Functional maps and shape matching problems

Étienne Corman
LIX - CMAP
November 13, 2013

Advisors:

Mr Antonin Chambolle Mr Maks Ovsjanikov

Underlying problem

We have two manifolds \mathcal{A} and \mathcal{B} and we want to find correspondences between them

Problem to solve

We are looking for a diffeomorphism T

$$
T: \mathcal{A} \rightarrow \mathcal{B}
$$

with small distortion.

We assume T nearly isometric.

Functional map properties

We see T as an operator

$$
\begin{array}{ccc}
C_{T}: \quad L^{2}(\mathbb{B}) & \rightarrow & L^{2}(\mathbb{A}) \\
f & \mapsto & f \circ T
\end{array}
$$

Properties

- C_{T} is a linear operator and can be express as a matrix when decomposed in a Hilbert basis

$$
C_{T}^{i, j}=\left\langle\varphi_{i}^{\mathbb{A}}, \varphi_{j}^{\mathbb{B}} \circ T\right\rangle
$$

- If T is an isometry then

$$
C_{T}^{t} C_{T} f=f
$$

- Composition are expressed by matrix multiplication

$$
C_{T \circ R}=C_{R} C_{T}
$$

Functional map properties

$$
\begin{array}{cccc}
C_{T}: \quad L^{2}(\mathbb{B}) & \rightarrow & L^{2}(\mathbb{A}) \\
f & \mapsto & f \circ T
\end{array}
$$

Difficulties

- C_{T} is composition operator if and only if

$$
\forall f, g \in L^{2}(\mathbb{B}) \text { with } f g \in L^{2}(\mathbb{B}), \quad C_{T}(f g)=\left(C_{T} f\right)\left(C_{T} g\right)
$$

Example

Functional map to solve shape matching problem

We compute a segmentation of the shapes

Segmentations are invariant by isometry but we do not know the correspondences

$$
\forall i, \exists j, \quad C_{T} \mathbf{1}_{i}^{\mathbb{B}}=\mathbf{1}_{j}^{\mathbb{A}}
$$

T is supposed nearly isometric

$$
C_{T}^{t} C_{T} \approx I
$$

An optimization problem

Finally we want to solve

$$
\min _{C, \pi} \frac{1}{2}\left\|C \mathbf{1}^{\mathbb{B}}-\mathbf{1}^{\mathbb{A}} \pi\right\|_{F}^{2}+\alpha\|C-I\|_{1}
$$

with π a permutation matrix

The functional maps can be seen as a (huge) convex relaxation of the problem

Problems

- The segmentation can be assigned to their symmetric
- We lost the notion of continuity
- The functional map we find is not necessarily a composition operator. Often we have

$$
C=\alpha C_{T}+(1-\alpha) C_{S \circ T}
$$

Imagine that one of our shape has an internal symmetry S

$$
S: \mathcal{A} \rightarrow \mathcal{A}
$$

In the Fourier basis we cannot make the difference between one part of the shape and his symmetric.

How to make the difference between C_{T} and $C_{S \circ T}$?
How to create orientation preserving functional map?

Orientation preserving transformations

$$
\psi_{t}: \mathcal{A} \rightarrow \mathcal{A}
$$

Solution of

$$
\frac{\mathrm{d} \psi_{t}}{\mathrm{~d} t}=V\left(\psi_{t}\right)
$$

is an orientation preserving diffeomorphism.

One idea is to map \mathcal{A} and \mathcal{B} into a sphere

Algorithm pipeline

$$
T=S_{1}^{-1} \circ \psi_{t} \circ S_{0}
$$

Vector fields as operators

We define the linear operator D_{V} as

$$
\begin{array}{rlll}
D_{V}: \mathcal{C}^{\infty}(\mathbb{A}) & \rightarrow \mathcal{C}^{\infty}(\mathbb{A}) \\
f & \mapsto & V . \nabla f
\end{array}
$$

Properties

- D_{V} as a matrix

$$
D_{V}^{i, j}=\left\langle\varphi_{i}^{\mathbb{A}}, V \cdot \nabla \varphi_{j}^{\mathbb{A}}\right\rangle
$$

- Decomposition of D_{V} on a basis of vector fields V_{i}

$$
D_{V}=\sum_{i} a_{i} D_{V_{i}}
$$

- Integration of a vector fields

$$
\frac{\mathrm{d} \psi_{t}}{\mathrm{~d} t}=V\left(\psi_{t}\right) \quad \Leftrightarrow \quad C_{\psi_{t}}=e^{-t D_{V}}
$$

- Divergence free vector fields

$$
\operatorname{div}(V)=0 \quad \Leftrightarrow \quad D_{V}^{i, j}=-D_{V}^{j, i}
$$

Difficulty

$$
\begin{aligned}
D_{V}: \mathcal{C}^{\infty}(\mathbb{A}) & \rightarrow \mathcal{C}^{\infty}(\mathbb{A}) \\
f & \mapsto \\
& V . \nabla f
\end{aligned}
$$

Properties

- D_{V} represents a vector field if and only if

$$
\forall f, g \in \mathcal{C}^{\infty}(\mathbb{A}), \quad D_{V}(f g)=D_{V}(f) g+f D_{V}(g)
$$

Algorithm pipeline

Optimization problem

We have a functional map

$$
C=\alpha C_{T}+(1-\alpha) C_{S \circ T}
$$

We want to retrieve an orientation preserving map by solving

$$
\min _{a} \frac{1}{2}\left\|\exp \left(\sum_{i} a_{i} D_{V_{i}}\right)-C_{S_{1}^{-1}} C C_{S_{0}}\right\|_{F}^{2}
$$

Algorithm

$$
\left\{\begin{aligned}
a^{n+1} & \in \underset{a}{\arg \min } \frac{1}{2}\left\|X^{n}\left(I+\sum_{i} a_{i} D_{V_{i}}\right)-C_{S_{1}^{-1}} C C_{S_{0}}\right\|_{F}^{2} \\
t^{n+1} & \in \underset{S_{0}}{\arg \min } \frac{1}{2}\left\|X^{n} \exp \left(t \sum_{i} a_{i}^{n} D_{V_{i}}\right)-C_{S_{1}^{-1}} C C_{S_{0}}\right\|_{F}^{2} \\
X^{n+1} & =X^{n} \exp \left(t^{n+1} \sum_{i} a_{i}^{n+1} D_{V_{i}}\right)
\end{aligned}\right.
$$

Results

What works

- Works for small deformations when the linearisation is a good approximation

What need to be improved

- The projection into the sphere creates problems
- The step

$$
X^{n+1}=X^{n} \exp \left(t^{n+1} \sum_{i} a_{i}^{n+1} D_{V_{i}}\right)
$$

implies that the error grows exponentially during the iterations

- The method lacks of theoretical proof

Thank you!

