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A primer on surfaces

We deal with connected , compact and orientable surfaces of
genus g without boundary.

Discrete metric
Triangulation G .
Length of a curve |γ|G :
Number of edges.

Riemannian metric
Scalar product m on the
tangent space.
Riemannian length |γ|m.
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Systoles and surface decompositions

We study the length of topologically interesting curves and graphs,
for discrete and continuous metrics.

1.Non-contractible curves 2.Pants decompositions

3.Cut-graphs
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Motivations

Why should we care ?

Topological graph theory: If the shortest non-contractible
cycle is long , the surface is planar-like.
⇒ Uniqueness of embeddings, colourability, spanning trees.
Riemannian geometry:
René Thom: “Mais c’est fondamental !” .
Links with isoperimetry, topological dimension theory, number
theory.
Algorithms for surface-embedded graphs: Cookie-cutter
algorithm for surface-embedded graphs: Decompose the
surface, solve the planar case, recover the solution.
More practical sides: texture mapping , parameterization,
meshing . . .
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Part 1:
Cutting along curves
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Curves with prescribed topological properties

Discrete setting Continuous setting

What is the length of the red curve?

Intuition

It should have length O(
√
A) or O(

√
n), but what is the

dependency on g ?
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Discrete Setting: Topological graph theory

The edgewidth of a triangulated surface is the length of the
shortest noncontractible cycle.

Theorem (Hutchinson ’88)

The edgewidth of a triangulated surface with n triangles of genus g
is O(

√
n/g log g).

Hutchinson conjectured that the right bound is Θ(
√

n/g).
Disproved by Przytycka and Przytycki ’90-97 who achieved
Ω(

√
n/g

√
log g), and conjectured Θ(

√
n/g log g).

How about non-separating, or separating but non-contractible
cycles ?
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Continuous Setting: Systolic Geometry

The systole of a Riemannian surface is the length of the shortest
noncontractible cycle.

Theorem (Gromov ’83, Katz and Sabourau ’04)

The systole of a Riemannian surface of genus g and area A is
O(

√
A/g log g).

Known variants for non-separating cycles and separating
non-contractible cycles [Sabourau ’08].
Buser and Sarnak ’94 introduced arithmetic surfaces
achieving the lower bound Ω(

√
A/g log g).

Larry Guth: “Arithmetic hyperbolic surfaces are remarkably
hard to picture.”
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A two way street: From discrete to continuous.

Theorem (Colin de Verdière, Hubard, de Mesmay ’14)

Let (S ,G ) be a triangulated surface of genus g, with n triangles.
There exists a Riemannian metric m on S with area n such that
for every closed curve γ in (S ,m) there exists a homotopic closed
curve γ′ on (S ,G ) with

|γ′|G ≤ (1 + δ)
4
√
3 |γ|m for some arbitrarily small δ.

Proof.

Glue Euclidean triangles of area 1 (and thus side length 2/ 4
√
3)

on the triangles.
Smooth the metric.

In the worst case the lengths double.
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Corollaries

Corollary

Let (S ,G ) be a triangulated surface with genus g and n triangles.
1 Some non-contractible cycle has length O(

√
n/g log g).

2 Some non-separating cycle has length O(
√

n/g log g).
3 Some separating and non-contractible cycle has length

O(
√

n/g log g).

(1) shows that Gromov ⇒ Hutchinson and improves the best
known constant.
(2) and (3) are new.
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A two way street: From continuous to discrete

Theorem (Colin de Verdière, Hubard, de Mesmay ’14)

Let (S ,m) be a Riemannian surface of genus g and area A. There
exists a triangulated graph G embedded on S with n triangles,
such that every closed curve γ in (S ,G ) satisfies

|γ|m ≤ (1 + δ)
√

32
π

√
A/n |γ|G for some arbitrarily small δ.

Proof.

Take a maximal set of balls of radius ε and perturb them a little.
⇒ Triangulation T

|γm| ≤ 4ε|γG |.

Each ball has radius πε2 + o(ε2), thus ε = O(
√

A/n).
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Corollaries

This shows that Hutchinson ⇒ Gromov.
Proof of the conjecture of Przytycka and Przytycki:

Corollary

There exist arbitrarily large g and n such that the following holds:
There exists a triangulated combinatorial surface of genus g, with
n triangles, of edgewidth at least 1−δ

6

√
n/g log g for arbitrarily small δ.
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Part 2:
Pants decompositions
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Pants decompositions

A pants decomposition of a triangulated or Riemannian
surface S is a family of cycles Γ such that cutting S along Γ
gives pairs of pants, e.g., spheres with three holes.

A pants decomposition has 3g − 3 curves.
Complexity of computing a shortest pants decomposition on a
triangulated surface: in NP, not known to be NP-hard.
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Let us just use Hutchinson’s bound

An algorithm to compute pants decompositions:
1 Pick a shortest non-contractible cycle.
2 Cut along it.
3 Glue a disk on the new boundaries.

This increases the area!

4 Repeat 3g − 3 times.

We obtain a pants decomposition of length

Doing the calculations correctly gives a subexponential bound.
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A correct algorithm

Denote by PantsDec the shortest pants decomposition of a
triangulated surface.

Best previous bound: `(PantsDec) = O(gn).
[Colin de Verdière and Lazarus ’07]
New result: `(PantsDec) = O(g3/2√n).
[Colin de Verdière, Hubard and de Mesmay ’14]
Moreover, the proof is algorithmic.

We “combinatorialize” a continuous construction of Buser.
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How to compute a short pants decomposition

First idea

Both at the same time
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How to compute a short pants decomposition

First idea

Both at the same time

If the torus is fat, this is too long.
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How to compute a short pants decomposition

First idea
Second idea

Both at the same time
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How to compute a short pants decomposition

First idea
Second idea

Both at the same time

If the torus is thin, this is too long.
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How to compute a short pants decomposition

First idea
Second idea
Both at the same time
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How to compute a short pants decomposition

First idea
Second idea
Both at the same time

We take a trade-off between both approaches: As soon as the length
of the curves with the first idea exceeds some bound, we switch to
the second one.
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Pathologies

Several curves may run along the same edge:

Random surfaces: Sample uniformly at random among the
triangulated surfaces with n triangles.
These run-alongs happen a lot for random triangulated surfaces:

Theorem (Guth, Parlier and Young ’11)

If (S ,G ) is a random triangulated surface with n triangles, and thus
O(n) edges, the length of the shortest pants decomposition of
(S ,G ) is Ω(n7/6−δ) w.h.p. for arbitrarily small δ
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Part 3:
Cut-graphs with fixed combinatorial map

41 / 53



Cut-graphs with fixed combinatorial map

What is the length of the shortest cut-graph with a fixed shape
(combinatorial map) ?
Useful to compute a homeomorphism between two surfaces.

Example: Canonical systems of loops [Lazarus et al ’01] have
Θ(gn) length.

Can one find a better map ?
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Long cut-graphs on random surfaces

Theorem (Colin de Verdière, Hubard, de Mesmay ’13)

If (S ,G ) is a random triangulated surface with n triangles and
genus g, for any combinatorial map M, the length of the shortest
cut-graph with combinatorial map M is Ω(n7/6−δ) w.h.p. for arbitrarily
small δ.

Idea of proof:

How many surfaces with n triangles ?

Roughly nn/2.

On the other hand, cutting along a cut-graph gives a disk with
at most 6g sides.

How many surfaces of genus g with n triangles and cut-graph
of length L? Roughly L (L/g + 1)12g−9.
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Crossing numbers of graphs

Restated in a dual setting: What is the minimal number of
crossings between two cellularly embedded graphs G1 and G2
with specified combinatorial maps ?
Related to questions of [Matoušek et al. ’14] and
[Geelen et al. ’14].

Corollary
For a fixed G1, for most choices of trivalent G2 with n vertices,
there are Ω(n7/6−δ) crossings in any embedding of G1 and G2 for
arbitrarily small δ.

Thank you ! Questions ?
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