surfaces

Theorem (Colin de Verdière, Hubard, de Mesmay '13)

If (S, G) is a random triangulated surface with n triangles and genus g, for any combinatorial map M, the length of the shortest cut-graph with combinatorial map M is $\Omega\left(n^{7 / 6-\delta}\right)$ w.h.p. for arbitrarily small δ.

Idea of proof:

- How many surfaces with n triangles ?
- On the other hand, cutting along a cut-graph gives a disk with at most 6 g sides.

Long cut-graphs on random surfaces

Theorem (Colin de Verdière, Hubard, de Mesmay '13)

If (S, G) is a random triangulated surface with n triangles and genus g, for any combinatorial map M, the length of the shortest cut-graph with combinatorial map M is $\Omega\left(n^{7 / 6-\delta}\right)$ w.h.p. for arbitrarily small δ.

Idea of proof:

- How many surfaces with n triangles? Roughly $n^{n / 2}$.
- On the other hand, cutting along a cut-graph gives a disk with at most 6 g sides.

Long cut-graphs on random surfaces

Theorem (Colin de Verdière, Hubard, de Mesmay '13)

If (S, G) is a random triangulated surface with n triangles and genus g, for any combinatorial map M, the length of the shortest cut-graph with combinatorial map M is $\Omega\left(n^{7 / 6-\delta}\right)$ w.h.p. for arbitrarily small δ.

Idea of proof:

- How many surfaces with n triangles? Roughly $n^{n / 2}$.
- On the other hand, cutting along a cut-graph gives a disk with at most 6 g sides.
- How many surfaces of genus g with n triangles and cut-graph of length L ?

Long cut-graphs on random surfaces

Theorem (Colin de Verdière, Hubard, de Mesmay '13)

If (S, G) is a random triangulated surface with n triangles and genus g, for any combinatorial map M, the length of the shortest cut-graph with combinatorial map M is $\Omega\left(n^{7 / 6-\delta}\right)$ w.h.p. for arbitrarily small δ.

Idea of proof:

- How many surfaces with n triangles? Roughly $n^{n / 2}$.
- On the other hand, cutting along a cut-graph gives a disk with at most 6 g sides.
- How many surfaces of genus g with n triangles and cut-graph of length L ? Roughly $L(L / g+1)^{12 g-9}$.

Crossing numbers of graphs

- Restated in a dual setting: What is the minimal number of crossings between two cellularly embedded graphs G_{1} and G_{2} with specified combinatorial maps ?
- Related to questions of [Matoušek et al. '14] and [Geelen et al. '14].

Corollary

For a fixed G_{1}, for most choices of trivalent G_{2} with n vertices, there are $\Omega\left(n^{7 / 6-\delta}\right)$ crossings in any embedding of G_{1} and G_{2} for arbitrarily small δ.

Crossing numbers of graphs

- Restated in a dual setting: What is the minimal number of crossings between two cellularly embedded graphs G_{1} and G_{2} with specified combinatorial maps ?
- Related to questions of [Matoušek et al. '14] and [Geelen et al. '14].

Corollary

For a fixed G_{1}, for most choices of trivalent G_{2} with n vertices, there are $\Omega\left(n^{7 / 6-\delta}\right)$ crossings in any embedding of G_{1} and G_{2} for arbitrarily small δ.

Thank you! Questions?

